JP6389654B2 - Method for producing carbon fiber composite material - Google Patents

Method for producing carbon fiber composite material Download PDF

Info

Publication number
JP6389654B2
JP6389654B2 JP2014125022A JP2014125022A JP6389654B2 JP 6389654 B2 JP6389654 B2 JP 6389654B2 JP 2014125022 A JP2014125022 A JP 2014125022A JP 2014125022 A JP2014125022 A JP 2014125022A JP 6389654 B2 JP6389654 B2 JP 6389654B2
Authority
JP
Japan
Prior art keywords
resin
carbon fiber
composite material
fiber composite
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014125022A
Other languages
Japanese (ja)
Other versions
JP2016002723A (en
Inventor
尚幸 田邉
尚幸 田邉
哲尭 前田
哲尭 前田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Inoac Corp
Original Assignee
Inoac Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Inoac Corp filed Critical Inoac Corp
Priority to JP2014125022A priority Critical patent/JP6389654B2/en
Publication of JP2016002723A publication Critical patent/JP2016002723A/en
Application granted granted Critical
Publication of JP6389654B2 publication Critical patent/JP6389654B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、炭素繊維複合材製造方法に関する。 The present invention relates to a method of producing a carbon fiber composite material.

近年、高剛性が要求される部材に繊維強化複合材を用いることが提案されている。繊維強化複合材は、用途によっては耐熱性が要求されることがある。
繊維強化複合材として、炭素繊維織物に樹脂を含浸させたプリプレグを複数枚積層した後、加熱して積層成形した素板(スタンパブルシート)を作成し、この素板を再加熱して金型で熱間プレス成形したものがある(特許文献1)。
また、熱硬化性樹脂発泡体に熱硬化性樹脂を含浸させた芯材の両面に、炭素繊維織物に熱硬化性樹脂を含浸させた繊維補強材を積層して加熱圧縮により一体化した繊維強化複合材がある(特許文献2)。
In recent years, it has been proposed to use fiber-reinforced composite materials for members that require high rigidity. The fiber reinforced composite material may be required to have heat resistance depending on the application.
As a fiber reinforced composite material, a plurality of prepregs made by impregnating carbon fiber fabric with resin are laminated, then heated to form a base plate (stampable sheet), and this base plate is reheated to form a mold. And hot press-molded (Patent Document 1).
In addition, fiber reinforcement made by laminating a fiber reinforcing material impregnated with a thermosetting resin into a carbon fiber fabric on both sides of a core material impregnated with a thermosetting resin into a thermosetting resin foam and integrating them by heat compression There is a composite material (Patent Document 2).

しかし、炭素繊維織物に樹脂を含浸させたプリプレグを複数枚積層して成形した繊維強化複合材は、比重が1.5程度であり、しかも炭素繊維織物の厚みが0.2〜0.4mm程度と薄いものであるため、例えば3mm〜20mm程度の厚さの板を作成するためには多くのプリプレグを積層する必要があり、成形体が重くなる問題がある。
また、熱硬化性樹脂発泡体に熱硬化性樹脂を含浸させた芯材の両面に、炭素繊維織物に熱硬化性樹脂を含浸させた繊維補強材を積層して加熱圧縮により一体化した繊維強化複合材は、比重が1.0〜1.4であるため、重くなる問題がある。なお、熱硬化性樹脂発泡体に対する熱硬化性樹脂の含浸量を減らす等によって繊維強化複合材の比重を1.0以下にすると、成形体の剛性が極端に低下するようになる。
However, the fiber reinforced composite material formed by laminating a plurality of prepregs impregnated with a resin in a carbon fiber fabric has a specific gravity of about 1.5, and the thickness of the carbon fiber fabric is about 0.2 to 0.4 mm. For example, in order to produce a plate having a thickness of about 3 mm to 20 mm, it is necessary to laminate a large number of prepregs, and there is a problem that the molded body becomes heavy.
In addition, fiber reinforcement made by laminating a fiber reinforcing material impregnated with a thermosetting resin into a carbon fiber fabric on both sides of a core material impregnated with a thermosetting resin into a thermosetting resin foam and integrating them by heat compression Since the composite material has a specific gravity of 1.0 to 1.4, there is a problem that the composite material becomes heavy. If the specific gravity of the fiber reinforced composite material is 1.0 or less, for example, by reducing the amount of the thermosetting resin impregnated in the thermosetting resin foam, the rigidity of the molded body is extremely lowered.

特開2014−77209号公報JP 2014-77209 A 特許第4558091号公報Japanese Patent No. 4558091

本発明は前記の点に鑑みなされたものであって、軽量でかつ耐熱性を有する炭素繊維複合材製造方法の提供を目的とする。 This invention is made | formed in view of the said point, Comprising: It aims at provision of the manufacturing method of the carbon fiber composite material which is lightweight and has heat resistance.

請求項1の発明は、耐熱性樹脂発泡体の少なくとも片面に金属箔が接着された芯材の前記金属箔の表面に、炭素繊維織物に熱硬化性樹脂からなるバインダー樹脂が含浸したプリプレグを積層し、熱プレスすることによって前記芯材とプリプレグを接着する炭素繊維複合材の製造方法であって、前記耐熱性樹脂発泡体は、炭素繊維複合材に成形する前の比重(JIS K 7222)が0.020〜0.500、炭素繊維複合材に成形する前の厚みが10mm〜50mmであり、炭素繊維複合材の成形時には、元厚みに対して1/1〜9/10に圧縮することを特徴とする炭素繊維複合材の製造方法に係る。 In the invention of claim 1, a prepreg in which a carbon fiber fabric is impregnated with a binder resin made of a thermosetting resin is laminated on the surface of the metal foil of the core material in which the metal foil is bonded to at least one surface of the heat-resistant resin foam. The heat resistant resin foam has a specific gravity (JIS K 7222) before being formed into a carbon fiber composite material, wherein the core material and the prepreg are bonded by hot pressing. 0.020 to 0.500, the thickness before being formed into a carbon fiber composite material is 10 mm to 50 mm, and when the carbon fiber composite material is formed, it is compressed to 1/1 to 9/10 with respect to the original thickness. The present invention relates to a method for producing a carbon fiber composite material.

請求項2の発明は、請求項1において、前記耐熱性樹脂発泡体は、熱分解開始温度(JIS K 7120)が354℃以上であることを特徴とする。
請求項3の発明は、請求項1または2において、前記耐熱性樹脂発泡体は、イソシアヌレート樹脂、イミド樹脂、ポリアミド及びポリフッ化ビニリデンのアロイ樹脂、フェノール樹脂、メラミン樹脂の群より選択される樹脂であることを特徴とする。
According to a second aspect of the present invention, in the first aspect, the heat resistant resin foam has a thermal decomposition start temperature (JIS K 7120) of 354 ° C. or higher .
The invention according to claim 3 is the resin according to claim 1 or 2, wherein the heat-resistant resin foam is selected from the group consisting of isocyanurate resin, imide resin, polyamide and polyvinylidene fluoride alloy resin, phenol resin, and melamine resin. It is characterized by being.

請求項4の発明は、請求項1から3の何れか一項において、前記熱硬化性樹脂からなるバインダー樹脂は、エポキシ樹脂、フェノール樹脂、エポキシ樹脂とフェノール樹脂の混合物からなる群より選択される樹脂であることを特徴とする。 According to a fourth aspect of the present invention, in any one of the first to third aspects, the binder resin made of the thermosetting resin is selected from the group consisting of an epoxy resin, a phenol resin, and a mixture of an epoxy resin and a phenol resin. It is a resin.

請求項の発明は、請求項1からの何れか一項において、前記熱硬化性樹脂からなるバインダー樹脂はフェノール樹脂であり、前記熱プレス温度は110〜180℃であることを特徴とする。 The invention of claim 5 is characterized in that, in any one of claims 1 to 3 , the binder resin made of the thermosetting resin is a phenol resin, and the hot press temperature is 110 to 180 ° C. .

