JP2009083441A - Manufacturing method of fiber-reinforced resin structure - Google Patents

Manufacturing method of fiber-reinforced resin structure Download PDF

Info

Publication number
JP2009083441A
JP2009083441A JP2007259792A JP2007259792A JP2009083441A JP 2009083441 A JP2009083441 A JP 2009083441A JP 2007259792 A JP2007259792 A JP 2007259792A JP 2007259792 A JP2007259792 A JP 2007259792A JP 2009083441 A JP2009083441 A JP 2009083441A
Authority
JP
Japan
Prior art keywords
smc
prepreg
fiber
compression molding
reinforced resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007259792A
Other languages
Japanese (ja)
Other versions
JP5424549B2 (en
Inventor
Hisao Koba
久雄 木場
Yoshihide Kakimoto
佳秀 柿本
Yuji Kazahaya
祐二 風早
Shinichiro Furuya
真一郎 古屋
Noriyoshi Terasawa
知徳 寺澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Rayon Co Ltd
Original Assignee
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Rayon Co Ltd filed Critical Mitsubishi Rayon Co Ltd
Priority to JP2007259792A priority Critical patent/JP5424549B2/en
Publication of JP2009083441A publication Critical patent/JP2009083441A/en
Application granted granted Critical
Publication of JP5424549B2 publication Critical patent/JP5424549B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for stably manufacturing a highly strong and favorably qualified fiber-reinforced resin structure with at least two projected stripes with high production efficiency. <P>SOLUTION: The manufacturing method of a board and the fiber-reinforced resin structure having at least two projected stripes formed on the same surface of the board with a compression mold provided with at least two projected stripe cavities for forming the projected stripes includes processes of: arranging a sheet molding compound 30 for forming the projected stripes between the projected stripe cavities 23 and 24 in the compression mold; arranging a board-forming prepreg in the compression mold; and subjecting the sheet molding compound and the prepreg to a compression molding in the compression mold under heat and pressure. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、繊維強化樹脂製構造体の製造方法に関する。   The present invention relates to a method for manufacturing a fiber-reinforced resin structure.

繊維強化樹脂製の構造体は、高強度かつ高剛性であるという点から、スポーツやレジャー用途、航空機等の産業用途といった幅広い分野で利用されている。また、このような繊維強化樹脂製構造体は、圧縮成形により製造する方法が広く行われている。成形材料としては、補強繊維に熱硬化性樹脂を含浸したプリプレグや、シートモールディングコンパウンド(以下、SMCという)等が用いられている。   A structure made of fiber reinforced resin is used in a wide range of fields such as sports and leisure applications, and industrial applications such as aircraft, because it has high strength and high rigidity. In addition, such a fiber-reinforced resin structure is widely manufactured by compression molding. As the molding material, a prepreg in which a reinforcing fiber is impregnated with a thermosetting resin, a sheet molding compound (hereinafter referred to as SMC), or the like is used.

SMCは繊維長が短いため、一般にプリプレグに比べて繊維強化樹脂製構造体の強度が低くなるものの、凸条等の複雑な形状を形成するのに好適である。
SMCを用いた繊維強化樹脂製構造体の製造では、例えば、図2に示すような、上型21と、凸条を形成する凸条用キャビティ23、24が設けられた下型22とを備える圧縮成形用金型20を用いる。まず、SMCをそれぞれの凸条用キャビティ23、24に充填する量ごとに細かく切断し、それらをそれぞれの凸条用キャビティ23、24の部分に必要に応じて積層して配置する。その後、そのSMC上に基板を形成するプリプレグをさらに配置し、圧縮成形用金型20内でSMCとプリプレグとを加熱、加圧して圧縮成形する(たとえば特許文献1)。
特開2004−339778号公報
Since SMC has a short fiber length, the strength of a fiber reinforced resin structure is generally lower than that of a prepreg, but it is suitable for forming a complicated shape such as a ridge.
In the manufacture of a fiber reinforced resin structure using SMC, for example, as shown in FIG. 2, an upper die 21 and a lower die 22 provided with ridge cavities 23 and 24 for forming ridges are provided. A compression mold 20 is used. First, the SMC is finely cut for each amount to fill the respective ridge cavities 23 and 24, and these are stacked and disposed in the portions of the respective ridge cavities 23 and 24 as necessary. Thereafter, a prepreg for forming a substrate is further arranged on the SMC, and the SMC and the prepreg are heated and pressed in the compression molding die 20 for compression molding (for example, Patent Document 1).
JP 2004-339778 A

しかし、このような方法では、細かく切断したSMCを各凸条用キャビティの部分にそれぞれ配置しなければならないため、生産効率が低くなってしまう。
また、細かく切断したSMCを各凸条用キャビティに配置する際、SMCの量や配置する位置に誤差が生じることがあり、良好な品質の繊維強化樹脂製構造体が安定して得られないことがあった。
また、SMCのみで製造するとプリプレグを使用するものに比べて強度が低くなり、用途が限られてしまうという問題もあった。
However, in such a method, the SMC that has been finely cut must be placed in each of the ridge cavities, resulting in low production efficiency.
In addition, when placing finely cut SMC in each ridge cavity, there may be an error in the amount of SMC and the position where it is placed, and a fiber reinforced resin structure of good quality cannot be obtained stably. was there.
In addition, when manufactured only with SMC, there is a problem that the strength is lower than that using prepreg and the application is limited.

そこで、本発明では、高強度で品質の良好な、2つ以上の凸条を有する繊維強化樹脂製構造体を高い生産効率で安定して製造する方法を目的とする。   Accordingly, an object of the present invention is to provide a method for stably producing a fiber reinforced resin structure having two or more ridges having high strength and good quality with high production efficiency.

本発明の繊維強化樹脂製構造体の製造方法は、基板と、該基板の同一面に形成された2つ以上の凸条とを有する繊維強化樹脂製構造体を、凸条を形成する凸条用キャビティが2つ以上設けられた圧縮成形用金型を用いて製造する方法において、前記凸条を形成するシートモールディングコンパウンドを、前記圧縮成形用金型内の、同一面の凸条を形成する凸条用キャビティと凸条用キャビティとの間に配置する工程と、前記圧縮成形用金型内に、前記基板を形成するプリプレグを配置する工程と、圧縮成形用金型内でシートモールディングコンパウンドとプリプレグを加熱、加圧して圧縮成形する工程とを含む方法である。   The manufacturing method of the structure made from fiber reinforced resin of the present invention is a ridge that forms a ridge from a fiber reinforced resin structure having a substrate and two or more ridges formed on the same surface of the substrate. In a method of manufacturing using a compression molding die provided with two or more cavities for use, a sheet molding compound for forming the ridge is formed on the same surface in the compression molding die. A step of disposing between the ridge cavity and the ridge cavity, a step of disposing a prepreg for forming the substrate in the compression mold, and a sheet molding compound in the compression mold. And a step of compressing and molding the prepreg by heating and pressurizing.

