JP6412325B2 - 冷却装置 - Google Patents

冷却装置 Download PDF

Info

Publication number
JP6412325B2
JP6412325B2 JP2014066699A JP2014066699A JP6412325B2 JP 6412325 B2 JP6412325 B2 JP 6412325B2 JP 2014066699 A JP2014066699 A JP 2014066699A JP 2014066699 A JP2014066699 A JP 2014066699A JP 6412325 B2 JP6412325 B2 JP 6412325B2
Authority
JP
Japan
Prior art keywords
temperature
cooling
compressor
expansion valve
correction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014066699A
Other languages
English (en)
Other versions
JP2015191959A (ja
Inventor
誠彦 千葉
誠彦 千葉
一利 長葭
一利 長葭
翼 岸山
翼 岸山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Johnson Controls Air Conditioning Inc
Original Assignee
Hitachi Johnson Controls Air Conditioning Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Johnson Controls Air Conditioning Inc filed Critical Hitachi Johnson Controls Air Conditioning Inc
Priority to JP2014066699A priority Critical patent/JP6412325B2/ja
Publication of JP2015191959A publication Critical patent/JP2015191959A/ja
Application granted granted Critical
Publication of JP6412325B2 publication Critical patent/JP6412325B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、サーバなどの発熱体を所定の温度に冷却する冷却装置に関するものである。
従来の冷却装置の制御装置は、収納室内を冷却し圧縮機の停止後、圧縮機の再起動禁止時間が経過する以前に収納室内の温度が冷却開始設定温度に上昇した場合、初期冷却停止設定温度を下げる補正を行うことにより、圧縮機の保護を実現しながら、熱負荷の変動がある発熱体の発熱量に追随して冷却制御をすることを可能にしている(例えば、特許文献1参照)。また、特許文献1の制御装置は、発熱体の発熱量が所定の値以上である場合は、収納室内の空気温度が冷却停止設定温度に低下しても圧縮機の運転を停止すること無く、送風機による収納室内の循環風量を初期循環風量より減少させる風量制御モードを実行する。
特開2007−335497号公報
特許文献1の冷却装置の制御方法は、収納室の熱負荷が大きいときには冷却停止設定温度を初期値より下げる補正を行なって冷却運転時間を長くすることで収納室の異常な温度上昇を防止し、収納室の熱負荷が小さいときは冷却停止設定温度を上げて冷却運転時間を短くすることで収納室の異常な温度低下を防止するものである。よって、冷却能力自体を熱負荷の変動に合わせて補正するものではないため、圧縮機の発停頻度を低減させることができない。
また、発熱体の発熱量が所定の値以上である場合に、収納室内の循環風量を減少させて圧縮機の発停回数を減少させているが、収納室の熱負荷が小さいときには、圧縮機の発停頻度を低減させることができない。
このように圧縮機の発停頻度が多発する場合であって、インバータ方式ではない収納室温度に基づくオン−オフ制御により運転−停止をする一定速圧縮機を用いた場合は、圧縮機起動時に大きな電流が流れることなどにより、圧縮機が短寿命となってしまう。