請求項の発明によれば、耐熱性樹脂発泡体の少なくとも片面に金属箔が接着されているため、芯材の金属箔表面にプリプレグを積層して熱プレスにより芯材とプリプレグを接着させる際に、熱が金属箔により反射されて耐熱性樹脂発泡体に伝わる熱量が少なくなることから、加熱による分解を抑制することが出来き、軽量性が良好で、かつ耐熱性を有し、焼けの無い品質の良好な炭素繊維強化複合材を製造することができる。 According to the invention of claim 1 , since the metal foil is bonded to at least one surface of the heat-resistant resin foam, when the prepreg is laminated on the metal foil surface of the core material and the core material and the prepreg are bonded by hot pressing In addition, since the amount of heat that is reflected by the metal foil and transmitted to the heat resistant resin foam is reduced, decomposition due to heating can be suppressed, light weight is good, heat resistance, and It is possible to produce a carbon fiber reinforced composite material with no quality.

本発明の第1参考形態の炭素繊維強化複合材の断面図である。It is sectional drawing of the carbon fiber reinforced composite material of the 1st reference form of this invention. 本発明の第2参考形態の炭素繊維強化複合材の断面図である。It is sectional drawing of the carbon fiber reinforced composite material of the 2nd reference form of this invention. 本発明の第3実施形態の炭素繊維強化複合材の断面図である。It is sectional drawing of the carbon fiber reinforced composite material of 3rd Embodiment of this invention. 本発明の第4実施形態の炭素繊維強化複合材の断面図である。It is sectional drawing of the carbon fiber reinforced composite material of 4th Embodiment of this invention. 本発明の第4実施形態の炭素繊維強化複合材を製造する際の熱プレス装置等の概略断面図である。It is a schematic sectional drawing of the hot press apparatus etc. at the time of manufacturing the carbon fiber reinforced composite material of 4th Embodiment of this invention. 本発明の第5実施形態の炭素繊維強化複合材の断面図である。It is sectional drawing of the carbon fiber reinforced composite material of 5th Embodiment of this invention.

以下、本発明の炭素繊維複合材とその製造方法について図面を用いて説明する。
図1に示す第1参考形態の炭素繊維複合材10A及び図2に示す第2参考形態の炭素繊維複合材10Bについて説明する。
第1参考形態の炭素繊維複合材10Aは、芯材11Aの片面にプリプレグ21Aを積層し、接着した構成からなる。
第2参考形態の炭素繊維複合材10Bは、芯材11Bの両面にプリプレグ21Bを積層し、接着した構成からなる。
Hereinafter, the carbon fiber composite material of the present invention and the manufacturing method thereof will be described with reference to the drawings.
The carbon fiber composite material 10A of the first reference form shown in FIG. 1 and the carbon fiber composite material 10B of the second reference form shown in FIG. 2 will be described.
The carbon fiber composite material 10A of the first reference form has a configuration in which a prepreg 21A is laminated and bonded to one side of a core material 11A.
The carbon fiber composite material 10B of the second reference form has a configuration in which prepregs 21B are laminated and bonded to both surfaces of the core material 11B.

前記芯材11A、11Bは耐熱性樹脂発泡体12A、12Bからなる。前記耐熱性樹脂発泡体12A、12Bとしては、イソシアヌレート樹脂、イミド樹脂(熱分解温度:500℃以上)、ポリアミド及びポリフッ化ビニリデンのアロイ樹脂、フェノール樹脂、メラミン樹脂(熱分解温度:354℃)、ポリフェニレンエーテル樹脂などを挙げることができ、分解開始温度は、JIS K 7120、プラスチックの熱重量分析によって測定される。本発明の芯材としては、炭素繊維織物を樹脂で積層接着することから、少なくとも250℃ぐらいまでは、物性の低下が認められないのが良い。特にイソシアヌレート樹脂発泡体は、従来より構造材としての難燃性を備えていることから、本発明の成形方法に応用しても加熱により分解したり、焼け、変色等の品質劣化が見られず、前記耐熱性樹脂発泡体12A、12Bとして好適なものである。前記耐熱性樹脂発泡体12A、12Bは、前記炭素繊維複合材10A、10Bに成形する前の比重(JIS K 7222)が0.020〜0.500(好ましくは0.030〜0.300)、成形前の厚みが10mm〜50mmのものを用いる。前記炭素繊維複合材10A、10Bの成形時には、元厚みに対して1/1〜1/2に圧縮するのが好ましい。   The core materials 11A and 11B are made of heat-resistant resin foams 12A and 12B. Examples of the heat-resistant resin foams 12A and 12B include isocyanurate resins, imide resins (thermal decomposition temperature: 500 ° C. or higher), polyamide and polyvinylidene fluoride alloy resins, phenol resins, melamine resins (thermal decomposition temperature: 354 ° C.). And polyphenylene ether resin. The decomposition start temperature is measured by JIS K 7120, thermogravimetric analysis of plastics. As the core material of the present invention, since the carbon fiber woven fabric is laminated and bonded with a resin, it is preferable that no decrease in physical properties is observed up to at least about 250 ° C. In particular, since isocyanurate resin foams are conventionally provided with flame retardancy as a structural material, even when applied to the molding method of the present invention, quality degradation such as decomposition, burning, and discoloration is observed. The heat resistant resin foams 12A and 12B are suitable. The heat resistant resin foams 12A and 12B have a specific gravity (JIS K 7222) of 0.020 to 0.500 (preferably 0.030 to 0.300) before being formed into the carbon fiber composite materials 10A and 10B. The one having a thickness before molding of 10 mm to 50 mm is used. When the carbon fiber composite materials 10A and 10B are molded, it is preferable to compress the carbon fiber composite materials 10A and 10B to 1/1 to 1/2 of the original thickness.

前記プリプレグ21A、21Bは、炭素繊維織物にバインダー樹脂が含浸したものからなる。前記炭素繊維織物は、他の繊維織物に比べて軽量性及び高剛性に優れるものである。さらに、前記プリプレグ21A、21Bに使用する炭素繊維織物は、繊維が一方向のみではない織り方のものが好ましく、例えば、縦糸と横糸で構成される平織、綾織、朱子織及び3方向の糸で構成される三軸織などが好適である。また、使用する炭素繊維織物は、前記バインダー樹脂の含浸及び剛性の点から、目付量は、90〜400g/mのものが好ましい。プリプレグの厚みは、0.1〜0.5mmが好ましい。 The prepregs 21A and 21B are made of carbon fiber fabric impregnated with a binder resin. The carbon fiber woven fabric is excellent in light weight and high rigidity as compared with other fiber woven fabrics. Further, the carbon fiber woven fabric used for the prepregs 21A and 21B is preferably a woven fabric in which the fibers are not only in one direction, for example, plain weave, twill weave, satin weave and three-direction yarn composed of warp and weft. A triaxial weave is preferred. Further, the carbon fiber fabric used preferably has a basis weight of 90 to 400 g / m 2 from the viewpoint of impregnation and rigidity of the binder resin. The thickness of the prepreg is preferably 0.1 to 0.5 mm.

前記炭素繊維織物に含浸するバインダー樹脂は、熱硬化性樹脂が用いられ、エポキシ樹脂、フェノール樹脂、エポキシ樹脂とフェノール樹脂の混合物からなる群より選択することができる。特に、フェノール樹脂は良好な難燃性を有するため、前記炭素繊維織物に含浸させるバインダー樹脂として好適なものである。バインダー樹脂の含浸量は、30重量%〜70重量%が好ましい。   The binder resin impregnated in the carbon fiber fabric is a thermosetting resin, and can be selected from the group consisting of epoxy resin, phenol resin, and a mixture of epoxy resin and phenol resin. In particular, a phenol resin is suitable as a binder resin to be impregnated in the carbon fiber fabric because it has good flame retardancy. The impregnation amount of the binder resin is preferably 30% by weight to 70% by weight.