本発明の製造方法によれば、高強度で品質の良好な、2つ以上の凸条を有する繊維強化樹脂製構造体を高い生産効率で安定して製造できる。   According to the manufacturing method of the present invention, a fiber-reinforced resin structure having two or more ridges having high strength and good quality can be stably manufactured with high production efficiency.

本発明の製造方法は、基板と、該基板の同一面に形成された2つ以上の凸条とを有する繊維強化樹脂製構造体を、補強繊維に熱硬化性樹脂を含浸した、SMCとプリプレグとを圧縮成形用金型により圧縮成形して製造する方法である。   The manufacturing method of the present invention includes a SMC and a prepreg, in which a fiber reinforced resin structure having a substrate and two or more ridges formed on the same surface of the substrate is impregnated with a thermosetting resin in a reinforcing fiber. Is produced by compression molding using a compression molding die.

本発明の製造方法で用いるSMC及びプリプレグは、繊維強化樹脂製構造体の製造に通常用いられるものが使用できる。
補強繊維としては、例えば、炭素繊維、ガラス繊維、アラミド繊維、ボロン繊維、炭化珪素繊維、高強度ポリエチレン、ポリパラフェニレンベンゾビスオキサゾール(PBO)繊維、ナイロン繊維、ステンレススチール繊維等が挙げられ、なかでも軽量で剛性が高いことから炭素繊維が好ましい。
また、補強繊維としては、長繊維及び短繊維が挙げられ、SMCでは通常25mm長程度の短繊維が用いられる。また、プリプレグでは、剛性の点から長繊維が好ましい。長繊維の形態としては、一方向に揃えられたもの、長繊維からなる織物等が挙げられる。
As the SMC and prepreg used in the production method of the present invention, those usually used for production of a fiber reinforced resin structure can be used.
Examples of the reinforcing fiber include carbon fiber, glass fiber, aramid fiber, boron fiber, silicon carbide fiber, high-strength polyethylene, polyparaphenylene benzobisoxazole (PBO) fiber, nylon fiber, and stainless steel fiber. However, carbon fiber is preferred because of its light weight and high rigidity.
The reinforcing fibers include long fibers and short fibers. In SMC, short fibers having a length of about 25 mm are usually used. In the prepreg, long fibers are preferable from the viewpoint of rigidity. Examples of the form of the long fiber include one aligned in one direction, a woven fabric made of long fibers, and the like.

熱硬化性樹脂としては、例えば、エポキシ樹脂、ビニルエステル樹脂、不飽和ポリエステル樹脂、ポリイミド樹脂、マレイミド樹脂、フェノール樹脂等が挙げられる。補強繊維として炭素繊維を用いる場合は、炭素繊維との接着性の点からエポキシ樹脂やビニルエステル樹脂が望ましい。エポキシ樹脂組成としては、エポキシ樹脂成分、硬化剤成分以外に、エラストマー成分を含有することが更に好ましい。エラストマー成分としてはCarboxy-Terminated Butadiene Acrylonitrile Copolymer(CTBN)等が挙げられる。   Examples of the thermosetting resin include an epoxy resin, a vinyl ester resin, an unsaturated polyester resin, a polyimide resin, a maleimide resin, and a phenol resin. When carbon fiber is used as the reinforcing fiber, epoxy resin or vinyl ester resin is desirable from the viewpoint of adhesiveness with carbon fiber. As an epoxy resin composition, it is more preferable to contain an elastomer component in addition to the epoxy resin component and the curing agent component. Examples of the elastomer component include Carboxy-Terminated Butadiene Acrylonitrile Copolymer (CTBN).

[第1実施形態]
以下、本発明の製造方法の第1実施形態として、図1に例示する繊維強化樹脂製構造体10(以下、構造体10という)を製造する方法について説明する。
(繊維強化樹脂製構造体)
構造体10は、図1に示すように、長尺の平板状の基板11(以下、基板11という)と、基板11の片面(同一面)の幅方向の両側に該基板11の長手方向に沿って形成された断面三角状の凸条12、13とからなる。
[First Embodiment]
Hereinafter, as a first embodiment of the manufacturing method of the present invention, a method for manufacturing a structure 10 made of fiber reinforced resin (hereinafter referred to as structure 10) illustrated in FIG. 1 will be described.
(Fiber-reinforced resin structure)
As shown in FIG. 1, the structure 10 includes a long flat substrate 11 (hereinafter referred to as a substrate 11) and one side (same surface) of the substrate 11 on both sides of the width direction in the longitudinal direction of the substrate 11. Consists of ridges 12 and 13 having a triangular cross section formed along.

(圧縮成形用金型)
構造体10を製造する圧縮成形用金型20は、図2に示すように、相対移動が可能な上型21及び下型22を備えている。下型22には、構造体10の凸条12、13を成形する凸条用キャビティ23、24が設けられている。また、上型21と下型22とを近接させることにより、上型21と下型22との間に基板11を成形する平板用キャビティ25が形成される。
(Mold for compression molding)
As shown in FIG. 2, the compression mold 20 for manufacturing the structure 10 includes an upper mold 21 and a lower mold 22 that can be moved relative to each other. The lower mold 22 is provided with ridge cavities 23 and 24 for forming the ridges 12 and 13 of the structure 10. Further, by bringing the upper mold 21 and the lower mold 22 close to each other, a flat plate cavity 25 for forming the substrate 11 is formed between the upper mold 21 and the lower mold 22.

(製造方法)
本実施形態例の製造方法は、成形材料としてSMC及びプリプレグを使用し、圧縮成形用金型20の内部に、凸条12、13を形成するSMCを配置する工程(1)と、基板11を形成するプリプレグを配置する工程(2)と、圧縮成形用金型20内でSMCとプリプレグを加熱、加圧して圧縮成形する工程(3)とを含む。
(Production method)
In the manufacturing method of the present embodiment, SMC and prepreg are used as the molding material, and the SMC for forming the ridges 12 and 13 is placed inside the compression molding die 20 and the substrate 11 is disposed. A step (2) of arranging the prepreg to be formed, and a step (3) of heating and pressurizing and compressing the SMC and the prepreg in the compression mold 20.

