JP6418747B2 - 試料調製ステージ - Google Patents

試料調製ステージ Download PDF

Info

Publication number
JP6418747B2
JP6418747B2 JP2014020115A JP2014020115A JP6418747B2 JP 6418747 B2 JP6418747 B2 JP 6418747B2 JP 2014020115 A JP2014020115 A JP 2014020115A JP 2014020115 A JP2014020115 A JP 2014020115A JP 6418747 B2 JP6418747 B2 JP 6418747B2
Authority
JP
Japan
Prior art keywords
sample
grid
axis
bulk
lamella
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014020115A
Other languages
English (en)
Other versions
JP2014153362A (ja
Inventor
アントニウス ヘンドリクス ウィルヘルムス ヘラルドス ペルスーン ヨハネス
アントニウス ヘンドリクス ウィルヘルムス ヘラルドス ペルスーン ヨハネス
テオドラス エンヘレン アンドレアス
テオドラス エンヘレン アンドレアス
ペトリュス ウィルヘルムス ファン デン ボハード マティエス
ペトリュス ウィルヘルムス ファン デン ボハード マティエス
ヨハネス ペーター ヘラルドゥス スカンパー ルドルフ
ヨハネス ペーター ヘラルドゥス スカンパー ルドルフ
フレドリック ヘイルズ マイケル
フレドリック ヘイルズ マイケル
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FEI Co
Original Assignee
FEI Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by FEI Co filed Critical FEI Co
Publication of JP2014153362A publication Critical patent/JP2014153362A/ja
Application granted granted Critical
Publication of JP6418747B2 publication Critical patent/JP6418747B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/20Means for supporting or positioning the objects or the material; Means for adjusting diaphragms or lenses associated with the support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/30Electron-beam or ion-beam tubes for localised treatment of objects
    • H01J37/305Electron-beam or ion-beam tubes for localised treatment of objects for casting, melting, evaporating or etching
    • H01J37/3053Electron-beam or ion-beam tubes for localised treatment of objects for casting, melting, evaporating or etching for evaporating or etching
    • H01J37/3056Electron-beam or ion-beam tubes for localised treatment of objects for casting, melting, evaporating or etching for evaporating or etching for microworking, e.g. etching of gratings, trimming of electrical components
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • G01N1/286Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q involving mechanical work, e.g. chopping, disintegrating, compacting, homogenising
    • G01N2001/2873Cutting or cleaving
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/20Positioning, supporting, modifying or maintaining the physical state of objects being observed or treated
    • H01J2237/2001Maintaining constant desired temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/20Positioning, supporting, modifying or maintaining the physical state of objects being observed or treated
    • H01J2237/202Movement
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/20Positioning, supporting, modifying or maintaining the physical state of objects being observed or treated
    • H01J2237/204Means for introducing and/or outputting objects
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/20Positioning, supporting, modifying or maintaining the physical state of objects being observed or treated
    • H01J2237/206Modifying objects while observing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/20Positioning, supporting, modifying or maintaining the physical state of objects being observed or treated
    • H01J2237/208Elements or methods for movement independent of sample stage for influencing or moving or contacting or transferring the sample or parts thereof, e.g. prober needles or transfer needles in FIB/SEM systems
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/30Electron or ion beam tubes for processing objects
    • H01J2237/317Processing objects on a microscale
    • H01J2237/3174Etching microareas
    • H01J2237/31745Etching microareas for preparing specimen to be viewed in microscopes or analyzed in microanalysers

