JP6401826B1 - 光電変換素子 - Google Patents

光電変換素子 Download PDF

Info

Publication number
JP6401826B1
JP6401826B1 JP2017120079A JP2017120079A JP6401826B1 JP 6401826 B1 JP6401826 B1 JP 6401826B1 JP 2017120079 A JP2017120079 A JP 2017120079A JP 2017120079 A JP2017120079 A JP 2017120079A JP 6401826 B1 JP6401826 B1 JP 6401826B1
Authority
JP
Japan
Prior art keywords
electrode substrate
photoelectric conversion
sealing portion
conversion element
oxide semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2017120079A
Other languages
English (en)
Other versions
JP2019004119A (ja
Inventor
真実 中
真実 中
圭介 中
圭介 中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Original Assignee
Fujikura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd filed Critical Fujikura Ltd
Priority to JP2017120079A priority Critical patent/JP6401826B1/ja
Application granted granted Critical
Publication of JP6401826B1 publication Critical patent/JP6401826B1/ja
Publication of JP2019004119A publication Critical patent/JP2019004119A/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Hybrid Cells (AREA)
  • Photovoltaic Devices (AREA)

Abstract

【課題】光電変換特性および耐久性を向上させることができる光電変換素子を提供すること。【解決手段】光電変換セルを備える光電変換素子であって、光電変換セルが、第1電極基板と、第1電極基板に対向する第2電極基板と、第1電極基板上に設けられる酸化物半導体層と、第1電極基板及び第2電極基板の間に設けられる電解質と、第1電極基板及び第2電極基板を接合し、前記第1電極基板及び前記第2電極基板の間に設けられる環状の封止部とを備え、封止部が、第1電極基板及び第2電極基板の間に設けられる本体部と、本体部よりも内側に突出する突出部とを有し、突出部の突出幅が、第1電極基板側から第2電極基板側に向かうにつれて増加している、光電変換素子。【選択図】図1