前記第1参考形態の炭素繊維複合材10Aは、前記芯材11Aの片面に前記プリプレグ21Aを積層して熱プレスすることにより、前記炭素繊維織物に含浸しているバインダー樹脂を硬化させ、前記芯材11Aと前記プリプレグ21Aを接着することによって製造することができる。前記熱プレス温度は、前記バインダー樹脂が硬化する温度、例えばバインダー樹脂がフェノール樹脂の場合には、110〜180℃とされる。また、熱プレス時の圧縮率は、耐熱性樹脂発泡体の元厚みに対して、0〜10%が好ましい。軽量な炭素繊維複合材料をえるために、上記熱プレス時の圧縮率は、少ないほうが好ましく、0〜10%、より好ましくは、0〜5%である。圧縮率が0%の場合、プリプレグの厚み分だけ耐熱性樹脂発泡体が薄く変形することを意味する。 The carbon fiber composite material 10A according to the first reference embodiment is formed by laminating the prepreg 21A on one side of the core material 11A and hot-pressing, thereby curing the binder resin impregnated in the carbon fiber fabric, It can be manufactured by bonding the material 11A and the prepreg 21A. The hot press temperature is a temperature at which the binder resin is cured, for example, 110 to 180 ° C. when the binder resin is a phenol resin. Moreover, 0-10% of the compression rate at the time of a hot press is preferable with respect to the original thickness of a heat resistant resin foam. In order to obtain a lightweight carbon fiber composite material, the compression ratio at the time of the hot pressing is preferably as small as possible, 0 to 10%, and more preferably 0 to 5%. When the compression rate is 0%, it means that the heat-resistant resin foam is thinly deformed by the thickness of the prepreg.

前記第2参考形態の炭素繊維複合材10Bは、前記芯材11Bの両面に前記プリプレグ21Bを積層して熱プレスすることにより、前記炭素繊維織物に含浸しているバインダー樹脂を硬化させ、前記芯材11Bと前記プリプレグ21Bを接着することによって製造することができる。前記熱プレス温度は、前記バインダー樹脂が硬化する温度、例えばバインダー樹脂がフェノール樹脂の場合には、110〜180℃とされる。また、熱プレス時の圧縮率は、0〜50%が好ましい。 The carbon fiber composite material 10B of the second reference embodiment is formed by laminating the prepreg 21B on both surfaces of the core material 11B and hot pressing, thereby curing the binder resin impregnated in the carbon fiber fabric, and It can be manufactured by bonding the material 11B and the prepreg 21B. The hot press temperature is a temperature at which the binder resin is cured, for example, 110 to 180 ° C. when the binder resin is a phenol resin. Further, the compression rate during hot pressing is preferably 0 to 50%.

図3に示す第3実施形態の炭素繊維複合材10Cは、芯材11Cの片面にプリプレグ21Cを積層し、接着した構成からなる。
前記芯材11Cは、耐熱性樹脂発泡体12Cの片面に金属箔13Cが接着されたものからなる。
3C of 3rd Embodiment shown in FIG. 3 consists of the structure which laminated | stacked and adhered the prepreg 21C on the single side | surface of 11 C of core materials.
The core material 11C is formed by bonding a metal foil 13C to one surface of a heat resistant resin foam 12C.

前記耐熱性樹脂発泡体12Cとしては、イソシアヌレート樹脂、イミド樹脂(熱分解温度:500℃以上)、ポリアミド及びポリフッ化ビニリデンのアロイ樹脂、フェノール樹脂、メラミン樹脂(熱分解温度:354℃)、ポリフェニレンエーテル樹脂などを挙げることができ、分解開始温度は、JIS K 7120、プラスチックの熱重量分析によって測定される。本発明の芯材としては、炭素繊維織物を樹脂で積層接着することから、少なくとも250℃ぐらいまでは、物性の低下が認められないのが良い。特にイソシアヌレート樹脂発泡体は、従来より構造材としての難燃性を備えていることから、本発明の成形方法に応用しても加熱により分解したり、焼け、変色、膨れ等の品質劣化が見られず、前記耐熱性樹脂発泡体12Cとして好適なものである。前記耐熱性樹脂発泡体12Cは、前記炭素繊維複合材10Cに成形する前の比重(JIS K 7222)が0.020〜0.500(好ましくは0.030〜0.300)、成形前の厚みが10mm〜50mmのものを用いる。前記炭素繊維複合材10Cの成形時には、前記耐熱性樹脂発泡体12Cの元厚みに対して1/1〜9/10に圧縮するのが好ましい。 Examples of the heat-resistant resin foam 12C include isocyanurate resin, imide resin (thermal decomposition temperature: 500 ° C. or higher), polyamide and polyvinylidene fluoride alloy resin, phenol resin, melamine resin (thermal decomposition temperature: 354 ° C.), polyphenylene. Examples include ether resins, and the decomposition start temperature is measured by JIS K 7120, thermogravimetric analysis of plastics. As the core material of the present invention, since the carbon fiber woven fabric is laminated and bonded with a resin, it is preferable that no decrease in physical properties is observed up to at least about 250 ° C. In particular, since isocyanurate resin foams are conventionally provided with flame retardancy as a structural material, even if applied to the molding method of the present invention, they are not decomposed by heating, or are subject to quality deterioration such as burning, discoloration, and swelling. It is not seen and is suitable as the heat-resistant resin foam 12C. The heat-resistant resin foam 12C has a specific gravity (JIS K 7222) of 0.020 to 0.500 (preferably 0.030 to 0.300) before molding into the carbon fiber composite material 10C, and a thickness before molding. Using 10 mm to 50 mm. At the time of molding the carbon fiber composite material 10C, it is preferable to compress it to 1/1 to 9/10 with respect to the original thickness of the heat resistant resin foam 12C.

前記金属箔13Cは、アルミニウム箔を挙げることができ、軽量で安価なために好ましいものである。前記金属箔13Cの厚みは20μm〜500μmが好ましい。また、前記金属箔13Cと前記耐熱性発泡体12Cとの接着は、エポキシ樹脂、アクリル樹脂、フェノール樹脂等の接着剤が好ましい。   The metal foil 13C can be an aluminum foil, and is preferable because it is lightweight and inexpensive. The thickness of the metal foil 13C is preferably 20 μm to 500 μm. Moreover, the adhesive between the metal foil 13C and the heat-resistant foam 12C is preferably an adhesive such as an epoxy resin, an acrylic resin, or a phenol resin.

前記プリプレグ21Cは、炭素繊維織物にバインダー樹脂が含浸したものからなる。前記炭素繊維織物は、他の繊維織物に比べて軽量及び高剛性に優れるものである。さらに、前記プリプレグ21Cに使用する炭素繊維織物は、繊維が一方向のみではない織り方のものが好ましく、例えば、縦糸と横糸で構成される平織、綾織、朱子織及び3方向の糸で構成される三軸織などが好適である。また、使用する炭素繊維織物は、前記バインダー樹脂の含浸及び剛性の点から、目付量が、90〜400g/mのものが好ましい。 The prepreg 21C is made of a carbon fiber fabric impregnated with a binder resin. The carbon fiber woven fabric is excellent in light weight and high rigidity as compared with other fiber woven fabrics. Further, the carbon fiber woven fabric used for the prepreg 21C is preferably a woven fabric in which the fibers are not only in one direction, for example, a plain weave composed of warp and weft, twill weave, satin weave and three-direction yarn. A triaxial weave is suitable. The carbon fiber fabric used preferably has a basis weight of 90 to 400 g / m 2 from the viewpoint of impregnation and rigidity of the binder resin.