工程(1)では、図3に示すように、凸条12、13の形成に必要な量のSMC30を用意し、凸条用キャビティ23と凸条用キャビティ24との間の下型内面22a上にSMC30を配置する。
工程(2)では、プリプレグを用意し、SMC30上に基板11の形成に必要な量のプリプレグ40を配置する。
工程(3)では、図4に示すように、上型21及び下型22を相対移動させて圧縮成形用金型20を閉じ、上型21及び下型22によりSMC30及びプリプレグ40を加熱、加圧して圧縮成形する。圧縮成形後、圧縮成形用金型20を開いて構造体10を得る。
In step (1), as shown in FIG. 3, an amount of SMC 30 necessary for forming the ridges 12 and 13 is prepared, and the lower mold inner surface 22a between the ridge cavities 23 and the ridge cavities 24 is prepared. The SMC 30 is arranged in
In step (2), a prepreg is prepared, and an amount of prepreg 40 necessary for forming the substrate 11 is disposed on the SMC 30.
In step (3), as shown in FIG. 4, the upper mold 21 and the lower mold 22 are relatively moved to close the compression molding mold 20, and the SMC 30 and the prepreg 40 are heated and heated by the upper mold 21 and the lower mold 22. Press to compress. After the compression molding, the structure 10 is obtained by opening the compression molding die 20.

工程(1)と工程(2)の順序は特に限定されず、下型内面22a上にSMC30を配置し(工程(1))、その後、配置したSMC30上に、必要な量のプリプレグを積層してプリプレグ40を配置する(工程(2))方法が考えられる。
特に好ましい方法は、圧縮成形用金型20の外で、必要な量のプリプレグを積層したプリプレグ40と、圧縮成形用金型20内に配置した際に凸条用キャビティ23と凸条用キャビティ24との間に位置するように、プリプレグ40上に積層されたSMC30とを用意し、その後に、SMC30が下型内面22aに接するようにSMC30とプリプレグ40とを同時に圧縮成形用金型20内に配置する方法である(工程(1)と工程(2)を同時に行う)。この方法によれば、圧縮成形用金型20を予め圧縮成形時の温度まで加熱しておくことができるため、生産効率が高くなる。
The order of the step (1) and the step (2) is not particularly limited, and the SMC 30 is arranged on the lower mold inner surface 22a (step (1)), and then a necessary amount of prepreg is laminated on the arranged SMC 30. A method of arranging the prepreg 40 (step (2)) is conceivable.
Particularly preferable methods include a prepreg 40 in which a necessary amount of prepregs are laminated outside the compression molding die 20, and the protrusion cavities 23 and the ridge cavities 24 when arranged in the compression molding die 20. And SMC 30 laminated on the prepreg 40 so that the SMC 30 and the prepreg 40 are simultaneously placed in the compression molding die 20 so that the SMC 30 contacts the lower mold inner surface 22a. This is a method of arranging (step (1) and step (2) are performed simultaneously). According to this method, since the compression molding die 20 can be heated in advance to the temperature at the time of compression molding, the production efficiency is increased.

本実施形態の製造方法は、このように基板11の同一面の凸条12、13を形成する凸条用キャビティ23と凸条用キャビティ24との間に、凸条12、13を形成するSMCを配置することを特徴とする。
このように配置されたSMCは、圧縮成形用金型20を閉じた際に、上型21及び下型22により挟まれる圧力によって圧縮成形用金型20の下型内面22a上を流動し、凸条用キャビティ23、24に充填される。このとき、配置したSMCは、全てが凸条用キャビティ23、24に充填されるわけではなく、圧縮成形用金型20の下型内面22a上にも薄く残る(図4)。
配置されるSMCは、凸条の数(2つ)よりも少ない枚数(1枚)とすることが特に好ましい。SMCの枚数を少なくすれば、作業効率を高くすることができる。
In the manufacturing method of the present embodiment, the ridges 12 and 13 are formed between the ridge cavities 23 and the ridge cavities 24 that form the ridges 12 and 13 on the same surface of the substrate 11 as described above. It is characterized by arranging.
When the compression molding die 20 is closed, the SMC arranged in this way flows on the lower mold inner surface 22a of the compression molding die 20 due to the pressure sandwiched between the upper die 21 and the lower die 22, and protrudes. The strip cavities 23 and 24 are filled. At this time, not all of the arranged SMCs are filled in the ridge cavities 23 and 24, and the SMC remains thin on the lower mold inner surface 22a of the compression molding mold 20 (FIG. 4).
It is particularly preferable that the number of SMCs to be arranged is smaller (one) than the number of ridges (two). If the number of SMCs is reduced, work efficiency can be increased.

SMCの使用量は、圧縮成形の際に圧縮成形用金型20の下型内面22a上にSMCが薄く残ることを考慮して、凸条12、13の成形に必要な量を合計したものよりも多めに設定することが好ましい。余分に多くするSMCの分量については、下型内面22aの面積等によって決定すればよい。   In consideration of the fact that SMC remains thin on the lower mold inner surface 22a of the compression molding die 20 during compression molding, the amount of SMC used is more than the sum of the amounts necessary for molding the ridges 12 and 13. It is preferable to set a larger number. The amount of SMC that is excessively increased may be determined by the area of the lower mold inner surface 22a or the like.

SMCを配置する位置は、凸条用キャビティ23と凸条用キャビティ24との中間部とすることが好ましい。このようにSMCを配置すれば、SMCが配置された位置と凸条用キャビティ23との距離、およびSMCが配置された位置と凸条用キャビティ24との距離が同じになるため、圧縮成形時において凸条用キャビティ23、24にSMCが均等に配分されやすくなり、良好な品質の構造体10をより安定に製造することができる。   The position where the SMC is disposed is preferably an intermediate portion between the ridge cavity 23 and the ridge cavity 24. If the SMC is arranged in this manner, the distance between the position where the SMC is arranged and the ridge cavity 23 and the distance between the position where the SMC is arranged and the ridge cavity 24 are the same. In this case, the SMC is easily distributed evenly to the ridge cavities 23 and 24, and the structure 10 of good quality can be manufactured more stably.

圧縮成形後は、構造体10の基板11の表面11a上(図1)にはSMCが薄く残っているものの、表面11aの状態は良好である。   After compression molding, although the SMC remains thin on the surface 11a (FIG. 1) of the substrate 11 of the structure 10, the state of the surface 11a is good.

