JP2005022206A - Manufacturing method for fiber-reinforced resin composite material - Google Patents

Manufacturing method for fiber-reinforced resin composite material Download PDF

Info

Publication number
JP2005022206A
JP2005022206A JP2003189579A JP2003189579A JP2005022206A JP 2005022206 A JP2005022206 A JP 2005022206A JP 2003189579 A JP2003189579 A JP 2003189579A JP 2003189579 A JP2003189579 A JP 2003189579A JP 2005022206 A JP2005022206 A JP 2005022206A
Authority
JP
Japan
Prior art keywords
fiber
resin
prepreg
composite material
sheet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003189579A
Other languages
Japanese (ja)
Inventor
Katsumi Wakabayashi
巧己 若林
Yutaka Yamaguchi
豊 山口
Tsuneo Takano
恒男 高野
Yoshiharu Numata
喜春 沼田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Rayon Co Ltd
Original Assignee
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Rayon Co Ltd filed Critical Mitsubishi Rayon Co Ltd
Priority to JP2003189579A priority Critical patent/JP2005022206A/en
Publication of JP2005022206A publication Critical patent/JP2005022206A/en
Pending legal-status Critical Current

Links

Landscapes

  • Casting Or Compression Moulding Of Plastics Or The Like (AREA)
  • Moulding By Coating Moulds (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a manufacturing method for a fiber-reinforced resin composite material excellent in surface smoothness. <P>SOLUTION: A sheetlike prepreg, wherein the resin coating ratio of at least one surface (surface A) thereof is 80% or below, is laminated at least on one side of a base material, which comprises reinforcing fibers and a matrix resin, so that the surface A is exposed to the outside to constitute a laminate. After the laminate is placed on a mold, it is heated and pressed to manufacture the fiber-reinforced resin composite material. When the laminate is placed on the mold, it is preferably placed so that the surface A comes into contact with the molding surface of the mold. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、強化繊維とマトリックス樹脂からなる、表面平滑性に優れた繊維強化樹脂複合材料(以下、FRPということがある。)を製造する方法に関する。
【0002】
【従来の技術】
従来から、強化繊維とマトリックス樹脂からなるFRPを製造する方法として、強化繊維にマトリックス樹脂を含浸したプリプレグを用い、そのプリプレグを複数枚積層した積層体を成形型内に置いた後、加熱および加圧して、FRPを製造する方法が知られている(例えば、特許文献1〜3参照)。特に、圧縮成形による成形は、オートクレーブ成形や真空バッグ成形等の成形方法と比較して短時間で成形を完了できるため、工業的に有用な成形方法である。
【0003】
しかしながら、条件を高温・高圧にして、FRPを短時間で製造しようとすると、積層体の表面にマトリックス樹脂が過剰に存在する場合には、積層体の層間にエアが内包されたままマトリックス表面側から先に硬化してしまうため、内包されたエアがそのまま内部のボイドとなることがあった。また、製造時間短縮のために、ガラス転移温度以上の温度でFRPを脱型すると、FRPは変形しやすい状態であるため、内包されていたエアが、成形型による圧縮から開放された際に膨張し、FRP表面に膨れが発生することもあった。この現象は、特に、高繊維目付のプリプレグを用いる場合、より顕著に発生していた。
【0004】
【特許文献1】
特開昭61−43450号公報
【特許文献2】
特開昭61−43451号公報
【特許文献3】
特開昭61−43452号公報
【0005】
【発明が解決しようとする課題】
そこで、本発明は、かかる問題を解決し表面平滑性に優れたFRPを得ることを課題とする。
【0006】
【課題を解決するための手段】
本発明の第一の要旨は、強化繊維とマトリックス樹脂からなる基材の少なくとも片面に、少なくとも片側の表面(表面A)の樹脂被覆率が80%以下であるシート状プリプレグを、表面Aが外側に露出するように貼り合わせて積層体を構成し、次に、この積層体を成形型上に置いた後、積層体を加熱および加圧を施して成形する繊維強化樹脂複合材料の製造方法にある。
また、本発明の第二の要旨は、強化繊維とマトリックス樹脂からなる基材の少なくとも片面に、少なくとも片側の表面(表面A)の樹脂被覆率が80%以下であるシート状プリプレグを、表面Aが外側に露出するように貼り合わせて積層体を構成し、次に、この積層体を上型と下型からなる成形型の下型上に、型締めした時に表面Aと成形型の上型の成形面とが接するように積層体を置いた後、圧縮成形する繊維強化樹脂複合材料の製造方法にある。
【0007】
【発明の実施の形態】
以下、本発明のFRPの製造方法について詳細に説明する。
【0008】
(樹脂被覆率)
本発明のFRPの製造方法は、強化繊維とマトリックス樹脂からなる基材の少なくとも片側の表面に、シート状プリプレグを貼り合わせた積層体を、成形型内で加熱および加圧して成形するものである。そして、そのシート状プリプレグは、その少なくとも片側の表面(表面Aという。)の樹脂被覆率が80%以下であり、そして、それを基材と貼り合せる際に、表面Aを外側に露出させることが必要である。
【0009】
本発明の樹脂被覆率の測定は、次のようにして行う。
まず、保護フィルムや離型紙等をはがし、シート状プリプレグの表面を露出させる。次に、露出したプリプレグの表面(表面積T(mm))を、キーエンス社製マイクロスコープVH−7000のような画像計測機能を有するマイクロスコープを用いて観察する。次に、マイクロスコープが内蔵する画像計測機能を用いて、表面上を被覆するマトリックス樹脂の輪郭を操作画面上で明確化してから、その合計面積S(mm)を算出する。そして、表面の樹脂被覆率を次式から算出する。
樹脂被覆率(%)=(S/T)×100
【0010】
前述のように、強化繊維とマトリックス樹脂からなる積層体の成形を、高温・高圧の条件の下、短時間で成形する場合には、表面が先に硬化してしまうなどの理由で、成形型と積層体との間や積層体の層間に内包されていたエアが外部に排出されづらく、このエアが原因で成型後のFRPの表面にボイドや膨れが発生していた。本発明では、積層体表面の樹脂被覆率を80%以下にすることでこの問題を解決したものである。
【0011】
先に述べたように、本発明では、シート状プリプレグの表面Aの樹脂被覆率は、80%以下である必要がある。80%を超えると、成型時に、エアが脱気される前に表面がふさがれてしまう。従って、表面の樹脂被覆率は80%以下、特に70%以下であることが好ましい。
【0012】
シート状プリプレグの表面Aの樹脂被覆率の下限値は特に制限はないが、表面上にマトリックス樹脂がほとんどない状態、特に樹脂被覆率が1%未満となると、プリプレグ同士の接着性や成形型への接着性が悪くなる恐れがあり、成形型内で位置決めすることが困難になる。よって、シート状プリプレグ表面の樹脂被覆率は1%以上であることが好ましい。
【0013】
(シート状プリプレグ)
本発明で用いる、シート状プリプレグは、強化繊維で構成されたシートにマトリックス樹脂を含浸したものである。
本発明では、表面Aを形成するためにシート状プリプレグを用いる必要があることを述べたが、このシート状プリプレグを貼り合わせる相手である基材もシート状プリプレグで形成してもよい。
本発明のシート状プリプレグに用いる強化繊維の種類に特に制限はなく、炭素繊維、アラミド繊維、ボロン繊維、スチール繊維、PBO繊維、高強度ポリエチレン繊維、ガラス繊維などが例示でき、これらを単独、または複数を組み合わせて用いてもよい。
【0014】
中でも、炭素繊維は比強度および比弾性に優れるので好ましく、アラミド繊維や高強度ポリエチレン繊維等の有機繊維を用いるとFRPに耐衝撃性が付与されるので好ましい。またガラス繊維は、これらの強化繊維の中で比較的安価で強度にも優れるので好ましい。
【0015】
本発明でシート状プリプレグに用いるマトリックス樹脂は、熱硬化性樹脂組成物および熱可塑性樹脂組成物のいずれも用いることができる。熱硬化性樹脂組成物としては、エポキシ樹脂、フェノール樹脂、ビニルエステル樹脂、不飽和ポリエステル樹脂、ビスマレイミド樹脂、BT樹脂、シアネートエステル樹脂、ベンゾオキサジン樹脂等を主成分として用いることができる。
【0016】
特に、エポキシ樹脂は、強化繊維との接着性が良いので、強度に優れたFRPを得る場合に、好ましく用いることができる。エポキシ樹脂の種類としては、例えば、2官能性エポキシ樹脂ではビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビフェニル型エポキシ樹脂、ナフタレン型エポキシ樹脂、ジシクロペンタジエン型エポキシ樹脂、フルオレン型エポキシ樹脂あるいはこれらを変性したエポキシ樹脂等が、3官能以上の多官能性エポキシ樹脂としては、フェノールノボラック型エポキシ樹脂、クレゾール型エポキシ樹脂、テトラグリシジルジアミノジフェニルメタン、トリグリシジルアミノフェノール、テトラグリシジルアミンのようなグリシジルアミン型エポキシ樹脂、テトラキス(グリシジルオキシフェニル)エタンやトリス(グリシジルオキシメタン)のようなグリシジルエーテル型エポキシ樹脂およびこれらを変性したエポキシ樹脂がいずれも好適に用いることができる。
【0017】