そこで、本発明は、熱負荷が変動する発熱体の発熱量に追従して、冷却能力の調整ができ、圧縮機の発停頻度を低減可能な冷却装置を提供する。
上記課題を解決すべく、本発明の一態様である冷却装置は、発熱体が設置される収容室を提供する筐体と、前記筐体内に設置され、圧縮機と、冷媒の循環量を制御する電子膨張弁とを含む冷媒回路を有する冷却ユニットと、前記収容室内の温度を検出する温度センサと、前記温度センサが検出する温度に基づき、前記圧縮機を駆動させ、前記収容室を冷却する冷却制御手段と、前記圧縮機の発停状態を検知する検知手段と、前記検知手段による検知結果に基づき、前記電子膨張弁の開度に閉じる方向の補正を加える補正手段と、を備える。
本発明によれば、熱負荷が変動する発熱体の発熱量に追従して、冷却能力の調整ができ、圧縮機の発停頻度を低減可能な冷却装置を提供することができる。
本発明の実施形態に係る冷却装置の側面側断面図である。 冷却装置の冷媒回路および送風機を示す図である。 冷却装置の電気的構成のブロック図を示す。 冷却装置の空気の循環流路を示す図である。 冷却判断処理のフローチャートを示す。 電子膨張弁の開度に閉じる方向の補正を加える補正処理のフローチャートを示す。 電子膨張弁の開度に開く方向の補正を加える補正処理のフローチャートを示す。 凝縮器用送風機の回転数を増加させる回転数増加処理のフローチャートを示す。
本発明の実施形態について図面を参照して詳細に説明する。
図1は、本実施形態に係る冷却装置1の側面側断面図、図2は、冷却装置1の冷却ユニット20の冷媒回路および送風機を示す図である。
図1に示すように、冷却装置1は、筐体としてのラック10と、ラック10に収容される冷却ユニット20とを備える。ラック10内は、仕切板11により仕切られており、仕切板11より上側に、サーバ収容室12が形成され、仕切板11より下側に、機械室13が形成される。ラック10は、開閉可能な前扉10Aおよび後扉10Bを備えており、各扉を開けることにより、サーバ収容室12にアクセス可能になる。また、ラック10は、開閉可能なメンテナンスカバー10Cを備えており、メンテナンスカバー10Cを開けることにより、機械室13にアクセス可能になる。
仕切板11には、冷却空気吐出口11aおよびサーバ排気吸込口11bが形成されている。また、仕切板11は、風向ガイド11Cを備えている。
サーバ収容室12には、複数のサーバ2が上下方向に並んで収容されており、各サーバ2は、サーバ2の構成機器に冷却空気を送るための送風機2Aが設けられている。また、サーバ収容室12には、電断時にサーバ2に電気を供給する無停電電源装置であるUPS(Uninterruptible Power Supply)3が設けられている。サーバ2およびUPS3は、発熱体に相当する。なお、図1では、図面の簡略化のために、一つのサーバ2にのみ引出線を引いている。また、サーバ収容室12の上端には、サーバ収容室12内の温度を検知するラック内温度センサ14が設けられている。
また、前扉10Aと複数のサーバ2とにより、冷却空気用の前側通風路15が形成され、後扉10Bと複数のサーバ2とにより、排熱用の後側通風路16が形成されている。
冷却ユニット20は、機械室13に配置されている。図1および図2に示すように、冷却ユニット20は、ベース21上に設けられた、圧縮機22と、凝縮器23と、電子膨張弁24と、蒸発器25と、凝縮器用送風機26と、蒸発器用送風機27と、電気品箱28とを備える。電気品箱28内には、制御装置29(図3)が配置されている。また、冷却ユニット20は、有底円筒状のクーラーボックス21Aを備え、蒸発器25および蒸発器用送風機27は、クーラーボックス21A内に配置されている。また、クーラーボックス21Aの開口部が、仕切板11の冷却空気吐出口11aおよびサーバ排気吸込口11bに対向するように、クーラーボックス21Aはベース21上に配置されている。
図2に示すように、圧縮機22と、凝縮器23と、電子膨張弁24と、蒸発器25とは、冷媒配管30により接続され、冷媒回路が構成されている。また、冷却ユニット20は、圧縮機22から吐出される冷媒の温度を検出する冷媒用温度センサ31と、圧縮機22から吐出される冷媒の圧力を検出する冷媒用圧力センサ32と、ラック10外から吸込まれる空気の温度を検出する吸込温度センサ33と、圧縮機22を駆動させるための電流値を検出する運転電流センサ34(図3)とを更に備える。