Description

本実施態様は、撮像システムのための試料調製の装置及び方法に関する。より具体的には、本実施態様は、原位置試料調製及び撮像を可能にする多数の自由度を有する試料調製ステージに関する。
電子顕微鏡撮像のための試料(サンプル)は、透過光線又は電子放射線の下での観察のために特定の調製を必要とする。例えば、試料の薄いスライス(又は断片)は、グリッド(格子)又はチューブ(管)内のバルク試料から切断又は切削されるのが典型的である。集束イオンビーム(FIB)システムによって或いはFIB及び電子顕微鏡の両方を含むデュアルビームシステム内で切断又は切削を行い得る。そのようなデュアルビームシステムの実例は、FEI Corporation(Hillsboro,OR,USA)からのQuanta 3D DualBeamシステムを含む。しかしながら、FIBを使用して薄いシリコンが調製された後、試料は撮像に適したプラットフォームに移転されなければならない。適切な画像を捕捉するために、走査型透過電子顕微鏡(STEM)のような顕微鏡撮像は多数の自由度を必要とし得る。
他者は多数の自由度を有するSTEM撮像のためのステージを調製した。例えば、特許文献1は、基準地点の近傍に試料を位置付けるためのステージ組立体を記載している。ステージ組立体は、試料を取り付け得る試料テーブルと、基準平面に対して垂直なX軸、基準平面と平行なY軸、及び基準平面と平行なZ軸と実質的に平行な方向に沿う試料テーブルの平行移動(並進)をもたらすよう配置される一組のアクチュエータとを含む。X軸、Y軸、及びZ軸は、相互に直交し、且つ基準地点を通過する。加えて、特許文献2は、3つの垂直な平行移動(並進)及び2つの回転を伴う5つの自由度において移動させ得るテーブルを有するマニピュレータを記載している。
米国特許第7,474,419号 米国特許第6,963,068号
しかしながら、STEM又はTEM分析用の試料を操作する技法はより複雑であり、FIB切削及び彫刻の両方並びに試料内の氷晶形成又はマニピュレータ間の試料の望ましくない解凍を防止するよう特定の臨界温度で行われるべき後のSTEM分析のために試料を操作することを必要とし得る。よって、必要とされているのは、試料が破壊されるようになる試料の取扱いを然程要求せずに、STEM又はTEM撮像用の試料の複雑な操作を可能にするシステムである。
1つの実施態様は、バルク試料ホルダと、バルク試料ホルダに隣接して試料グリッドを保持するためのグリッド試料ホルダとを含み、バルク試料ホルダは、バルク試料ホルダの方向と平行な第1のバルク軸について試料位置を回転させ、且つバルク試料ホルダの方向に対して垂直なバルクフリップ軸について試料位置も回転させるよう構成され、グリッドホルダは、グリッド試料ホルダの方向と平行な第1のグリッド軸及びグリッド試料ホルダの方向に対して垂直なグリッドフリップ軸について試料グリッドを回転させるよう構成される、多軸試料調製ステージである。
他の実施態様は、集束イオンビームと、走査型電子顕微鏡とを有する、デュアルビームシステムである。このシステムは、バルク試料ホルダと、バルク試料ホルダに隣接して試料グリッドを保持するためのグリッド試料ホルダとを含み、バルク試料ホルダは、バルク試料ホルダの方向と平行な第1のバルク軸について回転し、且つバルク試料ホルダの方向に対して垂直なバルクフリップ軸についても回転するよう構成され、グリッドホルダは、グリッド試料ホルダの方向と平行な第1のグリッド軸及びグリッド試料ホルダの方向に対して垂直なグリッドフリップ軸について回転するよう構成される、多軸試料調製ステージを含む。
更に他の実施態様は、上述のような多軸試料調製ステージを提供し、次に、バルク試料ホルダ内に貯蔵される試料からラメラを切断し、ラメラをバルク試料ホルダからグリッド試料ホルダ上のグリッドに移転することによる、試料を調製する原位置方法である。
バルクステージとグリッドステージとを有するベースステージの1つの実施態様を示す斜視図である。 図1のバルクステージ及びグリッドステージを示す拡大図である。 図3の調製済み試料を示す拡大図である。 撮像用の試料の原位置調製のための方法の1つの実施態様を示すフロー図である。 軸受を介した加熱/冷却素子の1つの実施態様を示す斜視図である。
本発明の実施態様は、試料処理システム、及び電子顕微鏡における撮像のために試料を調製する方法に関する。本発明の1つの実施態様は、多数の試料場所と幾つかの軸について各試料場所を傾斜させる能力とを有するデュアルビーム電子顕微鏡のための試料調製及び撮像ステージである。多軸ステージの1つの実施態様は、例えば、更なる撮像のために試料のラメラを切削し或いは削ぎ落とすよう、バルク試料の集束イオンビーム処理を行うことによって、バルク試料を操作するためのバルク調製ステージを有する。様々の種類の試料を取り扱うために、多軸ステージは、グリッド(grid)、チューブ(tube)、プランシット(planchet)、又はTEM持上げグリッド(TEM liftout grid)のためのホルダを含み得る。加えて、バルク試料を適切に切削し或いは薄く切るために、FIBの下にバルク試料を位置付け得るよう、多数の自由度を備える多数の方向において移動するよう多軸ステージを構成し得る。
バルク調製ステージに加えて、多軸ステージの実施態様は、撮像のためにグリッド(格子)の上に取り付けられるバルク試料の薄板構造(例えば、ラメラ)を保持するよう構成されるグリッドステージも含む。よって、切断されるや否や、マニピュレータニードルを使用して、バルク試料からのラメラをバルクステージからグリッドステージに移転し得る。一部の実施態様では、グリッドステージは多数の次元に移動し得るので、二重軸(デュアル軸)断層撮影を行うことが可能であり、その場合には、1つよりも多くの角度を見ることができる。バルクステージ及びグリッドステージは同じ多軸ステージの上にあるので、ラメラを切断し、且つ、ラメラをグリッドステージに移転させるために使用されるチャンバに孔を開けることなく切断後のラメラ断面に対するTEM走査も行うために、単一の多軸ステージを使用し得る。よって、多軸ステージは、多数の自由度を備えるバルクステージと、様々の軸に沿う多数の自由度を備えるグリッドステージとを含み得るので、それはシステムの構成部品が互いに多数の次元に移動することを可能にする。
以下に議論するように、多くの異なる種類の処理を試料に適用し得ることが理解されるべきである。本発明の実施態様は、透過電子顕微鏡(TEM)又は走査型透過電子顕微鏡(STEM)分析用の試料を調製するために使用し得る、あらゆる種類の処理を含む。例えば、バルク試料内に配置される部位(site)からラメラを調製し得る。このシステムにおいて、バルクステージは、ラメラ部位が配置されるバルク試料を保持する。次に、バルクステージの上でラメラを調製し得る。
加えて、本実施態様が如何なる特定の構造の顕微鏡にも限定されないことが理解されるべきである。例えば、試料の画像を捕捉するために使用されるあらゆる種類の顕微鏡が、本実施態様の範囲内にある。そのような顕微鏡は、例えば、可視光顕微鏡、共焦点顕微鏡、赤外顕微鏡、及び近赤外顕微鏡を含む。当業者は、電子顕微鏡に関してここに例示する実施態様を他の種類の顕微鏡に容易に適合させ得ることを認識しよう。
他の実施態様では、持上げ手順を行い得る。このシステムにおいて、マニピュレータは、バルクステージの上に配置されるラメラをグリッドステージの上のグリッドに移転し得る。一部の実施態様では、マニピュレータが取り外された後、ラメラを更に処理し得る。例えば、集束イオンビームを使用して、ラメラを厚いラメラから薄いラメラに切削し得る。
ラメラ調製は、(試料の多数の断面を含む)ラメラ部位を捜し出すこと、保護蒸着(例えば、ラメラ部位を金属キャップ層で塗工すること)、基準マーカを追加すること、(例えば、約2μmのラメラを作り出す)粗い切削、(例えば、ラメラを約250〜400nmまで薄くする)中間切削、(例えば、ラメラを仕上げ厚さまで薄くする)微細切削、基板から試料を解放するためにアンダーカットすること、終点化(endpointing)、ラメラを洗浄すること(例えば、低kV洗浄)、及び/又は試料を移転することのような処理を含み得る。
集束イオンビームを用いるならば、正確に計器の平均ドリフト(例えば、撮像又は充電の故の試料ドリフト及びステージドリフトの両方を含む)内にラメラを位置付け得る。加えて、一部の実施態様では、断面化(cross-sectioning)中に特定の機能の場所を向上させるために、基準マーカを使用し得る。仕上げ薄肉化の間、使用者は事前切断(及び充填)された基準マーカが断面画像中に見られるまでラメラを薄くし得る。一部の実施態様では、約100nmの幅で基準マーカ(例えば、線)を切削し得る。それはラメラの最終厚さを判断するための基礎を形成し得る。
基準マーカを形成するために、(例えば、約100pA未満の)小さいビーム及び比較的短いドウェル時間を使用し得る。これらの基準マーカを便宜に立案し得る。デュアルビームシステムを用いるならば、特定の画像場所で薄肉化を停止することによって位置合わせを向上させるために、SEM又はS/TEM(走査型透過電子顕微鏡)を使用し得る。最終場所のためにデュアルビームを用いることなく、測定精度は下向きFIB調製システムのために50nm(3シグマ)のオーダにある。小さいデュアルビームにおける精錬は、実務操作者にnmレベル配置を可能にし得る。配置精度を測定するために、幾つかの異なるメトリクス、即ち、機能に対する基準マーカの配置、及び初期基準マーカに比較されるときの最終ラメラの配置がある。ラメラ内の既知の基準機能の最終配置を測定することによって、全体的な配置も判断し得る。
一部の実施態様では、1つ又はそれよりも多くのラメラ調製プロセスのために集束イオンビーム法を使用し得る。例えば、部位特定分析、蒸着、及び材料の削摩のために、FIB技法を使用し得る。SEMは、チャンバ内の試料を撮像するために電子の集束ビームを使用するが、FIB構成は、撮像のために低いビーム電流で動作し且つ部位特定スパッタリング又は切削のために高いビーム電流で動作し得るイオンの集束ビームを使用する。電子ビームコラム及びイオンビームコラムの両方を備えるシステム内にもFIBを組み込み得、それらのビームのいずれかを使用して同じ機能が調査されることを可能にする。
