JP2005126557A - Molding material for and manufacturing method of fiber-reinforced resin composite material - Google Patents

Molding material for and manufacturing method of fiber-reinforced resin composite material Download PDF

Info

Publication number
JP2005126557A
JP2005126557A JP2003363045A JP2003363045A JP2005126557A JP 2005126557 A JP2005126557 A JP 2005126557A JP 2003363045 A JP2003363045 A JP 2003363045A JP 2003363045 A JP2003363045 A JP 2003363045A JP 2005126557 A JP2005126557 A JP 2005126557A
Authority
JP
Japan
Prior art keywords
fiber
molding
reinforced resin
frp
molding material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003363045A
Other languages
Japanese (ja)
Inventor
Yutaka Yamaguchi
豊 山口
Juichi Takeda
重一 武田
Katsumi Wakabayashi
巧己 若林
Tsuneo Takano
恒男 高野
Yoshiharu Numata
喜春 沼田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Rayon Co Ltd
Original Assignee
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Rayon Co Ltd filed Critical Mitsubishi Rayon Co Ltd
Priority to JP2003363045A priority Critical patent/JP2005126557A/en
Publication of JP2005126557A publication Critical patent/JP2005126557A/en
Pending legal-status Critical Current

Links

Landscapes

  • Reinforced Plastic Materials (AREA)
  • Casting Or Compression Moulding Of Plastics Or The Like (AREA)
  • Moulding By Coating Moulds (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a manufacturing method of a fiber-reinforced resin composite material which is good in appearance after the processings such as drilling and partial cutting and excellent in surface smoothness. <P>SOLUTION: The molding material for the fiber-reinforced resin composite material, which consists of a reinforcing fiber and a thermosetting resin composition, is arranged, at least on the surface of a portion where surface smoothness is required after the molding, with a prepreg which consists of the reinforcing fiber fabric having a basis weight of ≤160 g/m<SP>2</SP>and an aperture ratio of ≤4% and the thermosetting resin composition. The fiber-reinforced resin composite material is manufactured by using this molding material for the fiber-reinforced resin composite material and by conducting compression molding. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、穴あけや部分的な切断などの加工が容易で、かつ、表面平滑性に優れた繊維
強化樹脂複合材料(以下、FRPと言う。)用成形材料およびこの成形材料を用いたFR
Pの製造方法に関する。
The present invention provides a molding material for a fiber reinforced resin composite material (hereinafter referred to as FRP) which is easy to process such as drilling and partial cutting and has excellent surface smoothness, and an FR using this molding material.
The present invention relates to a method for producing P.

FRPの製造方法として、プリプレグ等からなるFRP用成形材料を成形型内で加熱お
よび加圧する方法が知られている。特に、圧縮成形による製造方法は、オートクレーブ成
形や真空バッグ成形等の製造方法と比較して短時間で成形を完了できるため、工業的に有
用な方法である(例えば、特許文献1、2および3参照)。
As a method for producing FRP, a method of heating and pressurizing a molding material for FRP made of prepreg or the like in a molding die is known. In particular, the production method by compression molding is an industrially useful method because the molding can be completed in a short time compared to a production method such as autoclave molding or vacuum bag molding (for example, Patent Documents 1, 2, and 3). reference).

ところで、圧縮成形に限らず、FRPを製造した後に、他の成形品との接合部を作るな
どの目的で、その表面に穴あけや部分的な切断などの加工を施す場合がある。この場合、
FRP表面の強化繊維が一方向に引き揃えられていると、加工時に切断された強化繊維が
剥離し、ささくれ立って、外観表面が悪くなるという問題があった。
一方、FRP表面を強化繊維織物で構成すると、一方向に引き揃えられている場合に比
べてささくれなどが生じづらくなる。そこで、穴あけや部分的な切断などの加工を施す必
要があるFRPを製造する場合には、表面FRP用成形材料として強化繊維織物プリプレ
グを用いることが多い。
By the way, it is not limited to compression molding, and after manufacturing FRP, the surface may be subjected to processing such as drilling or partial cutting for the purpose of making a joint with another molded product. in this case,
When the reinforcing fibers on the surface of the FRP are aligned in one direction, the reinforcing fibers cut at the time of processing are peeled off and fluttered, resulting in a problem that the appearance surface is deteriorated.
On the other hand, when the FRP surface is composed of a reinforced fiber fabric, it is difficult to produce a backlash or the like as compared with a case where the FRP surface is aligned in one direction. Therefore, when manufacturing FRP that requires processing such as drilling and partial cutting, a reinforced fiber woven prepreg is often used as a molding material for surface FRP.

しかし、表面に強化繊維織物プリプレグを用いて圧縮成形によりFRPを製造すると、
強化繊維織物の織組織の凹凸がそのままFRPの表面に現れるため、FRP表面の平滑性
が悪くなる原因となっていた。そのため、外観の表面平滑性が求められる、自動車や鉄道
車輌の外装材等で、穴あけや部分的な切断などの加工が必要な場合は、圧縮成形でFRP
を製造することは困難であった。
特開昭61−43450号公報 特開昭61−43451号公報 特開昭61−43452号公報
However, when FRP is produced by compression molding using a reinforced fiber fabric prepreg on the surface,
The unevenness of the woven structure of the reinforcing fiber fabric appears as it is on the surface of the FRP, which causes the smoothness of the FRP surface to deteriorate. Therefore, if processing such as drilling or partial cutting is required for exterior materials of automobiles and railway vehicles where surface smoothness of the exterior is required, FRP is used for compression molding.
It was difficult to manufacture.
JP 61-43450 A JP 61-43451 A JP 61-43452 A

本発明の課題は、穴あけや部分的切断といった加工後の外観がよく、表面平滑性に優れ
たFRPを圧縮成形により得ることである。
An object of the present invention is to obtain an FRP having a good appearance after processing such as drilling and partial cutting and excellent in surface smoothness by compression molding.