図3は、冷却装置1の電気的構成のブロック図を示す。
図3に示すように、ラック内温度センサ14、冷媒用温度センサ31、冷媒用圧力センサ32、吸込温度センサ33、および運転電流センサ34において検出された温度および圧力が制御装置29に送信され、それらの値に基づき、制御装置29が、電子膨張弁24、圧縮機22、凝縮用送風機26、および蒸発器用送風機27を制御するように構成されている。制御装置29は、冷却制御手段、補正手段、検知手段、および送風機制御手段に相当する。
上記のように構成された冷却装置1において、圧縮機22から吐出される高温高圧のガス冷媒は、凝縮器23に流入し、凝縮器23において、凝縮用送風機26によりラック10外から吸込まれて供給される空気と熱交換して凝縮され、液冷媒となる。この液冷媒は、電子膨張弁24により減圧されて、低温低圧のガス液混合冷媒となる。この低温低圧の冷媒は、蒸発器25に流入して、蒸発器用送風機27によりサーバ排気吸込口11bを介して吸気され供給される空気と熱交換されて蒸発し、ガス冷媒となる。この際、空気は、冷媒の蒸発潜熱により冷却され、冷風が仕切板11の冷却空気吐出口11aを介して、サーバ収容室12に送られる。その後、ガス冷媒は、圧縮機22に吸入され、再度圧縮機22で圧縮されることにより、一連の冷凍サイクルが形成される。
図4は、冷却装置1における空気の循環流路を示している。
図4の矢印に示すように、冷却ユニット20から冷却空気吐出口11aを介して吐出された冷却空気は、風向ガイド11Cにより、前側通風路15へ送出される。前側通風路15へ流れ出た冷却空気は、サーバ2の送風機2Aによりサーバ2に引き込まれて構成部品を冷却し、温められた空気は、後側通風路16へ排出される。後側通風路16へ排出された空気は、サーバ排気吸込口11bを介して冷却ユニット20へ吸い込まれ、冷却ユニット20において冷却される。
冷却装置1は、上記のように空気を循環させて、複数のサーバ2およびUPS3を冷却する。
また、本実施形態における冷却装置1の制御装置29は、サーバ2に電源が供給されている間、冷却判断処理、電子膨張弁24の開度に閉じる方向の補正を加える補正処理、電子膨張弁24の開度に開く方向の補正を加える補正処理、および凝縮器用送風機26の回転数を増加させる回転数増加処理を実行している。以下において、各処理を図5〜図8を参照しながら説明する。なお、これらの制御処理に関するプログラムは、制御装置29のROMに記憶されて、制御装置29のCPUに読み出されて実行される。
まず、冷却装置1の冷却判断処理について説明する。図5は、冷却判断処理のフローチャートについて示している。なお、蒸発器用送風機27は、サーバ2に電源が供給されている間は、常に運転され、ラック10内には風が循環している。また、圧縮機22は、駆動時には一定の周波数で駆動されるように構成されている。
制御装置29は、ラック内温度センサ14からラック10内の温度を取得し、取得したラック10内の温度が、冷却運転開始設定温度以上であるか否かを判断する(S1)。冷却運転開始設定温度は、図示しない操作スイッチにおいて設定される。取得したラック10内の温度が、冷却運転開始設定温度以上であった場合(S1:YES)、制御装置29は、圧縮機22の運転を開始させ、冷却運転を開始させる(S2)。一方、取得したラック10内の温度が、冷却運転開始設定温度以上でない場合(S1:NO)、制御装置29は、ステップS1の処理を繰り返す。
冷却運転開始後、制御装置29は、ラック内温度センサ14からラック10内の温度を取得し、取得したラック10内の温度が、冷却運転停止設定温度未満になったか否かを判断する(S3)。取得したラック10内の温度が、冷却運転停止設定温度未満であった場合(S3:YES)、制御装置29は、圧縮機22の運転を停止させ、冷却運転を停止させる(S4)。そして、制御装置29は、ステップS1の処理に戻る。一方、取得したラック10内の温度が、冷却運転停止設定温度以上である場合(S3:NO)、制御装置29は、冷却運転を継続させる。
なお、制御装置29は、圧縮機22を停止させたのち、一定時間の間は、圧縮機22を再度起動させない保護制御、および、圧縮機22を起動させたのち、一定時間の間は圧縮機22を停止させない保護制御を行う。また、凝縮器用送風機26の運転開始/停止は、圧縮機22の運転開始/停止に同期するように制御される。圧縮機22の運転開始/停止の回数は、制御装置29によりカウントされ記憶されるように構成されている。