Description

本発明は、光電変換素子に関する。
色素増感太陽電池は、スイスのグレッツェルらによって開発されたものであり、光電変換効率が高く、製造コストが低いなどの利点を持つため注目されている次世代光電変換素子である。
このような色素増感太陽電池などの色素を用いた光電変換素子は光電変換セルを備えており、光電変換セルは、第1電極基板と、第1電極基板に対向する第2電極基板と、第1電極基板上に設けられる酸化物半導体層と、第1電極基板及び第2電極基板の間に設けられる電解質と、第1電極基板及び第2電極基板を接合する環状の封止部とを備えている。
このような光電変換素子として、例えば下記特許文献1に示す色素増感太陽電池素子が知られている。この色素増感太陽電池素子においては、環状の封止部の内周面が酸化物半導体層の厚さ方向に直交するように延びている。
特許第5377786号公報
しかし、上記特許文献1に記載の色素増感太陽電池素子は以下に示す課題を有していた。
すなわち、上記特許文献1に記載の色素増感太陽電池素子は、光電変換特性および耐久性の向上の点で未だ改善の余地を有していた。
本発明は上記事情に鑑みてなされたものであり、光電変換特性および耐久性を向上させることができる光電変換素子を提供することを目的とする。
本発明者は上記課題を解決するために鋭意研究を重ねた結果、以下の発明により上記課題を解決し得ることを見出した。
すなわち本発明は、光電変換セルを備える光電変換素子であって、前記光電変換セルが、第1電極基板と、前記第1電極基板に対向する第2電極基板と、前記第1電極基板上に設けられる酸化物半導体層と、前記第1電極基板及び前記第2電極基板の間に設けられる電解質と、前記第1電極基板及び前記第2電極基板を接着する環状の封止部とを備え、前記封止部が、前記第1電極基板及び前記第2電極基板の間に設けられる本体部と、前記本体部よりも内側に突出する突出部とを有し、前記突出部の突出幅が、前記第1電極基板側から前記第2電極基板側に向かうにつれて増加している、光電変換素子である。
本発明の光電変換素子によれば、封止部において、突出部の本体部からの突出幅が第1電極基板側から第2電極基板側に向かうにつれて増加しない場合に比べて、酸化物半導体層を通過した光が反射されて酸化物半導体層に戻されやすくなる。このため、光の利用効率が増加し、光電変換特性が向上する。また、封止部において、突出部の本体部からの突出幅が第1電極基板側から第2電極基板側に向かうにつれて増加しない場合に比べて、第2電極基板と封止部との界面の面積が増加し、第2電極基板と封止部との接着性が向上する。また、封止部が、本体部からの突出幅が第1電極基板側から第2電極基板側に向かうにつれて増加する突出部を有するため、封止部が突出部を有さず、本体部のみからなる場合に比べて、外部からの水分が電解質に侵入しにくくなるとともに、電解質が封止部を通じて外部に漏出しにくくなる。このため、光電変換素子の耐久性が向上する。
上記光電変換素子においては、前記光電変換素子を、前記酸化物半導体層の厚さ方向に見た場合に、前記酸化物半導体層と前記封止部とが重なり合っていることが好ましい。
この場合、封止部と第2電極基板との界面に直交する方向に光電変換素子を見た場合に、酸化物半導体層と封止部とが重なっているので、酸化物半導体層と封止部とが重なっていない場合に比べて、第2電極基板が撓みにくくなって酸化物半導体層と短絡することが十分に抑制される。
上記光電変換素子においては、前記封止部と前記第1電極基板との間に絶縁材が設けられていてもよい。
なお、本発明において、「突出部の突出幅」とは、封止部と第2電極基板との境界面に平行な方向に沿った本体部からの長さを言う。
本発明によれば、光電変換特性および耐久性を向上させることができる光電変換素子が提供される。
本発明の光電変換素子の第1実施形態を示す断面図である。 図1の第2電極基板を示す部分断面図である。 図1の部分断面図である。 本発明の光電変換素子の第2実施形態を示す断面図である。 本発明の光電変換素子の第3実施形態を示す断面図である。
以下、本発明の実施形態について図1〜図3を参照しながら詳細に説明する。図1は、本発明の光電変換素子の第1実施形態を示す断面図、図2は、図1の第2電極基板を示す部分断面図、図3は図1の部分断面図である。
図1および図2に示すように、光電変換素子100は、1つの光電変換セル60で構成されており、光電変換セル60は、第1電極基板10と、第1電極基板10に対向する第2電極基板20と、第1電極基板10上に設けられる酸化物半導体層30と、第1電極基板10及び第2電極基板20の間に設けられる電解質50と、第1電極基板10及び第2電極基板20を接合し、第1電極基板10及び第2電極基板20の間に設けられる環状の封止部40と、封止部40と第1電極基板10との間に設けられる絶縁材70とを備えている。電解質50は、第1電極基板10、第2電極基板20及び封止部40によって形成されるセル空間に充填されている。また、酸化物半導体層30には色素が吸着されている。
第1電極基板10は、透明基板11および透明基板11の上に設けられる電極としての透明導電層12で構成される。ここで、透明導電層12の周縁部は絶縁材70と透明基板11とによって挟まれている。
第2電極基板20は、図2に示すように、基板と第2電極を兼ねる導電性基板21と、導電性基板21の第1電極基板10側に設けられて電解質50の還元に寄与する触媒層22とを備えている。
封止部40は、第1電極基板10及び第2電極基板20の間に設けられる本体部41と、本体部41よりも内側に突出する突出部42とを有している。そして、図3に示すように、突出部42の突出幅tは、第1電極基板10側から第2電極基板20側に向かうにつれて増加している。
さらに光電変換素子100においては、光電変換素子100を酸化物半導体層30の厚さ方向に見た場合に、酸化物半導体層30と封止部40とが重なり合っている。