本発明の要旨は、少なくとも成形後に表面平滑性が要求される部分に、目付が160g
/m以下、開口率が4%以下の強化繊維織物と熱硬化性樹脂組成物とからなるプリプレ
グを配置したFRP用成形材料、および、この成形材料を圧縮成形するFRPの製造方法
である。
The gist of the present invention is that the basis weight is 160 g at least in a portion where surface smoothness is required after molding.
This is a molding material for FRP in which a prepreg composed of a reinforcing fiber woven fabric having a / m 2 or less and an opening ratio of 4% or less and a thermosetting resin composition is disposed, and a method for producing FRP by compression molding the molding material.

本発明のFRP用成形材料を用いることで、表面平滑性に優れ、かつ、部分的切断や穴
あけなどの穴あけや部分的切断などの加工後の外観がよくFRPを圧縮成形により得るこ
とができる。
By using the molding material for FRP of the present invention, the surface smoothness is excellent, and the appearance after processing such as drilling or partial cutting such as partial cutting or drilling is good, and FRP can be obtained by compression molding.

以下では、本発明のFRP用成形材料について説明する。   Below, the molding material for FRP of this invention is demonstrated.

本発明のFRP用成形材料は、少なくとも成形後に表面平滑性が要求される部分に、目
付が160g/m以下、開口率が4%以下の強化繊維織物と熱硬化性樹脂組成物とから
なるプリプレグを配置したものである。
The molding material for FRP of the present invention comprises a reinforced fiber fabric having a basis weight of 160 g / m 2 or less and an aperture ratio of 4% or less and a thermosetting resin composition at least in a portion where surface smoothness is required after molding. A prepreg is arranged.

(強化繊維織物)
強化繊維織物は、平織、綾織、簾織、朱子織など、いかなる織組織の強化繊維織物であ
ってもよい。
強化繊維織物を構成する強化繊維の種類も特に制限はない。例えば、炭素繊維、アラミ
ド繊維、ボロン繊維、スチール繊維、PBO繊維、高強度ポリエチレン繊維、ガラス繊維
などが例示できる。また、強化繊維織物中に、これらの強化繊維を複数種用いてもよい。
(Reinforced fiber fabric)
The reinforcing fiber woven fabric may be a reinforcing fiber woven fabric having any woven structure such as plain weave, twill weave, silk weave and satin weave.
There is also no particular limitation on the type of reinforcing fiber constituting the reinforcing fiber fabric. Examples thereof include carbon fiber, aramid fiber, boron fiber, steel fiber, PBO fiber, high-strength polyethylene fiber, and glass fiber. In addition, a plurality of these reinforcing fibers may be used in the reinforcing fiber fabric.

特に、炭素繊維は比強度および比弾性に優れるので好ましい。アラミド繊維や高強度ポ
リエチレン繊維などの高強度有機繊維は、FRPに耐衝撃性が付与されるので好ましい。
ガラス繊維を用いると、これら強化繊維の中で比較的安価なわりに強度に優れるので好ま
しい。
In particular, carbon fiber is preferable because it is excellent in specific strength and specific elasticity. High-strength organic fibers such as aramid fibers and high-strength polyethylene fibers are preferable because impact resistance is imparted to the FRP.
It is preferable to use glass fibers because these reinforcing fibers are relatively inexpensive and excellent in strength.

本発明は、目付が160g/m以下の強化繊維織物を用いることを特徴としている。 The present invention is characterized by using a reinforcing fiber fabric having a basis weight of 160 g / m 2 or less.

先に述べたように、FRP表面の強化繊維が織物を構成していると強化繊維織物の織組
織の凹凸がFRP表面に現れることがある。よって、かかる問題を解決するために、織組
織の凹凸ができるだけ小さい強化繊維織物を用いるとよい。
As described above, when the reinforcing fibers on the FRP surface constitute a woven fabric, irregularities of the woven structure of the reinforcing fiber woven fabric may appear on the FRP surface. Therefore, in order to solve such a problem, it is preferable to use a reinforced fiber fabric in which the unevenness of the woven structure is as small as possible.

そこで、本発明では、目付の低い強化繊維織物を用いることで、強化繊維織物の織組織
の凹凸を小さくすることで、より表面平滑性の高いFRPが得られることを見出したので
ある。特に、目付を160g/m以下とすると、成形後に表面平滑性が要求される部分
の表面中心線平均粗さ(Ra)が0.5μm以下とすることができる。さらに、目付を1
40g/mとするとRaを0.4μm以下とすることができるので好ましい。目付の下
限値は特に限定されないが、目付が100g/m未満の強化繊維織物は、織組織が粗に
なりすぎて扱いが難しいので、目付を100g/m以上とすることが好ましい。
Therefore, the present invention has found that FRP with higher surface smoothness can be obtained by reducing the unevenness of the woven structure of the reinforcing fiber fabric by using the reinforcing fiber fabric having a low basis weight. In particular, when the basis weight is 160 g / m 2 or less, the surface centerline average roughness (Ra) of the portion where surface smoothness is required after molding can be 0.5 μm or less. Furthermore, the basis weight is 1
When it is 40 g / m 2 , Ra can be 0.4 μm or less, which is preferable. The lower limit value of the basis weight is not particularly limited, but the reinforcing fiber woven fabric having a basis weight of less than 100 g / m 2 is difficult to handle because the woven structure becomes too rough, and thus the basis weight is preferably set to 100 g / m 2 or more.