以上説明した本実施形態の製造方法では、凸条を形成するSMCを各凸条用キャビティの大きさや位置に合わせて、細かく切断してそれぞれ配置する必要がないため、高い生産効率で構造体10を製造できる。
また、SMCをそれぞれの凸条用キャビティの形状や位置に合わせて配置しなくてもよいため、用いるSMCの枚数が少なくすることにより、製造する構造体10毎のSMCの使用量や配置の誤差が少なくできるので、良好な品質の構造体10を安定して得ることができる。
また、成形材料としてSMCだけでなくプリプレグを用いているため、SMCのみで製造した繊維強化樹脂製構造体に比べて強度が高い。
In the manufacturing method of the present embodiment described above, it is not necessary to cut and arrange the SMC forming the ridges in accordance with the size and position of each ridge cavity. Can be manufactured.
Further, since it is not necessary to arrange the SMCs in accordance with the shape and position of the ridge cavities, the amount of SMC used and the arrangement error for each structure 10 to be manufactured can be reduced by reducing the number of SMCs used. Therefore, the structure 10 with good quality can be stably obtained.
Moreover, since not only SMC but also a prepreg is used as a molding material, the strength is higher than that of a fiber reinforced resin structure manufactured only with SMC.

[第2実施形態]
つぎに、本発明の製造方法の第2実施形態として、図5に例示する繊維強化樹脂製構造体50(以下、構造体50という)を製造する方法について説明する。
(繊維強化樹脂製構造体)
構造体50は、長尺の平板状の基板51(以下、基板51という)と、基板51の片面(同一面)の幅方向の両側と中間部とに該基板51の長手方向に沿って形成された凸条52、53、54とからなる。
凸条52の形状は断面矩形状であり、凸条53は断面台形状であり、凸条54は断面三角状である。
[Second Embodiment]
Next, as a second embodiment of the production method of the present invention, a method for producing a fiber-reinforced resin structure 50 (hereinafter referred to as structure 50) illustrated in FIG. 5 will be described.
(Fiber-reinforced resin structure)
The structure 50 is formed along the longitudinal direction of the long plate-like substrate 51 (hereinafter referred to as the substrate 51) and both sides and the intermediate portion of one surface (same surface) of the substrate 51 in the width direction. Ridges 52, 53, and 54 formed.
The shape of the ridges 52 is rectangular in cross section, the ridges 53 are trapezoidal in cross section, and the ridges 54 are triangular in cross section.

(圧縮成形用金型)
構造体50を製造する圧縮成形用金型60は、図6に示すように、相対移動が可能な上型61及び下型62を備えている。下型62には、構造体50の凸条52、53、54を成形する凸条用キャビティ63、64、65が設けられている。また、上型61と下型62とを近接させることにより、上型61と下型62との間に基板51を成形する平板用キャビティ66が形成される。
(Mold for compression molding)
A compression molding die 60 for manufacturing the structure 50 includes an upper die 61 and a lower die 62 capable of relative movement, as shown in FIG. The lower mold 62 is provided with ridge cavities 63, 64, 65 for forming the ridges 52, 53, 54 of the structure 50. Further, by bringing the upper mold 61 and the lower mold 62 close to each other, a flat plate cavity 66 for molding the substrate 51 is formed between the upper mold 61 and the lower mold 62.

(製造方法)
本発明の製造方法は、成形材料としてSMC及びプリプレグを使用し、圧縮成形用金型60の内部に、凸条52、53、54を形成するSMCを配置する工程(1)と、基板51を形成するプリプレグを配置する工程(2)と、圧縮成形用金型60内でSMCとプリプレグを加熱、加圧して圧縮成形する工程(3)とを含む。
(Production method)
The manufacturing method of the present invention uses SMC and prepreg as a molding material, and arranges the SMC for forming the ridges 52, 53, and 54 inside the compression molding die 60, and the substrate 51. A step (2) of arranging the prepreg to be formed, and a step (3) of heating and pressurizing and compressing the SMC and the prepreg in the compression molding die 60.

工程(1)では、図7に示すように、凸条52、53、54の形成に必要な量のSMC70を用意し、凸条用キャビティ63と凸条用キャビティ65との間の、下型内面62a及び62b上にSMC70を配置する。
工程(2)では、SMC70上に基板51の形成に必要な量のプリプレグ80を配置する。
工程(3)では、図8に示すように、上型61及び下型62を相対移動させて金型を閉じ、上型61及び下型62によりSMC70及びプリプレグ80を加熱、加圧して圧縮成形する。圧縮成形後、圧縮成形用金型60を開いて構造体50を得る。
In step (1), as shown in FIG. 7, an amount of SMC 70 necessary for forming the ridges 52, 53, 54 is prepared, and the lower mold between the ridge cavities 63 and the ridge cavities 65 is prepared. The SMC 70 is disposed on the inner surfaces 62a and 62b.
In step (2), an amount of prepreg 80 necessary for forming the substrate 51 is disposed on the SMC 70.
In step (3), as shown in FIG. 8, the upper mold 61 and the lower mold 62 are relatively moved to close the mold, and the SMC 70 and the prepreg 80 are heated and pressurized by the upper mold 61 and the lower mold 62 to perform compression molding. To do. After the compression molding, the structure 50 is obtained by opening the compression molding die 60.

工程(1)と工程(2)の順序は特に限定されず、下型内面62a、62b上にSMC70を配置し(工程(1))、その後、配置したSMC70上に、必要な量のプリプレグを積層してプリプレグ80を配置する(工程(2))方法が考えられる。
特に好ましい方法は、圧縮成形用金型60の外で、必要な量のプリプレグを積層したプリプレグ80と、圧縮成形用金型20内に配置した際に凸条用キャビティ63と凸条用キャビティ65との間に位置するように、プリプレグ80上に積層されたSMC70とを用意し、その後に、SMC70が下型内面62a、62b側にくるようにSMC70とプリプレグ80とを同時に圧縮成形用金型60内に配置する方法である(工程(1)と工程(2)を同時に行う)。この方法によれば、圧縮成形用金型60を予め圧縮成形時の温度まで加熱しておくことができるため、生産効率が高くなる。
The order of the step (1) and the step (2) is not particularly limited, and the SMC 70 is disposed on the lower mold inner surfaces 62a and 62b (step (1)), and then a necessary amount of prepreg is disposed on the disposed SMC 70. A method of stacking and arranging the prepreg 80 (step (2)) is conceivable.
Particularly preferable methods include a prepreg 80 in which a necessary amount of prepregs are laminated outside the compression molding die 60, and the protruding strip cavities 63 and the protruding strip cavities 65 when disposed in the compression molding die 20. And SMC 70 laminated on the prepreg 80 so as to be positioned between them, and then the SMC 70 and the prepreg 80 are simultaneously compression-molded so that the SMC 70 comes to the lower mold inner surfaces 62a and 62b. 60 (position (1) and step (2) are performed simultaneously). According to this method, since the compression molding die 60 can be heated in advance to the temperature at the time of compression molding, the production efficiency is increased.