前記炭素繊維織物に含浸するバインダー樹脂は、熱硬化性樹脂が用いられ、エポキシ樹脂、フェノール樹脂、エポキシ樹脂とフェノール樹脂の混合物からなる群より選択することができる。特に、フェノール樹脂は良好な難燃性を有するため、前記炭素繊維織物に含浸させるバインダー樹脂として好適なものである。バインダー樹脂の含浸量は、30重量%〜70重量%が好ましい。   The binder resin impregnated in the carbon fiber fabric is a thermosetting resin, and can be selected from the group consisting of epoxy resin, phenol resin, and a mixture of epoxy resin and phenol resin. In particular, a phenol resin is suitable as a binder resin to be impregnated in the carbon fiber fabric because it has good flame retardancy. The impregnation amount of the binder resin is preferably 30% by weight to 70% by weight.

前記第3実施形態の炭素繊維複合材10Cは、前記芯材11Cの片面の金属箔13Cの表面に前記プリプレグ21Cを積層し、熱プレスすることによって、前記炭素繊維織物に含浸しているバインダー樹脂を硬化させ、前記芯材11Cと前記プリプレグ21Cを接着することにより製造することができる。前記熱プレス時、前記金属箔13Cによって熱が反射されて前記耐熱性樹脂発泡体12Cに伝わる熱量が少なくなることから、前記耐熱性樹脂発泡体12Cが、加熱して分解するのを抑制することができ、品質が良好なものとなる。前記熱プレス温度は、前記バインダー樹脂が硬化する温度、例えばバインダー樹脂がフェノール樹脂の場合には、110〜180℃とされる。熱プレス時の圧縮率は、前記耐熱性樹脂発泡体12Cの元厚に対して、0〜10%が好ましい。   The carbon fiber composite material 10C of the third embodiment is a binder resin impregnated in the carbon fiber fabric by laminating the prepreg 21C on the surface of the metal foil 13C on one side of the core material 11C and hot pressing. Can be produced by bonding the core material 11C and the prepreg 21C. At the time of the hot pressing, heat is reflected by the metal foil 13C and the amount of heat transmitted to the heat resistant resin foam 12C is reduced, so that the heat resistant resin foam 12C is prevented from being heated and decomposed. And the quality is good. The hot press temperature is a temperature at which the binder resin is cured, for example, 110 to 180 ° C. when the binder resin is a phenol resin. The compression rate during hot pressing is preferably 0 to 10% with respect to the original thickness of the heat resistant resin foam 12C.

図4に示す第4実施形態の炭素繊維複合材10Dは、芯材11Dの両面にプリプレグ21Dを積層し、接着した構成からなる。
前記芯材11Dは、耐熱性樹脂発泡体12Dの両面に金属箔13Dが接着されたものからなる。
A carbon fiber composite material 10D of the fourth embodiment shown in FIG. 4 has a configuration in which prepregs 21D are laminated and bonded to both surfaces of a core material 11D.
The core material 11D is formed by bonding a metal foil 13D to both surfaces of a heat resistant resin foam 12D.

前記耐熱性樹脂発泡体12Dとしては、イソシアヌレート樹脂、イミド樹脂(熱分解温度:500℃以上)、ポリアミド及びポリフッ化ビニリデンのアロイ樹脂、フェノール樹脂、メラミン樹脂(熱分解温度:354℃)、ポリフェニレンエーテル樹脂などを挙げることができ、分解開始温度は、JIS K 7120、プラスチックの熱重量分析によって測定される。本発明の芯材としては、炭素繊維織物を樹脂で積層接着することから、少なくとも250℃ぐらいまでは、物性の低下が認められないのが良い。特にイソシアヌレート樹脂発泡体は、従来より構造材としての難燃性を備えていることから、本発明の成形方法に応用しても加熱により分解したり、焼け、変色等の品質劣化が見られず、前記耐熱性樹脂発泡体12Dとして好適なものである。前記耐熱性樹脂発泡体12Cは、前記炭素繊維複合材10Dに成形する前の比重(JIS K 7222)が0.020〜0.500(好ましくは0.030〜0.300)、成形前の厚みが10mm〜50mmのものを用いる。前記炭素繊維複合材10Dの成形時には、元厚みに対して1/1〜9/10に圧縮するのが好ましい。 Examples of the heat-resistant resin foam 12D include isocyanurate resin, imide resin (thermal decomposition temperature: 500 ° C. or higher), polyamide and polyvinylidene fluoride alloy resin, phenol resin, melamine resin (thermal decomposition temperature: 354 ° C.), polyphenylene. Examples include ether resins, and the decomposition start temperature is measured by JIS K 7120, thermogravimetric analysis of plastics. As the core material of the present invention, since the carbon fiber woven fabric is laminated and bonded with a resin, it is preferable that no decrease in physical properties is observed up to at least about 250 ° C. In particular, since isocyanurate resin foams are conventionally provided with flame retardancy as a structural material, even when applied to the molding method of the present invention, quality degradation such as decomposition, burning, and discoloration is observed. It is suitable as the heat resistant resin foam 12D. The heat-resistant resin foam 12C has a specific gravity (JIS K 7222) of 0.020 to 0.500 (preferably 0.030 to 0.300) before molding into the carbon fiber composite material 10D, and a thickness before molding. Using 10 mm to 50 mm. When the carbon fiber composite material 10D is molded, it is preferably compressed to 1/1 to 9/10 with respect to the original thickness.

前記金属箔13Dは、アルミニウム箔を挙げることができ、軽量で安価なために好ましいものである。前記金属箔13Dの厚みは20μm〜500μmが好ましい。また、前記金属箔13Dと前記耐熱性発泡体12Dとの接着は、エポキシ樹脂、アクリル樹脂、フェノール樹脂等の接着剤が好ましい。   The metal foil 13D can be an aluminum foil, and is preferable because it is lightweight and inexpensive. The thickness of the metal foil 13D is preferably 20 μm to 500 μm. The adhesion between the metal foil 13D and the heat-resistant foam 12D is preferably an adhesive such as an epoxy resin, an acrylic resin, or a phenol resin.

前記プリプレグ21Dは、炭素繊維織物にバインダー樹脂が含浸したものからなる。前記炭素繊維織物は、他の繊維織物に比べて軽量及び高剛性に優れるものである。さらに、前記プリプレグ21Dに使用する炭素繊維織物は、繊維が一方向のみではない織り方のものが好ましく、例えば、縦糸と横糸で構成される平織、綾織、朱子織及び3方向の糸で構成される三軸織などが好適である。また、使用する炭素繊維織物は、前記樹脂の含浸及び剛性の点から、目付量が90〜400g/mのものが好ましい。 The prepreg 21D is made of a carbon fiber fabric impregnated with a binder resin. The carbon fiber woven fabric is excellent in light weight and high rigidity as compared with other fiber woven fabrics. Further, the carbon fiber woven fabric used for the prepreg 21D is preferably a woven fabric in which the fibers are not only in one direction, for example, a plain weave composed of warp and weft, twill weave, satin weave and three-direction yarn. A triaxial weave is suitable. The carbon fiber fabric used preferably has a basis weight of 90 to 400 g / m 2 from the viewpoint of the impregnation and rigidity of the resin.

前記炭素繊維織物に含浸するバインダー樹脂は、熱硬化性樹脂が用いられ、エポキシ樹脂、フェノール樹脂、エポキシ樹脂とフェノール樹脂の混合物からなる群より選択することができる。特に、フェノール樹脂は良好な難燃性を有するため、前記炭素繊維織物に含浸させるバインダー樹脂として好適なものである。バインダー樹脂の含浸量は、30〜70重量%が好ましい。   The binder resin impregnated in the carbon fiber fabric is a thermosetting resin, and can be selected from the group consisting of epoxy resin, phenol resin, and a mixture of epoxy resin and phenol resin. In particular, a phenol resin is suitable as a binder resin to be impregnated in the carbon fiber fabric because it has good flame retardancy. The impregnation amount of the binder resin is preferably 30 to 70% by weight.