一部の実施態様では、隔離機能を探すために、或いはバルク試料内の基準機能を完全にカプセル化するために、ラメラの場所を位置付け得る。例えば、単一の機能のみが必要とされるとき、機能に対して僅かの角度でラメラを調製し得る。ここに記載するように、ラメラ場所を位置付けるためにバルク試料が回転させられ或いは反転させられるよう、バルクステージをある軸について回転させ且つ/或いはある軸について反転させ得る。
現在のFIBシステムは、高解像度撮像能力を有する。原位置薄切(in situ sectioning)と関連付けられるこの能力は、多くの場合において、別個のSEM計器内でFIB断面試験片(標本)を検査する必要を排除する。高解像度撮像のために、並びに敏感な試料に対する損傷を防止するために、SEM撮像は依然として必要とされる。しかしながら、同じチャンバ上でのSEMコラム及びFIBコラムの組合わせは、両方の利益が利用されることを可能にする。
イオンビーム誘導蒸着を介して材料を蒸着させるためにもFIBを使用し得る。例えば、ガスが真空チャンバに導入され、且つ試料の上に化学吸着することが可能にされるときに、FIB支援化学蒸着が起こる。ある領域をビームで走査することによって、前駆体ガスが揮発性及び非揮発性成分に分解される。タングステンのような非揮発性物質は、蒸着物として表面上に残る。下に横たわる金属をビームの破壊的なスパッタリングから保護するために、蒸着金属を犠牲層として使用し得るので、これは有用である。ナノメートルから数百マイクロメートルまでの長さまで、金属蒸着は、必要とされる場所に金属線が蒸着されるのを可能にする。タングステン、プラチナ、コバルト、炭素、金等のような材料を蒸着し得る。
基準マーカ又は基準は、基準点又は測定点としての使用のために生成画像内に現れる撮像システムの視野内に配置される物体であり得る。基準マーカは、試料内に又は上に配置される何かであり得る。一部の実施態様において、試料の調製は、表面及び/又は埋設基準(例えば、固定基準地点)を含み得る。効果的な基準創成戦略は、自動化プロセスの頑健性(ロバストネス)に対して大きな影響を有し得る。例えば、異なる基準マーカ形状は、極めて異なる挙動を有し得る。
透過電子顕微鏡(TEM)は、現今では典型的には50〜300nmの間の極めて薄い試料を必要とする。ナノメートル尺度のFIBは、正確に薄い領域が選択され且つ調製されることを可能にする。一部の実施態様において、より低いビーム電圧、又はFIBプロセスの完了後の低電圧アルゴンイオンビームを用いた更なる切削は、高解像度「格子撮像」TEM又は電子エネルギ損失分光法のような技法を使用するときに顕著な影響をもたらす表面損傷及び移植を減少させ得る。
一部の実施態様では、ラメラの大きさ又は厚さを調節するために、粗い、中間の、及び/又は精細な切削を使用し得る。粗い、中間の、及び/又は精細な切削の制御を向上させるために、FIBビームサイズを減少させることを使用し得る。(ドリフト感度の増大を引き起こし得る)遅いエッチング時間とビーム解像度との間の妥協(トレードオフ)があることが理解されよう。一部の実施態様において、その手順は、バルク切削及びアンダーカットのために13nA、中間薄肉化のために1nA、精細切削のために30〜100nA、及び最終洗浄のために(1000pAアパーチャを使用する)3kV〜120pAを使用する。しかしながら、使用者の好み及び利用可能なアパーチャ条片(ストリップ)の詳細に依存して、中間薄肉化のために、1nAの代わりに3nAのような変動が可能である。
透過技術では、分析は単一の散乱事象において大いに単純化される。加えて、試料はビームを減衰させ、減衰は試料材料(低Z材料よりも高い減衰を示す高Z材料)及び試料厚みの関数である。一般的に、S/TEM試料は、約80nmの厚さを有する。TEMに関して、試料は、一般的に、特定の試料及びTEM工具に依存して、約20nm〜80nmに及ぶ厚さを有する。薄いラメラを断面化することによって、或いは電子ビーム減衰を測定することによって、厚さを測定し得る。低い電子ビームエネルギ(例えば、30keV)で、薄い試料を使用し得る。高い電子ビームエネルギ(例えば、300keV)で、より厚い試料を使用し得る。例えば、約1μmまでの生物学的材料又は典型的には100nm未満の半導体材料を使用し得る。
一部の実施態様では、蒸着保護上塗りによって、TEM試料厚さの下向き測定に影響を及ぼし得る。一部の実施態様において、ラメラの断面測定はより一層正確で有用である。一部の実施態様において、ラメラ厚さは実質的に均一である。一部の実施態様において、試料は意図的に異なる厚さで作製される。例えば、一部の実施態様において、ラメラの形状は楔形である。
システムをFIBのユーセントリック地点に据え付けることによって、ここに記載するようなシステム及び方法を使用して、プロセスを単純化することもできる。例えば、傾斜ステージシステム(例えば、バルクステージ及び/又はグリッドステージ)は、同時地点、FIBのユーセントリック、又はSEMのユーセントリックに基づきユーセントリック地点を設定する選択肢を有する。FIBのユーセントリック地点に従った工具を設定することによって、試料調製中のビームシフト及び運動を回避し得る。例えば、ユーセントリック性、精密な焦点、旋回地点調節、及び正確な回転中心によって、ビーム傾斜旋回地点を正しいレベルに設定することによって、顕微鏡を同調させ得ることが理解されよう。
試料(例えば、ラメラ)移転機構は、2つの一般的な種類、即ち、原位置オートプローブ(in situ autoprobe)、及びガラスロッドを備える実験施設内プラッキング(ex situ plucking)に分類される。各方法は、適用目的に依存して、利益を有する。例えば、実験施設内持上げは、典型的には、有意により迅速である。
試料調製における終点化(endpointing)は、試料からの二次的な又は後方散乱される電子を見て、これらを厚さに相関させるために、SEM信号を使用するのが一般的である。一部の実施態様において、方法は明るさを使用する。例えば、極めて薄い試料は、約100nmより下に薄くされるや否や、(検出器配列及び源に依存して)暗くなるか、或いは明るくなる。正確な値はビームエネルギ及び撮像モードに依存することが理解されよう。SEMに基づく技法に対する解像度の強化という追加的な利益を伴って、統合S/TEM検出器システムを用いる類似の技法を使用し得る。S/TEMシステムは直接的な厚さ測定が第1原理から行われることを可能にし、或いは暗視野顕微鏡においてコントラスト差技法を使用し得る。
ここに開示するシステム及び方法を極低温凍結試料の試料調製のために使用し得る。例えば、顕微鏡チャンバに孔を開けずに方法を遂行し得る。デュアルビーム顕微鏡のような適切に装備された計器内で極低温凍結試料を用いてFIB調製を使用可能であり、生物学的試料、調合剤、フォーム、インク、及び食品のような、液体又は脂肪を含む試料の断面分析を可能にする。以下により詳細に議論するように、システムは、システム内の温度を維持するための温度制御素子を更に含み得る。従って、一部の実施態様では、ここに開示する方法を室温、高温、及び/又は極低温で遂行し得る。
ここで使用するとき、「試料」(“sample”)は、生物有機体からの如何なる種類の試料をも含み得るが、典型的には、組織、細胞、ウイルス、細胞構造、又は任意の他の関心の生物学的試料を含む。
半導体材料又はポリマのような材料科学用途において使用されるべき電子顕微鏡のために試料を調製し得る。分析電子顕微鏡、低温生物学、タンパク質局在化、電子断層撮影法、細胞断層撮影法、低温電子顕微鏡、毒物学、生物学的生成、ウイルス量モニタリング、粒子分析、薬学的品質制御、構造生物学、3D組織撮像、ウイルス学、及びガラス化のような用途のための生物科学及び生命科学分野においても、電子顕微鏡を使用し得る。例えば、透過電子顕微鏡(TEM)、走査型電子顕微鏡(SEM)、反射電子顕微鏡、走査型透過電子顕微鏡、及び低電圧電子顕微鏡を含む、ある範囲の異なる種類の電子顕微鏡によって、これらの別個の種類の用途を遂行し得る。
試料調製システムの概要
図1は、多軸ステージ100の1つの実施態様の斜視図である。多軸ステージ100は、長方形のスタンド103を支持している円形ベース101を含む。長方形のスタンド103の左縁部に取り付けられているのは、バルクステージ110を保持する垂直壁104である。バルクステージ110は、垂直壁104に移動可能に取り付けられ、バルク試料を保持するために使用される。
バルクステージ110は、例示のように、バルク回転軸112について円周方向において試料ホルダ118を回転させるよう構成される。よって、アクチュエータ115の動作は、多軸ステージ100のY軸の周りの360度の動作を伴う、試料ホルダ118内のバルク試料の回転動作をもたらす。これは試料が試料ホルダ118の方向と平行な軸に沿って回転させられることを可能にする。
この回転動作に加えて、バルクステージ110は、バルクフリップ軸111についての多数の自由度も有し、試料をベースステージ100の前部から多軸ステージ100の後部及び背部に「反転させる」(“flip”)ためにX軸の周りで試料ホルダ118を回転させるよう垂直壁104に取り付けられるフリップアクチュエータ119を使用する。これはバルク試料ホルダ118が試料ホルダの方向に対して垂直な線の周りで回転することを可能にする。
バルク回転軸についてのバルク試料の回転は、回転軸について回転対称な試料をもたらすよう、集束イオンビーム処理のような試料処理を可能にする。これは、イオンビーム処理後の試料内の非等方性/異質性を除去し、或いは減少させ得る。回転軸についてのこの角度自由度(DOF)と共に、バルクフリップ軸111についてもたらされる更なる角度自由度は、第1及び/又は第2の照射ビームに沿って方向付けられるべき試料における広範な特別な結晶方位を可能にする。よって、回転軸及びフリップ軸についての組合わせ角度DOFは、試料のα傾斜及びβ傾斜の両方を可能にする。