光電変換素子100においては、封止部40の突出部42の突出幅tが第1電極基板10側から第2電極基板20側に向かうにつれて増加しない場合に比べて、酸化物半導体層30を通過した光が反射されて酸化物半導体層30に戻されやすくなる。このため、光の利用効率が増加し、光電変換特性が向上する。また、封止部40の突出部42の突出幅tが第1電極基板10側から第2電極基板20側に向かうにつれて増加しない場合に比べて、第2電極基板20と封止部40との界面の面積が増加し、第2電極基板20と封止部40との接着性が向上する。また、封止部40が、突出幅tが第1電極基板10側から第2電極基板20側に向かうにつれて増加する突出部42を有するため、封止部40が突出部42を有さず、本体部41のみからなる場合に比べて、外部からの水分が電解質50に侵入しにくくなるとともに、電解質50が封止部40を通じて外部に漏出しにくくなる。このため、光電変換素子100の耐久性が向上する。
さらに光電変換素子100においては、光電変換素子100を酸化物半導体層30の厚さ方向に見た場合に、酸化物半導体層30と封止部40とが重なり合っている。この場合、光電変換素子100を酸化物半導体層30の厚さ方向に見た場合に酸化物半導体層30と封止部40とが重なっていない場合に比べて、第2電極基板20が撓みにくくなって酸化物半導体層30と短絡することが十分に抑制される。
次に、第1電極基板10、第2電極基板20、酸化物半導体層30、封止部40、電解質50、色素及び絶縁材70について詳細に説明する。
<第1電極基板>
第1電極基板10は、上述したように、透明基板11と、透明基板11の上に設けられる透明導電層12とで構成されている。
透明基板11を構成する材料は、例えば透明な材料であればよく、このような透明な材料としては、例えばホウケイ酸ガラス、ソーダライムガラス、白板ガラス、石英ガラスなどのガラス、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)、ポリカーボネート(PC)、及び、ポリエーテルスルフォン(PES)などの絶縁材料が挙げられる。透明基板11の厚さは、光電変換素子100のサイズに応じて適宜決定され、特に限定されるものではないが、例えば50〜40000μmの範囲にすればよい。
透明導電層12を構成する材料としては、例えばスズ添加酸化インジウム(ITO)、酸化スズ(SnO)、及び、フッ素添加酸化スズ(FTO)などの導電性金属酸化物が挙げられる。透明導電層12は、単層でも、異なる導電性金属酸化物で構成される複数の層の積層体で構成されてもよい。透明導電層12が単層で構成される場合、透明導電層12は、高い耐熱性及び耐薬品性を有することから、FTOで構成されることが好ましい。透明導電層12の厚さは例えば0.01〜2μmの範囲にすればよい。
<第2電極基板>
第2電極基板20は、上述したように、基板と第2電極を兼ねる導電性基板21と、導電性基板21のうち第1電極基板10側に設けられて電解質50の還元に寄与する導電性の触媒層22とを備えるものである。
導電性基板21は、例えばチタン、ニッケル、白金、モリブデン、タングステン、アルミニウム、ステンレス等の耐食性の金属材料で構成される。また、基板と第2電極を分けて、上述した絶縁性の透明基板11に第2電極としてITO、FTO等の導電性酸化物からなる透明導電層を形成した積層体で構成されてもよい。ここで、導電性基板21が透明基板11に透明導電層を形成した積層体で構成される場合、透明導電層は、少なくとも第2電極基板20のうち封止部40より内側の部分では、透明基板11上に設けられることになる。ここで、透明導電層は、封止部40と第2電極基板20との接合部においては透明基板11と封止部40との間にあってもよいし、なくてもよい。また導電性基板21の厚さは、光電変換素子100のサイズに応じて適宜決定され、特に限定されるものではないが、例えば0.005〜4mmとすればよい。
触媒層22は、白金、炭素系材料又は導電性高分子などから構成される。ここで、炭素系材料としては、カーボンナノチューブが好適に用いられる。なお、第2電極基板20は、導電性基板21が触媒機能を有する場合(例えばカーボンなどを含有する場合)には触媒層22を有していなくてもよい。
<酸化物半導体層>
酸化物半導体層30は、酸化物半導体粒子で構成されている。酸化物半導体粒子は、例えば酸化チタン(TiO)、酸化亜鉛(ZnO)、酸化タングステン(WO)、酸化ニオブ(Nb)、チタン酸ストロンチウム(SrTiO)、酸化スズ(SnO)、酸化インジウム(In)、酸化ジルコニウム(ZrO)、酸化タリウム(Ta)、酸化ランタン(La)、酸化イットリウム(Y)、酸化ホルミウム(Ho)、酸化ビスマス(Bi)、酸化セリウム(CeO)、酸化アルミニウム(Al)又はこれらの2種以上で構成される。
酸化物半導体層30の厚さは通常は、2〜40μmであり、好ましくは10〜30μmである。
<封止部>
封止部40は、本体部41と突出部42とを有する。
封止部40を構成する材料としては、例えば変性ポリオレフィン樹脂、ビニルアルコール重合体などの熱可塑性樹脂、紫外線硬化樹脂などの樹脂材料、及び、ガラスフリットなどの無機材料が挙げられる。変性ポリオレフィン樹脂としては、例えばアイオノマー、エチレン−ビニル酢酸無水物共重合体、エチレン−メタクリル酸共重合体およびエチレン−ビニルアルコール共重合体が挙げられる。これらの樹脂は単独で又は2種以上を組み合せて用いることができる。