本実施形態の製造方法は、このように、基板51の同一面の凸条52、53、54を形成する凸条用キャビティ63と凸条用キャビティ65との間に、凸条52、53、54を形成するSMCを配置することを特徴とする。
このように配置されたSMCは、圧縮成形用金型60を閉じた際に、上型61及び下型62により挟まれる圧力によって圧縮成形用金型60の下型内面62a、62b上を流動し、凸条用キャビティ63、64、65に充填される。このとき、配置したSMCは、全てが凸条用キャビティ63、64、65に充填されるわけではなく、圧縮成形用金型60の下型内面62a、62b上にも薄く残る(図8)。
配置されるSMCは、凸条の数よりも少ない枚数(本実施形態では3つの凸条に対して1枚のSMC)とすることが特に好ましい。配置するSMCの枚数を少なくすることで、作業効率を高くすることができる。
In this way, the manufacturing method of the present embodiment is configured so that the ridges 52, 53, and 52 are formed between the ridge cavities 63 and the ridge cavities 65 that form the ridges 52, 53, and 54 on the same surface of the substrate 51. SMC forming 54 is arranged.
When the compression molding die 60 is closed, the SMC arranged in this way flows on the lower mold inner surfaces 62a and 62b of the compression molding die 60 by the pressure between the upper die 61 and the lower die 62. The ridge cavities 63, 64, 65 are filled. At this time, not all of the arranged SMCs are filled in the ridge cavities 63, 64, 65, and the thin SMCs remain on the lower mold inner surfaces 62a, 62b of the compression molding die 60 (FIG. 8).
It is particularly preferable that the number of SMCs to be arranged is smaller than the number of ridges (in this embodiment, one SMC for three ridges). The work efficiency can be increased by reducing the number of SMCs to be arranged.

SMCの使用量は、圧縮成形の際に圧縮成形用金型60の下型内面62a、62b上にSMCが薄く残ることを考慮して、凸条52、53、54の成形に必要な量を合計したものよりも多めに設定することが好ましい。余分に多くするSMCの分量については、下型内面62a、62bの面積等によって決定すればよい。   In consideration of the fact that SMC remains thin on the lower mold inner surfaces 62a, 62b of the compression molding die 60 during compression molding, the amount of SMC used is the amount necessary for molding the ridges 52, 53, 54. It is preferable to set a larger number than the total. The amount of SMC that is excessively increased may be determined according to the area of the lower mold inner surfaces 62a and 62b.

SMCを配置する位置は、凸条用キャビティ63と凸条用キャビティ65との中間部とすることが好ましい。このようにSMCを配置すれば、SMCが配置された位置と凸条用キャビティ63との距離、およびSMCが配置された位置と凸条用キャビティ65との距離が同じになるため、圧縮成形時において凸条用キャビティ63、65にSMCが均等に配分され易くなり、良好な品質の構造体50をより安定に得ることができる。   The position where the SMC is disposed is preferably an intermediate portion between the ridge cavity 63 and the ridge cavity 65. If the SMC is arranged in this way, the distance between the position where the SMC is arranged and the ridge cavity 63, and the distance between the position where the SMC is arranged and the ridge cavity 65 are the same, so at the time of compression molding In this case, the SMC is easily distributed evenly to the ridge cavities 63 and 65, and the structure 50 of good quality can be obtained more stably.

圧縮成形後は、構造体50の平板の表面51a上(図5)にはSMCが薄く残るものの、表面51aの状態は良好である。   After compression molding, although SMC remains thin on the flat plate surface 51a of the structure 50 (FIG. 5), the state of the surface 51a is good.

以上説明した本実施形態の製造方法では、凸条を形成するSMCを各凸条用キャビティの大きさや位置に合わせて、細かく切断してそれぞれ配置する必要がないため、高い生産効率で構造体50を製造できる。
また、SMCをそれぞれの凸条用キャビティの形状や位置に合わせて配置しなくてもよいため、用いるSMCの枚数が少なくなることにより、製造する構造体50毎のSMCの使用量や配置の誤差が少なくなるので、良好な品質の構造体50を安定に製造することができる。
また、成形材料としてSMCだけでなくプリプレグを用いているため、SMCのみで製造した繊維強化樹脂製構造体に比べて強度が高い。
In the manufacturing method of the present embodiment described above, it is not necessary to finely cut and arrange the SMCs that form the ridges in accordance with the size and position of the ridge cavities. Can be manufactured.
Further, since the SMC does not have to be arranged in accordance with the shape and position of the respective ridge cavities, the amount of SMC used and the error in arrangement of the SMC for each structure 50 to be manufactured are reduced. Therefore, it is possible to stably manufacture the structure 50 with good quality.
Moreover, since not only SMC but also a prepreg is used as a molding material, the strength is higher than that of a fiber reinforced resin structure manufactured only with SMC.

以上のように、本発明の製造方法によれば、基板と、該基板の同一面に2つ以上の凸条を有する繊維強化樹脂製構造体を高い生産効率で製造できる。また、このような繊維強化樹脂製構造体を良好な品質で安定して製造できる。また、本発明の製造方法によれば、高強度な繊維強化樹脂製構造体が得られる。   As described above, according to the manufacturing method of the present invention, a substrate and a fiber-reinforced resin structure having two or more ridges on the same surface of the substrate can be manufactured with high production efficiency. Moreover, such a fiber reinforced resin structure can be stably manufactured with good quality. Moreover, according to the manufacturing method of the present invention, a high-strength fiber-reinforced resin structure can be obtained.

SMCを細かく切断すると、SMCが有する補強繊維がより短くなることにより物性が変化してしまうおそれがある。SMCを切断して積層することを避けるには、各凸条用キャビティに必要な量のSMCを折り畳んで配置することも考えられるが、この方法では折り畳んだSMC内部に空気が抱き込まれるおそれがある。
本発明の製造方法はSMCを細かく切断したり積層したりする必要がないため、前記のような問題が生じるおそれがほとんどない。
If the SMC is cut finely, there is a possibility that the physical properties may change due to the shorter reinforcing fibers of the SMC. In order to avoid cutting and stacking SMC, it may be possible to fold and arrange the necessary amount of SMC in each ridge cavity, but this method may cause air to be trapped inside the folded SMC. is there.
Since the production method of the present invention does not require finely cutting or laminating SMC, there is almost no possibility that the above-described problems will occur.