具体的な実施態様において、バルクフリップ軸についての試料ホルダ118の角度ストロークは、360度以上である。フリップ軸が多軸ステージ100の(回転軸についてのステージ組立体の適切な角度調節によって)主軸と平行であるよう配置され、且つ集束ビームがイオンビームであるならば、そのような角度ストロークは、ステージ組立体が「イオン旋盤」の一種として使用されるのを可能にする。そのような構成では、フリップ軸についての特別な円筒形/円錐形プロファイルを有することが要求されるチップ(先端)及びプローブのような様々の精密な品目を製造し得る。同様に、レーザビームを第2の照射ビームと使用して「レーザ旋盤」を実現し得る。
バルクステージ110に直接的に隣接して長方形のスタンド103に取り付けられているのは、グリッドステージ150である。バルクステージ110と同様に、グリッドステージ150も、幾つかの軸についての多数の自由度を備える試料をもたらすよう、長方形のスタンド103に取り付けられる。図1に示すように、グリッドステージ110は、多数のX及びY次元におけるグリッドホルダ156の動作を可能にするグリッドフリップ軸151及びグリッド回転軸152を有する。グリッド回転軸152に沿う回転動作は、グリッド回転アクチュエータ154によって制御され、グリッドホルダ156を多軸ステージ100のY軸の周りで移動させる。これはグリッドホルダ156がグリッドホルダ156と平行な方向において回転することを可能にする。
グリッドフリップ軸151に沿う回転動作は、グリッドホルダ156が多軸ステージ100のX軸について回転することを可能にするフリップアクチュエータ155によって制御される。これはグリッドステージ150が多軸ステージ100のY軸の周りの方向において回転することを可能にする。この多軸回転動作は、試料の撮像をもたらすようグリッドホルダ156内に配置される試料のために幾つかの自由度を提供する。
当然のことならが、互いに隣接して配置され且つ同じベースに取り付けられるバルクステージ110及びグリッドステージ150を有することによって、イオンビームを使用して試料を調製するためにこの単一ステージを使用し、次に、電子ビームを用いてそれらの試料を撮像し得る。デュアルビーム装置では、多軸ステージをデュアルビーム装置内に配置し、次に、デュアルビーム装置から多軸ステージを取り外すことを必要とすることなく、試料を調製し且つ撮像するために多軸ステージを使用し得る。その上、以下に議論するように、多軸ステージを所望の温度に冷却又は加熱することによって試料を所望の温度に維持し、次に、ステージ及び試料を室温条件に晒すことを必要とすることなく、デュアルビーム装置内で全ての試料操作を行い得る。
多軸ステージ100の後部には、同じ多軸ステージ100を使用して試料に対する走査型透過顕微鏡分析を行うための検出器ホルダ162の横方向動作を可能にするSTEMステージ160がある。一部の実施態様において、前述の構成部品は、互いに独立して、軸について動き得る。
多軸ステージ100の後部では、牽引器160(リトラクタ)によって引っ込ませ得る検出器ホルダ162内に収縮自在のS/TEM検出器を配置し得る。例えば、放射線損傷又は化学損傷を回避するために、カバーによって検出器ホルダ162を保護し得る。一部の実施態様では、S/TEM検出器の伸縮自在性(格納性)の代わりにカバーを使用し得る。
図2は、バルクステージ110及びグリッドステージ150の1つの実施態様の拡大図であり、それらの相互の関係を示している。バルクステージは、バルク試料220を備えるバルク試料キャリア215を保持するよう構成されるバルクアーム210を含む。バルクアーム210は、バルク試料220の向きが変わるよう、バルクステージについて回転し得る。例えば、バルクアーム210は、バルク試料220を回転させるために、バルク回転軸112について回転し得る。バルクアーム210は、バルク試料220を反転させるために、バルクフリップ軸111について反転もし得る。
バルクステージ110に隣接しているのはグリッドステージ150であり、試料を保持するよう構成されるグリッドプレート255を保持するよう構成されるグリッドアーム250を備えて示されている。グリッドアーム250は、グリッドプレート255の向きが電子顕微鏡分析中に時間の経過と共に変化するよう、多数の自由度を伴ってグリッドステージについて動き得る。例えば、グリッドアーム250は、グリッド回転軸152について回転し得る。グリッドアーム250は、グリッドプレートを反転させるために、グリッドフリップ軸151について反転もし得る。
図2に示すように、既知の方法によってバルクステージ100で試料220から取られるラメラをグリッドステージ150に移転するために、マニピュレータ270及びガス供給システム280を使用し得る。図3に示すように、更なる分析のために、ラメラ410をグリッドプレート255に取り付け得る。
本実施態様がバルク試料キャリア215の如何なる特定の構造にも限定されないことが理解されるべきであるのは勿論である。例えば、試料を保持しために使用され且つここに開示する調製を可能にする如何なる種類の試料キャリアも、本実施態様の範囲内にある。同様に、本実施態様がグリッドプレート255の如何なる特定の構造にも限定されないことが理解されるべきである。例えば、試料を保持するために使用され且つここに記載するような更なる処理及び/又は撮像を可能にする如何なる種類のプレートも、本実施態様の範囲内にある。
試料調製のための例示的な方法
図4は、試料調製システム100の1つの実施例内にで動作し得る例示的なプロセス500を例示するフローチャートである。プロセス500は、ブロック502で開始し、ブロック502で、バルク試料をバルクステージの上に装填する。バルク試料をバルクステージの上に装填した後、プロセスはブロック504に進み、ブロック504で、持ち上げたグリッドをグリッドステージの上に装填する。次に、プロセス500は、ブロック506に進み、ブロック506で、バルク試料をバルクステージの上で中心化させる。例えば、所望のラメラを作り出すためにバルク試料を適切に位置付けるよう、バルク回転軸についてバルク試料アームを回転させ且つ/或いはバルクフリップ軸についてバルク試料アームを反転させることによって、バルク試料を位置付け得る。
バルク試料を位置付けるや否や、プロセス500は、ブロック508に進み、ブロック508で、バルク試料の上に保護金属層を局所的に配置する。他の実施態様では、ブロック508及び510の順序を逆転させ得ることが理解されるべきである。ここで議論するように、保護金属層は、例えば、プラチナ又はタングステンのような、任意の材料を含み得る。次に、プロセス500は、ブロック510に進み、ブロック510で、使用者はバルク試料上の関心領域を決定する。関心領域は、例えば、蒸着保護金属層内の基準マーカのような、1つ又はそれよりも多くの隔離された機能及び/又は1つ又はそれよりも多くの基準機能を含み得る。代替的に、光学顕微鏡内に試料を前もって配置させることによって、並びに関心領域を示すようレーザマーカを使用することによって、関心領域を印し得る。
関心領域を捜し出すや否や、プロセス500は、ブロック512に進み、ブロック512で、ラメラを切断する。ここで議論するように、関心場所の機能を最適化するようラメラを位置付け得る。一部の実施態様では、厚いラメラを切断する。1つの実施態様では、バルク試料から所望のラメラを切断することを目的とする集束イオンビームを使用してラメラを切断する。当然のことならが、上述のようなバルクステージによって提供される多数の自由度を使用して所望の領域を適切に切断する。ラメラを切断するや否や、操作者はラメラをバルクステージからグリッドステージに移転する。一例として、ブロック514で、バルク試料内にマニピュレータを挿入し、次に、ブロック516で、バルク試料から切断したラメラにマニピュレータを取り付ける。マニピュレータは、例えば、ラメラに付着するよう構成されるニードル(針)又は他の装置であり得る。例えば、バルクステージと隣接するグリッドステージとの間の輸送を可能にするために、マニピュレータをラメラに一時的に取り付け得る。次に、ブロック518で、マニピュレータはラメラを抽出する。そして、ブロック520で、バルク試料からマニピュレータを引っ込める。
次に、プロセス500は、ブロック522に進み、ブロック522で、グリッドステージ上で持ち上げたグリッドを中心化させる。例えば、グリッドアームをグリッド回転軸について回転させることによって、且つ/或いはグリッドアームをグリッドフリップ軸について反転させることによって、持ち上げたグリッド位置付け得る。次に、ブロック524で、ラメラを備えるマニピュレータを挿入し、ブロック526で、持ち上げグリッドにラメラを取り付ける。持ち上げたグリッドにラメラを取り付けるや否や、プロセス500は、ブロック528に進み、ブロック528で、マニピュレータをラメラから切り離す。例えば、ラメラからマニピュレータニードルを切断するために、FIBを使用し得る。次に、ブロック530で、マニピュレータを引っ込め得る。
ここで議論するように、一部の実施態様では、ラメラを厚いラメラから薄いラメラに薄板化し得る。例えば、プロセス500は、ブロック532に進み、ブロック532で、集束イオンビームによって、厚いラメラを薄いラメラに薄板化する。
ラメラをグリッドステージに移転し、所望の厚さに薄板化した後、プロセス500は、決定ブロック540に進み、小型デュアルビーム装置(SDB)内でラメラを検査するか否かを決定する。SDB装置内に留まらないという決定がなされるならば、ブロック560で、多軸ステージ100を取り外し、ブロック565で、例えば、TEMシステムに移転し得る。しかしながら、SDB内に留まるという決定がなされるならば、試料を直接的にSTEM撮像し得る。例えば、試料は、ブロック555で取り外される前に、ブロック550でSTEM断層撮影分析を受け得る。他の実施例では、試料は、ブロック555で取り外される前に、ブロック545でSTEM撮像を受け得る。
本発明の実施態様は本方法の変形もカバーし、それらの変形では、当業者で明らかであるように、例えば、ステップ502及び504を置換したり、ブロック510及び508を置換したり等する。