さらに、分子内に硫黄原子を含むエポキシ樹脂硬化剤をエポキシ樹脂とともに併用すると好ましい。分子内に硫黄原子を含む硬化剤は、エポキシ樹脂の効果速度を速める傾向があるため、短時間で成形が完了するからである。
【0018】
分子内に硫黄原子を含むエポキシ樹脂硬化剤の例としては、ジアミノジフェニルスルフォン、ジアミノジフェニルスルファイド、ビス(4−(4アミノフェノキシ)フェニル)スルフォン、ビス(4−(3アミノフェノキシ)フェニル)スルフォン、4’4−ジアミノジフェニルスルファイド、o−トリアジンスルフォン、などが挙げられる。
【0019】
熱硬化性樹脂組成物には、硬化剤の他に、3−(3,4−ジクロロフェニル−1,1−ジメチルウレアや3−フェニル−N,N−ジメチルウレア尿素化合物やジシアンジアミドなどのアミン系化合物といった硬化助剤、粘度調製のためのポリビニルフォルマールやフェノキシ樹脂といった熱可塑性樹脂、難燃性を向上するため酸化マグネシウムなどの金属酸化物や水酸化アルミニウムなどの金属水酸化物といった難燃剤を加えることもできる。
【0020】
シート状プリプレグの形態は、特に制限はなく、強化繊維を一方向に引き揃えてシート状にした一方向材や強化繊維織物にマトリックス樹脂を含浸した一方向プリプレグや織物プリプレグを用いることができる。
【0021】
シート状プリプレグの製造方法も特に制限はない。その製造方法を大別すると、マトリックス樹脂溶液を強化繊維に含浸したのち脱溶剤するラッカー法と、溶剤を用いずにマトリックス樹脂の樹脂フィルムを強化繊維に貼り合わせて含浸するホットメルト法がある。ホットメルト法を用いると表面の樹脂被覆率の調整が容易なので本発明のシート状プリプレグの製造には好ましい。特に、一方向材や強化繊維織物の片側の表面のみに樹脂フィルムを貼り付けて含浸すると、樹脂フィルムを貼り付けた面と他方の面との表面の樹脂被覆率に差をつけることが容易であり、樹脂被覆率の調整がさらに容易となるので好ましい。
【0022】
(基材)
本発明では、基材は、強化繊維とマトリックス樹脂とからなっている必要がある。
【0023】
本発明では、基材として、シート状プリプレグ、すなわち、一方向プリプレグや織物プリプレグを所望の順に貼りあわせたもの、三次元織物やノン・クリンプト・ファブリックにマトリックス樹脂を含浸したもの、また、これらを組み合わせたものいずれであってもよい。前記一方向プリプレグや織物プリプレグの一部または全部を、表面Aを有するシート状プリプレグと同一のプリプレグを用いた基材であってもよい。
【0024】
また、基材の一部または全部を、強化繊維の短繊維とマトリックス樹脂からなるSMC(シートモールディングコンパウンド)とすると、リブやボス等複雑な形状を有するFRPを製造することが容易になる。
【0025】
(成形)
本発明で積層体をFRPとする成形方法は、積層体を加熱・加圧できるものであればいかなるものでもよく、オートクレーブ成形、真空バッグ成形、内圧成形、圧縮成形等、FRPの製造に用いられるいかなる成形法も用いることができる。特に、圧縮成形は、他の成形方法と比較してより高圧で成形することができるので、短時間での成形ができるため、生産性に優れるので好ましい。
【0026】
圧縮成形により成形する際には、上型と下型からなる一対の型を用い、この型を型締めすることにより成形する場合もあるが、この場合は、型締めした際にシート状プリプレグの表面Aが、成形型の上型または下型のいずれかの成形面と接していればよい。
【0027】
本発明では、積層体にかける温度や圧力は積層体を構成するマトリックス樹脂の種類によって適宜決定すればよく、特に限定しない。中でも、成形型の温度をあらかじめ120℃以上、より好ましくは140℃以上に調温した後積層体を成形型上に配置し、成形型の温度を保ったまま、2MPa以上より好ましくは8MPa以上の圧力で成形すると、成形が短時間で終了できる。
【0028】
本発明の製造方法で得られるFRPの用途は、表面平滑性に優れるので、平滑性が求められ求められかつ表面加工が必要な部材に用いることができる。具体的には、オートバイフレーム、カウル、フェンダー等の二輪車用途や、ドア、ボンネット、テールゲート、サイドフェンダー、側面パネル、フェンダー、エネルギー吸収部材、トランクリッド、ハードップ、サイドミラーカバー、スポイラー、ディフューザー、スキーキャリアー、エンジンシリンダーカバー、エンジンフード、シャシー、エアースポイラー、プロペラシャフト等の自動車部品用途や、先頭車両ノーズ、ルーフ、サイドパネル、ドア、台車カバー、側スカートなどの車輌用外板用途、荷物棚、座席等の鉄道車輌用途や、インテリア、ウイングトラックにおけるウイングのインナーパネル、アウターパネル、ルーフ、フロアー等、自動車や単車に装着するやサイドスカート、などのエアロパーツ用途や、窓枠、荷物棚、座席、フロアパネル、翼、プロペラ、胴体等の航空機用途、ノートパソコン、携帯電話等の筐体用途や、X線カセッテ、天板等のメディカル用途、フラットスピーカーパネル、スピーカーコーン等の音響製品用途、ゴルフヘッド、フェースプレート、スノーボード、サーフィンボード、プロテクター等のスポーツ用品用途や、板バネ、風車ブレード、エレベーター(籠パネル、ドア)等の一般産業用途が挙げられる。
【0029】
【実施例】
以下、実施例および比較例により本発明をさらに詳しく説明する。
【0030】
<表面の樹脂被覆率の測定方法>
シート状プリプレグの表面の樹脂被覆率の測定は次のようにして行った。
保護フィルム、離型紙等をはがしてシート状プリプレグの各面を露出させ、露出したプリプレグの表面を、キーエンス社製マイクロスコープVH−7000にて倍率25倍で観察し、VH−7000が内蔵する画像計測機能を用い、視野を縦13mm×横13mm(倍率25倍)に設定した操作画面(SONY製CRTモニター Multiscan 5ES2)上で7mm×9mm(63mm)のシート状プリプレグの表面を観察した。シート状プリプレグの表面上を被覆するマトリックス樹脂の輪郭を操作画面中のカーソルでなぞってVH−7000が内蔵する画像計測機能に入力し、その合計面積Sを算出し、以下の式に代入して表面の樹脂被覆率を求めた。
樹脂被覆率(%)=(S/63)×100
【0031】
(実施例1)
マトリックス樹脂として、三菱レイヨン(株)製エポキシ樹脂組成物#390(最低粘度10ポイズ)を用いた。このマトリックス樹脂を、樹脂目付134g/mで、ロールコーターを用いて、離型処理されている離型紙に均一に塗布し樹脂フィルムを得た。この樹脂フィルムを離型紙で担持したまま、三菱レイヨン(株)製炭素繊維織物TR3110(繊維目付200g/m)の片側の表面のみに貼り付けた。炭素繊維織物の他方の面に、離型紙のみを貼り付けたのち、両離型紙の外側から、50℃に加熱した二対の加熱ロールで加熱および加圧することにより、樹脂含有率40質量%のシート状プリプレグを得た。このプリプレグの表面の樹脂被覆率は、離型紙のみを貼り付けた側(以下、この面を表面Aとする。)が45%、樹脂フィルムを貼り付けた側(以下、表面Bという。)が95%であった。
【0032】
次に、三菱レイヨン(株)製一方向材炭素繊維プリプレグTR390E125S(樹脂含有率37.5%)を繊維方向が[0°/90°]となるように交互に計18プライ積み重ねて基材を得た。この基材の上に、縦300mm×横300mmにカットした前記表面Aを有するシート状プリプレグを、表面Aが表側に露出するように貼り合わせて積層体を得た。
【0033】
この積層体を、上型と下型とからなる、あらかじめ140℃に調温した金属性の成形型の下型上に、型締めした時に、シート状プリプレグと上型とが接するように置いたのち、型締めし、金型の温度を保ったまま成形圧8MPa、成形時間5分で成形した。型を開き、厚さ2mmのFRPを得た。
得られたFRPの表面には、膨れは観察されず非常に平滑であった。またFRPを切断し内部断面を観察してもボイドは見られなかった。
【0034】
(実施例2)
含浸時に用いる二対の加熱ロールの温度を50℃から70℃とすることで、シート状プリプレグの表面の樹脂被覆率を、離型紙のみを貼り付けた側(表面A)が60%、樹脂フィルムを貼り付けた側(表面B)が85%とした以外は、実施例1と同様にしてFRPを得た。
得られたFRPの表面には、膨れは観察されず非常に平滑であった。またFRPを切断し内部断面を観察してもボイドは見られなかった。
【0035】
(実施例3)
金型の温度を130℃、成形時間を15分とした以外は、実施例1と同様にしてFRPを得た。得られたFRPの表面には、膨れは観察されず非常に平滑であった。またFRPを切断し内部断面を観察してもボイドは見られなかった。
【0036】
(実施例4)
金型の温度を150℃、成形圧力4MPaとした以外は、実施例1と同様にしてFRPを得た。得られたFRPの表面には、膨れは観察されず非常にきれいであり、またFRPを切断し内部断面を観察してもボイドは見られなかった。
【0037】
(比較例1)
実施例1において、基材に貼り合わせるシート状プリプレグの裏表を変更した。すなわち、表面Bを外側に露出した以外は、実施例1と同様に操作してFRPを得た。
得られたFRPの表面は膨れが発生しており、表面平滑性も不良であった。このFRPを切断し、その断面を観察したところ、断面には多数のボイドが確認された。
【0038】
(比較例2)
シート状プリプレグとして実施例2で製造したプリプレグを用いた以外は、比較例1同様、表面Bを外側に露出した以外は、実施例1と同様に操作してFRPを得た。
得られたFRPの表面は膨れが発生しており、表面平滑性も不良であった。このFRPを切断し、その断面を観察したところ、断面には多数のボイドが確認された。
【0039】
(比較例3)
金型の温度を150℃とした以外は、比較例1と同様の方法でFRPを得た。しかし、得られたFRPの表面は膨れが発生しており、表面平滑性も不良であった。このFRPを切断し、その断面を観察したところ、断面には多数のボイドが確認された。
【0040】
(比較例4)
実施例1と同様の方法で、離型紙に担持された樹脂目付67g/mの樹脂フィルムを2枚得た。この樹脂フィルムを製炭素繊維織物TR3110の両面に貼り付けて、含浸し、両離型紙の外側から、50℃に加熱した二対の加熱ロールで加熱および加圧することにより、樹脂含有率40質量%のシート状プリプレグを得た。このシート状織物プリプレグの、表面の樹脂被覆率を両面共に100%であり、裏表は存在しなかった。このシート状プリプレグを用いて、実施例1と同様に積層体を形成して、圧縮成形して厚さ2mmのFRPを得た。しかし、得られたFRPの表面は膨れが発生しており、表面平滑性も不良であった。このFRPを切断し、その断面を観察したところ、断面には多数のボイドが確認された。
【0041】
【発明の効果】
本発明の繊維強化複合材料の製造方法を用いることで、内部ボイドや膨れのない表面平滑性に優れたFRPを得ることができる。特に、成形方法として圧縮成形を用いることで、短時間での成形が可能となり、生産性にも優れる。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing a fiber reinforced resin composite material (hereinafter sometimes referred to as FRP) having excellent surface smoothness, which is composed of reinforced fibers and a matrix resin.
[0002]
[Prior art]