また、本発明のプリプレグに用いる強化繊維織物の開口率は4%以下ことが必要である
。開口率を小さくすることで、より織組織の凹凸の少ない強化繊維織物となるからである
。特に2%以下であると、強化繊維織物の表面が平滑であるので好ましい。
The opening ratio of the reinforcing fiber fabric used for the prepreg of the present invention is required to be 4% or less. This is because by reducing the aperture ratio, a reinforced fiber fabric with less unevenness in the woven structure is obtained. In particular, 2% or less is preferable because the surface of the reinforcing fiber fabric is smooth.

開口率は、強化繊維織物の表面上に面積S1の領域を設定し、面積S1内において強化
繊維の開口部の全面積をS2としたときの、次式で定義される値X(%)である。
X(%)=(S1/S2)×100
強化繊維織物の開口部の全面積S2は、強化繊維織物の下部から光を透過し、その光の
透過部分を画像処理センサーを用いて画像処理することにより測定することができる。
The opening ratio is a value X (%) defined by the following equation when a region of area S1 is set on the surface of the reinforcing fiber fabric, and the total area of the openings of the reinforcing fibers in the area S1 is S2. is there.
X (%) = (S1 / S2) × 100
The total area S2 of the opening portion of the reinforcing fiber fabric can be measured by transmitting light from the lower portion of the reinforcing fiber fabric and subjecting the light transmission portion to image processing using an image processing sensor.

開口率が4%以下の強化繊維織物を得るための方法として、強化繊維に開繊処理を施し
て、その開口率を4%以下としても構わない。
強化繊維織物に対する開繊処理の方法は、いかなる方法も用いることができる。例えば
、鋼球で強化繊維織物表面に鋼球を衝突させる方法、強化繊維織物表面を梨地表面で擦過
する方法、強化繊維織物表面に水やエアを吹きつける方法、強化繊維織物表面にローラー
等で振動を与える方法、静電気開繊による方法、超音波開繊による方法などが挙げられる
。特に、鋼球で強化繊維織物表面に鋼球を衝突させる方法は、開繊後の乾燥などの後処理
が不要であるので好ましい。
As a method for obtaining a reinforced fiber woven fabric having an opening ratio of 4% or less, the opening ratio may be set to 4% or less by applying a fiber opening treatment to the reinforcing fibers.
Any method can be used as a method for the fiber opening treatment of the reinforcing fiber fabric. For example, a method in which a steel ball collides with the surface of a reinforcing fiber fabric with a steel ball, a method of rubbing the surface of the reinforcing fiber fabric with a satin surface, a method of spraying water or air on the surface of the reinforcing fiber fabric, a roller or the like on the surface of the reinforcing fiber fabric Examples include a method of applying vibration, a method of electrostatic opening, and a method of ultrasonic opening. In particular, the method of causing the steel ball to collide with the surface of the reinforcing fiber fabric with the steel ball is preferable because post-treatment such as drying after the fiber opening is unnecessary.

(熱硬化性樹脂組成物)
プリプレグに用いる熱硬化性樹脂組成物の種類は特に制限はなく、エポキシ樹脂、フェ
ノール樹脂、不飽和ビニルエステル樹脂、不飽和ポリエステル樹脂、ビスマレイミド樹脂
、BT樹脂、シアネートエステル樹脂、ベンゾオキサジン樹脂などを主成分とする熱硬化
性樹脂組成物のいずれも好適の用いることができる。
(Thermosetting resin composition)
The type of thermosetting resin composition used for the prepreg is not particularly limited, and includes epoxy resin, phenol resin, unsaturated vinyl ester resin, unsaturated polyester resin, bismaleimide resin, BT resin, cyanate ester resin, benzoxazine resin, etc. Any thermosetting resin composition having a main component can be preferably used.

特に、エポキシ樹脂は、強化繊維との接着性が良いので、強度に優れたFRPを得る場
合に特に好ましく用いることができる。エポキシ樹脂の種類としては、例えば、2官能性
エポキシ樹脂では、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂
、ビスフェノールS型エポキシ樹脂、ビフェニル型エポキシ樹脂、ナフタレン型エポキシ
樹脂、ジシクロペンタジエン型エポキシ樹脂、フルオレン型エポキシ樹脂およびこれらい
ずれかを変性したエポキシ樹脂等を、3官能以上の多官能性エポキシ樹脂では、フェノー
ルノボラック型エポキシ樹脂、クレゾール型エポキシ樹脂、テトラグリシジルジアミノジ
フェニルメタン、トリグリシジルアミノフェノール、テトラグリシジルアミンのようなグ
リシジルアミン型エポキシ樹脂、テトラキス(グリシジルオキシフェニル)エタンやトリ
ス(グリシジルオキシメタン)のようなグリシジルエーテル型エポキシ樹脂およびこれら
いずれかを変性したエポキシ樹脂をいずれも好適に用いることができる。
In particular, the epoxy resin has good adhesion to the reinforcing fiber, and can be particularly preferably used when obtaining FRP having excellent strength. Examples of the types of epoxy resins include bifunctional epoxy resins, bisphenol A type epoxy resins, bisphenol F type epoxy resins, bisphenol S type epoxy resins, biphenyl type epoxy resins, naphthalene type epoxy resins, dicyclopentadiene type epoxy resins. , Fluorene type epoxy resins and epoxy resins modified with any of these are used in polyfunctional epoxy resins having three or more functional groups, such as phenol novolac type epoxy resins, cresol type epoxy resins, tetraglycidyl diaminodiphenylmethane, triglycidyl aminophenol, tetra Glycidylamine type epoxy resin such as glycidylamine, glycidyl ether type epoxy such as tetrakis (glycidyloxyphenyl) ethane and tris (glycidyloxymethane) Both the resin and these either the modified epoxy resin can be suitably used.