多軸ステージの温度制御
一部の実施態様において、システムは、多軸ステージ100の温度を制御するよう構成される温度制御システムを更に含み得る。図5に示すように、多軸ステージ100を加熱又は冷却するが、多軸ステージ100が撮像システム内で円形に動くのを依然として可能にするために、温度制御システム600を使用し得る。温度制御システム600は、一連のコネクタ604を介してプラットフォーム602を通じて載るベース601を含む。プラットフォーム602を撮像システム内で所望のレベルまで上げるために隔離材603のシステムを使用し得る。隔離材603は一連のピン608を通じてプラットフォーム602に取り付けられる。
図示のように、ベース601は、金属リング612の中心に整合する円筒形スリーブ610内に適合する。スリーブ610の頂面614に取り付けられているのは、熱移転媒体を移動させるよう構成される熱移転パイプ616を含む伝熱体620である。1つの実施態様において、熱移転媒体は、冷却させられた乾燥又は液体窒素であり、流量計(図示せず)を用いて乾燥窒素の流速を制御することによって、或いは熱抵抗器のような補助的な熱源を追加することによって、熱移転プレート620の温度を制御し得る。よって、熱移転パイプ616を通じて循環する熱移転媒体の種類及び量を制御することによって(及び/又は余分な熱源を制御することによって)、使用者は、結果として得られる熱移転プレート620の温度を制御し得る。
熱移転プレート620と接触して、熱移転プレート620の上には、複数のスロット635を有する軸受リング630がある。軸受リング630の複数のスロット635の各々は、熱伝導性ローラ640を保持するよう構成される。熱伝導性ローラ640の上には、頂部プレート650がある。頂部プレート650は、取付けブラケット660と、芯出しピン665とを含み、芯出しピン665は、多軸ステージ100と共に載り、且つ熱加熱又は冷却機能性を多軸ステージ100にもたらすよう設計される。頂部プレート650は、ベース601を介して駆動させられて、その軸の周りで回転し得る。
想像し得るように、多軸ステージが取付けブラケット660内に取り付けられるとき、ステージはローラ軸受(例えば、玉軸受又は針状ころ軸受)の上で360度回転し、パイプ616を通じて流れる熱移転媒体との熱伝導率を依然として維持し得る。この実施態様では、全ての部品を高い熱伝導率で設計し得る。例えば、ころ軸受を46W/mKの伝導率を備える鋼で作製し得る。コールドステージ部品を無酸素銅又は高い熱伝導率を備える他の材料、例えば、金で作製し得る。一部の実施態様において、シャトル受器の温度は、−120℃、−130℃、−140℃、−150℃、−160℃、−170℃、又は−180℃以下の温度まで下がり得る。一部の実施態様では、加熱液体又は気体をパイプ616内に注入することによってシステムが冷却されるよりもむしろ加熱されるよう熱を移転するために、装置を使用し得る。
ステージは所要の機械的支持及び自由度をもたらす1つのころ軸受を備え得るが、ステージは、ステージを、例えば、液体窒素によって冷却される固定的な冷却体と熱的に接続する、第2のころ軸受を更に示すことを留意のこと。
氷の凍結状態を検知すること
他の実施態様は、試料内のガラス質の氷の状態を決定することに関する。これは、凍結試料上の薄肉断面の関心領域で通常取られるTEM電子線回折パターンに依存するのが普通である。ガラス質の氷状態は、生物学的細胞膜又は分散粒子のような自然構造形態を維持するために有用である。対照的に、結晶氷はそれらの構造又は分配を妨害する。リングパターンは氷が非晶質(ガラス質)であることを示すのに対し、スポットパターンは六角形又は立方体の結晶構造を示す。鋭過ぎる又は鈍ら過ぎる回折の故に、ガラス質の結果は頻繁に論争中であり、或いは、そのTEM電子銃によって、W、LaB6、又はFEGが生成された。
TEM断面が作製されるとき、人は周囲の氷がその時点で結晶質であるか或いはガラス質であるかを知りたがる。これは使用者がその試料で継続することが有用であるか或いは新鮮な試料で開始することが有用であるかを知るのに役立つ。
1つの代替的な実施態様は、試料用の電界放出銃SEM又はSEMにおいて使用し得る方法であり、その場合には、温度を136K(−137℃)のガラス転移温度より下の温度に維持することが重要である。この実施態様では、水平平面に対して回転させられ且つ傾斜させられるとき、所望の電圧で電子ビームを使用して、分析検出器によってそれを下から観察し得るよう、氷試料は所望の厚さに切削されたFIBである。氷試料を水平平面から正又は負の角度に傾斜させることは、分析検出器が異なる透過方位コントラスト(transmitted orientation contrast)を観察することを可能にする。この異なる方位コントラストは、結晶形態が存在するならば、薄い試料内の異なる方位の結晶の格子から来る。試料がガラス質であるために結晶形態が存在しないならば、試料が傾斜させられるに応じて、コントラストは一定のままである。
これは試料が結晶氷を形成したか否かを検出するのを可能にする。この理由は、ガラス質の状態が無作為な原子構造の状態であり、従って、方位コントラストを示さないことにある。これは(六角形の氷汚染が移転中に結果を汚し得る)クライオTEMシステムへの更なる移転を行うことなく、FEG SEM内に直ぐに作製されるときに、試料の氷状態を決定する極めて直接的で確実な方法である。ナノメートル以下の解像度で解像するSEM及びデュアルビーム計器の改良を用いるならば、直接解像撮像(direct resolution imaging)又は角断層撮影(angular tomography)のためにTEMに移転する必要が殆どない多くの場合がある。従って、この方法はSEM又はデュアルビーム計器内の選択的な氷の状態を確認するのに便利である。
均等物
前記に明文化した明細は当業者が本実施態様を実施するのに十分であると考えられる。前記の記述及び実施例は特定の好適実施態様を詳述し、発明者によって熟考される最良の形態を記載している。しかしながら、前述の記載が文書上どれほど詳細に見えるとしても、本発明を多くの異なる方法において実施し得ること、並びに本発明は付属の請求項及びそれらのあらゆる均等物に従って解釈されるべきであることが理解されよう。
ここで、「含む」という用語は、列挙される素子のみならず、あらゆる追加的な素子をも更に含む、開放型であることが意図される。
100 多軸ステージ (multi-axis stage)
101 ベース (base)
103 スタンド (stand)
104 垂直壁 (vertical wall)
110 バルクステージ (bulk stage)
111 バルクフリップ軸 (bulk flip axis)
112 バルク回転軸 (bulk rotation axis)
115 バルク回転アクチュエータ (bulk rotation actuator)
118 試料ホルダ(sample holder)
119 フリップアクチュエータ (flip actuator)
150 グリッドステージ (grid stage)
151 グリッドフリップ軸 (grid flip axis)
152 グリッド回転軸 (grid rotation axis)
154 グリッド回転アクチュエータ (grid rotation actuator)
155 フリップアクチュエータ (flip actuator)
156 グリッドホルダ (grid holder)
160 STEMステージ (STEM stage)
161 横方向動作 (transverse movement)
162 検出器ホルダ (detector holder)
210 バルクアーム (bulk arm)
215 バルク試料キャリア (bulk sample carrier)
220 バルク試料 (bulk sample)
250 グリッドアーム (grid arm)
255 グリッドプレート (grid plate)
270 マニピュレータ (manipulator)
280 ガス供給システム (gas supply system)
410 ラメラ (lamella)
500 プロセス (process)
502 ブロック (block)
504 ブロック (block)
506 ブロック (block)
508 ブロック (block)
510 ブロック (block)
512 ブロック (block)
514 ブロック (block)
516 ブロック (block)
518 ブロック (block)
520 ブロック (block)
522 ブロック (block)
524 ブロック (block)
526 ブロック (block)
528 ブロック (block)
530 ブロック (block)
532 ブロック (block)
540 決定ブロック (decision block)
545 ブロック (block)
550 ブロック (block)
555 ブロック (block)
560 ブロック (block)
565 ブロック (block)
600 温度制御システム (thermal control system)
601 ベース (base)
602 プラットフォーム (platform)
603 隔離材 (standoff)
604 コネクタ (connector)
608 ピン (pin)
610 スリーブ (sleeve)
612 金属リング (metal ring)
614 頂面 (top surface)
616 熱移転パイプ (heat transfer pipe)
620 熱移転体 (heat transfer body)
630 軸受リング (bearing ring)
635 スロット (slot)
640 熱伝導性ローラ (thermally conductive roller)
650 頂部プレート (top plate)
660 取付けブラケット (mounting bracket)
665 芯出しピン (centering pin)