前記第4実施形態の炭素繊維複合材10Dは、前記芯材11Dの両面の金属箔13Dの表面に前記プリプレグを積層し、熱プレスすることにより、前記炭素繊維織物に含浸しているバインダー樹脂を硬化させ、前記芯材11Dと前記プリプレグ21Dを接着することにより製造することができる。前記熱プレス温度は、前記バインダー樹脂が硬化する温度、例えばバインダー樹脂がフェノール樹脂の場合には、110〜180℃とされる。また、熱プレス時の圧縮率は、0〜10%が好ましい。   The carbon fiber composite material 10D of the fourth embodiment includes a binder resin impregnated in the carbon fiber fabric by laminating the prepreg on the surfaces of the metal foils 13D on both surfaces of the core material 11D and hot pressing. It can be manufactured by curing and bonding the core material 11D and the prepreg 21D. The hot press temperature is a temperature at which the binder resin is cured, for example, 110 to 180 ° C. when the binder resin is a phenol resin. Further, the compression rate during hot pressing is preferably 0 to 10%.

前記第4実施形態の炭素繊維複合材10Dは、前記芯材11Dの両面の金属箔13Cの表面に前記プリプレグ21Dを積層し、その状態で熱プレスすることによって、前記炭素繊維織物に含浸しているバインダー樹脂を硬化させ、前記芯材11Dと前記プリプレグ21Dを接着することにより製造することができる。図5を用いて、前記第4実施形態の炭素繊維複合材10Dの製造について詳述する。   The carbon fiber composite material 10D of the fourth embodiment impregnates the carbon fiber fabric by laminating the prepreg 21D on the surfaces of the metal foils 13C on both sides of the core material 11D and hot pressing in that state. It can be manufactured by curing the binder resin present and bonding the core material 11D and the prepreg 21D. The production of the carbon fiber composite material 10D of the fourth embodiment will be described in detail with reference to FIG.

図5は前記第4実施形態の炭素繊維複合材10Dを製造する際の概略断面図である。符号51、52は熱プレス装置の下側熱盤と上側熱盤であり、ヒーター等によって所定温度に加熱される。前記熱プレス装置における下側の熱盤51上に一方のプリプレグ21Dを配置し、該プリプレグ21D上に前記芯材11Dを配置する。これによって、前記芯材11Dの下面側の金属箔13Dを前記下側熱盤51上のプリプレグ21Dに積層する。次に、前記芯材11Dの上面側の金属箔13D上に他方のプリプレグ21Dを積層し、その後に前記下側の熱盤51と上側の熱盤52を接近させて、所定の圧縮率及び温度で熱プレスすることにより、前記バインダー樹脂を硬化させ、前記芯材11Dとその両面のプリプレグ21Dを接着し、前記炭素繊維複合材10Dを製造する。   FIG. 5 is a schematic cross-sectional view of the carbon fiber composite material 10D according to the fourth embodiment. Reference numerals 51 and 52 denote a lower hot platen and an upper hot platen of the hot press apparatus, which are heated to a predetermined temperature by a heater or the like. One prepreg 21D is arranged on the lower heating platen 51 in the hot press apparatus, and the core material 11D is arranged on the prepreg 21D. Thereby, the metal foil 13D on the lower surface side of the core material 11D is laminated on the prepreg 21D on the lower heating platen 51. Next, the other prepreg 21D is laminated on the metal foil 13D on the upper surface side of the core material 11D, and then the lower heating platen 51 and the upper heating platen 52 are brought close to each other to obtain a predetermined compression rate and temperature The binder resin is cured by hot pressing, and the core material 11D and the prepregs 21D on both sides thereof are bonded to produce the carbon fiber composite material 10D.

前記熱プレス時、前記耐熱性樹脂発泡体12Dの両面の金属箔13Dによって熱が反射され、前記耐熱性樹脂発泡体12Dに伝わる熱量が少なくなることから、前記耐熱性樹脂発泡体12Dが、加熱による分解を抑制することが出来き、品質が良好なものとなる。前記熱プレス温度は、前記バインダー樹脂が硬化する温度、例えばバインダー樹脂がフェノール樹脂の場合には、110〜180℃とされる。また、熱プレス時の圧縮率は、0〜10%が好ましい。その後、前記下側熱盤51と上側熱盤52間を拡げ、前記炭素繊維複合材10Dを取り出す。前記上下の熱盤51、52のプレス面(プリプレグと当接する面)は、製品に応じた形状とされる。   At the time of the hot pressing, heat is reflected by the metal foils 13D on both sides of the heat resistant resin foam 12D, and the amount of heat transmitted to the heat resistant resin foam 12D is reduced, so that the heat resistant resin foam 12D is heated. It is possible to suppress the decomposition due to the above, and the quality is improved. The hot press temperature is a temperature at which the binder resin is cured, for example, 110 to 180 ° C. when the binder resin is a phenol resin. Further, the compression rate during hot pressing is preferably 0 to 10%. Thereafter, the space between the lower heating platen 51 and the upper heating platen 52 is expanded, and the carbon fiber composite material 10D is taken out. The press surfaces (surfaces that come into contact with the prepreg) of the upper and lower heating plates 51 and 52 are shaped according to the product.

図5に示した前記下側熱盤51と上側熱盤52を有する熱プレス装置は、前記第4実施形態の炭素繊維複合材10Dの製造に限られず、他の実施形態の炭素繊維複合材10A、10B、10C及び後述の10Eの製造にも使用することができる。   The heat press apparatus having the lower heat platen 51 and the upper heat platen 52 shown in FIG. 5 is not limited to the production of the carbon fiber composite material 10D of the fourth embodiment, and the carbon fiber composite material 10A of other embodiments. It can also be used to manufacture 10B, 10C and 10E described below.

図6に示す第5実施形態の炭素繊維複合材10Eは、芯材11Eの両面にプリプレグ21Eを各2層積層し、接着した構成からなる。第5実施形態における芯材11Eとプリプレグ21Eは、前記第4実施形態における芯材11Dとプリプレグ21Dと同様の構成からなる。   The carbon fiber composite material 10E of the fifth embodiment shown in FIG. 6 has a configuration in which two layers of prepregs 21E are laminated on both surfaces of a core material 11E and bonded together. The core material 11E and the prepreg 21E in the fifth embodiment have the same configuration as the core material 11D and the prepreg 21D in the fourth embodiment.

前記第5実施形態の炭素繊維複合材10Eは、前記芯材11Eの両面の金属箔13Eの表面各々に前記プリプレグ21Eを複数(図の例では2層)積層して熱プレスすることにより、前記プリプレグ21Eの炭素繊維織物に含浸しているバインダー樹脂を硬化させ、前記芯材11Eと前記複数層のプリプレグ21Eを接着することにより製造することができる。第5実施形態の炭素繊維複合材10Eは、前記第4実施形態の場合と同様、熱プレス時に前記金属箔13Eによって熱が反射されて前記耐熱性樹脂発泡体12Eに伝わる熱量が少なくなることから、前記耐熱性樹脂発泡体12Eが、加熱により分解するのを抑制することができ、品質が良好なものとなる。前記熱プレス温度は、前記バインダー樹脂が硬化する温度、例えばバインダー樹脂がフェノール樹脂の場合には、110〜180℃とされる。また、熱プレス時の圧縮率は、0〜10%が好ましい。   The carbon fiber composite material 10E of the fifth embodiment is obtained by laminating a plurality (two layers in the example of the drawing) of the prepreg 21E on each surface of the metal foil 13E on both surfaces of the core material 11E, It can be manufactured by curing the binder resin impregnated in the carbon fiber fabric of the prepreg 21E and bonding the core material 11E and the prepreg 21E of the plurality of layers. As in the case of the fourth embodiment, the carbon fiber composite material 10E of the fifth embodiment reflects less heat by the metal foil 13E during hot pressing and reduces the amount of heat transmitted to the heat resistant resin foam 12E. The heat-resistant resin foam 12E can be prevented from being decomposed by heating, and the quality is improved. The hot press temperature is a temperature at which the binder resin is cured, for example, 110 to 180 ° C. when the binder resin is a phenol resin. Further, the compression rate during hot pressing is preferably 0 to 10%.