また、制御装置29は、圧縮機22を運転しているとき、電子膨張弁24の開度を変化させて冷媒回路を流れる冷媒の循環量を制御する通常開度制御を行う。具体的には、冷媒用温度センサ31で検出した圧縮機22の冷媒吐出側の冷媒温度と、冷媒用圧力センサ32で検出した圧縮機22の冷媒吐出側の冷媒圧力に基づいて、求められる冷媒過熱度が、予め設定された過熱度(目標過熱度)になるように制御装置29が電子膨張弁24の開度を制御する。なお、電子膨張弁24の制御に使用される冷媒温度および冷媒圧力は蒸発器25の冷媒出口の温度および圧力であってもよい。
ここで、サーバ収容室12に設置されるサーバ2などの発熱体は、サーバ2に接続されたコンピュータなどの使用状況に応じて発熱量が変化する。仮に、サーバ2の使用量が減少すると、冷却負荷は小さくなるためラック10内温度は低下する。この場合、ラック内温度センサ14の検出温度が冷却運転停止設定温度まで到達すると、制御装置29は圧縮機22の運転を停止してしまう。その後、ラック内温度センサ14の検出温度が冷却運転開始設定温度に到達すると、再び制御装置29は圧縮機22を運転させるが、冷却負荷が継続的に小さい場合は短時間で再び圧縮機22が停止することとなる。これにより、圧縮機22の発停頻度が増加することとなる。
そこで、本実施形態における制御装置29は、上記のようにラック内温度センサ14の検出温度に基づく単位時間当たりの圧縮機22の停止回数をカウントする機能を備え、圧縮機22の停止回数が所定の回数を超えた場合、電子膨張弁24の通常開度制御に電子膨張弁24を閉じる方向の補正を加える制御を実行する。
図6は、電子膨張弁24の開度に閉じる方向の補正を加える補正処理のフローチャートについて示している。
制御装置29は、単位時間当たりの圧縮機22の停止回数を取得し、取得した停止回数が、所定の回数を超えているか否かを判断する(S10)。取得した停止回数が、所定の回数を超えている場合(S10:YES)、制御装置29は、過熱度が目標過熱度に対し所定の正の補正値を加えた過熱度となるように、電子膨張弁24の開度に閉じる方向の補正を加え、補正後の電子膨張弁24の開度を算出する(S11)。これにより、冷媒回路中を流れる冷媒量が減少され、冷却能力を低下させることができる。
次に、算出した電子膨張弁24の開度が、電子膨張弁24の開度の下限値以上であるか否かを判断する(S12)。下限値以上であると判断された場合(S12:YES)、制御装置29は、電子膨張弁24の開度を算出した開度に設定する制御を行い(S13)、ステップS10に戻る。一方、算出した電子膨張弁24の開度が、電子膨張弁24の開度の下限値より小さいと判断された場合(S12:NO)、制御装置29は、ステップS10に戻る。そして、電子膨張弁24の開度を補正した後、再び圧縮機22の停止回数が所定の回数を超えた場合は、補正後の目標過熱度に対し所定の正の補正値を加えた補正を行い、当該補正後の過熱度に基づき、電子膨張弁24の開度の閉じる方向の補正が実行される。このようにして、冷却ユニット20は、減少する冷却負荷に追従して、冷却能力を調整することが可能となる。これとともに、冷却ユニット20の運転消費電力の低減も期待できる。また、圧縮機22の発停頻度を低減させることができる。
また、電子膨張弁24の開度の下限値は、圧縮機22の吐出側冷媒温度が高温になるのを防止するため値であり、これにより圧縮機22が過熱運転をして絶縁破壊に至るのを防止している。
一方、電子膨張弁24の通常開度制御に電子膨張弁24を閉じる方向の補正を加える制御を実行した後、例えば、サーバ2の使用量が増加すると冷却負荷は大きくなるが、このとき冷却能力は低下する補正がされていることから、ラック10内温度はサーバ2が正常に稼働できる上限温度である異常温度(例えば40℃)まで上昇する可能性がある。
そこで、本実施形態における制御装置29は、ラック内温度センサ14の検出温度が、異常温度より低い所定の温度(第1の所定温度、例えば38℃)を超えた場合、電子膨張弁24の開度に電子膨張弁24を開く方向の補正を加える制御を実行する。当該所定の温度は、上記の冷却運転開始設定温度より高く設定される。
図7は、電子膨張弁24の開度に開く方向の補正を加える補正処理のフローチャートについて示している。