エポキシ樹脂組成物として、エポキシ樹脂と分子内に硫黄原子を含む硬化剤とを併用す
ると、エポキシ樹脂の効果速度を速める傾向があるため、短時間で成形が完了するので好
ましい。特に、分子内の硫黄原子含有率が7質量%以上とするとより好ましい。
分子内に硫黄原子を含む硬化剤の例としては、4,4’−ジアミノジフェニルスルフォ
ン、ジアミノジフェニルスルファイド、ビス(4−(4アミノフェノキシ)フェニル)ス
ルフォン、ビス(4−(3アミノフェノキシ)フェニル)スルフォン、4,4’−ジアミ
ノジフェニルスルファイド、o−トリアジンスルフォン、などが挙げられる。
When an epoxy resin and a curing agent containing a sulfur atom in the molecule are used in combination as the epoxy resin composition, the effect speed of the epoxy resin tends to be increased, and thus molding is completed in a short time. In particular, the sulfur atom content in the molecule is more preferably 7% by mass or more.
Examples of curing agents containing a sulfur atom in the molecule include 4,4′-diaminodiphenylsulfone, diaminodiphenylsulfide, bis (4- (4aminophenoxy) phenyl) sulfone, and bis (4- (3aminophenoxy). Phenyl) sulfone, 4,4′-diaminodiphenyl sulfide, o-triazine sulfone, and the like.

また、熱硬化性樹脂組成物には、硬化剤の他にも、3−(3,4−ジクロロフェニル−
1,1−ジメチルウレア(DCMU)や3−フェニル−N,N−ジメチルウレア(PDM
U)などの尿素化合物やジシアンジアミドなどのアミン化合物といった硬化助剤、ポリビ
ニルフォルマールやフェノキシ樹脂といった熱可塑性樹脂、金属酸化物や金属水酸化物と
いった難燃剤を加えることもできる。
In addition to the curing agent, the thermosetting resin composition includes 3- (3,4-dichlorophenyl-
1,1-dimethylurea (DCMU) or 3-phenyl-N, N-dimethylurea (PDM)
Curing aids such as urea compounds such as U) and amine compounds such as dicyandiamide, thermoplastic resins such as polyvinyl formal and phenoxy resins, and flame retardants such as metal oxides and metal hydroxides can also be added.

(FRP用成形材料)
本発明のFRP用成形材料の、成形後に表面平滑性が要求される部分の表面に配置した
、強化繊維織物と熱硬化性樹脂組成物とからなるプリプレグ以外の部分(以下、基材とい
う。)は、いかなるものを用いてもよいが、特に、強化繊維と熱硬化性樹脂組成物からな
っているとFRPとしたときの強度の向上が見込めるので好ましい。
基材に用いる強化繊維の種類は特に制限はなく、炭素繊維、アラミド繊維、ボロン繊維
、スチール繊維、PBO繊維、高強度ポリエチレン繊維、ガラス繊維などが例示できる。
また、基材に用いる熱硬化性樹脂組成物の種類にも特に制限はなく、エポキシ樹脂、フェ
ノール樹脂、不飽和ビニルエステル樹脂、不飽和ポリエステル樹脂、ビスマレイミド樹脂
、BT樹脂、シアネートエステル樹脂、ベンゾオキサジン樹脂などを主成分とする熱硬化
性樹脂組成物が例として挙げられる。
基材の形状も、いかなる形態であってよい。例えば、一方向プリプレグ、織物プリプレ
グ、シートモールディングコンパウンド、またはこれらの組み合わせいずれであってもよ
い。
本発明でいう、成形後に表面平滑性が要求される部分の表面とは、FRP用成形材料の
表面全体であっても、表面の一部分であってもよく、製造するFRPの用途に応じて決定
できる。
(FRP molding material)
The part other than the prepreg composed of the reinforcing fiber fabric and the thermosetting resin composition (hereinafter referred to as the base material) disposed on the surface of the part requiring surface smoothness after molding of the molding material for FRP of the present invention. Any material may be used, but it is particularly preferable that it is composed of a reinforcing fiber and a thermosetting resin composition since strength improvement can be expected when FRP is used.
The type of reinforcing fiber used for the substrate is not particularly limited, and examples thereof include carbon fiber, aramid fiber, boron fiber, steel fiber, PBO fiber, high-strength polyethylene fiber, and glass fiber.
Further, the type of thermosetting resin composition used for the substrate is not particularly limited, and epoxy resin, phenol resin, unsaturated vinyl ester resin, unsaturated polyester resin, bismaleimide resin, BT resin, cyanate ester resin, benzo An example is a thermosetting resin composition mainly composed of an oxazine resin.
The shape of the substrate may be any form. For example, the unidirectional prepreg, the woven prepreg, the sheet molding compound, or a combination thereof may be used.
In the present invention, the surface of the portion requiring surface smoothness after molding may be the entire surface of the molding material for FRP or a part of the surface, and is determined according to the use of the FRP to be manufactured. it can.