参考例
熱硬化性樹脂としてフェノール樹脂(旭有機材料株式会社製、品名;PAPS−4と旭有機材料株式会社製、品名;ヘキサメチレンテトラミンを100:12で混合したもの)をメタノールに30wt%の濃度となるように溶解した。このフェノール樹脂溶液中に繊維織物として平織の炭素繊維織物(東邦テナックス株式会社製、品名;W−3101、目付量200g/m2)を漬け、取り出した後に25℃の室温にて2時間自然乾燥し、更に60℃の雰囲気下にて1時間乾燥させて樹脂含浸済み繊維織物を形成した。炭素繊維織物は、200×300mmの平面サイズに裁断したもの(重量12g/枚)を使用した。乾燥後の含浸済み繊維織物は、28gであった。
次に、イソシアヌレートフォーム(比重0.03、厚み20mm)の片面に前記プリプレグを積層し、図5の熱プレス装置を用いて熱プレスし、参考例1の炭素繊維複合材(金属箔無)を製造した。イソシアヌレートフォームには、金属箔の面材がなく、上記プリプレグはイソシアヌレートフォームと直接接着、積層されている。熱プレス温度は140℃、熱プレス時の圧縮率は1%である。成形品の物性として、フォームの焼けはなかった。局所的な意匠面の膨れは、まれに見られた。
Reference Example 1
As a thermosetting resin, phenol resin (Asahi Organic Materials Co., Ltd., product name: PAPS-4 and Asahi Organic Materials Co., Ltd., product name: hexamethylenetetramine mixed at 100: 12) in methanol with a concentration of 30 wt% It dissolved so that it might become. A plain-woven carbon fiber fabric (manufactured by Toho Tenax Co., Ltd., product name: W-3101, weight per unit area: 200 g / m2) is dipped in the phenol resin solution, taken out, and then naturally dried at room temperature of 25 ° C. for 2 hours. Further, it was dried in an atmosphere of 60 ° C. for 1 hour to form a resin-impregnated fiber fabric. The carbon fiber fabric used was cut into a plane size of 200 × 300 mm (weight 12 g / sheet). The impregnated fiber fabric after drying was 28 g.
Next, the prepreg was laminated on one side of an isocyanurate foam ( specific gravity 0.03, thickness 20 mm), and hot-pressed using the hot-pressing apparatus of FIG. 5, and the carbon fiber composite material of Reference Example 1 (no metal foil) Manufactured. The isocyanurate foam has no metal foil face material, and the prepreg is directly bonded and laminated to the isocyanurate foam. The hot pressing temperature is 140 ° C., and the compression ratio during hot pressing is 1%. As a physical property of the molded product, there was no burning of the foam. Local swelling of the design surface was rarely seen.

参考例
参考例1においてプリプレグを芯材の両面に積層して参考例2の炭素繊維複合材(金属箔無)を製造した。熱プレス温度は140℃、熱プレス時の圧縮率は1%である。
Reference Example 2
In Reference Example 1, the prepreg was laminated on both sides of the core material to produce the carbon fiber composite material (without metal foil) of Reference Example 2. The hot pressing temperature is 140 ° C., and the compression ratio during hot pressing is 1%.

・実施例3
イソシアヌレートフォーム(比重0.030、厚み20mm)の両面にアルミニウム箔(厚み23μm)がエポキシ樹脂で接着された芯材(品番:サーマックスS、株式会社東北イノアック製)の片面に、参考例1で作成したプリプレグを1枚積層し、図5の熱プレス装置を用いて熱プレスし、実施例3の炭素繊維複合材(金属箔有)を製造した。熱プレス温度は140℃、熱プレス時の圧縮率は1%である。成形品の物性としてフォームの焼けは、なかった。局所的な意匠面の膨れは見られなかった。
Example 3
Reference Example 1 on one side of a core material (product number: Thermax S, manufactured by Tohoku Inoac Co., Ltd.) in which an aluminum foil (thickness 23 μm) is bonded to both sides of an isocyanurate foam (specific gravity 0.030, thickness 20 mm) with an epoxy resin One prepreg produced in the above was laminated and hot-pressed using the hot-pressing apparatus shown in FIG. 5 to produce a carbon fiber composite material (with metal foil) of Example 3. The hot pressing temperature is 140 ° C., and the compression ratio during hot pressing is 1%. There was no burning of the foam as a physical property of the molded product. There was no local swelling of the design surface.

・実施例4
実施例3においてプリプレグを芯材の両面に各1枚積層して実施例4の炭素繊維複合材(金属箔有)を製造した。熱プレス温度は140℃、熱プレス時の圧縮率は1%である。
・実施例5
実施例3においてプリプレグを芯材の両面に各2枚積層して実施例5の炭素繊維複合材(金属箔有)を製造した。熱プレス温度は140℃、熱プレス時の圧縮率は1%である。
・実施例6
実施例3においてプリプレグを芯材の両面に各3枚積層して実施例6の炭素繊維複合材(金属箔有)を製造した。熱プレス温度は140℃、熱プレス時の圧縮率は1%である。
Example 4
In Example 3, one prepreg was laminated on each side of the core material to produce a carbon fiber composite material (with metal foil) of Example 4. The hot pressing temperature is 140 ° C., and the compression ratio during hot pressing is 1%.
Example 5
In Example 3, two prepregs were laminated on both sides of the core material to produce a carbon fiber composite material (with metal foil) of Example 5. The hot pressing temperature is 140 ° C., and the compression ratio during hot pressing is 1%.
Example 6
In Example 3, three prepregs were laminated on both sides of the core material to produce a carbon fiber composite material (with metal foil) of Example 6. The hot pressing temperature is 140 ° C., and the compression ratio during hot pressing is 1%.

参考例
ポリイミドフォーム(比重0.09、厚み20mm)の両面に参考例1で作成したプリプレグを各1枚積層し、図5の熱プレス装置を用いて熱プレスし、参考例7の炭素繊維複合材(金属箔)を製造した。熱プレス温度は140℃、熱プレス時の圧縮率は1%である。
参考例
ナイロンフォーム(ポリアミド及びポリフッ化ビニリデンのアロイ樹脂、比重0.09、厚み20mm)の両面に参考例1で作成したプリプレグを各2枚積層し、図5の熱プレス装置を用いて熱プレスし、参考例8の炭素繊維複合材(金属箔)を製造した。熱プレス温度は140℃、熱プレス時の圧縮率は1%である。
参考例
ナイロンフォーム(ポリアミド及びポリフッ化ビニリデンのアロイ樹脂、比重0.09、厚み20mm)の両面に参考例1で作成したプリプレグを各枚積層し、図5の熱プレス装置を用いて熱プレスし、参考例9の炭素繊維複合材(金属箔)を製造した。熱プレス温度は140℃、熱プレス時の圧縮率は1%である。
Reference example 7
Polyimide foam (specific gravity 0.09, thickness 20 mm) both surfaces are laminated one each prepreg created in Reference Example 1 was heat-pressed using a hot press apparatus of FIG. 5, the carbon fiber composite material of Reference Example 7 ( to produce a metal foil Mu). The hot pressing temperature is 140 ° C., and the compression ratio during hot pressing is 1%.
Reference example 8
Two prepregs prepared in Reference Example 1 were laminated on both sides of nylon foam (polyamide and polyvinylidene fluoride alloy resin, specific gravity 0.09, thickness 20 mm), and hot-pressed using the hot-pressing device of FIG. produced carbon fiber composite material of reference example 8 (metal foil Mu). The hot pressing temperature is 140 ° C., and the compression ratio during hot pressing is 1%.
Reference Example 9
Three prepregs prepared in Reference Example 1 were laminated on both sides of nylon foam (polyamide and polyvinylidene fluoride alloy resin, specific gravity 0.09, thickness 20 mm), and hot-pressed using the hot-pressing device of FIG. produced carbon fiber composite material of reference example 9 (metal foil Mu). The hot pressing temperature is 140 ° C., and the compression ratio during hot pressing is 1%.