制御装置29は、ラック内温度センサ14からラック10内の温度を取得し、取得したラック10内の温度が、異常温度より低い所定の温度以上であるか否かを判断する(S20)。取得したラック10内の温度が、所定温度以上であった場合(S20:YES)、制御装置29は、電子膨張弁24の現在の開度が、通常開度に閉じる方向の補正を加えた開度であるか否かを判断する(S21)。現在の開度が、通常開度に閉じる方向の補正を加えた開度であった場合(S21:YES)、制御装置29は、補正を解除して、電子膨張弁24の開度を増加させる(S22)。これにより、冷媒回路中を流れる冷媒量が増加し、冷房能力が増加する。
一方、現在の開度が、通常開度に閉じる方向の補正を加えた開度でない場合(S21:NO)、制御装置29は、過熱度が目標過熱度に対し所定の負の補正値を加えた過熱度となるように、電子膨張弁24の開度に開く方向の補正を加え、補正後の電子膨張弁24の開度を算出する(S23)。
次に、算出した電子膨張弁24の開度が、電子膨張弁24の開度の上限値以下であるか否かを判断する(S24)。上限値以下であると判断された場合(S24:YES)、制御装置29は、電子膨張弁24の開度を算出した開度に設定する制御を行い(S25)、ステップS20に戻る。一方、算出した電子膨張弁24の開度が、電子膨張弁24の開度の上限値より大きいと判断された場合(S24:NO)、制御装置29は、ステップS20に戻る。そして、電子膨張弁24の開度を補正した後、再びラック10内温度が、所定温度を超えた場合は、補正後の目標過熱度に対し所定の負の補正値を加えた補正を行い、当該補正後の過熱度に基づき、電子膨張弁24の開度の開く方向の補正が実行される。このようにして、冷却ユニット20は、増加する冷却負荷に追従して、冷却能力を調整することが可能となる。
また、電子膨張弁24の開度の上限値は、冷媒用温度センサ31および冷媒用圧力センサ32の検出値に基づき求められた過熱度が、圧縮機22へ液戻りしない所定の温度以上となる値であり、これにより、電子膨張弁24の開度が過剰に大きくなることによる圧縮機22への液戻りを防止している。
上述のように、電子膨張弁24の補正制御を実行することで、冷却負荷の変動に追従して、冷却能力の調整が可能となる。これにより、ラック10内温度の変動は小さくなり、圧縮機22の発停回数を抑制することができる。
他方、サーバ2などの発熱体を所定の温度に冷却する本実施形態の冷却装置1において、ラック10内の冷却空気が通る前側通風路15の温度が異常に上昇(本実施形態においては40℃)すると、サーバ2を冷却することができないため、サーバ2は故障して重大な損害を発生させる可能性がある。通常、サーバ収容室12に設置されるサーバ2などの合計発熱量は、冷却ユニット20の定格冷却能力より小さくなるように選定されるが、例えばサーバ容量の選定誤りなどによって合計発熱量が定格冷却能力以上となる選定をされてしまった場合、または、例えば冷却装置1の設置環境が悪く、凝縮器23の排熱がショートサーキットすることにより周囲温度が運転範囲外まで上昇し、これにより冷却能力が低下してしまう場合、ラック10内の冷却空気が通る前側通風路15の温度が異常に上昇する恐れがある。
そこで、制御装置29は、ラック10内の冷却負荷が冷却ユニット20の定格冷却能力より大きい場合に、凝縮器用送風機26の回転数を増加させる回転数増加処理を実行する。
図8は、凝縮器用送風機26の回転数を増加させる回転数増加処理のフローチャートを示す。
制御装置29は、圧縮機22の運転開始に基づき、通常の回転数(所定の回転数)で凝縮器用送風機26の回転を開始する(S30)。なお、凝縮器用送風機26を通常を回転数で回転させる前に、所定期間(例えば5秒間)だけ増加させた回転数で回転させても良い。
次に、制御装置29は、ラック内温度センサ14からラック10内の温度を取得し、取得したラック10内の温度が、異常温度(第2の所定温度、例えば40℃)以上であるか否かを判断する(S31)。取得したラック10内の温度が、異常温度未満であった場合(S31:NO)、制御装置29は、吸込温度センサ33から凝縮器23に吸込まれる空気の温度を取得し、取得した吸込み空気の温度が、冷却ユニット20の運転許容範囲である上限温度(例えば40℃)以上であるか否かを判断する(S32)。吸込み空気の温度が、上限温度未満であった場合(S32:NO)、制御装置29は、冷媒用圧力センサ32から圧縮機22により吐出される冷媒の圧力を取得し、取得した冷媒圧力が、冷却ユニット20の運転許容範囲である上限圧力(例えば3.0MPa)以上であるか否かを判断する(S33)。取得した冷媒圧力が、上限圧力未満であった場合(S33:NO)、制御装置29は、運転電流センサ34から冷却ユニット20を駆動させるための電流値を取得し、取得した運転電流値が、所定の電流値以上であるか否かを判断する(S34)。ここで、所定の電流値は、一般家庭用交流100V電源回路の上限15Aに検出誤差を考慮して14Aとしている。取得した運転電流値が、所定の電流値未満であった場合(S34:NO)、制御装置29は、ステップS31に戻り、ステップS31〜S34の処理を繰り返す。