Conventionally, as a method for producing FRP comprising reinforcing fibers and a matrix resin, a prepreg in which reinforcing fibers are impregnated with a matrix resin is used, and a laminated body in which a plurality of prepregs are laminated is placed in a mold, and then heated and heated. A method for producing FRP by pressing is known (for example, see Patent Documents 1 to 3). In particular, molding by compression molding is an industrially useful molding method because the molding can be completed in a short time compared to molding methods such as autoclave molding and vacuum bag molding.
[0003]
However, if an attempt is made to produce FRP in a short time under conditions of high temperature and high pressure, if there is an excessive amount of matrix resin on the surface of the laminate, the side of the matrix surface remains encapsulated with air between the layers of the laminate. In some cases, the encapsulated air becomes an internal void as it is. In addition, in order to shorten the manufacturing time, when the FRP is removed from the glass transition temperature or higher, the FRP is in a state of being easily deformed, so that the encapsulated air expands when released from the compression by the molding die. However, blistering sometimes occurred on the FRP surface. This phenomenon occurred more prominently when a prepreg having a high fiber basis weight was used.
[0004]
[Patent Document 1]
Japanese Patent Laid-Open No. 61-43450 [Patent Document 2]
Japanese Patent Laid-Open No. 61-43451 [Patent Document 3]
Japanese Patent Application Laid-Open No. 61-43452
[Problems to be solved by the invention]
Then, this invention makes it a subject to solve this problem and to obtain FRP excellent in surface smoothness.
[0006]
[Means for Solving the Problems]
The first gist of the present invention is a sheet-like prepreg having a resin coverage of 80% or less on at least one surface (surface A) on at least one surface of a base material composed of reinforcing fibers and a matrix resin. The laminated body is laminated so as to be exposed, and then the laminated body is placed on a mold, and then the laminated body is heated and pressed to form the fiber-reinforced resin composite material. is there.
The second gist of the present invention is that a sheet-like prepreg having a resin coverage of 80% or less on at least one surface (surface A) is provided on at least one surface of a substrate composed of reinforcing fibers and a matrix resin. Are laminated so as to be exposed to the outside, and then a laminated body is formed. Next, when the laminated body is clamped on the lower mold of the upper mold and the lower mold, the surface A and the upper mold of the mold are In the method for producing a fiber-reinforced resin composite material, the laminate is placed so as to be in contact with the molding surface, and then compression-molded.
[0007]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the manufacturing method of FRP of this invention is demonstrated in detail.
[0008]
(Resin coverage)
In the method for producing FRP of the present invention, a laminate in which a sheet-like prepreg is bonded to the surface of at least one side of a substrate made of reinforcing fibers and a matrix resin is molded by heating and pressing in a mold. . The sheet-like prepreg has a resin coverage of at least one surface (referred to as surface A) of 80% or less, and the surface A is exposed to the outside when it is bonded to the substrate. is required.
[0009]
The resin coverage of the present invention is measured as follows.
First, a protective film, a release paper, etc. are peeled off, and the surface of a sheet-like prepreg is exposed. Next, the surface of the exposed prepreg (surface area T (mm 2 )) is observed using a microscope having an image measurement function such as a microscope VH-7000 manufactured by Keyence Corporation. Next, the outline of the matrix resin covering the surface is clarified on the operation screen using the image measurement function built in the microscope, and then the total area S (mm 2 ) is calculated. And the resin coverage of a surface is computed from following Formula.
Resin coverage (%) = (S / T) × 100
[0010]
As mentioned above, when molding a laminate composed of reinforcing fibers and a matrix resin in a short time under the conditions of high temperature and high pressure, the mold will die because the surface will harden first. It was difficult for the air contained between the laminates and between the laminates to be discharged to the outside, and this air caused voids and blisters on the surface of the FRP after molding. In the present invention, this problem is solved by setting the resin coverage on the surface of the laminate to 80% or less.
[0011]
As described above, in the present invention, the resin coverage of the surface A of the sheet-like prepreg needs to be 80% or less. If it exceeds 80%, the surface is blocked before air is degassed during molding. Therefore, the resin coverage on the surface is preferably 80% or less, particularly 70% or less.
[0012]