(FRPの製造方法)
このようなFRP用成形材料を圧縮成形して、熱硬化性樹脂組成物を硬化することによ
り、本発明のFRPを製造することができる。本発明の圧縮成形の条件は、FRP用成形
材料の熱硬化性樹脂組成物の、種類や含有率等によって適宜決定できる。特に、短時間で
成形を完了したい場合は、成形型の温度をあらかじめ120℃以上に調温してからFRP
用成形材料を成形型内に配置し、成形型の温度を保ったまま型締めして、2MPa以上の
圧力で成形すると、成形が短時間で終了する。中でも、成形条件を、成形型の温度を14
0℃以上、成形圧力8MPaとすると5分以内での成形が可能となる。
(FRP manufacturing method)
The FRP of the present invention can be produced by compression-molding such a molding material for FRP and curing the thermosetting resin composition. The compression molding conditions of the present invention can be appropriately determined depending on the type and content of the thermosetting resin composition of the FRP molding material. In particular, if you want to complete the molding in a short time, adjust the temperature of the mold in advance to 120 ° C or higher before FRP
When the molding material is placed in a mold, the mold is clamped while maintaining the temperature of the mold, and molding is performed at a pressure of 2 MPa or more, the molding is completed in a short time. Among them, the molding conditions were set at a mold temperature of 14
If the temperature is 0 ° C. or higher and the molding pressure is 8 MPa, molding within 5 minutes becomes possible.

以下、実施例および比較例により本発明をさらに詳しく説明する。   Hereinafter, the present invention will be described in more detail with reference to Examples and Comparative Examples.

<熱硬化性樹脂組成物>
本実施例では、熱硬化性樹脂組成物として、以下の成分を、均一になるまで80℃で混
合して得られるエポキシ樹脂組成物を用いた。
・エピコート828(ビスフェノールA型エポキシ樹脂(室温で液状)、ジャパンエポキ
シレジン(株)製)50重量部、
・エピコート1009(ビスフェノールA型エポキシ樹脂(室温で固体)、ジャパンエポ
キシレジン(株)製)50質量部、
・セイカキュアS(4,4’−ジアミノジメチルスルフォン、和歌山精化(株)製)10
質量部
・オミキュア94(3−フェニル−1,1−ジメチルウレア、PTIジャパン(株))5
質量部
・DICY15(ジシアンジアミド、ジャパンエポキシレジン(株)製)5質量部
<Thermosetting resin composition>
In this example, an epoxy resin composition obtained by mixing the following components at 80 ° C. until uniform was used as the thermosetting resin composition.
・ Epicoat 828 (bisphenol A type epoxy resin (liquid at room temperature), Japan Epoxy Resin Co., Ltd.) 50 parts by weight,
・ Epicoat 1009 (bisphenol A type epoxy resin (solid at room temperature), manufactured by Japan Epoxy Resins Co., Ltd.) 50 parts by mass,
Seikacure S (4,4′-diaminodimethylsulfone, manufactured by Wakayama Seika Co., Ltd.) 10
Part by mass / Omicure 94 (3-phenyl-1,1-dimethylurea, PTI Japan Ltd.) 5
Mass part · DICY15 (Dicyandiamide, manufactured by Japan Epoxy Resin Co., Ltd.) 5 parts by mass

<強化繊維織物の製造>
三菱レイヨン(株)製炭素繊維TR30S(フィラメント数3000本)をたて糸およ
びよこ糸として、津田駒製のレピア織機を用いて平織の強化繊維織物を製織した。以下の
実施例では、表1に記載したとおりの目付である、異なる4種類の強化繊維織物A、B、
CおよびDを得た。
<Manufacture of reinforced fiber fabric>
A plain fiber reinforced fiber fabric was woven using a rapier loom made by Tsuda Koma using Mitsubishi Rayon Co., Ltd. carbon fiber TR30S (3,000 filaments) as warp and weft. In the following examples, four different types of reinforcing fiber fabrics A, B, having a basis weight as described in Table 1,
C and D were obtained.

<開口率の測定>
強化繊維織物の開口率の測定は以下のようにして行った。まず(株)キーエンス製、一
方から光を当てた強化繊維織物表面の様子を画像処理装置CV−100を用いて画像処理
することにより、強化繊維織物の100mmあたりの開口部の全面積S2(mm)を
測定し、このS2を式(1)に代入して開口率Xを算出した。
X(%)=(S2(mm)/100(mm))×100…(1)
この方法で測定した、強化繊維織物A〜Dそれぞれの開口率を表1に示した。
<Measurement of aperture ratio>
The aperture ratio of the reinforcing fiber fabric was measured as follows. First, an entire area S2 of the opening per 100 mm 2 of the reinforcing fiber fabric is obtained by performing image processing on the surface of the reinforcing fiber fabric, which is manufactured by Keyence Co., Ltd., using the image processing apparatus CV-100. mm 2 ) was measured, and the aperture ratio X was calculated by substituting S2 into the equation (1).
X (%) = (S2 (mm 2 ) / 100 (mm 2 )) × 100 (1)
The opening ratios of the reinforcing fiber fabrics A to D measured by this method are shown in Table 1.

Figure 2005126557
Figure 2005126557

<表面中心線平均粗さ(Ra)の測定>
表面中心線平均粗さ(Ra)の測定は、(株)ミツトヨ製サーフテスターを用いて測定
した。カットオフ値0.8mm、測定長さ2.4mmの測定条件でFRPの表面の中心3
ヶ所について測定し、この3ヶ所の測定地の平均として算出した。
<実施例1>
<Measurement of surface centerline average roughness (Ra)>
The surface centerline average roughness (Ra) was measured using a Mitutoyo Surf Tester. The center 3 of the surface of the FRP under the measurement conditions of a cut-off value of 0.8 mm and a measurement length of 2.4 mm
Measurements were taken at the three locations and calculated as the average of these three locations.
<Example 1>