一方、ステップS31〜S34の判断処理において、いずれか一つが肯定的な判断であった場合(S31〜S34:YES)、制御装置29は、凝縮器用送風機26の回転数を増加させる(S35)。これにより、冷却ユニット20の冷却能力を増加させることができ、サーバ2を冷却することが可能となる。すなわち、冷却ユニット20に定格冷却能力よりも大きな能力を発揮させることができる。よって、ラック10内に定格冷却能力より大きな冷却負荷が発生した場合でも、ラック10内の冷却空気が通る前側通風路15の温度をサーバ2が故障に至らない温度に保つことができる。
また、凝縮器用送風機26の回転数を増加させ、所定時間経過後(例えば5分後)、制御装置29は、ラック内温度センサ14が示すラック10内の温度が、35℃未満であるか否かを判断する(S36)。ラック10内の温度が、35℃未満であった場合(S36:YES)、制御装置29は、吸込温度センサ33が示す吸込み空気の温度が、40℃未満であるか否かを判断する(S37)。吸込み空気の温度が、40℃未満であった場合(S37:YES)、制御装置29は、冷媒用圧力センサ32が示す冷媒圧力が、2.5MPa未満であるか否かを判断する(S38)。冷媒圧力が、2.5MPa未満であった場合(S38:YES)、制御装置29は、運転電流センサ34が示す電流値が、13A未満であるか否かを判断する(S39)。運転電流値が、13A未満であった場合(S39:YES)、制御装置29は、凝縮器用送風機26の回転数を通常の回転数に戻し(S40)、ステップS31に戻る。
一方、ステップS36〜S39の判断処理において、いずれか一つが否定的な判断であった場合(S36〜S39:NO)、制御装置29は、ステップS36に戻る。
上記のような制御を行うことにより、冷却ユニット20の高圧側運転圧力および運転電流が低下することとなり、連続運転可能な周囲温度を拡大できるとともに消費電力を低減することが可能となる。
なお、凝縮器用送風機26の増速モードは、図示しない操作スイッチまたは制御装置29による設定でも任意に設定できる。これにより、ユーザーの意図的に冷却ユニット20の消費電力を抑制することが可能となる。
なお、本発明は、上述した実施例に限定されない。当業者であれば、本発明の範囲内で、種々の追加や変更等を行うことができる。
例えば、図6に示した補正処理において、単位時間当たりの圧縮機22の停止回数に基づき、電子膨張弁24の開度に閉じる方向に補正を加えるようにしたが、単位時間当たりの圧縮機22の停止回数ではなく、圧縮機22の運転開始後(ラック10内の冷却開始後)の、ラック10内温度の温度勾配に基づき、電子膨張弁24の開度を補正しても良いし、単位時間当たりの圧縮機22の運転開始回数に基づき、電子膨張弁24の開度を補正しても良い。ラック10内温度の温度勾配が、所定の勾配より大きい場合には、冷却ユニット20の冷却能力が、サーバ2などの発熱量に対して高すぎることを示しており、電子膨張弁24の開度を閉じる方向に補正することにより、冷却ユニット20の冷却能力を適正な冷却能力にすることができる。温度勾配は、例えば、圧縮機22の運転開始から停止までの時間と、冷却開始時の温度および冷却停止時の温度の差とに基づき算出する。
また、回転数増加処理において、ラック10内温度が、サーバ2の稼働上限温度である40℃を越えた場合に回転数を増加させたが、40℃である必要はなく、上限温度付近の温度を越えた場合に回転数を増加させても良い。また、回転数増加処理における吸込み空気の温度、冷媒の圧力、および運転電流値の判定基準値も、上記の実施形態で示した値に限られない。
1:冷却装置、10:ラック、 12:サーバ収容室、 14:ラック内温度センサ、 20:冷却ユニット、 22:圧縮機、 23:凝縮器、 24:電子膨張弁、 26:凝縮器用送風機、 29:制御装置