突出部42の突出幅tは、第1電極基板10側から第2電極基板20側に向かうにつれて増加している。具体的には、突出部42の突出幅tは、第1電極基板10に最も近い位置で最小であり、第2電極基板20に最も近い位置で最大である。ここで、突出部42の突出幅tの最小値t1は具体的には0である。本体部41の幅Tは一定であり、本体部41の幅Tに対する突出幅tの最大値t2の比(t2/T)は特に制限されるものではないが、好ましくは0.2以上であり、より好ましくは0.25以上である。但し、t2/Tは0.5以下であることが好ましい。この場合、t2/Tが0.5を超える場合に比べて、第2電極基板20の発電に寄与する面積がより増加して光電変換素子100の光電変換特性をより向上させることができる。
なお、突出部42のうち第2電極基板20に最も近い面は第2電極基板20に接着されている。
また、光電変換素子100において、光電変換素子100を酸化物半導体層30の厚さ方向に見た場合に、酸化物半導体層30と封止部40との重なり幅は特に制限されるものではないが、好ましくは0.1mm以上であり、より好ましくは0.25mm以上である。但し、酸化物半導体層30と封止部40との重なり幅は1mm以下であることが好ましい。この場合、酸化物半導体層30と封止部40との重なり幅が1mmを超える場合と比較して、第1電極基板10および第2電極基板20の発電に寄与する面積がより増加して光電変換素子100の光電変換特性をより向上させることができる。
また突出部42の内周面は平坦面でも、電解質50側に向かって凸状となっていても、本体部41側に凹状となっていてもよいが、電解質50側に向かって凸状となっていることが好ましい。この場合、酸化物半導体層30を通過した光が突出部42の内周面で反射されて酸化物半導体層30に広範囲に戻されやすくなり、その結果、光の利用効率が増加して光電変換特性がより向上する。
<電解質>
電解質50は、ヨウ化物イオン/ポリヨウ化物イオン(例えばI/I )などの酸化還元対と有機溶媒とを含んでいる。有機溶媒としては、アセトニトリル、メトキシアセトニトリル、メトキシプロピオニトリル、プロピオニトリル、エチレンカーボネート、プロピレンカーボネート、ジエチルカーボネート、γ−ブチロラクトン、バレロニトリル、ピバロニトリル、グルタロニトリル、メタクリロニトリル、イソブチロニトリル、フェニルアセトニトリル、アクリロニトリル、スクシノニトリル、オキサロニトリル、ペンタニトリル、アジポニトリルなどを用いることができる。酸化還元対としては、ヨウ化物イオン/ポリヨウ化物イオン(例えばI/I )のほか、臭化物イオン/ポリ臭化物イオン、亜鉛錯体、鉄錯体、コバルト錯体などのレドックス対が挙げられる。また電解質50は、有機溶媒に代えて、イオン液体を用いてもよい。イオン液体としては、例えばピリジニウム塩、イミダゾリウム塩、トリアゾリウム塩等の既知のヨウ素塩であって、室温付近で溶融状態にある常温溶融塩が用いられる。このような常温溶融塩としては、例えば、1−ヘキシル−3−メチルイミダゾリウムヨーダイド、1−エチル−3−プロピルイミダゾリウムヨーダイド、ジメチルイミダゾリウムアイオダイド、エチルメチルイミダゾリウムアイオダイド、ジメチルプロピルイミダゾリウムアイオダイド、ブチルメチルイミダゾリウムアイオダイド、又は、メチルプロピルイミダゾリウムアイオダイドが好適に用いられる。
また、電解質50は、上記有機溶媒に代えて、上記イオン液体と上記有機溶媒との混合物を用いてもよい。
また電解質50には添加剤を加えることができる。添加剤としては、LiI、I、4−t−ブチルピリジン、グアニジウムチオシアネート、1−メチルベンゾイミダゾール、1−ブチルベンゾイミダゾールなどが挙げられる。
さらに電解質50としては、上記電解質にSiO、TiO、カーボンナノチューブなどのナノ粒子を混練してゲル様となった擬固体電解質であるナノコンポジットゲル電解質を用いてもよく、また、ポリフッ化ビニリデン、ポリエチレンオキサイド誘導体、アミノ酸誘導体などの有機系ゲル化剤を用いてゲル化した電解質を用いてもよい。
なお、電解質50は、ヨウ化物イオン/ポリヨウ化物イオン(例えばI/I )からなる酸化還元対を含み、ポリヨウ化物イオン(例えばI )の濃度が0.006mol/リットル以下であることが好ましい。この場合、電子を運ぶポリヨウ化物イオン(例えばI )の濃度が低いため、漏れ電流をより減少させることができる。このため、開放電圧をより増加させることができるため、光電変換特性をより向上させることができる。特に、ポリヨウ化物イオン(例えばI )の濃度は0.005mol/リットル以下であることが好ましく、0〜6×10−6mol/リットルであることがより好ましく、0〜6×10−8mol/リットルであることがさらに好ましい。この場合、光電変換素子100を第1電極基板10の光入射側から見た場合に、電解質50の色を目立たなくすることができる。
<色素>
色素としては、例えばビピリジン構造、ターピリジン構造などを含む配位子を有するルテニウム錯体、ポルフィリン、エオシン、ローダミン、メロシアニンなどの有機色素などの光増感色素;ハロゲン化鉛系ペロブスカイトなどの有機−無機複合色素などが挙げられる。ハロゲン化鉛系ペロブスカイトとしては、例えばCHNHPbX(X=Cl、Br、I)が用いられる。
上記色素の中でも、ビピリジン構造又はターピリジン構造を含む配位子を有するルテニウム錯体からなる光増感色素が好ましい。この場合、光電変換素子100の光電変換特性をより向上させることができる。
なお、色素が光増感色素で構成される場合、光電変換素子100は色素増感光電変換素子で構成されることになり、光電変換セル60は色素増感光電変換セルで構成されることになる。
<絶縁材>
絶縁材70を構成する材料は、絶縁材料であれば特に限定されるものではないが、絶縁材料としては、例えばガラスフリットなどの無機絶縁材料、ポリイミド樹脂などの熱硬化性樹脂および熱可塑性樹脂が挙げられる。中でも、ガラスフリットなどの無機絶縁材料又は熱硬化性樹脂を用いることが好ましい。この場合、封止部40が高温時に流動性を有するようになっても、絶縁材70は、熱可塑性樹脂からなる場合に比べて高温時でも流動化しにくい。このため、第1電極基板10の透明導電層12と第2電極基板20との接触が十分に抑制され、透明導電層12と第2電極基板20との間の短絡を十分に抑制できる。