尚、本発明の製造方法おいては、例えば、上型に2つの凸条用キャビティが設けられている圧縮成形用金型を用いる場合には、下型にプリプレグを配置した後(工程(2))、該プリプレグ上の、2つの凸条用キャビティの間にSMCを配置する(工程(1))方法としてもよい。   In the manufacturing method of the present invention, for example, when a compression mold having two ridge cavities is provided in the upper mold, the prepreg is disposed in the lower mold (step (2 )), SMC may be disposed between the two ridge cavities on the prepreg (step (1)).

また、本発明の製造方法により製造する繊維強化樹脂製構造体の形状は、図示したものには限定されない。例えば、同一面に形成する凸条の数は4つ以上であってもよい。また、基板の凸条を形成する面は片面に限定されず、例えば、基板の両面に凸条を有する繊維強化樹脂製構造体であってもよい。
この場合には、圧縮用金型内の下型にSMCを配置し、その上にプリプレグを配置し、さらにその上にSMCを配置するようにすればよく、SMCを配置する方法については第1及び第2実施形態と同じようにすればよい。
また、凸条の形状は、断面三角状、断面矩形状、断面台形状のいずれであってもよく、それ以外の形状であってもよい。
また、基板の形状は、図示例のような平板状には限定されず、例えば、アーチ状の基板であってもよい。
Moreover, the shape of the fiber reinforced resin structure manufactured by the manufacturing method of the present invention is not limited to the illustrated one. For example, the number of ridges formed on the same surface may be four or more. Moreover, the surface which forms the protruding item | line of a board | substrate is not limited to one side, For example, the structure made from a fiber reinforced resin which has a protruding item | line on both surfaces of a board | substrate may be sufficient.
In this case, the SMC may be disposed in the lower mold in the compression mold, the prepreg may be disposed thereon, and the SMC may be disposed thereon. And what is necessary is just to make it the same as 2nd Embodiment.
Further, the shape of the ridges may be any of a triangular cross-section, a rectangular cross-section, and a trapezoidal cross-section, or other shapes.
Further, the shape of the substrate is not limited to a flat plate shape as shown in the drawing, and may be an arched substrate, for example.

また、本発明の製造方法では、例えば、第2実施形態のように基板の同一面に3つ以上凸条を形成させる場合には、用いるSMCの枚数は1枚に限定されず、凸条用キャビティの数よりも少なければよい。例えば、凸条用キャビティ63及び凸条用キャビティ64の間の下型表面62aと、凸条用キャビティ64及び凸条用キャビティ65の間の下型表面62bとに、SMCを1枚ずつ配置する方法であってもよい。凸条用キャビティが4つ以上ある場合についても同様である。   In the manufacturing method of the present invention, for example, when three or more ridges are formed on the same surface of the substrate as in the second embodiment, the number of SMCs used is not limited to one, but for ridges. It should be less than the number of cavities. For example, one SMC is disposed on each of the lower mold surface 62a between the convex cavity 63 and the convex cavity 64 and the lower mold surface 62b between the convex cavity 64 and the convex cavity 65. It may be a method. The same applies to the case where there are four or more ridge cavities.

以下、実施例及び比較例を示して本発明を詳細に説明するが、本発明は以下の記載によっては限定されない。本実施例では、図2に例示した圧縮成形用金型20を用いて、図1に例示した構造体10の製造を行った。
[実施例1]
プリプレグとして、TR390E250S(三菱レイヨン社製)を用意した。このプリプレグは、引張弾性率240GPa、引張強度4900MPaの炭素繊維を、目付けが250g/mとなるように一方向に引き揃え、エポキシ樹脂を含有量が30質量%となるように含浸させてなる一方向(UD)プリプレグである。ついで、このプリプレグを基板11(70mm×900mm)の投影形状に対して全周2.5mmずつ小さくなるように切り出し、これらを順次繊維方向が0°/90°/0°/90°/0°となるように5枚積層し、プリプレグ積層体を準備した。
また、SMCとして、凸条12、13を形成する量よりも少し多い量のAMC8590(Quantum Composites社製)を1枚用意した。このSMCは、1インチに切断した炭素繊維(CF)を、ビニルエステル樹脂に含有量が55質量%となるように分散させたCF−SMCである。
ついで、圧縮成形用金型20内に配置した際、下型内面22a上の、凸条用キャビティ23と凸条用キャビティ24との中間部に位置するように、前記SMC(SMC30)を前記プリプレグ積層体(プリプレグ40)上に積層した後、SMC30が、下型内面22a上の、凸条用キャビティ23と凸条用キャビティ24との中間部に接する様に、SMC30とプリプレグ40との積層体を下型内面22a上へ配置した。ついで、上型21と下型22を近接させて、SMCとプリプレグを加圧しながら圧縮成形用金型20内で140℃、5分間加熱し、繊維強化樹脂製構造体10を得た。
EXAMPLES Hereinafter, although an Example and a comparative example are shown and this invention is demonstrated in detail, this invention is not limited by the following description. In this example, the structure 10 illustrated in FIG. 1 was manufactured using the compression molding die 20 illustrated in FIG. 2.
[Example 1]
As a prepreg, TR390E250S (manufactured by Mitsubishi Rayon Co., Ltd.) was prepared. This prepreg is formed by aligning carbon fibers having a tensile modulus of 240 GPa and a tensile strength of 4900 MPa in one direction so that the basis weight is 250 g / m 2 and impregnating the epoxy resin so that the content is 30% by mass. Unidirectional (UD) prepreg. Next, this prepreg is cut out so that the entire circumference is reduced by 2.5 mm with respect to the projected shape of the substrate 11 (70 mm × 900 mm), and the fiber direction is sequentially 0 ° / 90 ° / 0 ° / 90 ° / 0 °. Then, 5 sheets were laminated so that a prepreg laminate was prepared.
In addition, as SMC, one AMC8590 (manufactured by Quantum Composites) having a slightly larger amount than that for forming the ridges 12 and 13 was prepared. This SMC is CF-SMC in which carbon fibers (CF) cut into 1 inch are dispersed in a vinyl ester resin so that the content is 55% by mass.
Next, the SMC (SMC 30) is placed on the prepreg so as to be positioned in the middle of the ridge cavity 23 and the ridge cavity 24 on the lower mold inner surface 22a when placed in the compression mold 20. After being laminated on the laminated body (prepreg 40), the laminated body of SMC 30 and prepreg 40 so that SMC 30 is in contact with the intermediate portion between convex stripe cavity 23 and convex stripe cavity 24 on lower mold inner surface 22a. Was placed on the lower mold inner surface 22a. Next, the upper mold 21 and the lower mold 22 were brought close to each other and heated in a compression molding mold 20 at 140 ° C. for 5 minutes while applying pressure to the SMC and the prepreg to obtain a fiber reinforced resin structure 10.