The lower limit value of the resin coverage on the surface A of the sheet-like prepreg is not particularly limited. However, when there is almost no matrix resin on the surface, particularly when the resin coverage is less than 1%, the adhesion between the prepregs and the mold There is a possibility that the adhesiveness of the resin may deteriorate, and it becomes difficult to position in the mold. Therefore, the resin coverage on the surface of the sheet-like prepreg is preferably 1% or more.
[0013]
(Sheet prepreg)
The sheet-like prepreg used in the present invention is obtained by impregnating a matrix resin into a sheet composed of reinforcing fibers.
In the present invention, it is described that it is necessary to use a sheet-like prepreg in order to form the surface A. However, the base material to which the sheet-like prepreg is bonded may also be formed from the sheet-like prepreg.
There is no particular limitation on the type of reinforcing fiber used in the sheet-like prepreg of the present invention, and examples thereof include carbon fiber, aramid fiber, boron fiber, steel fiber, PBO fiber, high-strength polyethylene fiber, glass fiber, and the like, or these alone or A plurality may be used in combination.
[0014]
Among these, carbon fibers are preferable because they are excellent in specific strength and specific elasticity, and it is preferable to use organic fibers such as aramid fibers and high-strength polyethylene fibers because FRP is given impact resistance. Glass fiber is preferable because it is relatively inexpensive and excellent in strength among these reinforcing fibers.
[0015]
As the matrix resin used for the sheet-like prepreg in the present invention, either a thermosetting resin composition or a thermoplastic resin composition can be used. As the thermosetting resin composition, an epoxy resin, a phenol resin, a vinyl ester resin, an unsaturated polyester resin, a bismaleimide resin, a BT resin, a cyanate ester resin, a benzoxazine resin, or the like can be used as a main component.
[0016]
In particular, since an epoxy resin has good adhesiveness with reinforcing fibers, it can be preferably used when obtaining FRP having excellent strength. Examples of the epoxy resin include bisphenol A type epoxy resin, bisphenol F type epoxy resin, biphenyl type epoxy resin, naphthalene type epoxy resin, dicyclopentadiene type epoxy resin, fluorene type epoxy resin, and these for bifunctional epoxy resins. As a polyfunctional epoxy resin having a functionality of 3 or more, a phenol novolac type epoxy resin, a cresol type epoxy resin, tetraglycidyldiaminodiphenylmethane, triglycidylaminophenol, a glycidylamine type such as tetraglycidylamine is used. Epoxy resins, glycidyl ether type epoxy resins such as tetrakis (glycidyloxyphenyl) ethane and tris (glycidyloxymethane), and epoxies modified with these Fat can be suitably used either.
[0017]
Furthermore, it is preferable to use an epoxy resin curing agent containing a sulfur atom in the molecule together with the epoxy resin. This is because the curing agent containing a sulfur atom in the molecule tends to increase the effective speed of the epoxy resin, and thus molding is completed in a short time.
[0018]
Examples of epoxy resin curing agents containing sulfur atoms in the molecule include diaminodiphenylsulfone, diaminodiphenylsulfide, bis (4- (4aminophenoxy) phenyl) sulfone, and bis (4- (3aminophenoxy) phenyl) sulfone. 4'4-diaminodiphenyl sulfide, o-triazine sulfone, and the like.
[0019]
In addition to the curing agent, the thermosetting resin composition includes amine compounds such as 3- (3,4-dichlorophenyl-1,1-dimethylurea, 3-phenyl-N, N-dimethylureaurea compound and dicyandiamide. Add a flame retardant such as a metal oxide such as magnesium oxide or a metal hydroxide such as aluminum hydroxide to improve flame resistance. You can also.
[0020]
The form of the sheet-like prepreg is not particularly limited, and a unidirectional prepreg obtained by aligning reinforcing fibers in one direction to form a sheet or a reinforced fiber fabric impregnated with a matrix resin or a woven prepreg can be used.
[0021]
There is no particular limitation on the method for producing the sheet-like prepreg. The manufacturing method is roughly classified into a lacquer method in which a reinforcing fiber is impregnated with a matrix resin solution and then the solvent is removed, and a hot melt method in which a matrix resin resin film is bonded to the reinforcing fiber and impregnated without using a solvent. The use of the hot melt method is preferable for the production of the sheet-like prepreg of the present invention because the resin coverage on the surface can be easily adjusted. In particular, when a resin film is applied and impregnated only on the surface of one side of a unidirectional material or a reinforcing fiber fabric, it is easy to make a difference in the resin coverage between the surface on which the resin film is applied and the other surface. Yes, it is preferable because adjustment of the resin coverage is further facilitated.
[0022]
(Base material)
In this invention, the base material needs to consist of a reinforced fiber and matrix resin.
[0023]