Claims (13)

  1. X方向を含む平面に延在するベースと、
    前記ベースに取り付けられたバルク試料ホルダと、
    該バルク試料ホルダに隣接して試料グリッドを保持するためのグリッド試料ホルダとを含み、
    前記バルク試料ホルダは、前記X方向に延びるバルクフリップ軸周りにも、前記バルクフリップ軸に対して垂直なバルク軸周りにも、バルク試料を、前記ベースに対して回転させるよう構成され、
    前記グリッド試料ホルダは、前記X方向に延びるグリッドフリップ軸周りにも、前記グリッドフリップ軸に対して垂直なグリッド軸周りにも、前記試料グリッドを、前記ベースに対して回転させるよう構成される、
    多軸試料調製ステージ。
  2. 前記バルク試料ホルダ及び前記グリッド試料ホルダと熱的に接触する熱制御システムを更に含む、請求項1に記載の多軸試料調製ステージ。
  3. 前記熱制御システムは、当該多軸試料調製ステージが360度以上回転するのを可能にするよう構成される一連のローラを含む、請求項2に記載の多軸試料調製ステージ。
  4. 前記熱制御システムは、前記グリッド試料ホルダ及び前記バルク試料ホルダの温度を−150℃以下に下げるよう構成される、請求項2に記載の多軸試料調製ステージ。
  5. 前記バルク試料ホルダ及び前記グリッド試料ホルダは、グリッド、平皿、又はチューブのうちの少なくとも1つを保持するよう構成される、請求項1乃至4のうちのいずれか1項に記載の多軸試料調製ステージ。
  6. 前記バルク試料ホルダは前記バルクフリップ軸及び/又は前記グリッドフリップ軸周りに又は前記グリッド試料ホルダは前記グリッドフリップ軸及び/又は前記グリッド軸周りに、360度回転するよう構成される、請求項1乃至4のうちのいずれか1項に記載の多軸試料調製ステージ。
  7. S/TEM顕微鏡分析を行うための検出器を更に含む、請求項1乃至4のうちのいずれか1項に記載の多軸試料調製ステージ。
  8. 請求項1乃至7のうちのいずれか1項に記載の多軸試料調製ステージを含む、集束イオンビームコラムと走査型電子顕微鏡コラムとを有する、デュアルビームシステム。
  9. 試料を原位置で調製する法であって、
    請求項1に記載の多軸試料調製ステージを提供すること、
    前記バルク試料ホルダ内に貯蔵される試料からラメラを切断すること、
    及び
    前記ラメラを前記バルク試料ホルダから前記グリッド試料ホルダ上のグリッドに移転することを含む、
    方法。
  10. ラメラを切断することは、バルク試料の関心領域からラメラを切断するために集束イオンビームを使用することを含む、請求項9に記載の方法。
  11. ニピュレータは前記ラメラに取り付けられる、請求項9に記載の方法。
  12. 前記ラメラを撮像することを更に含む、請求項9に記載の方法。
  13. 前記ラメラがガラス質の氷又は結晶質の氷を含むか否かを決定、前記ラメラを回転させることを更に含む、請求項9に記載の方法。
JP2014020115A 2013-02-08 2014-02-05 試料調製ステージ Active JP6418747B2 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP13154537.8A EP2765591B1 (en) 2013-02-08 2013-02-08 Sample preparation stage
EP13154537.8 2013-02-08