絶縁材70は封止部40と同一材料で構成されてもよく、異なる材料で構成されていてもよいが、通常は異なる材料で構成される。
絶縁材70の厚さは特に制限されるものではないが、通常、10〜30μmであり、好ましくは15〜25μmである。
次に、上述した光電変換素子100の製造方法について説明する。
まず1つの透明基板11の上に、透明導電層12を形成してなる第1電極基板10を用意する。
透明導電層12の形成方法としては、スパッタリング法、蒸着法、スプレー熱分解法及びCVD法などが用いられる。
次に、透明導電層12の上に酸化物半導体層30の前駆体を形成する。
酸化物半導体層30の前駆体は、酸化物半導体粒子を含む酸化物半導体層形成用ペーストを印刷した後、乾燥させることで形成することができる。
酸化物半導体層形成用ペーストは、酸化物半導体粒子のほか、ポリエチレングリコールなどの樹脂及び、テレピネオールなどの溶媒を含む。
酸化物半導体層形成用ペーストの印刷方法としては、例えばスクリーン印刷法、ドクターブレード法、又はバーコート法などを用いることができる。
そして、酸化物半導体層30の前駆体を焼成し、酸化物半導体層30を形成する。
焼成温度は酸化物半導体粒子の種類により異なるが、通常は350〜600℃であり、焼成時間も、酸化物半導体粒子の種類により異なるが、通常は1〜5時間である。
次に、酸化物半導体層30を包囲するように絶縁材70の前駆体を形成する。
絶縁材70の前駆体は、例えばガラスフリットを含むペーストを塗布し乾燥させることによって形成することができる。
そして、絶縁材70の前駆体を焼成し、絶縁材70を形成する。
こうして、酸化物半導体層30及び絶縁材70が形成された第1電極基板10が得られる。
次に、封止部40を形成するための環状の第1封止部形成体を準備する。第1封止部形成体は、例えば第1封止用樹脂フィルムを用意し、その第1封止用樹脂フィルムに1つの開口を形成することによって得ることができる。
そして、この第1封止部形成体を、絶縁材70上に、絶縁材70に沿うように配置して絶縁材70に接着させる。このとき、第1封止部形成体の絶縁材70への接着は、例えば第1封止部形成体を加熱溶融させることによって行うことができる。
次に、第1電極基板10の酸化物半導体層30に色素を担持させる。このためには、第1電極基板10を、色素を含有する溶液の中に浸漬させ、その色素を酸化物半導体層30に吸着させた後に上記溶液の溶媒成分で余分な色素を洗い流し、乾燥させればよい。但し、色素を含有する溶液を酸化物半導体層30に塗布した後、乾燥させることによって色素を酸化物半導体層30に吸着させても、色素を酸化物半導体層30に担持させることが可能である。
次に、電解質50を用意する。そして、電解質50を第1電極基板10上に固定した環状の第1封止部形成体の内側に配置する。こうして構造体Aが得られる。
次に、第2電極基板20を用意する。
第2電極基板20は、上述したように、導電性基板21上に導電性の触媒層22を形成することにより得ることができる。
次に、封止部40を形成するための環状の第2封止部形成体を準備する。第2封止部形成体は、例えば第2封止用樹脂フィルムを用意し、その第2封止用樹脂フィルムに1つの開口を形成することによって得ることができる。このとき、第2封止部形成体は、第1封止部形成体の幅よりも大きい幅を有するように形成する。
そして、この第2封止部形成体を、第2電極基板20上に配置して第2電極基板20の表面に接着させる。このとき、第2封止部形成体の第2電極基板20への接着は、例えば第2封止部形成体を加熱溶融させることによって行うことができる。こうして構造体Bが得られる。
そして、上記構造体A及び上記構造体Bを互いに重ね合わせる。このとき、構造体Aの第1封止部形成体と、構造体Bの第2封止部形成体とを互いに接触させる。また、第2封止部形成体の内周面が第1封止部形成体の内周面よりも内側に配置されるようにする。
次に、第1封止部形成体および第2封止部形成体を加圧しながら加熱溶融させる。すると、第1封止部形成体及び第2封止部形成体の軟化が始まり、第1封止部形成体及び第2封止部形成体によって封止部40が形成される。
以上のようにして光電変換素子100が得られる。
以上のようにして1つの光電変換セル60で構成される光電変換素子100が得られる。
本発明は、上記第1実施形態に限定されるものではない。例えば上記第1実施形態では、光電変換素子100を酸化物半導体層30の厚さ方向に見た場合に、酸化物半導体層30と封止部40とが重なり合っているが、図4に示す第2実施形態の光電変換素子200のように、光電変換素子200を酸化物半導体層30の厚さ方向に見た場合に、酸化物半導体層30と封止部40とが重なり合っていなくてもよい。
さらに上記第1および第2実施形態では、封止部40と第1電極基板10との間に絶縁材70が設けられているが、図5に示す第3実施形態の光電変換素子300のように、封止部40と第1電極基板10との間に絶縁材70は設けられていなくてもよい。すなわち封止部40が第1電極基板10上に直接設けられていてもよい。
また上記第1〜第3実施形態では、透明導電層12の周縁部が封止部40又は絶縁材70と透明基板11とによって挟まれているが、透明導電層12の周縁部は、封止部40又は絶縁材70と透明基板11とによって挟まれていなくてもよい。
また上記第1〜第3実施形態では、光電変換素子100〜300が1つの光電変換セル60で構成されているが、光電変換素子は、光電変換セル60を複数備えていてもよい。
以下、本発明の内容を、実施例を挙げてより具体的に説明するが、本発明は下記の実施例に限定されるものではない。
(実施例1)