・比較例1
参考例1で作成したプリプレグを2枚積層し、熱プレスして比較例1の炭素繊維複合材(プリプレグのみ)を製造した。熱プレス温度は140℃である。
・比較例2
非耐熱性樹脂発泡体としてウレタンフォーム(比重0.030、厚み20mm)に住友ベークライト社製のフェノール樹脂(品名:スミライトレジン)を、SMC含浸機によって含浸させた芯材の両面に、参考例1のプリプレグを各1枚積層し、熱プレスして比較例2の炭素繊維複合材(金属箔無)を製造した。熱プレス温度は140℃、熱プレス時の圧縮率は1%である。
Comparative example 1
Two prepregs produced in Reference Example 1 were laminated and hot pressed to produce a carbon fiber composite material of Comparative Example 1 (prepreg only). The hot pressing temperature is 140 ° C.
Comparative example 2
Reference example on both sides of a core material impregnated with SMC impregnating machine with phenol resin (product name: Sumilite Resin) made by Sumitomo Bakelite Co., Ltd. as urethane foam (specific gravity 0.030, thickness 20mm) as non-heat resistant resin foam One prepreg of each was laminated and hot pressed to produce a carbon fiber composite material (without metal foil) of Comparative Example 2. The hot pressing temperature is 140 ° C., and the compression ratio during hot pressing is 1%.

参考例2及び実施例4〜6、参考例7〜9と各比較例の炭素繊維複合材に対して厚み(mm)、比重(JIS Z 8807・2012準拠)、曲げ強度(MPa、JIS K 7074準拠)、曲げ弾性率(GPa、JIS K 7074 1988 A法、繊維方向)準拠)を測定した。測定結果を表1に示す。 Thickness (mm), specific gravity (based on JIS Z 8807/2012), bending strength (MPa, JIS K 7074) relative to the carbon fiber composite materials of Reference Example 2 and Examples 4 to 6, Reference Examples 7 to 9, and Comparative Examples Compliant) and flexural modulus (GPa, JIS K7074 1988 A method, fiber direction) compliant). The measurement results are shown in Table 1.

Figure 0006389654
Figure 0006389654

物性を測定した参考例2及び実施例4〜6、参考例7〜9の炭素繊維複合材は、比重が1.0以下と軽量性が良好であり、かつ芯材を構成する耐熱性樹脂発泡体により耐熱性を有する。成形時の製造条件によっても、芯材の焼けや変色がなかった。この焼け等は、炭素繊維複合材を裁断した裁断面を目視して確認した。特に、金属箔が積層されている実施例では、焼けだけでなく、意匠面に局部的な膨れが生じなかった。金属箔が積層されていない参考例では、焼けが生じなかったが、意匠面に局部的な膨れが生じることもあった。この膨れは、耐熱性樹脂発泡体内の空隙(いわゆるボイド)が、プリプレグ積層成形時の熱の伝播により膨張し、耐熱性樹脂発泡体の内部及び意匠面に変形を生じさせることから発生していた。
一方、比較例の炭素繊維複合材は比重が1.0より大であり、参考例1、2、実施例3〜6、参考例7の炭素繊維複合材よりも重くなっている。また、芯材の樹脂発泡体にポリウレタンフォームを使用した比較例2では、成形時の製造条件により、芯材の焼け、黄色変色が確認された。また、上記膨れは、ポリウレタンフォームを芯材とした比較例2でも、確認できた。
The carbon fiber composite materials of Reference Example 2 and Examples 4 to 6 and Reference Examples 7 to 9 whose physical properties were measured have a specific gravity of 1.0 or less and have good lightness, and the heat-resistant resin foam constituting the core material. It has heat resistance depending on the body. The core material was not burned or discolored depending on the manufacturing conditions at the time of molding. This burn and the like was confirmed by visually observing a cut surface obtained by cutting the carbon fiber composite material. In particular, in the example in which the metal foil was laminated, not only the burning but also local swelling on the design surface did not occur. In the reference example in which the metal foil was not laminated, no burning occurred, but local swelling sometimes occurred on the design surface. This swelling occurred because voids (so-called voids) in the heat resistant resin foam expanded due to heat propagation during prepreg lamination molding, causing deformation inside the heat resistant resin foam and the design surface. .
On the other hand, the carbon fiber composite material of Comparative Example 1 has a specific gravity greater than 1.0 and is heavier than the carbon fiber composite materials of Reference Examples 1 and 2, Examples 3 to 6, and Reference Example 7 . Moreover, in the comparative example 2 which uses a polyurethane foam for the resin foam of a core material, the burning of a core material and yellow discoloration were confirmed by the manufacturing conditions at the time of shaping | molding. Moreover, the said swelling was able to be confirmed also in the comparative example 2 which used the polyurethane foam as the core material.

このように、本発明の炭素繊維複合材は、軽量性が良好で耐熱性を有するものである。また、耐熱性樹脂発泡体の少なくとも片面に金属箔が接着された炭素繊維複合材は、熱プレスにより芯材とプリプレグを接着させる際に耐熱性樹脂発泡体が、加熱により
分解するのを抑制することができ、炭素繊維強化複合材が品質の良好なものとなる。
Thus, the carbon fiber composite material of the present invention has good lightness and heat resistance. Moreover, the carbon fiber composite material in which the metal foil is bonded to at least one surface of the heat resistant resin foam suppresses the heat resistant resin foam from being decomposed by heating when the core material and the prepreg are bonded by hot pressing. And the carbon fiber reinforced composite material is of good quality.

10A、10B、10C、10D、10E 第1〜第5実施形態の炭素繊維複合材
11A、11B、11C、11D、11E 第1〜第5実施形態の芯材
12A、12B、12C、12D、12E 第1〜第5実施形態の耐熱性樹脂発泡体
13C、13D、13E 第3〜第5実施形態の金属箔
21A、21B、21C、21D、21E 第1〜第5実施形態のプリプレグ
51 熱プレス装置の下側熱盤
52 熱プレス装置の上側熱盤
10A, 10B, 10C, 10D, 10E Carbon fiber composite materials of first to fifth embodiments 11A, 11B, 11C, 11D, 11E Core materials of first to fifth embodiments 12A, 12B, 12C, 12D, 12E 1 to 5th Embodiment of Heat Resistant Resin Foam 13C, 13D, 13E Third to Fifth Embodiment Metal Foil 21A, 21B, 21C, 21D, 21E First to Fifth Embodiment Prepreg 51 Lower hot platen 52 Upper hot platen of heat press machine

Claims (5)