まず、強化繊維織物Aの開繊処理を鋼球衝突開繊装置(鋼球の速度:1mm/分)を用
いて行った。開繊処理は、強化繊維織物Aに150℃の熱風を付与しながら、鋼球を強化
繊維織物Aに衝突させることにより行った。次に、開繊処理を施した強化繊維織物A(開
口率2.9%)に、エポキシ樹脂組成物を樹脂フィルム状にしたものを75℃に加熱した
2対の加熱ロールを用いて含浸して、プリプレグ中のエポキシ樹脂組成物の含有率が40
%の織物プリプレグを得た。
一方、エポキシ樹脂組成物の樹脂フィルムを、三菱レイヨン(株)製炭素繊維TR50
Sを繊維目付250g/mで一方向に引き揃えたシートに、75℃に加熱した2対の加
熱ロールを用いて含浸して、樹脂含有率30%の一方向プリプレグを製造した。そして、
この一方向プリプレグを300mm×300mmに切りそろえたものを、第一層の繊維配
向が0°方向、次の層が90°方向となるように交互に重ねて9プライ積層して積層体と
した。さらに、この積層体の片面に織物プリプレグを貼り合わせて本発明のFRP用成形
材料を得た。
First, the opening treatment of the reinforcing fiber fabric A was performed using a steel ball collision opening device (steel ball speed: 1 mm / min). The fiber opening treatment was performed by causing a steel ball to collide with the reinforcing fiber fabric A while applying 150 ° C. hot air to the reinforcing fiber fabric A. Next, the reinforcing fiber fabric A (opening ratio: 2.9%) subjected to the fiber opening treatment is impregnated with two pairs of heating rolls heated to 75 ° C. in the form of a resin film of the epoxy resin composition. The content of the epoxy resin composition in the prepreg is 40
% Woven prepreg was obtained.
On the other hand, the resin film of the epoxy resin composition is carbon fiber TR50 manufactured by Mitsubishi Rayon Co., Ltd.
A sheet in which S was aligned in one direction with a fiber basis weight of 250 g / m 2 was impregnated using two pairs of heating rolls heated to 75 ° C. to produce a unidirectional prepreg with a resin content of 30%. And
The unidirectional prepregs cut to 300 mm × 300 mm were alternately stacked so that the fiber orientation of the first layer was in the 0 ° direction and the next layer was in the 90 ° direction, thereby laminating 9 plies to obtain a laminate. Further, a woven fabric prepreg was bonded to one side of the laminate to obtain the FRP molding material of the present invention.

このFRP用成形材料を、予め成形型の温度を140℃に調温した上型と下型とからな
る成形型内に配置した。FRP用成形材料を配置した後すぐに、上型を降ろして成形型を
締め、FRP用成形材料に8MPaの圧力を5分間かけた後、型開きを行い、成形型の温
度を140℃に保ったまま、成形型に備え付けられたイジェクタピンを用いて、縦300
mm、横300mm、厚さ2.2mmの平板状のFRPを取り出した。このFRPについ
て目視による外観検査を行ったところ、表面外観が鮮明であった。また、このFRPのR
aは0.31μmであり、非常に平滑なものが得られた。
<実施例2>
This molding material for FRP was placed in a molding die composed of an upper die and a lower die whose temperature was adjusted to 140 ° C. in advance. Immediately after placing the molding material for FRP, the upper die is lowered and the molding die is tightened. After applying a pressure of 8 MPa to the molding material for FRP for 5 minutes, the mold is opened and the temperature of the molding die is maintained at 140 ° C. While using the ejector pin provided in the mold,
A flat plate-shaped FRP having a thickness of 300 mm, a width of 300 mm, and a thickness of 2.2 mm was taken out. When this FRP was visually inspected, the surface appearance was clear. The R of this FRP
a was 0.31 μm, and a very smooth product was obtained.
<Example 2>

強化繊維織物を強化繊維織物Bに変更した以外は、実施例1と同様にしてFRPを得た
。なお、開繊処理を施した強化繊維織物Bの開口率は2%であった。
このFRPについて目視による外観検査を行ったところ、表面外観が鮮明なFRPであ
った。また、このFRPのRaは0.36μmであり平滑なものが得られた。
<実施例3>
FRP was obtained in the same manner as in Example 1 except that the reinforcing fiber fabric was changed to the reinforcing fiber fabric B. The opening ratio of the reinforcing fiber fabric B subjected to the fiber opening treatment was 2%.
When this FRP was visually inspected, the surface appearance was clear. Further, Ra of this FRP was 0.36 μm, and a smooth one was obtained.
<Example 3>

強化繊維織物を、強化繊維織物Cに変更した以外は、実施例1と同様にしてFRPを得
た。なお、開繊処理を施した強化繊維織物Cの開口率は、0.02%であった。
このFRPについて目視による外観検査を行ったところ、表面外観が鮮明なFRPであ
った。また、このFRPのRaは0.40μmであり、平滑なものが得られた。
<比較例1>
FRP was obtained in the same manner as in Example 1 except that the reinforcing fiber fabric was changed to the reinforcing fiber fabric C. The opening ratio of the reinforcing fiber fabric C subjected to the fiber opening treatment was 0.02%.
When this FRP was visually inspected, the surface appearance was clear. Moreover, Ra of this FRP was 0.40 μm, and a smooth one was obtained.
<Comparative Example 1>

強化繊維織物を、強化繊維織物Dに変更した以外は、実施例1と同様にしてFRPを得
た。なお、開繊処理を施した強化繊維織物Dの開口率は0.01%であった。
このFRPのRaは0.55μmと各実施例で得られた成形品より粗く、目視による外
観検査でもスジ状の欠点も見られた。
<比較例2>
FRP was obtained in the same manner as in Example 1 except that the reinforcing fiber fabric was changed to the reinforcing fiber fabric D. The opening ratio of the reinforcing fiber fabric D subjected to the fiber opening treatment was 0.01%.
The Ra of FRP was 0.55 μm, which was coarser than the molded product obtained in each example, and streaky defects were also observed in visual inspection.
<Comparative example 2>