In the present invention, as a base material, a sheet-like prepreg, that is, a unidirectional prepreg or a woven prepreg bonded together in a desired order, a three-dimensional woven fabric or a non-crimp fabric impregnated with a matrix resin, and these Any combination may be used. A substrate using the same prepreg as the sheet-like prepreg having the surface A may be used for part or all of the unidirectional prepreg or the woven prepreg.
[0024]
Further, when a part or all of the base material is made of SMC (sheet molding compound) made of short fibers of reinforcing fibers and a matrix resin, it becomes easy to manufacture FRP having complicated shapes such as ribs and bosses.
[0025]
(Molding)
In the present invention, the molding method using the laminate as FRP may be any method as long as the laminate can be heated and pressurized, and is used for the production of FRP such as autoclave molding, vacuum bag molding, internal pressure molding, and compression molding. Any molding method can be used. In particular, compression molding is preferable because it can be molded at a higher pressure than other molding methods, and can be molded in a short time, so that it is excellent in productivity.
[0026]
When molding by compression molding, a pair of molds consisting of an upper mold and a lower mold may be used, and the mold may be molded by clamping, but in this case, when the mold is clamped, It is only necessary that the surface A is in contact with the molding surface of either the upper mold or the lower mold of the mold.
[0027]
In the present invention, the temperature and pressure applied to the laminate may be appropriately determined depending on the kind of matrix resin constituting the laminate, and are not particularly limited. Among them, after the temperature of the mold is adjusted in advance to 120 ° C. or more, more preferably 140 ° C. or more, the laminate is placed on the mold, and the temperature of the mold is maintained, 2 MPa or more, more preferably 8 MPa or more. When molding is performed with pressure, the molding can be completed in a short time.
[0028]
Since the use of FRP obtained by the production method of the present invention is excellent in surface smoothness, it can be used for a member that is required and required to have smoothness. Specifically, motorcycle frames, cowls, fenders, motorcycles, doors, bonnets, tailgates, side fenders, side panels, fenders, energy absorbing members, trunk lids, hardtops, side mirror covers, spoilers, diffusers, skis Car parts such as carriers, engine cylinder covers, engine hoods, chassis, air spoilers, propeller shafts, top car noses, roofs, side panels, doors, bogie covers, side skirts and other vehicle skins, luggage racks, Railway vehicle applications such as seats, interior and wing truck wing inner panels, outer panels, roofs, floors, aero parts used for cars and motorcycles, side skirts, window frames, luggage racks, seats Aircraft applications such as floor panels, wings, propellers, and fuselage, chassis applications such as laptop computers and mobile phones, medical applications such as X-ray cassettes and top panels, applications in acoustic products such as flat speaker panels and speaker cones, golf heads Sports equipment such as faceplates, snowboards, surfboards, and protectors, and general industrial uses such as leaf springs, windmill blades, and elevators (籠 panels and doors).
[0029]
【Example】
Hereinafter, the present invention will be described in more detail with reference to Examples and Comparative Examples.
[0030]
<Method for measuring surface resin coverage>
The resin coverage on the surface of the sheet-like prepreg was measured as follows.
The protective film, release paper, etc. are peeled off to expose each surface of the sheet-like prepreg, and the exposed surface of the prepreg is observed at a magnification of 25 times with a Keyence microscope VH-7000, and the image incorporated in the VH-7000 Using the measurement function, the surface of a sheet-like prepreg of 7 mm × 9 mm (63 mm 2 ) was observed on an operation screen (SONY CRT monitor Multiscan 5ES2) whose field of view was set to 13 mm long × 13 mm wide (25 × magnification). Trace the outline of the matrix resin covering the surface of the sheet-like prepreg with the cursor in the operation screen and input it to the image measurement function built in the VH-7000, calculate the total area S, and substitute it into the following equation The resin coverage on the surface was determined.
Resin coverage (%) = (S / 63) × 100
[0031]
(Example 1)
As the matrix resin, an epoxy resin composition # 390 (minimum viscosity 10 poise) manufactured by Mitsubishi Rayon Co., Ltd. was used. The matrix resin was uniformly applied to release paper that had been subjected to release treatment using a roll coater at a resin basis weight of 134 g / m 2 to obtain a resin film. The resin film was attached to only one surface of a carbon fiber fabric TR3110 (fiber basis weight 200 g / m 2 ) manufactured by Mitsubishi Rayon Co., Ltd. while being supported by a release paper. After affixing only the release paper to the other surface of the carbon fiber fabric, heating and pressurization with two pairs of heating rolls heated to 50 ° C. from the outside of both release papers, the resin content is 40% by mass. A sheet-like prepreg was obtained. The resin coverage on the surface of the prepreg is 45% on the side where only the release paper is attached (hereinafter, this surface is referred to as surface A), and the side where the resin film is attached (hereinafter referred to as surface B). 95%.