耐熱性樹脂発泡体の少なくとも片面に金属箔が接着された芯材の前記金属箔の表面に、炭素繊維織物に熱硬化性樹脂からなるバインダー樹脂が含浸したプリプレグを積層し、熱プレスすることによって前記芯材とプリプレグを接着する炭素繊維複合材の製造方法であって、
前記耐熱性樹脂発泡体は、炭素繊維複合材に成形する前の比重(JIS K 7222)が0.020〜0.500、炭素繊維複合材に成形する前の厚みが10mm〜50mmであり、炭素繊維複合材の成形時には、元厚みに対して1/1〜9/10に圧縮することを特徴とする炭素繊維複合材の製造方法。
By laminating a prepreg impregnated with a binder resin made of a thermosetting resin on a surface of the metal foil of the core material in which the metal foil is bonded to at least one surface of the heat-resistant resin foam, and by hot pressing A method for producing a carbon fiber composite material for bonding the core material and the prepreg ,
The heat-resistant resin foam has a specific gravity (JIS K 7222) of 0.020 to 0.500 before being formed into a carbon fiber composite material, a thickness of 10 mm to 50 mm before being formed into a carbon fiber composite material, and carbon. A method for producing a carbon fiber composite material, wherein the fiber composite material is compressed to 1/1 to 9/10 with respect to the original thickness at the time of molding the fiber composite material.
前記耐熱性樹脂発泡体は、熱分解開始温度(JIS K 7120)が354℃以上であることを特徴とする請求項1に記載の炭素繊維複合材の製造方法。   2. The method for producing a carbon fiber composite material according to claim 1, wherein the heat-resistant resin foam has a thermal decomposition start temperature (JIS K 7120) of 354 ° C. or higher. 前記耐熱性樹脂発泡体は、イソシアヌレート樹脂、イミド樹脂、ポリアミド及びポリフッ化ビニリデンのアロイ樹脂、フェノール樹脂、メラミン樹脂の群より選択される樹脂であることを特徴とする請求項1または2に記載の炭素繊維複合材の製造方法。   The heat-resistant resin foam is a resin selected from the group consisting of isocyanurate resin, imide resin, polyamide and polyvinylidene fluoride alloy resin, phenol resin, and melamine resin. Manufacturing method of carbon fiber composite material. 前記熱硬化性樹脂からなるバインダー樹脂は、エポキシ樹脂、フェノール樹脂、エポキシ樹脂とフェノール樹脂の混合物からなる群より選択される樹脂であることを特徴とする請求項1から3の何れか一項に記載の炭素繊維複合材の製造方法。 The binder resin comprising the thermosetting resin is a resin selected from the group consisting of an epoxy resin, a phenol resin, and a mixture of an epoxy resin and a phenol resin, according to any one of claims 1 to 3. The manufacturing method of the carbon fiber composite material of description. 前記熱硬化性樹脂からなるバインダー樹脂はフェノール樹脂であり、前記熱プレス温度は110〜180℃であることを特徴とする請求項1からの何れか一項に記載の炭素繊維複合材の製造方法。 Binder resin comprising the thermosetting resin is a phenolic resin, the production of carbon fiber composite material according to claims 1, wherein in any one of the three that the heat press temperature is 110 to 180 ° C. Method.
JP2014125022A 2014-06-18 2014-06-18 Method for producing carbon fiber composite material Active JP6389654B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014125022A JP6389654B2 (en) 2014-06-18 2014-06-18 Method for producing carbon fiber composite material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014125022A JP6389654B2 (en) 2014-06-18 2014-06-18 Method for producing carbon fiber composite material

Publications (2)

Publication Number Publication Date
JP2016002723A JP2016002723A (en) 2016-01-12
JP6389654B2 true JP6389654B2 (en) 2018-09-12

Family

ID=55222408

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014125022A Active JP6389654B2 (en) 2014-06-18 2014-06-18 Method for producing carbon fiber composite material

Country Status (1)

Country Link
JP (1) JP6389654B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102006809B1 (en) * 2017-05-30 2019-08-05 (주)동성화인텍 Fiber-reinforced composiite pannel and manufacturing method thereof
KR102341161B1 (en) * 2017-08-10 2021-12-20 도레이첨단소재 주식회사 Low density prepreg and sandwich composite article including the same
CN107571594A (en) * 2017-10-24 2018-01-12 佛山市蓝瑞欧特信息服务有限公司 Thermoplasticity carbon fibre composite manufactures streamline
JP7432887B2 (en) * 2019-11-05 2024-02-19 ニチコン株式会社 Aluminum foil surface processing method
WO2024075361A1 (en) * 2022-10-04 2024-04-11 Dic株式会社 Laminated body, method for manufacturing laminated body, and battery case
CN115503299B (en) * 2022-11-07 2023-08-04 浙江德鸿碳纤维复合材料有限公司 Metal/carbon composite material plate and preparation method thereof

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS591192B2 (en) * 1979-03-06 1984-01-10 株式会社ブリヂストン flame resistant laminate
JPH08311222A (en) * 1995-03-15 1996-11-26 Nisshinbo Ind Inc Flame-resistant plastic foam structure and its production
JP2001153541A (en) * 1999-11-30 2001-06-08 Daikin Ind Ltd Cold preserving shed
JP2002018993A (en) * 2000-07-06 2002-01-22 Irdc:Kk High heat insulating fiber reinforced resin product and method for manufacturing the same
JP3769194B2 (en) * 2001-02-05 2006-04-19 川崎重工業株式会社 Composite sandwich structure and repair method thereof
US8397465B2 (en) * 2008-06-27 2013-03-19 Dow Global Technologies Llc Continuously insulated wall assembly
CA2769962C (en) * 2009-08-05 2018-04-10 Bayer Materialscience Ag Method for producing a foam composite element
JP5620120B2 (en) * 2010-02-23 2014-11-05 ダウ化工株式会社 Composite heat insulating material and heat insulating structure of building using the same
JP2012240302A (en) * 2011-05-19 2012-12-10 Mitsubishi Plastics Inc Laminated panel and panel for housing
WO2014010106A1 (en) * 2012-07-12 2014-01-16 株式会社イノアックコーポレーション Carbon fiber-reinforced composite material and method for producing same

Also Published As

Publication number Publication date
JP2016002723A (en) 2016-01-12

Similar Documents

Publication Publication Date Title
JP6389654B2 (en) Method for producing carbon fiber composite material
JP4558091B1 (en) Fiber-reinforced molded body and method for producing the same
US10086581B2 (en) Carbon fiber composite material
JP2020055447A (en) Composite material aircraft part and method of manufacturing the same
JP5950149B2 (en) A method for producing a fiber-reinforced resin structure.
CN103129042A (en) Carbon fiber base fabric composite material and preparation method and application thereof
JP6685616B2 (en) Carbon fiber composite material and manufacturing method thereof
JP2023054045A (en) Lamination body
JP6900235B2 (en) A method for manufacturing a flame-retardant corrugated core sandwich panel structure and a flame-retardant corrugated core sandwich panel structure.
JP2018199267A (en) Manufacturing method of fire retardant honeycomb core sandwich panel structure, and fire retardant honeycomb core sandwich panel structure
JP2007099966A (en) Prepreg
JP6847510B2 (en) Carbon fiber composite veneer
JP6752612B2 (en) Fiber reinforced molded product and its manufacturing method
JP6823738B2 (en) Fiber reinforced molded product and its manufacturing method
JP2009083441A (en) Manufacturing method of fiber-reinforced resin structure
JP7218043B2 (en) honeycomb laminate
JP5417461B2 (en) Manufacturing method of laminate
JP5144010B2 (en) Manufacturing method of fiber reinforced plastic panel
JP7229818B2 (en) Fiber reinforced molding
JP7419291B2 (en) Method for manufacturing fiber-reinforced molded body, resin sheet, and method for manufacturing resin sheet
JP7466248B1 (en) Press molding member, its manufacturing method, and manufacturing method of battery case using press molding member
JP2018016030A (en) Carbon fiber-reinforced plastic and method for producing the same
JP7220004B2 (en) Fiber-reinforced resin composite molding and method for producing the same
JP2023093151A (en) Method for manufacturing metal-frp composite and metal-frp composite
JP2022027169A (en) Laminated molded body for sliding and its manufacturing method as well as guide plate for hot run table

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170424

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180209

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180313

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180511

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180612

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180724

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180810

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180820

R150 Certificate of patent or registration of utility model

Ref document number: 6389654

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250