強化繊維織物Cに開繊処理を施さずに用いた以外は、実施例3と同様にしてFRPを得
た。なお、開繊処理を施した強化繊維織物Cの開口率は、5%であった。このFRPにつ
いて目視による外観検査を行ったところ、わずかに表面外観に欠点が発生した。また、こ
のFRPの平均表面粗さRaは、0.47μmであった。
FRP was obtained in the same manner as in Example 3 except that the reinforcing fiber fabric C was used without being subjected to fiber opening treatment. The opening ratio of the reinforcing fiber fabric C subjected to the fiber opening treatment was 5%. When visual inspection was performed on this FRP, a slight defect occurred in the surface appearance. The average surface roughness Ra of the FRP was 0.47 μm.

本発明の製造方法で得られるFRPは、表面平滑性に優れるので、平滑性が求められか
つ表面に加工が必要な部材に用いることができる。具体的には、オートバイフレーム、カ
ウル、フェンダー等の二輪車用途、ドア、ボンネット、テールゲート、サイドフェンダー
、側面パネル、フェンダー、エネルギー吸収部材、トランクリッド、ハードップ、サイド
ミラーカバー、スポイラー、ディフューザー、スキーキャリアー、エンジンシリンダーカ
バー、エンジンフード、シャシー、エアースポイラー、プロペラシャフト等の自動車部品
用途や、先頭車両ノーズ、ルーフ、サイドパネル、ドア、台車カバー、側スカートなどの
車輌用外板用途、荷物棚、座席等の鉄道車輌用途、インテリア、ウイングトラックにおけ
るウイングのインナーパネル、アウターパネル、ルーフ、フロアー等、自動車や単車に装
着するやサイドスカート、などのエアロパーツ用途や、窓枠、荷物棚、座席、フロアパネ
ル、翼、プロペラ、胴体等の航空機用途、ノートパソコン、携帯電話等の筐体用途、フラ
ットスピーカーパネル、スピーカーコーン等の音響製品用途、ゴルフヘッド、フェースプ
レート、スノーボード、サーフィンボード、プロテクター等のスポーツ用品用途が挙げら
れる。
Since FRP obtained by the production method of the present invention is excellent in surface smoothness, it can be used for a member that requires smoothness and requires processing on the surface. Specifically, motorcycle frames, cowls, fenders and other motorcycles, doors, bonnets, tailgates, side fenders, side panels, fenders, energy absorbing members, trunk lids, hardtops, side mirror covers, spoilers, diffusers, ski carriers , Engine cylinder covers, engine hoods, chassis, air spoilers, propeller shafts and other automotive parts applications, leading vehicle noses, roofs, side panels, doors, bogie covers, side skirts and other vehicle skins, luggage racks, seats Such as railway vehicles, interiors, wing inner panels, outer panels, roofs, floors, aero parts such as side skirts for automobiles and motorcycles, window frames, luggage racks, seats, Air panels, wings, propellers, fuselage aircraft applications, notebook PCs, mobile phone case applications, flat speaker panels, speaker cones and other acoustic product applications, golf heads, faceplates, snowboards, surf boards, protector sports Goods use is mentioned.

Claims (6)

少なくとも成形後に表面平滑性が要求される部分の表面に、目付が160g/m以下
、開口率が4%以下の強化繊維織物と熱硬化性樹脂組成物とからなるプリプレグを配置し
た繊維強化樹脂複合材料用成形材料。
A fiber reinforced resin in which a prepreg composed of a reinforced fiber fabric having a basis weight of 160 g / m 2 or less and an aperture ratio of 4% or less and a thermosetting resin composition is disposed at least on the surface of a portion requiring surface smoothness after molding. Molding material for composite materials.
強化繊維が、炭素繊維、ガラス繊維、アラミド繊維および高強度ポリエチレン繊維から
なる群から選ばれる少なくとも一種類以上の強化繊維である請求項1記載の繊維強化樹脂
複合材料用成形材料。
The molding material for fiber-reinforced resin composite material according to claim 1, wherein the reinforcing fiber is at least one kind of reinforcing fiber selected from the group consisting of carbon fiber, glass fiber, aramid fiber and high-strength polyethylene fiber.
熱硬化性樹脂組成物がエポキシ樹脂組成物である、請求項1または2記載の繊維強化樹
脂複合材料用成形材料。
The molding material for fiber-reinforced resin composite materials according to claim 1 or 2, wherein the thermosetting resin composition is an epoxy resin composition.
エポキシ樹脂組成物が、エポキシ樹脂および分子内に硫黄原子を有する硬化剤を含むエ
ポキシ樹脂組成物である、請求項3記載の繊維強化樹脂複合材料用成形材料。
The molding material for fiber reinforced resin composite materials according to claim 3, wherein the epoxy resin composition is an epoxy resin composition containing an epoxy resin and a curing agent having a sulfur atom in the molecule.
請求項1〜4のいずれか一項記載の繊維強化樹脂複合材料用成形材料を圧縮成形して熱
硬化性樹脂組成物を硬化する繊維強化樹脂複合材料の製造方法。
The manufacturing method of the fiber reinforced resin composite material which compression-molds the molding material for fiber reinforced resin composite materials as described in any one of Claims 1-4, and hardens | cures a thermosetting resin composition.
圧縮成形が、予め120℃以上に調温した成形型内に繊維強化樹脂複合材料用成形材料
を配置し、型締めして繊維強化樹脂複合材料用成形材料に2MPa以上の圧力をかける圧
縮成形である請求項5記載の繊維強化樹脂複合材料の製造方法。
Compression molding is a compression molding in which a molding material for fiber reinforced resin composite material is placed in a mold that has been conditioned to 120 ° C or higher in advance, and the mold is clamped to apply a pressure of 2 MPa or more to the molding material for fiber reinforced resin composite material. A method for producing a fiber-reinforced resin composite material according to claim 5.
JP2003363045A 2003-10-23 2003-10-23 Molding material for and manufacturing method of fiber-reinforced resin composite material Pending JP2005126557A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003363045A JP2005126557A (en) 2003-10-23 2003-10-23 Molding material for and manufacturing method of fiber-reinforced resin composite material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003363045A JP2005126557A (en) 2003-10-23 2003-10-23 Molding material for and manufacturing method of fiber-reinforced resin composite material