Publications (2)

Publication Number Publication Date
JP2014153362A JP2014153362A (ja) 2014-08-25
JP6418747B2 true JP6418747B2 (ja) 2018-11-07

Family

ID=47754309

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014020115A Active JP6418747B2 (ja) 2013-02-08 2014-02-05 試料調製ステージ

Country Status (4)

Country Link
US (1) US8754384B1 (ja)
EP (1) EP2765591B1 (ja)
JP (1) JP6418747B2 (ja)
CN (1) CN103983485B (ja)

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2813835B1 (en) 2013-06-14 2016-09-07 Fei Company Method of welding a frozen aqueous sample to a microprobe
US9601305B2 (en) 2013-11-11 2017-03-21 Howard Hughes Medical Institute Specimen sample holder for workpiece transport apparatus
US10199198B2 (en) 2014-07-17 2019-02-05 Scienion Ag Electron microscope and method for transmission electron microscopy imaging of sample arrays
WO2016137899A1 (en) 2015-02-23 2016-09-01 Li-Cor, Inc. Fluorescence biopsy specimen imager and methods
US9679743B2 (en) * 2015-02-23 2017-06-13 Hitachi High-Tech Science Corporation Sample processing evaluation apparatus
US9761408B2 (en) * 2015-02-24 2017-09-12 Fei Company Pattern matching using a lamella of known shape for automated S/TEM acquisition and metrology
JP6372405B2 (ja) * 2015-03-27 2018-08-15 京セラドキュメントソリューションズ株式会社 断面試料作成装置、及び、断面試料作成方法
EP3314234B1 (en) 2015-06-26 2021-05-19 Li-Cor, Inc. Fluorescence biopsy specimen imager
CN107960118B (zh) * 2015-07-06 2022-07-26 巴塞尔大学 用于高分辨率电子显微镜的无损冷冻-网格制备台
JP6622061B2 (ja) * 2015-11-04 2019-12-18 日本電子株式会社 荷電粒子線装置
US10489964B2 (en) 2016-04-21 2019-11-26 Li-Cor, Inc. Multimodality multi-axis 3-D imaging with X-ray
JP6640040B2 (ja) * 2016-06-23 2020-02-05 株式会社ニューフレアテクノロジー 伝熱板および描画装置
EP3475919A1 (en) 2016-06-23 2019-05-01 Li-Cor, Inc. Complementary color flashing for multichannel image presentation
US10993622B2 (en) 2016-11-23 2021-05-04 Li-Cor, Inc. Motion-adaptive interactive imaging method
EP3616158A1 (en) 2017-04-25 2020-03-04 Li-Cor, Inc. Top-down and rotational side view biopsy specimen imager and methods
GB2571339B (en) * 2018-02-26 2020-12-16 Quorum Tech Ltd Rotatable stage
CZ2018157A3 (cs) * 2018-03-29 2019-10-09 Tescan Brno, S.R.O. Zařízení pro vytvoření a uložení lamely
WO2019232812A1 (zh) * 2018-06-05 2019-12-12 中南大学湘雅三医院 一种基于图像识别定位的组织芯片制芯系统及制芯方法
CN108414325A (zh) * 2018-06-05 2018-08-17 中南大学湘雅三医院 一种基于图像识别定位的组织芯片制芯系统及制芯方法
CZ309656B6 (cs) 2018-10-10 2023-06-21 Tescan Brno, S.R.O. Zařízení s alespoň jedním polohovatelným držákem vzorků a způsob změny úhlu náklonu držáku a způsob přípravy lamely
US10825646B2 (en) 2019-03-28 2020-11-03 Fei Company Actuator-assisted positioning systems and methods
CN110133019A (zh) * 2019-04-25 2019-08-16 中国科学院上海微系统与信息技术研究所 一种用于Nanoprobe-FIB-TEM失效分析的多用途样品座及其应用
CN110702717B (zh) * 2019-10-15 2022-05-10 重庆大学 一种用于透射电镜切片样品和切片转移装置的制备方法
US11728146B2 (en) * 2021-01-13 2023-08-15 Wisconsin Alumni Research Foundation Retractable ion guide, grid holder, and technology for removal of cryogenic sample from vacuum
EP4047632B1 (en) * 2021-02-23 2023-08-09 Bruker AXS GmbH Tool for tem grid applications
EP4068333A1 (en) * 2021-03-31 2022-10-05 FEI Company Sample carrier for use in a charged particle microscope, and a method of using such a sample carrier in a charged particle microscope
CN115575364B (zh) * 2022-09-30 2023-08-04 中国科学院生物物理研究所 基于光学显微成像的离子束加工方法