[0032]
Next, unidirectional material carbon fiber prepreg TR390E125S (resin content 37.5%) manufactured by Mitsubishi Rayon Co., Ltd. was stacked in a total of 18 ply so that the fiber direction would be [0 ° / 90 °] 9. Got. On this base material, the sheet-like prepreg having the surface A cut to 300 mm in length and 300 mm in width was bonded so that the surface A was exposed on the front side to obtain a laminate.
[0033]
This laminate was placed on a lower mold of a metallic mold consisting of an upper mold and a lower mold, the temperature of which was adjusted to 140 ° C. in advance so that the sheet-shaped prepreg and the upper mold were in contact with each other when the mold was clamped. Thereafter, the mold was clamped, and the mold was molded at a molding pressure of 8 MPa and a molding time of 5 minutes while maintaining the temperature of the mold. The mold was opened to obtain a 2 mm thick FRP.
The surface of the obtained FRP was very smooth with no swelling observed. In addition, no void was found when the FRP was cut and the internal cross section was observed.
[0034]
(Example 2)
By setting the temperature of the two pairs of heating rolls used at the time of impregnation to 50 ° C. to 70 ° C., the resin coverage of the surface of the sheet-like prepreg is 60% on the side where only the release paper is attached (surface A), the resin film FRP was obtained in the same manner as in Example 1 except that the side (surface B) to which was attached was 85%.
The surface of the obtained FRP was very smooth with no swelling observed. In addition, no void was found when the FRP was cut and the internal cross section was observed.
[0035]
Example 3
FRP was obtained in the same manner as in Example 1 except that the mold temperature was 130 ° C. and the molding time was 15 minutes. The surface of the obtained FRP was very smooth with no swelling observed. In addition, no void was found when the FRP was cut and the internal cross section was observed.
[0036]
(Example 4)
FRP was obtained in the same manner as in Example 1 except that the mold temperature was 150 ° C. and the molding pressure was 4 MPa. On the surface of the obtained FRP, no swelling was observed and it was very clean, and no void was found even when the FRP was cut and the internal cross section was observed.
[0037]
(Comparative Example 1)
In Example 1, the front and back sides of the sheet-like prepreg to be bonded to the base material were changed. That is, FRP was obtained by operating in the same manner as in Example 1 except that the surface B was exposed to the outside.
The surface of the obtained FRP was swollen and the surface smoothness was poor. When this FRP was cut and its cross section was observed, many voids were confirmed in the cross section.
[0038]
(Comparative Example 2)
FRP was obtained by operating in the same manner as in Example 1 except that the surface B was exposed to the outside as in Comparative Example 1, except that the prepreg produced in Example 2 was used as the sheet-like prepreg.
The surface of the obtained FRP was swollen and the surface smoothness was poor. When this FRP was cut and its cross section was observed, many voids were confirmed in the cross section.
[0039]
(Comparative Example 3)
FRP was obtained in the same manner as in Comparative Example 1 except that the mold temperature was 150 ° C. However, the surface of the obtained FRP was swollen and the surface smoothness was poor. When this FRP was cut and its cross section was observed, many voids were confirmed in the cross section.
[0040]
(Comparative Example 4)
In the same manner as in Example 1, two resin films having a resin basis weight of 67 g / m 2 carried on the release paper were obtained. This resin film is affixed on both sides of a carbon fiber woven fabric TR3110, impregnated, and heated and pressed with two pairs of heating rolls heated to 50 ° C. from the outside of both release papers, whereby the resin content is 40% by mass. The sheet-like prepreg was obtained. The resin coverage of the surface of this sheet-like woven prepreg was 100% on both sides, and there was no front or back. Using this sheet-like prepreg, a laminate was formed in the same manner as in Example 1, and compression molded to obtain an FRP having a thickness of 2 mm. However, the surface of the obtained FRP was swollen and the surface smoothness was poor. When this FRP was cut and its cross section was observed, many voids were confirmed in the cross section.
[0041]
【The invention's effect】
By using the method for producing a fiber-reinforced composite material of the present invention, an FRP excellent in surface smoothness free from internal voids and swelling can be obtained. In particular, by using compression molding as a molding method, molding can be performed in a short time, and productivity is excellent.