まずガラスからなる厚さ1mmの透明基板の上に、厚さ1μmのFTOからなる透明導電層を形成してなる透明導電性基板を第1電極基板として準備した。
次に、透明導電層の上に、酸化物半導体粒子を含む酸化物半導体層形成用ペーストを、97mm×42mmの寸法を有するようにスクリーン印刷した後、焼成して形成した。このとき、焼成は500℃で1時間行った。こうして第1電極基板上に、厚さ15μmの酸化物半導体層を得た。
次に、酸化物半導体層を包囲するように絶縁材の前駆体を形成した。絶縁材の前駆体は、ガラスフリットを含むペーストを塗布し乾燥させることによって形成した。そして、絶縁材の前駆体を焼成し、絶縁材を形成した。このとき、焼成は500℃で1時間行った。こうして第1電極基板上に厚さ10μmの絶縁材を得た。
こうして、酸化物半導体層及び絶縁材が形成された第1電極基板を得た。
次に、幅が2mm、厚さが50μmの環状の第1封止部形成体を準備した。第1封止部形成体は、103mm×48mm×50μmのバイネル14164(商品名、デュポン社製)からなる第1封止用樹脂フィルムを用意し、その第1封止用樹脂フィルムに1つの開口を形成することによって得た。
そして、この第1封止部形成体を、絶縁材上に、絶縁材に沿うように配置して絶縁材に接着させた。このとき、第1封止部形成体の絶縁材への接着は、第1封止部形成体を加熱溶融させることによって行った。こうして、第1封止部形成体が設けられた作用極を得た。
次に、第1封止部が設けられた作用極を、光増感色素溶液中に一昼夜浸漬させた後、取り出して乾燥させ、酸化物半導体層に光増感色素を吸着させた。光増感色素溶液は、アセトニトリルとt−ブタノールとを体積比1:1で混合した混合溶媒中に、Z907(cis-Bis(isothiocyanato)(2,2’-bipyridyl-4,4’-dicarboxylato)(4,4’-di-nonyl-2’-bipyridyl)ruthenium(II))からなる光増感色素をその濃度が0.2mMとなるように溶解させることで調製した。
次に、酸化物半導体層の上に電解質を塗布し、第1電極基板上に接着した環状の第1封止部形成体の内側に配置した。こうして構造体Aを得た。電解質としては、ヨウ素0.002M、1,2−ジメチル−3−プロピルイミダゾリウムアイオダイド(DMPImI)0.6Mを含む3−メトキシプロピオニトリル(MPN)溶液を用意した。
次に、第2電極基板としての対極を用意した。対極は、103mm×48mm×40μmのチタン箔の上にスパッタリング法によって厚さ5nmの白金からなる触媒層を形成することによって用意した。
次に、幅が2.5mm、厚さが50μmの環状の第2封止部形成体を準備した。第2封止部形成体は、103mm×48mm×50μmのバイネル14164(商品名、デュポン社製)からなる第2封止用樹脂フィルムを用意し、その第2封止用樹脂フィルムに1つの開口を形成することによって得た。
そして、この第2封止部形成体を、対極上に配置して接着させた。このとき、第2封止部形成体の絶縁材への接着は、第2封止部形成体を加熱溶融させることによって行った。こうして構造体Bを得た。
そして、上記構造体A及び上記構造体Bを互いに重ね合わせた。このとき、構造体Aの第1封止部形成体と構造体Bの第2封止部形成体とを互いに接触させた。また、第2封止部形成体の内周面が第1封止部形成体の内周面よりも0.5mmだけ内側に配置されるように、且つ、酸化物半導体層の厚さ方向に酸化物半導体層及び第2封止部形成体を見た場合に酸化物半導体層と第2封止部形成体とが重なり合わないようにした。
次に、第1封止部形成体および第2封止部形成体を加圧しながら加熱溶融させ、第1封止部形成体及び第2封止部形成体によって封止部を形成した。
以上のようにして1つの光電変換セルからなる光電変換素子を得た。得られた光電変換素子において、封止部のうち本体部の幅Tは2mmであり、突出部の突出幅tの最小値t1は0mmであり、突出部の突出幅tの最大値t2は0.5mmであり、t2/Tは0.25であった。
(実施例2)
第1封止部形成体を準備する際、101.4mm×46.4mm×50μmの第1封止用樹脂フィルムを用いて、97.4mm×42.4mmの開口を形成し、第2封止部形成体を準備する際、101.4mm×46.4mm×50μmの第2封止用樹脂フィルムを用いて、96.4mm×41.4mmの開口を形成するとともに、構造体A及び構造体Bを互いに重ね合わせた際、酸化物半導体層の厚さ方向に酸化物半導体層及び第2封止部形成体を見た場合に、酸化物半導体層と第2封止部形成体とが0.3mmだけ重なり合うようにしたこと以外は実施例1と同様にして光電変換素子を得た。なお、表1に示すように、得られた光電変換素子において、封止部のうち本体部の幅Tは2mmであり、突出部の突出幅tの最小値t1は0mmであり、突出部tの最大値t2は0.5mmであり、t2/Tは0.25であった。
(比較例1)
第2封止部形成体の幅を2mmとし、構造体A及び構造体Bを互いに重ね合わせた際、酸化物半導体層の厚さ方向に酸化物半導体層及び第2封止部形成体を見た場合に、酸化物半導体層と第2封止部形成体とが重なり合わないようにしたこと以外は実施例1と同様にして光電変換素子を得た。なお、表1に示すように、得られた光電変換素子において、封止部のうち本体部の幅Tは2mmであり、突出部の突出幅tの最小値t1および最大値t2はいずれも0mmであり、t2/Tは0であった。
<特性の評価>
(光電変換特性)
上記のようにして得られた実施例1、実施例2及び比較例1で得られた光電変換素子について、作製直後に200ルクスの白色光を照射した状態でIV曲線を測定し、このIV曲線から算出される最大出力動作電力W(μW)を「初期出力」として算出し、これを光電変換特性の指標とした。結果を表1に示す。なお、IV曲線の測定に用いた光源、照度計および電源は以下の通りである。