[比較例1]
実施例1で用いたものと同じSMCを6枚に切断し、圧縮成形用金型20内に配置した際、下型内面22a上の、凸条用キャビティ23と凸条用キャビティ24の部分に位置する様に、実施例1と同様に切り出して積層したプリプレグ積層体上にSMCを3枚ずつ積層し、その後、それぞれのSMCが凸条用キャビティ23、24の部分に接する様にSMCとプリプレグ積層体を下型内面22a上へ配置した以外は実施例1と同様にして繊維強化樹脂製構造体を得た。
[Comparative Example 1]
When the same SMC as used in Example 1 was cut into six pieces and placed in the compression mold 20, the ridge cavities 23 and the ridge cavities 24 on the inner surface 22 a of the lower mold were formed. Three SMCs are laminated on the prepreg laminate that is cut out and laminated in the same manner as in Example 1, and then the SMC and the prepreg so that each SMC contacts the ridge cavities 23 and 24. A fiber reinforced resin structure was obtained in the same manner as in Example 1 except that the laminate was disposed on the lower mold inner surface 22a.

実施例1の製造方法では、高い作業効率で、表面状態の良好な繊維強化樹脂製構造体が得られた。
一方、比較例1の製造方法では、表面状態の良好な繊維強化樹脂製構造体が得られたものの、SMCを細かく切断し、圧縮成形用金型内に配置した際に各凸条用キャビティ部分に位置する様に、プリプレグ積層体上に切断したSMCをそれぞれ積層しなければならなかったため、作業効率が悪かった。
In the manufacturing method of Example 1, a fiber-reinforced resin structure having a good surface condition was obtained with high work efficiency.
On the other hand, in the manufacturing method of Comparative Example 1, although a fiber reinforced resin structure having a good surface condition was obtained, when the SMC was finely cut and placed in a compression mold, Since the cut SMCs had to be laminated on the prepreg laminate, the working efficiency was poor.

本発明の製造方法は、高い生産効率で、品質の良好な繊維強化樹脂製構造体を安定して製造できるため、様々な繊維強化樹脂製構造体の製造方法として好適に使用できる。   Since the production method of the present invention can stably produce a high-quality fiber-reinforced resin structure with high production efficiency, it can be suitably used as a method for producing various fiber-reinforced resin structures.

第1実施形態の製造方法により製造された繊維強化樹脂製構造体を示した斜視図である。It is the perspective view which showed the fiber reinforced resin structure manufactured by the manufacturing method of 1st Embodiment. 第1実施形態の製造方法に用いる圧縮成形用金型を示した断面図である。It is sectional drawing which showed the metal mold | die for compression molding used for the manufacturing method of 1st Embodiment. 図2の下型22にSMCとプリプレグとを配置した形態を示した断面図である。It is sectional drawing which showed the form which has arrange | positioned SMC and a prepreg in the lower mold | type 22 of FIG. 図3のSMCとプリプレグを圧縮成形用金型で圧縮成形した様子を示した断面図である。It is sectional drawing which showed a mode that the SMC and prepreg of FIG. 3 were compression-molded with the metal mold | die for compression molding. 第2実施形態の製造方法により製造された繊維強化樹脂製構造体を示した斜視図である。It is the perspective view which showed the structure made from fiber reinforced resin manufactured by the manufacturing method of 2nd Embodiment. 第2実施形態の製造方法に用いる圧縮成形用金型を示した断面図である。It is sectional drawing which showed the metal mold | die for compression molding used for the manufacturing method of 2nd Embodiment. 図6の下型62にSMCとプリプレグとを配置した形態を示した断面図である。It is sectional drawing which showed the form which has arrange | positioned SMC and a prepreg in the lower mold | type 62 of FIG. 図7のSMCとプリプレグを圧縮成形用金型で圧縮成形した様子を示した断面図である。It is sectional drawing which showed a mode that SMC and the prepreg of FIG. 7 were compression-molded with the metal mold | die for compression molding.

符号の説明Explanation of symbols

10 繊維強化樹脂製構造体
11 基板
12、13 凸条
20 圧縮成形用金型
23、24 凸条用キャビティ
30 SMC
40 プリプレグ
50 繊維強化樹脂製構造体
51 基板
52、53、54 凸条
60 圧縮成形用金型
63、64、65 凸条用キャビティ
70 SMC
80 プリプレグ
DESCRIPTION OF SYMBOLS 10 Fiber reinforced resin structure 11 Substrate 12, 13 Convex strip 20 Compression molding die 23, 24 Convex strip cavity 30 SMC
40 Prepreg 50 Fiber Reinforced Resin Structure 51 Substrate 52, 53, 54 Convex 60 Compression Mold 63, 64, 65 Convex Cavity 70 SMC
80 prepreg

Claims (1)

基板と、該基板の同一面に形成された2つ以上の凸条とを有する繊維強化樹脂製構造体を、凸条を形成する凸条用キャビティが2つ以上設けられた圧縮成形用金型を用いて製造する方法において、
前記凸条を形成するシートモールディングコンパウンドを、前記圧縮成形用金型内の、同一面の凸条を形成する凸条用キャビティと凸条用キャビティとの間に配置する工程と、
前記圧縮成形用金型内に、前記基板を形成するプリプレグを配置する工程と、
圧縮成形用金型内でシートモールディングコンパウンドとプリプレグを加熱、加圧して圧縮成形する工程とを含む繊維強化樹脂製構造体の製造方法。
A compression molding mold provided with two or more ridge cavities for forming a fiber reinforced resin structure having a substrate and two or more ridges formed on the same surface of the substrate. In the method of manufacturing using
Arranging the sheet molding compound for forming the ridges between the ridge cavities and the ridge cavities forming the same ridges in the compression molding mold;
Placing the prepreg for forming the substrate in the compression mold,
A method for producing a fiber reinforced resin structure, comprising a step of heating and pressing a sheet molding compound and a prepreg in a compression molding mold and compression molding.
JP2007259792A 2007-10-03 2007-10-03 Manufacturing method of fiber reinforced resin structure Active JP5424549B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007259792A JP5424549B2 (en) 2007-10-03 2007-10-03 Manufacturing method of fiber reinforced resin structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007259792A JP5424549B2 (en) 2007-10-03 2007-10-03 Manufacturing method of fiber reinforced resin structure

Publications (2)

Publication Number Publication Date
JP2009083441A true JP2009083441A (en) 2009-04-23
JP5424549B2 JP5424549B2 (en) 2014-02-26

Family

ID=40657494

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007259792A Active JP5424549B2 (en) 2007-10-03 2007-10-03 Manufacturing method of fiber reinforced resin structure

Country Status (1)