Claims (6)

  1. 発熱体が設置される収容室を提供する筐体と、
    前記筐体内に設置され、圧縮機と、冷媒の循環量を制御する電子膨張弁とを含む冷媒回路を有する冷却ユニットと、
    前記収容室内の温度を検出する温度センサと、
    前記温度センサが検出する温度に基づき、前記圧縮機を駆動させ、前記収容室を冷却する冷却制御手段と、
    前記圧縮機の発停状態を検知する検知手段と、
    前記検知手段による検知結果に基づき、前記電子膨張弁の開度に閉じる方向の補正を加える補正手段と、を備える冷却装置。
  2. 前記検知手段は、前記圧縮機の停止または開始の回数を検知し、
    前記補正手段は、前記検知手段により検知された単位時間当たりの前記回数に基づき、前記電子膨張弁の開度に閉じる方向の補正を加える請求項1に記載の冷却装置。
  3. 前記検知手段は、前記圧縮機の開始および停止を検知して、冷却中の前記収容室の温度勾配を検知し、
    前記補正手段は、前記検知手段により検知された前記温度勾配に基づき、前記電子膨張弁の開度に閉じる方向の補正を加える請求項1に記載の冷却装置。
  4. 前記補正手段は、前記電子膨張弁の開度に閉じる方向の補正を加えた後、前記温度センサが検出する温度が第1の所定温度を越えた場合、前記閉じる方向の補正を解除する請求項1から請求項3のいずれか一項に記載の冷却装置。
  5. 前記冷却ユニットは、凝縮器と、前記筐体外の空気を前記凝縮器へ供給する凝縮器用送風機とを備え、
    前記温度センサが検出する温度が、第2の所定温度を越えた場合、前記凝縮器用送風機の回転数を増加させる送風機制御手段を備える請求項1から請求項4のいずれか一項に記載の冷却装置。
  6. 前記発熱体は、サーバであり、
    前記第2の所定温度は、前記サーバが正常に稼働できる上限温度である請求項5に記載の冷却装置。
JP2014066699A 2014-03-27 2014-03-27 冷却装置 Active JP6412325B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014066699A JP6412325B2 (ja) 2014-03-27 2014-03-27 冷却装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014066699A JP6412325B2 (ja) 2014-03-27 2014-03-27 冷却装置