Claims (12)

強化繊維とマトリックス樹脂からなる基材の少なくとも片面に、少なくとも片側の表面(表面A)の樹脂被覆率が80%以下であるシート状プリプレグを、表面Aが外側に露出するように貼り合わせて積層体を構成し、次に、この積層体を成形型上に置いた後、積層体を加熱および加圧を施して成形する繊維強化樹脂複合材料の製造方法。A sheet-like prepreg having a resin coverage of 80% or less on at least one surface (surface A) is laminated on at least one surface of a substrate made of reinforcing fibers and matrix resin so that the surface A is exposed to the outside. A method for producing a fiber reinforced resin composite material comprising forming a body and then placing the laminate on a mold and then heating and pressurizing the laminate. 成形を圧縮成形で行う請求項1記載の繊維強化複合材料の製造方法。The manufacturing method of the fiber reinforced composite material of Claim 1 which shape | molds by compression molding. 成形を真空バッグ成形で行う請求項1記載の繊維強化複合材料の製造方法。The manufacturing method of the fiber reinforced composite material of Claim 1 which shape | molds by vacuum bag shaping | molding. 積層体を成形型上に置くときに、表面Aと成形型の成形面とが接するように積層体を置く請求項1〜3いずれか一項記載の繊維強化樹脂複合材料の製造方法。The manufacturing method of the fiber reinforced resin composite material as described in any one of Claims 1-3 which arrange | positions a laminated body so that the surface A and the shaping | molding surface of a shaping | molding die may contact | connect when a laminated body is put on a shaping | molding die. 強化繊維とマトリックス樹脂からなる基材の少なくとも片面に、少なくとも片側の表面(表面A)の樹脂被覆率が80%以下であるシート状プリプレグを、表面Aが外側に露出するように貼り合わせて積層体を構成し、次に、この積層体を上型と下型からなる成形型上に置いた後、圧縮成形する繊維強化樹脂複合材料の製造方法。A sheet-like prepreg having a resin coverage of 80% or less on at least one surface (surface A) is laminated on at least one surface of a substrate made of reinforcing fibers and matrix resin so that the surface A is exposed to the outside. A method for producing a fiber reinforced resin composite material comprising forming a body and then placing the laminate on a molding die composed of an upper die and a lower die, and then compression molding. 積層体を成形型上に置くときに、型締めした際に、表面Aと成形型の上型の成形面とが接するように積層体を置く請求項5記載の繊維強化樹脂複合材料の製造方法。The method for producing a fiber-reinforced resin composite material according to claim 5, wherein when the laminate is placed on the mold, the laminate is placed so that the surface A and the molding surface of the upper mold are in contact with each other when the mold is clamped. . 表面Aの樹脂被覆率が80%以下であるシート状プリプレグが、強化繊維織物にマトリックス樹脂を含浸したものである請求項1〜6いずれか一項記載の繊維強化複合材料の製造方法。The method for producing a fiber-reinforced composite material according to any one of claims 1 to 6, wherein the sheet-like prepreg having a resin coverage of the surface A of 80% or less is obtained by impregnating a reinforcing fiber fabric with a matrix resin. 表面Aの樹脂被覆率が80%以下であるシート状プリプレグが、強化繊維を一方向に引き揃えたシートにマトリックス樹脂を含浸したものである請求項1〜6いずれか一項記載の繊維強化複合材料の製造方法。The fiber-reinforced composite according to any one of claims 1 to 6, wherein the sheet-like prepreg having a resin coverage of the surface A of 80% or less is obtained by impregnating a matrix resin into a sheet in which reinforcing fibers are aligned in one direction. Material manufacturing method. 表面Aの樹脂被覆率が80%以下であるシート状プリプレグを構成する強化繊維の繊維目付が、200g/m以上である請求項1〜8いずれか一項記載の繊維強化複合材料の製造方法。The method for producing a fiber-reinforced composite material according to any one of claims 1 to 8, wherein the fiber basis weight of the reinforcing fiber constituting the sheet-like prepreg having a resin coverage of the surface A of 80% or less is 200 g / m 2 or more. . 基材の少なくとも一部が、シートモールディングコンパウンドからなる請求項1〜9いずれか一項記載の繊維強化複合材料の製造方法。The method for producing a fiber-reinforced composite material according to any one of claims 1 to 9, wherein at least a part of the base material comprises a sheet molding compound. 成形型として、予め120℃以上に調温した成形型を用い、成形型の温度を保ったまま、積層体に2MPa以上の圧力をかけて成形する請求項1〜10いずれか一項記載の繊維強化樹脂複合材料の製造方法。The fiber according to any one of claims 1 to 10, wherein a molding die that has been preliminarily adjusted to 120 ° C or higher is used as the molding die, and the laminate is molded by applying a pressure of 2 MPa or more while maintaining the temperature of the molding die. A method for producing a reinforced resin composite material. シート状プリプレグを構成する強化繊維が炭素繊維である請求項1〜11いずれか一項記載の繊維強化複合材料の製造方法。The method for producing a fiber-reinforced composite material according to any one of claims 1 to 11, wherein the reinforcing fibers constituting the sheet-like prepreg are carbon fibers.
JP2003189579A 2003-07-01 2003-07-01 Manufacturing method for fiber-reinforced resin composite material Pending JP2005022206A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003189579A JP2005022206A (en) 2003-07-01 2003-07-01 Manufacturing method for fiber-reinforced resin composite material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003189579A JP2005022206A (en) 2003-07-01 2003-07-01 Manufacturing method for fiber-reinforced resin composite material