Publications (1)

Publication Number Publication Date
JP2005126557A true JP2005126557A (en) 2005-05-19

Family

ID=34642480

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003363045A Pending JP2005126557A (en) 2003-10-23 2003-10-23 Molding material for and manufacturing method of fiber-reinforced resin composite material

Country Status (1)

Country Link
JP (1) JP2005126557A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007061044A1 (en) 2005-11-25 2007-05-31 Hamamatsu Foundation For Science And Technology Promotion Ultrasonic vibration machining method and fiber reinforced resin produced by said method
JP2007224269A (en) * 2006-01-27 2007-09-06 Shin Kobe Electric Mach Co Ltd Prepreg for heat- and press-molding, and laminated board
JP2009510207A (en) * 2005-09-30 2009-03-12 エアバス エスパーニャ、ソシエダ リミタダ Surface treatment of composite structures by atmospheric pressure plasma beam
US8152421B2 (en) 2007-05-18 2012-04-10 Hukuzo Yagishita Apparatus and method for drilling a work
JP2013213710A (en) * 2012-04-02 2013-10-17 Kawasaki Heavy Ind Ltd Minute crack sensor of concrete
KR20180056454A (en) * 2016-11-18 2018-05-29 재단법인 한국탄소융합기술원 Method for manufacturing carbon fiber reinforced plastic roof rail

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009510207A (en) * 2005-09-30 2009-03-12 エアバス エスパーニャ、ソシエダ リミタダ Surface treatment of composite structures by atmospheric pressure plasma beam
WO2007061044A1 (en) 2005-11-25 2007-05-31 Hamamatsu Foundation For Science And Technology Promotion Ultrasonic vibration machining method and fiber reinforced resin produced by said method
JP2007224269A (en) * 2006-01-27 2007-09-06 Shin Kobe Electric Mach Co Ltd Prepreg for heat- and press-molding, and laminated board
US8152421B2 (en) 2007-05-18 2012-04-10 Hukuzo Yagishita Apparatus and method for drilling a work
USRE45948E1 (en) 2007-05-18 2016-03-29 Hukuzo Yagishita Apparatus and method for drilling a work
JP2013213710A (en) * 2012-04-02 2013-10-17 Kawasaki Heavy Ind Ltd Minute crack sensor of concrete
KR20180056454A (en) * 2016-11-18 2018-05-29 재단법인 한국탄소융합기술원 Method for manufacturing carbon fiber reinforced plastic roof rail
KR101884170B1 (en) * 2016-11-18 2018-09-21 재단법인 한국탄소융합기술원 Method for manufacturing carbon fiber reinforced plastic roof rail

Similar Documents

Publication Publication Date Title
TWI754688B (en) Fiber-reinforced composite material and manufacturing method of fiber-reinforced composite material
JP4603978B2 (en) Manufacturing method of fiber reinforced composite material molded article
EP1928943B1 (en) Linerless prepregs, composite articles therefrom, and related methods
CN1944528B (en) Epoxy resin for prepreg, prepreg, fiber-reinforced composite material, and processes for producing same
JP2004050574A (en) Prepreg and method for producing fiber-reinforced composite material using prepreg
JP2007191633A (en) Resin composition for prepreg sheet and prepreg sheet
EP3974140A1 (en) Prepreg, laminate, and molded article
EP3808521A1 (en) Fiber-reinforced resin composite body, production method therefor, and non-woven fabric for use in fiber-reinforced resin composite body
JP2006265458A (en) Resin composition for prepregs, and prepreg
JP5173358B2 (en) Prepreg with protective film
JP2005126557A (en) Molding material for and manufacturing method of fiber-reinforced resin composite material
JP5138506B2 (en) Epoxy resin composition and prepreg
JP5966969B2 (en) Manufacturing method of prepreg
CN114746237B (en) Composite prepreg and fiber-reinforced resin molded article
CN113811439B (en) Fiber-reinforced resin base material, integrated molded article, and method for producing fiber-reinforced resin base material
CN112677602A (en) Toughening material for prepreg, high-toughness composite material and preparation method of high-toughness composite material
KR101884606B1 (en) Epoxy resin composition for fiber reinforced composite with high impact resistance and high strength
CN114787252B (en) Prepreg, laminate, and integrated molded article
KR20190061662A (en) Preparation method of quasi-isotropic chopped prepreg sheet and composite materials formed using the same for shock absorption and damping effect
JP2004338270A (en) Method for producing fiber-reinforced resin composite material and fiber-reinforced resin composite material
JP2005271350A (en) Cover member made of carbon fiber-reinforced plastic
JP2011056798A (en) Method for manufacturing fiber-reinforced composite material molded product
JP7547794B2 (en) Fiber Reinforced Resin Composites
CN114746491B (en) Prepreg, laminate, and integrated molded article
TWI855180B (en) Composite prepreg, preform using the same, fiber-reinforced composite material joint body and manufacturing method thereof