光源:白色LED(製品名「LEL−SL5N−F」、東芝ライテック社製)
照度計:製品名「デジタル照度計51013」、横河メータ&インスツルメンツ社製
電源:電圧/電流 発生器(製品名「R6246I」、ADVANTEST製)
(耐久性)
上記のようにして得られた実施例1、実施例2及び比較例1で得られた光電変換素子について、初期出力(W)を測定した後、実施例1、実施例2及び比較例1で得られた光電変換素子について、JIS C 8938に準じたヒートサイクル試験を行った後の出力(W)を、初期出力と同様にして測定した。そして、下記式に基づき、出力維持率を算出し、これを耐久性の指標とした。結果を表1に示す。なお、ヒートサイクル試験は、環境温度を−40℃から90℃まで上昇させてから下降させるサイクルを1サイクルとした場合に200サイクル行った。このとき、1サイクルは4時間かけて行った。

出力維持率(%)=100×(W/W

Figure 0006401826
表1に示す結果より、実施例1および実施例2の光電変換素子は、比較例1の光電変換素子よりも光電変換特性および耐久性を向上させることができることが分かった。
以上より、本発明の光電変換素子によれば、光電変換特性および耐久性を向上させることができることが確認された。
10…第1電極基板
20…第2電極基板
30…酸化物半導体層
40…封止部
41…本体部
42…突出部
50…電解質
60…光電変換セル
70…絶縁材
100,200,300…光電変換素子
t…突出部の突出幅