Publications (1)

Publication Number Publication Date
JP2005022206A true JP2005022206A (en) 2005-01-27

Family

ID=34187747

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003189579A Pending JP2005022206A (en) 2003-07-01 2003-07-01 Manufacturing method for fiber-reinforced resin composite material

Country Status (1)

Country Link
JP (1) JP2005022206A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009083441A (en) * 2007-10-03 2009-04-23 Mitsubishi Rayon Co Ltd Manufacturing method of fiber-reinforced resin structure
JP2016008867A (en) * 2014-06-24 2016-01-18 トヨタ車体株式会社 Method of measuring exposed solid material in resin molding
CN114872386A (en) * 2022-07-08 2022-08-09 北京玻钢院复合材料有限公司 Asymmetric airplane floor and preparation method thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009083441A (en) * 2007-10-03 2009-04-23 Mitsubishi Rayon Co Ltd Manufacturing method of fiber-reinforced resin structure
JP2016008867A (en) * 2014-06-24 2016-01-18 トヨタ車体株式会社 Method of measuring exposed solid material in resin molding
CN114872386A (en) * 2022-07-08 2022-08-09 北京玻钢院复合材料有限公司 Asymmetric airplane floor and preparation method thereof

Similar Documents

Publication Publication Date Title
AU761069B2 (en) Moulding materials
WO2012073775A1 (en) Method for producing metal composite, and chassis for electronic equipment
EP3395870A1 (en) Prepreg and method for manufacturing same
CA3056553C (en) Cyanate ester resin composition and prepreg
JP2004510842A (en) Sheet (SMC) molding compound with vented structure for trapped gas
CN116547135A (en) High strength low exotherm composite
WO1999038683A1 (en) Composite panels with class a surfaces
KR20210138541A (en) Epoxy resin composition and prepreg by using the same for fiber reinforcement plastics
JP2005022206A (en) Manufacturing method for fiber-reinforced resin composite material
JP7385480B2 (en) Laminate and method for manufacturing the laminate
JP2004338270A (en) Method for producing fiber-reinforced resin composite material and fiber-reinforced resin composite material
JP2005126557A (en) Molding material for and manufacturing method of fiber-reinforced resin composite material
JP2020163584A (en) Manufacturing method of sandwich molded product
Park et al. Manufacture of carbon fiber composites
WO2022176261A1 (en) Sandwich panel molding method
JP2011056798A (en) Method for manufacturing fiber-reinforced composite material molded product
JP6904441B1 (en) Epoxy resin composition for prepreg and prepreg
CN110461563B (en) Improvements in or relating to three-dimensional moulded articles
JPH02209234A (en) Preparation of fiber reinforced composite material
JPH04268342A (en) Production of carbon fiber-reinforced composite material
JPS6135942B2 (en)