Country Link
JP (1) JP5424549B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013072055A (en) * 2011-09-29 2013-04-22 Mitsubishi Rayon Co Ltd Method for manufacturing fiber-reinforced resin structure
JP2018172474A (en) * 2017-03-31 2018-11-08 東レ株式会社 Method for manufacturing fiber-reinforced composite material
WO2021033740A1 (en) * 2019-08-22 2021-02-25 三菱ケミカル株式会社 Frp product manufacturing method
WO2021039722A1 (en) 2019-08-27 2021-03-04 株式会社イノアックコーポレーション Fiber-reinforced-resin composite molded article and method for producing same, antibacterial composite molded article and method for producing same, antibacterial fiber-reinforced-resin composite molded article and method for producing same, and fiber-reinforced-resin laminated molded article and method for producing same

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0825387A (en) * 1994-07-18 1996-01-30 Inax Corp Production of resin molded object
JPH0911262A (en) * 1995-06-30 1997-01-14 Sekisui Chem Co Ltd Manufacture of decorative molding
JPH1015969A (en) * 1996-07-01 1998-01-20 Sekisui Chem Co Ltd Production of decorative molded product
JPH10110048A (en) * 1996-10-08 1998-04-28 Dainippon Ink & Chem Inc Patterned prepreg and frp molding made thereof
JPH1142660A (en) * 1997-07-29 1999-02-16 Toto Ltd Method for molding resin molding
JP2000037724A (en) * 1998-05-19 2000-02-08 Sekisui Chem Co Ltd Decorative material for decorating molding and decorated molded article using it
JP2002039558A (en) * 2000-04-25 2002-02-06 Matsushita Electric Works Ltd Method for manufacturing waterproof floor
JP2005022206A (en) * 2003-07-01 2005-01-27 Mitsubishi Rayon Co Ltd Manufacturing method for fiber-reinforced resin composite material
JP2005075988A (en) * 2003-09-02 2005-03-24 Japan Composite Co Ltd Thermosetting resin composition, thermosetting resin-molded article and method for producing the same
JP2007085055A (en) * 2005-09-21 2007-04-05 Yamaha Livingtec Corp Floor material

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0825387A (en) * 1994-07-18 1996-01-30 Inax Corp Production of resin molded object
JPH0911262A (en) * 1995-06-30 1997-01-14 Sekisui Chem Co Ltd Manufacture of decorative molding
JPH1015969A (en) * 1996-07-01 1998-01-20 Sekisui Chem Co Ltd Production of decorative molded product
JPH10110048A (en) * 1996-10-08 1998-04-28 Dainippon Ink & Chem Inc Patterned prepreg and frp molding made thereof
JPH1142660A (en) * 1997-07-29 1999-02-16 Toto Ltd Method for molding resin molding
JP2000037724A (en) * 1998-05-19 2000-02-08 Sekisui Chem Co Ltd Decorative material for decorating molding and decorated molded article using it
JP2002039558A (en) * 2000-04-25 2002-02-06 Matsushita Electric Works Ltd Method for manufacturing waterproof floor
JP2005022206A (en) * 2003-07-01 2005-01-27 Mitsubishi Rayon Co Ltd Manufacturing method for fiber-reinforced resin composite material
JP2005075988A (en) * 2003-09-02 2005-03-24 Japan Composite Co Ltd Thermosetting resin composition, thermosetting resin-molded article and method for producing the same
JP2007085055A (en) * 2005-09-21 2007-04-05 Yamaha Livingtec Corp Floor material

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013072055A (en) * 2011-09-29 2013-04-22 Mitsubishi Rayon Co Ltd Method for manufacturing fiber-reinforced resin structure
JP2018172474A (en) * 2017-03-31 2018-11-08 東レ株式会社 Method for manufacturing fiber-reinforced composite material
WO2021033740A1 (en) * 2019-08-22 2021-02-25 三菱ケミカル株式会社 Frp product manufacturing method
JPWO2021033740A1 (en) * 2019-08-22 2021-02-25
JP7222430B2 (en) 2019-08-22 2023-02-15 三菱ケミカル株式会社 FRP product manufacturing method
WO2021039722A1 (en) 2019-08-27 2021-03-04 株式会社イノアックコーポレーション Fiber-reinforced-resin composite molded article and method for producing same, antibacterial composite molded article and method for producing same, antibacterial fiber-reinforced-resin composite molded article and method for producing same, and fiber-reinforced-resin laminated molded article and method for producing same

Also Published As

Publication number Publication date
JP5424549B2 (en) 2014-02-26

Similar Documents

Publication Publication Date Title
JP5950149B2 (en) A method for producing a fiber-reinforced resin structure.
EP2495099B1 (en) Fiber-reinforced molded product and method for producing same
JP5597134B2 (en) Molding method of molding material
JP2001315149A (en) Producing method for semi-cured article fitted with joggle consisting of fiber-reinforced composite material, and producing method for premolding structural body using the same
JP2008290421A (en) Manufacturing method of molding comprising prepreg laminate
JP2009542483A (en) Manufacturing method of composite parts
JP5424549B2 (en) Manufacturing method of fiber reinforced resin structure
WO2012077430A1 (en) Method for manufacturing composite material
JP6389654B2 (en) Method for producing carbon fiber composite material
US10532522B2 (en) Method and device for molding fiber-reinforced plastic member
JP2012035442A (en) Fiber-reinforced resin member, and fastening structure
JP2006256202A (en) Substrate for preform and its manufacturing method
JP2010138953A (en) Energy absorbing member and manufacturing method therefor
WO2020122260A1 (en) Production method for fiber-reinforced resin molded article
CN111605223A (en) High-performance carbon fiber composite material based on discontinuous fiber structure and preparation method thereof
WO2022260186A1 (en) Laminate for pressing, and pressed laminate
JP4459401B2 (en) Composite beam forming method
JP7139296B2 (en) Fiber-reinforced resin composite molding and method for producing the same
JP2019077061A (en) Resin structure and method for producing the same
JP3723659B2 (en) Method for forming honeycomb core material
KR102344284B1 (en) Elastic metal material architecturing sheet and manufacturing method thereof
JP7073811B2 (en) Method for manufacturing fiber-reinforced composite molded products
JP7466248B1 (en) Press molding member, its manufacturing method, and manufacturing method of battery case using press molding member
JP7101606B2 (en) Manufacturing method of composite molded product
JP2011251446A (en) Continuous fiber composite material structure, method for manufacturing the same, and composite molded object using the continuous fiber composite material structure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100927

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110802

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120511

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120515

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120710

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130409

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131112

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131126

R151 Written notification of patent or utility model registration

Ref document number: 5424549

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250