Publications (2)

Publication Number Publication Date
JP2015191959A JP2015191959A (ja) 2015-11-02
JP6412325B2 true JP6412325B2 (ja) 2018-10-24

Family

ID=54426244

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014066699A Active JP6412325B2 (ja) 2014-03-27 2014-03-27 冷却装置

Country Status (1)

Country Link
JP (1) JP6412325B2 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017156465A (ja) * 2016-02-29 2017-09-07 キヤノン株式会社 駆動装置、リソグラフィ装置、冷却方法、および物品の製造方法
KR102061934B1 (ko) 2017-07-26 2020-01-02 이성균 냉각부를 활용한 전산랙 장치
JP7074312B2 (ja) * 2017-09-22 2022-05-24 中央電子株式会社 ラック装置およびコンピュータシステム
JP6966927B2 (ja) * 2017-11-01 2021-11-17 ホシザキ株式会社 温湿度調節庫
CN107995836A (zh) * 2017-12-28 2018-05-04 重庆八二信息技术有限公司 一种高效降温的电器柜总成及其使用方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4660427B2 (ja) * 2006-06-05 2011-03-30 三洋電機株式会社 冷却装置
JP2007335497A (ja) * 2006-06-13 2007-12-27 Sanyo Electric Co Ltd 冷却装置
US7808783B2 (en) * 2008-02-25 2010-10-05 International Business Machines Corporation Multiple chip module cooling system and method of operation thereof
JP2009229012A (ja) * 2008-03-24 2009-10-08 Daikin Ind Ltd 冷凍装置
JP2011059739A (ja) * 2009-09-04 2011-03-24 Fujitsu Ltd 温度予測装置、温度予測方法および温度予測プログラム

Also Published As

Publication number Publication date
JP2015191959A (ja) 2015-11-02

Similar Documents

Publication Publication Date Title
JP6412325B2 (ja) 冷却装置
JP5707621B2 (ja) 恒温液循環装置及びその運転方法
KR20100049681A (ko) 압축기 보호 시스템 및 방법
US10753675B2 (en) Refrigerator and method of controlling the same
WO2003084300A1 (en) Cooling device
JP2012072920A (ja) 冷凍装置
WO2018138796A1 (ja) 冷凍サイクル装置
JP2014234965A (ja) 恒温液循環装置及び恒温液の温度調整方法
JP4767133B2 (ja) 冷凍サイクル装置
JP5735441B2 (ja) 冷凍装置
JP2007335497A (ja) 冷却装置
JP2014190628A (ja) 空気調和機
JP6191490B2 (ja) 空気調和装置
JP6479203B2 (ja) 冷凍サイクル装置
JP5521924B2 (ja) コンテナ用冷凍装置
JP2013245904A (ja) 冷蔵庫
CN113324318B (zh) 风冷模块机组的控制方法
JP6359181B2 (ja) 冷凍サイクル装置
WO2017208429A1 (ja) 空気圧縮機の運転方法
JP2004116892A (ja) ヒートポンプ装置
JP2013174374A (ja) チリングユニット
JP2012057908A (ja) 冷凍サイクル装置
JP6350824B2 (ja) 空気調和機
JP2012067930A (ja) 冷凍サイクル装置
JPWO2020129246A1 (ja) 空気調和装置およびその制御方法

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20160401

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160606

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170324

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170328

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20171018

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171107

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180109

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180904

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180928

R150 Certificate of patent or registration of utility model

Ref document number: 6412325

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150