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2656718A (en) * 1949-02-19 1953-10-27 Trent R Dames Soil shear testing machine
JPH02144843A (ja) * 1988-11-25 1990-06-04 Oyo Gijutsu Kenkyusho:Kk 試料冷却型イオンビーム薄膜作製装置
US5435850A (en) 1993-09-17 1995-07-25 Fei Company Gas injection system
EP1102304B1 (en) 1996-12-23 2010-02-24 Fei Company Particle-optical apparatus including a low-temperature specimen holder
DE59805560D1 (de) 1997-01-13 2002-10-24 Daniel Studer Probenhalter für wasserhaltige Proben sowie Verfahren zu deren Verwendung
NL1017669C2 (nl) 2001-03-22 2002-09-24 Univ Maastricht Inrichting voor het vervaardigen van preparaten voor een cryo-elektronenmicroscoop.
NL1022426C2 (nl) 2003-01-17 2004-07-26 Fei Co Werkwijze voor het vervaardigen en transmissief bestralen van een preparaat alsmede deeltjes optisch systeem.
NL1023717C2 (nl) 2003-06-20 2004-12-21 Fei Co Preparaatdrager voor het dragen van een met een elektronenbundel te doorstralen preparaat.
JP4185062B2 (ja) * 2005-03-04 2008-11-19 エスアイアイ・ナノテクノロジー株式会社 加工用ステージ及び集束ビーム加工装置並びに集束ビーム加工方法
US7705324B2 (en) * 2005-09-20 2010-04-27 Hiroya Miyazaki Sample holder
EP1780764A1 (en) 2005-11-01 2007-05-02 FEI Company Stage assembly, particle-optical apparatus comprising such a stage assembly, and method of treating a sample in such an apparatus
JP5600371B2 (ja) 2006-02-15 2014-10-01 エフ・イ−・アイ・カンパニー 荷電粒子ビーム処理のための保護層のスパッタリング・コーティング
EP1863066A1 (en) 2006-05-29 2007-12-05 FEI Company Sample carrier and sample holder
US7884326B2 (en) * 2007-01-22 2011-02-08 Fei Company Manipulator for rotating and translating a sample holder
US8835845B2 (en) * 2007-06-01 2014-09-16 Fei Company In-situ STEM sample preparation
EP2009420A1 (en) * 2007-06-29 2008-12-31 FEI Company Method for attaching a sample to a manipulator
JP4722969B2 (ja) * 2007-06-29 2011-07-13 エフ イー アイ カンパニ マニピュレータへのサンプル取付け方法
CN101821609A (zh) * 2007-08-29 2010-09-01 艾本德股份有限公司 用于多个样品的辐射度测量的设备和方法
JP5222507B2 (ja) * 2007-08-30 2013-06-26 株式会社日立ハイテクノロジーズ イオンビーム加工装置及び試料加工方法
EP2151848A1 (en) * 2008-08-07 2010-02-10 FEI Company Method of machining a work piece with a focused particle beam
EP2402475A1 (en) 2010-06-30 2012-01-04 Fei Company Beam-induced deposition at cryogenic temperatures
US20130316365A1 (en) 2010-09-21 2013-11-28 Fei Company Method of Preparing a Biological Sample for Inspection with Electron Microscopy and Fluorescent Light Microscopy
DE102010041678B4 (de) * 2010-09-29 2023-12-28 Carl Zeiss Microscopy Gmbh Teilchenstrahlgerät mit einem Probenträger
US20120286175A1 (en) * 2011-05-12 2012-11-15 Gatan, Inc. Cooled manipulator tip for removal of frozen material

Also Published As

Publication number Publication date
CN103983485B (zh) 2017-06-30
JP2014153362A (ja) 2014-08-25
EP2765591A1 (en) 2014-08-13
CN103983485A (zh) 2014-08-13
EP2765591B1 (en) 2016-07-13
US8754384B1 (en) 2014-06-17

Similar Documents

Publication Publication Date Title
JP6418747B2 (ja) 試料調製ステージ
US8723144B2 (en) Apparatus for sample formation and microanalysis in a vacuum chamber
JP6586261B2 (ja) 大容量temグリッド及び試料取り付け方法
Kuba et al. Advanced cryo‐tomography workflow developments–correlative microscopy, milling automation and cryo‐lift‐out
JP5250470B2 (ja) 試料ホールダ,該試料ホールダの使用法、及び荷電粒子装置
US7531797B2 (en) Probe-holding apparatus, sample-obtaining apparatus, sample-processing apparatus, sample-processing method and sample-evaluating method
CN110062880B (zh) 通过受控样品蒸发制备无损冷冻载网
KR102056507B1 (ko) 하전 입자 빔 장치 및 시료 관찰 방법
KR20160119840A (ko) 시료에 따른 전자 회절 패턴 분석을 수행하는 방법
EP1451849B1 (en) Information acquisition apparatus, cross section evaluating apparatus, and cross section evaluating method
US20160247661A1 (en) Pattern matching using a lamella of known shape for automated s/tem acquisition and metrology
JP6711655B2 (ja) 集束イオンビーム装置
Lam et al. Practical approaches for cryo-FIB milling and applications for cellular cryo-electron tomography
CN109841534B (zh) 截面加工观察方法、带电粒子束装置
JPH11258130A (ja) 試料作製装置および試料作製方法
US8759765B2 (en) Method for processing samples held by a nanomanipulator
JP2001311681A (ja) 透過電子顕微鏡観察用試料作製方法およびサンプリング装置
US20220319801A1 (en) Sample carrier for use in a charged particle microscope, and a method of using such a sample carrier in a charged particle microscope
CN114509326A (zh) 用于用体积样本来制备微样本的方法和显微镜系统
JP2008014631A (ja) 真空チャンバーにおけるサンプル形成及びマイクロ分析のための方法及び装置
JP2005062130A (ja) 微小薄片作製装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170202

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20171128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171205

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20180123

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180426

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180925

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20181009

R150 Certificate of patent or registration of utility model

Ref document number: 6418747

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250