Claims (3)

  1. 光電変換セルを備える光電変換素子であって、
    前記光電変換セルが、
    第1電極基板と、
    前記第1電極基板に対向する第2電極基板と、
    前記第1電極基板上に設けられる酸化物半導体層と、
    前記第1電極基板及び前記第2電極基板の間に設けられる電解質と、
    前記第1電極基板及び前記第2電極基板を接着する環状の封止部とを備え、
    前記封止部が、
    前記第1電極基板及び前記第2電極基板の間に設けられる本体部と、前記本体部よりも内側に突出する突出部とを有し、
    前記突出部の突出幅が、前記第1電極基板側から前記第2電極基板側に向かうにつれて増加している、光電変換素子。
  2. 前記光電変換素子を、前記酸化物半導体層の厚さ方向に見た場合に、前記酸化物半導体層と前記封止部とが重なり合っている、請求項1に記載の光電変換素子。
  3. 前記封止部と前記第1電極基板との間に絶縁材が設けられている、請求項1又は2に記載の光電変換素子。
JP2017120079A 2017-06-20 2017-06-20 光電変換素子 Expired - Fee Related JP6401826B1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017120079A JP6401826B1 (ja) 2017-06-20 2017-06-20 光電変換素子

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017120079A JP6401826B1 (ja) 2017-06-20 2017-06-20 光電変換素子

Publications (2)

Publication Number Publication Date
JP6401826B1 true JP6401826B1 (ja) 2018-10-10
JP2019004119A JP2019004119A (ja) 2019-01-10

Family

ID=63788041

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017120079A Expired - Fee Related JP6401826B1 (ja) 2017-06-20 2017-06-20 光電変換素子

Country Status (1)

Country Link
JP (1) JP6401826B1 (ja)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009277399A (ja) * 2008-05-13 2009-11-26 Nok Corp 色素増感型太陽電池
JP2014082142A (ja) * 2012-10-18 2014-05-08 Hitachi Chemical Co Ltd 電子部品及びその製法、封止材料ペースト、フィラー粒子

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009277399A (ja) * 2008-05-13 2009-11-26 Nok Corp 色素増感型太陽電池
JP2014082142A (ja) * 2012-10-18 2014-05-08 Hitachi Chemical Co Ltd 電子部品及びその製法、封止材料ペースト、フィラー粒子

Also Published As

Publication number Publication date
JP2019004119A (ja) 2019-01-10

Similar Documents

Publication Publication Date Title
JP2016072418A (ja) 色素増感型光電変換素子
JP6285673B2 (ja) 色素増感太陽電池素子
JP6333343B2 (ja) 光電変換素子
JP5897741B1 (ja) 光電変換素子
JP5897742B1 (ja) 光電変換素子
JP6401826B1 (ja) 光電変換素子
US10580586B2 (en) Dye-sensitized photoelectric conversion element
JP6215651B2 (ja) 電極、及び、これを有する色素増感太陽電池
JP5802819B1 (ja) 低照度用色素増感光電変換素子の電解質、及び、これを用いた低照度用色素増感光電変換素子
JP5380618B1 (ja) 色素増感太陽電池用電解質、その製造方法、及び、色素増感太陽電池
JP6576784B2 (ja) 光電変換素子用電解質、及び、これを用いた光電変換素子
US10692658B2 (en) Photoelectric conversion element
JP6598757B2 (ja) 光電変換素子
JP5882507B1 (ja) 光電変換素子
JP6539081B2 (ja) 光電変換素子
JP6718322B2 (ja) 光電変換素子
JP5380617B1 (ja) 色素増感太陽電池用電解質および色素増感太陽電池
WO2015190608A1 (ja) 色素増感太陽電池素子
JP2013084596A (ja) 色素増感太陽電池
JP2018006498A (ja) 光電変換素子
JP2018081989A (ja) 光電変換素子
JP2017022325A (ja) 光電変換素子
JP2015022889A (ja) 色素増感太陽電池

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180731

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180904

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180907

R150 Certificate of patent or registration of utility model

Ref document number: 6401826

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees