JP2005271350A - Cover member made of carbon fiber-reinforced plastic - Google Patents

Cover member made of carbon fiber-reinforced plastic Download PDF

Info

Publication number
JP2005271350A
JP2005271350A JP2004086471A JP2004086471A JP2005271350A JP 2005271350 A JP2005271350 A JP 2005271350A JP 2004086471 A JP2004086471 A JP 2004086471A JP 2004086471 A JP2004086471 A JP 2004086471A JP 2005271350 A JP2005271350 A JP 2005271350A
Authority
JP
Japan
Prior art keywords
carbon fiber
cover member
reinforced plastic
layer
fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004086471A
Other languages
Japanese (ja)
Inventor
Shigeru Kawashima
茂 川嶋
Yukitane Kimoto
幸胤 木本
Takashi Yoshiyama
高史 吉山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP2004086471A priority Critical patent/JP2005271350A/en
Publication of JP2005271350A publication Critical patent/JP2005271350A/en
Pending legal-status Critical Current

Links

Landscapes

  • Reinforced Plastic Materials (AREA)
  • Laminated Bodies (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a cover member made of a carbon fiber-reinforced plastic excellent in lightweight and safety properties, and suitable for an external sheet member such as a door and a roof for an automobile, and a cowl and a tank cover for a motorcycle. <P>SOLUTION: In the cover member comprising a fiber-reinforced plastic using mainly a carbon fiber as a reinforcing material, the cover member made of the carbon fiber-reinforced plastic is characterized by arranging a layer in which an organic fiber is used as the reinforcing material at the central part in the thickness direction of the sheet. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、軽量且つ安全性に優れた炭素繊維強化プラスチック製カバー部材に関し、とくに、自動車用のドアや屋根、自動二輪車用のカウルやタンクカバーなどの車両用部材の外板部材として最適な炭素繊維強化プラスチック製カバー部材に関する。   BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a lightweight and safe carbon fiber reinforced plastic cover member, and in particular, carbon that is optimal as an outer plate member of a vehicle member such as an automobile door or roof, a cowl or a tank cover for a motorcycle. The present invention relates to a fiber reinforced plastic cover member.

従来、自動車用のドアや屋根、自動二輪車用のカウルやタンクカバーの外板部材には主としてスチールが用いられてきたが、近年軽量化の要求が高まってきたことからアルミニウムや樹脂材料が用いられるようになってきた。樹脂材料の中でも炭素繊維を用いた強化プラスチックは、軽量で強度、剛性が高いことから、最も軽量化に適した材料として使用が広まりつつある。   Conventionally, steel has been mainly used for automobile doors and roofs, motorcycle cowls and tank cover skins, but aluminum and resin materials have been used in recent years due to the growing demand for weight reduction. It has become like this. Among resin materials, reinforced plastics using carbon fibers are light in weight and have high strength and rigidity, and are therefore increasingly used as materials most suitable for weight reduction.

しかしながら、炭素繊維強化プラスチック(以下、CFRPと言うこともある。)には脆性的な破壊形態をとるという特徴があるため、用途が制限されたり、特性を十分に発揮できないことがあった。つまり、車両用カバー部材に適用した場合、破壊して分断したCFRPの鋭い破壊面により、乗員が怪我をすることが想定されるのである。車両事故において車体には極めて大きな力が加わることも想定され、全ての事故で車体が破損しない強度を確保することは難しい。また、必要以上に補強した場合には、車体の重量が大きくなり燃費を悪化させたり、走行性能に悪影響を与えることがある。   However, since carbon fiber reinforced plastic (hereinafter sometimes referred to as CFRP) has a characteristic of taking a brittle fracture form, there are cases where the use is limited and the characteristics cannot be fully exhibited. That is, when applied to a vehicle cover member, it is assumed that an occupant is injured by the sharp fracture surface of the CFRP that is broken and divided. It is assumed that an extremely large force is applied to the vehicle body in a vehicle accident, and it is difficult to secure a strength that does not damage the vehicle body in all accidents. In addition, if it is reinforced more than necessary, the weight of the vehicle body increases, which may worsen fuel consumption and adversely affect running performance.

自動車用カバー部材以外でもスキーポールやゴルフクラブ、自転車フレームなどでも、軽量化と共に万一破壊した時に分断しないことが求められる用途もある。こうした問題に対して特許文献1には、高伸度有機繊維が炭素繊維を有する部分に分散して配されていることを特徴とするスキーポールが提案されている。しかしながら、一般的な車両用カバー部材は板材で構成されるため、パイプ材であるスキーポールと同様な構成を採用した場合には、曲げ強度を低下させることになる。また、高伸度有機繊維を分散させた炭素繊維織物など専用の材料を作る必要が生じ、市販の炭素繊維織物などを使用できないため、製品コストが高くなってしまう問題も抱えている。   In addition to the cover member for automobiles, there are applications that require ski poles, golf clubs, bicycle frames, and the like not to be divided when they are destroyed along with their weight reduction. In order to solve such a problem, Patent Document 1 proposes a ski pole characterized in that high-stretch organic fibers are dispersed and arranged in a portion having carbon fibers. However, since a general vehicle cover member is made of a plate material, if the same structure as a ski pole that is a pipe material is employed, the bending strength is lowered. In addition, it is necessary to make a dedicated material such as a carbon fiber woven fabric in which high-stretch organic fibers are dispersed, and a commercially available carbon fiber woven fabric cannot be used.

また、特許文献2には、外層と内層から構成される繊維強化プラスチックにおいて外層の伸度と内層の伸度の比が0.6以上0.95以下以下であることを特徴とする繊維強化プラスチック部材が提案されている。しかしながら、該部材の目的は衝撃吸収エネルギーを大きくすることであり、部材の分断を防止するものではない。したがって、単に内層と外層の伸度の比や吸収エネルギーを規定しただけでは、曲げ強度が低下したり、十分な分断防止効果を得ることができないため、車両用のカバー部材として適した、強度が高く且つ万が一破損した場合でも安全なカバー部材を得ることはできなかった。
特開平11−290498号公報 特開平9−226039号公報
Patent Document 2 discloses a fiber reinforced plastic in which the ratio of the elongation of the outer layer to the elongation of the inner layer is 0.6 or more and 0.95 or less in the fiber reinforced plastic composed of the outer layer and the inner layer. Members have been proposed. However, the purpose of the member is to increase the impact absorption energy, and does not prevent the member from being divided. Therefore, simply by specifying the ratio of the elongation between the inner layer and the outer layer and the absorbed energy, the bending strength cannot be reduced or a sufficient anti-separation effect cannot be obtained. Even if it was expensive and was damaged, a safe cover member could not be obtained.
JP 11-290498 A Japanese Patent Laid-Open No. 9-226039

そこで本発明の課題は、とくに従来の車両用カバー部材の上述した問題点を克服し、軽量で且つ安全性の高い炭素繊維強化プラスチック製カバー部材を提供することにあり、とくに、車両用部材に好適な炭素繊維強化プラスチック製カバー部材を提供するすることにある。   Accordingly, an object of the present invention is to overcome the above-described problems of the conventional vehicle cover member, and to provide a lightweight and highly safe cover member made of carbon fiber reinforced plastic. The object is to provide a suitable carbon fiber reinforced plastic cover member.

上記課題を解決するために、本発明に係る炭素繊維強化プラスチック製カバー部材は、補強材に主として炭素繊維を用いた繊維強化プラスチックからなるカバー部材において、該部材の板厚方向中央部に有機繊維を補強材とする層を配したことを特徴とするものからなる。   In order to solve the above problems, a cover member made of carbon fiber reinforced plastic according to the present invention is a cover member made of fiber reinforced plastic mainly using carbon fiber as a reinforcing material. It consists of what is characterized by having arrange | positioned the layer which uses as a reinforcing material.

この炭素繊維強化プラスチック製カバー部材においては、上記有機繊維を補強材とする層の厚みが部材全体の厚みの10%以上40%以下であることが好ましい。また、最外層または外側から2層目に厚みが0.05〜0.3mmのマット層が配されていることも好ましい。このような本発明に係る炭素繊維強化プラスチック製カバー部材は、とくに車両用部材に用いて好適なものである。   In this carbon fiber reinforced plastic cover member, it is preferable that the thickness of the layer using the organic fiber as a reinforcing material is 10% or more and 40% or less of the total thickness of the member. It is also preferable that a mat layer having a thickness of 0.05 to 0.3 mm is disposed on the outermost layer or the second layer from the outside. Such a carbon fiber reinforced plastic cover member according to the present invention is particularly suitable for use as a vehicle member.

本発明に係る炭素繊維強化プラスチック製カバー部材によれば、有機繊維を補強材とする層を配したことにより、CFRPの欠点である破壊時に分断して鋭利な破面をつくることを防止できるだけでなく、その配置を板厚方向中央部に特定することにより、部材の曲げ強度をほとんど低下させることがない。したがって、軽量で高強度というCFRPの長所を維持しながら、とくに車両用部材に適用された場合に、大きな事故でカバー部材が破損したときにも乗員を二次災害の危険にさらすことのない安全なカバー部材を提供することができる。   According to the cover member made of carbon fiber reinforced plastic according to the present invention, by providing the layer made of organic fiber as a reinforcing material, it is only possible to prevent the formation of a sharp fracture surface by breaking at the time of destruction, which is a defect of CFRP. In addition, the bending strength of the member is hardly lowered by specifying the arrangement at the central portion in the thickness direction. Therefore, while maintaining the advantages of light weight and high strength CFRP, especially when applied to vehicle components, safety that does not expose passengers to the risk of secondary disasters even when cover members are damaged due to a major accident A simple cover member can be provided.

以下に、本発明の望ましい実施の形態について、詳細に説明する。
本発明に係る炭素繊維強化プラスチック製カバー部材は、とくに車両用カバー部材として好適なものであるが、本発明において、車両用カバー部材とは、自動車や自動二輪車の車体や構成部材を覆う部材のことを言う。具体的な例を挙げると、自動車のボンネットフードやトランクリッド、ルーフ、ドア、フェンダーなどを挙げることができる。また、自動二輪車のカウル(風防)や燃料タンクカバー、電装品のカバーなどを挙げることができる。特に自動車のルーフやドア、自動二輪車のカウルや燃料タンクカバーなどは乗員にとの距離が近いため本発明を適用することに適した部材である。
Hereinafter, preferred embodiments of the present invention will be described in detail.
The carbon fiber reinforced plastic cover member according to the present invention is particularly suitable as a vehicle cover member. In the present invention, the vehicle cover member is a member that covers a vehicle body or a component member of an automobile or a motorcycle. Say that. Specific examples include automobile hoods, trunk lids, roofs, doors, and fenders. In addition, a motorcycle cowl, a fuel tank cover, an electrical component cover, and the like can be given. In particular, automobile roofs and doors, motorcycle cowls, fuel tank covers, and the like are suitable for application of the present invention because they are close to passengers.

本発明に係るカバー部材は、繊維強化プラスチックからなる。補強繊維としては主として炭素繊維を用いるが、板厚方向中央部には有機繊維を用いる。炭素繊維は軽量で強度、剛性の面で優れた性能を有していることから、カバー部材、とくに車両用カバー部材の主たる構造部材として機能する。これに対して、有機繊維は伸びが大きいので破断しにくいため、板厚の中央付近に配すると分断の防止に有効である。しかしながら、有機繊維を板厚の中央以外に使用すると、部材全体の曲げ強度を著しく低下させてしまう。曲げ荷重が働いた場合、有機繊維の圧縮強度が低いため圧縮側の有機繊維が容易に座屈してしまうためである。また、引張側に配した場合も炭素繊維との境界部で応力集中が発生し、曲げ強度が低下してしまう。   The cover member according to the present invention is made of fiber reinforced plastic. Carbon fibers are mainly used as the reinforcing fibers, but organic fibers are used in the central part in the plate thickness direction. Since carbon fiber is lightweight and has excellent performance in terms of strength and rigidity, it functions as a main structural member of a cover member, particularly a vehicle cover member. On the other hand, since the organic fiber has a large elongation and is not easily broken, it is effective to prevent division if it is arranged near the center of the plate thickness. However, if the organic fiber is used at a position other than the center of the plate thickness, the bending strength of the entire member is significantly reduced. This is because when the bending load is applied, the compressive strength of the organic fiber is low, and the organic fiber on the compression side is easily buckled. Moreover, when it arrange | positions to the tension | pulling side, stress concentration will generate | occur | produce in a boundary part with carbon fiber, and bending strength will fall.

有機繊維を補強材とする層の厚みは、カバー部材全体の厚みに対して10%〜40%の範囲内にあることが好ましい。10%未満では十分な分断効果を得ることはできないし、40%を越えると曲げ強度の低下が顕著になるからである。   The thickness of the layer using the organic fiber as the reinforcing material is preferably in the range of 10% to 40% with respect to the thickness of the entire cover member. This is because if it is less than 10%, a sufficient dividing effect cannot be obtained, and if it exceeds 40%, the bending strength is significantly reduced.

本発明に用いる炭素繊維の種類はなんら限定されるものではない。アクリルを原料とし強度面で優れた特性を持つPAN系炭素繊維でも、石油ピッチなどを原料とするピッチ系炭素繊維であってもよい。炭素繊維の形態も特に限定されるものではないが、強度が高いことから連続繊維が好ましい。炭素繊維を短くカットしたSMC(シートモ−ルディングコンパウンド)などは安価ではあるものの、連続繊維に比べると強度が低いためである。連続繊維の場合は炭素繊維を一方向に引き揃えた一方向材(UD材)でも織布材でもよいが、成形する上では織布材の方が容易である。織布の種類としては平織りや朱子織り、綾織り、ノンクリンプクロスなどが適宜選択できるが、クリア塗装で織り目を製品表面に見せる場合には平織りを用いると意匠性が高くなる。また、朱子織りや綾織りはドレープ性が良いため、複雑な三次元形状を成形する場合に使用すると良い。   The kind of carbon fiber used for this invention is not limited at all. It may be a PAN-based carbon fiber that is made of acrylic as a raw material and has excellent strength characteristics, or a pitch-based carbon fiber that is made from petroleum pitch or the like. The form of the carbon fiber is not particularly limited, but continuous fiber is preferable because of its high strength. This is because SMC (sheet molding compound) or the like obtained by cutting carbon fibers short is inexpensive but has lower strength than continuous fibers. In the case of a continuous fiber, a unidirectional material (UD material) in which carbon fibers are aligned in one direction or a woven material may be used, but the woven material is easier to form. Plain weave, satin weave, twill weave, non-crimp cloth, and the like can be appropriately selected as the type of woven fabric. However, when clear weave is shown on the product surface, use of plain weave increases design. In addition, satin weave and twill weave are good in drape, so they are preferably used when forming a complicated three-dimensional shape.

また、有機繊維は引張強度が50kgf/mm2以上であるものが好ましい。更に好ましくは200kgf/mm2以上が望ましい。有機繊維は一般的に伸びが大きく破断しにくいが、適度な強度がないと十分な効果が得られないからである。このように強度の高い有機繊維の具体例を挙げると、アラミド繊維、高強度ポリエチレン繊維、ビニロン繊維、PBO繊維などがある。有機繊維の形態としては織物または編み物状が好ましく、短くカットした短繊維では効果が得られない。織物の種類としては平織りや朱子織り、綾織り、ノンクリンプ織物などが選択でき、特に限定されるものではない。織物の目付としては1m2当たり300g以下が好ましい。織物一枚当たりの目付が多すぎると厚みが厚くなり、樹脂の含浸が難しくなることから剪断強度が低下することがあるためである。目付が300g以下であればメッシュ状の織物としてもよい。また、例外的に有機繊維とは形態が異なるもののネット状プラスチック材を用いることも可能である。 The organic fiber preferably has a tensile strength of 50 kgf / mm 2 or more. More preferably, 200 kgf / mm 2 or more is desirable. This is because organic fibers generally have a large elongation and are difficult to break, but a sufficient effect cannot be obtained without an appropriate strength. Specific examples of organic fibers having such high strength include aramid fibers, high-strength polyethylene fibers, vinylon fibers, and PBO fibers. The form of the organic fiber is preferably woven or knitted, and the effect cannot be obtained with short fibers cut short. Plain fabric, satin weave, twill weave, non-crimp fabric and the like can be selected as the type of fabric, and are not particularly limited. The fabric weight is preferably 300 g or less per 1 m 2 . This is because if the fabric weight per fabric is too large, the thickness increases and the impregnation of the resin becomes difficult, so that the shear strength may decrease. If the basis weight is 300 g or less, a mesh-like woven fabric may be used. In addition, it is also possible to use a net-like plastic material that is exceptionally different in form from organic fibers.

これら以外にも表面意匠性や成形性、樹脂含浸性を向上させることを目的に、マットや不織布、充填材など他の補強繊維や補助材料を用いることもできる。中でもマット層、例えばガラスサーフェースマットを製品表面に配すると、表面が平滑になり意匠性が向上するため好ましい。このとき、ガラスサーフェースマット層の厚みは0.05mm〜0.30mmが好ましい。ガラスサーフェースマットが厚すぎると部材の強度が低下し、薄すぎると表面の平滑性を確保できないためである。同様にガラスサーフェースマットを表層から二層目に配してもほぼ同様の効果が得られる。ガラスサーフェースマットは樹脂の流動性が高いことから表層へ樹脂を供給しやすくなり気泡を押し出すためである。また、ガラスサーフェースマットは樹脂含浸量が多くなるためクッション効果があり、最表層の厚みむらを吸収できるため、表面に基材の凹凸が現れにくいのである。   In addition to these, other reinforcing fibers and auxiliary materials such as mats, non-woven fabrics, and fillers can be used for the purpose of improving surface designability, moldability, and resin impregnation. Of these, a mat layer, such as a glass surface mat, is preferably provided on the product surface because the surface becomes smooth and the design is improved. At this time, the thickness of the glass surface mat layer is preferably 0.05 mm to 0.30 mm. This is because if the glass surface mat is too thick, the strength of the member decreases, and if it is too thin, the surface smoothness cannot be ensured. Similarly, even if the glass surface mat is arranged from the surface layer to the second layer, substantially the same effect can be obtained. This is because the glass surface mat has high fluidity of the resin, so that it is easy to supply the resin to the surface layer and push out bubbles. In addition, since the glass surface mat has a large amount of resin impregnation, it has a cushioning effect and can absorb unevenness in the thickness of the outermost layer, so that unevenness of the base material hardly appears on the surface.

また、CFRPの積層構成は0°、90°、+45°、−45°の各方向に繊維を均等に配した疑似等方積層を基本とすることが好ましい。車両用カバー部材は大きな面状部材が多く、部材に働く荷重も曲げ荷重とねじり等の剪断荷重が共に想定されるため、繊維配向が特定の方向に著しく偏ることは好ましくないのである。しかしながら、車両の種類や適応される部位に応じて適宜若干の異方性を持たせることは好ましい。   Further, the laminated structure of CFRP is preferably based on a quasi-isotropic lamination in which fibers are evenly arranged in directions of 0 °, 90 °, + 45 °, and −45 °. Since a vehicular cover member has many large planar members, and the load acting on the member is assumed to be both a bending load and a shearing load such as torsion, it is not preferable that the fiber orientation be significantly deviated in a specific direction. However, it is preferable to give some anisotropy as appropriate depending on the type of vehicle and the part to be applied.

本発明のCFRPを構成するマトリックス樹脂としては、繊維との接着性が良く高い強度が得られることからエポキシ樹脂が好ましい。エポキシ樹脂以外にもビニルエステル樹脂や不飽和ポリエステル樹脂などを選択できる。エンジンや排気管に近く高温に晒される場所で使用する場合には、ビスマレイミド樹脂やポリイミド樹脂などを利用してもよい。また、マトリックス樹脂に紫外線吸収剤を混合すると、紫外線によるマトリックス樹脂の劣化を防止する効果も得ることができる。   As the matrix resin constituting the CFRP of the present invention, an epoxy resin is preferable because of its good adhesion to fibers and high strength. In addition to epoxy resins, vinyl ester resins and unsaturated polyester resins can be selected. When used in a place exposed to high temperatures close to the engine or exhaust pipe, bismaleimide resin or polyimide resin may be used. Further, when an ultraviolet absorber is mixed with the matrix resin, an effect of preventing the matrix resin from being deteriorated by ultraviolet rays can be obtained.

本発明に係るカバー部材を成形する方法としては、一般に知られたCFRPの成形法を適用することができる。中でもRTM成形(レジン・トランスファー・モールディング)は短い成形サイクルで生産することができるため、自動車や自動二輪車用途等における部材のように、大量生産される用途に適している。もちろん一般的なプリプレグ材料を使用してオートクレーブ成形やプレス成形、バキュームバッグ成形することもできるし、ハンドレイアップや、VaRTM法(バッグ材内を真空吸引して樹脂注入する成形法)などを適用することもできる。   As a method of molding the cover member according to the present invention, a generally known CFRP molding method can be applied. Among them, RTM molding (resin transfer molding) can be produced in a short molding cycle, and is suitable for mass-produced applications such as members in automobiles and motorcycles. Of course, autoclave molding, press molding, vacuum bag molding can be performed using general prepreg materials, and hand lay-up or VaRTM method (molding method in which the inside of the bag material is vacuum-sucked to inject resin) is applied. You can also

以下、実施例に基づいてさらに詳細に説明する。
各実施例、比較例においては自動車のルーフを成形し、このルーフの面方向中央部付近から幅15mm、長さ100mmの曲げ試験片を3本切り出した後、3点曲げ試験で強度および破壊モードを比較した。
Hereinafter, it demonstrates still in detail based on an Example.
In each of the examples and comparative examples, an automobile roof was formed, and three bending test pieces having a width of 15 mm and a length of 100 mm were cut out from the vicinity of the center in the surface direction of the roof, and then strength and fracture mode were measured in a three-point bending test. Compared.

実施例および比較例で用いた織布は、目付200g/m2の平織り炭素繊維織物(表1ではCで表記)、目付160g/m2の平織りアラミド繊維織物(表1ではKで表示)の2種類とした。また、その他の補強基材として目付30g/m2のガラスサーフェースマットを用いた。マトリックス樹脂としてはRTM成形用に調合された低粘度エポキシ樹脂樹脂を用いた。 The woven fabric used in Examples and Comparative Examples is a plain weave carbon fiber woven fabric having a basis weight of 200 g / m 2 (indicated by C in Table 1) and a plain woven aramid fiber fabric having a basis weight of 160 g / m 2 (indicated by K in Table 1). There were two types. Further, a glass surface mat having a basis weight of 30 g / m 2 was used as another reinforcing substrate. As the matrix resin, a low-viscosity epoxy resin resin prepared for RTM molding was used.

実施例1
以下の方法で表1に示す積層構成の自動車用ルーフを成形した。まず、炭素繊維織物を長さ1.5m、幅0.5mに裁断し、これを離型剤を塗布したルーフ形状の雌型上に3枚並べて1層目を積層した。このとき隣り合った織物は20mm程度重なるようにした。次に炭素繊維織物を長さ1.5m、幅0.25mに裁断したものを2枚、長さ1.5m、幅1.0mに裁断したものを1枚用意し、2層目を積層した。同様に3層目は0.3m幅に裁断した織物2枚と0.9m幅に裁断した織物1枚を用意し、積層した。4層目は0.45m幅に裁断した織物2枚と0.6m幅に裁断した織物1枚を用意し、積層した。5層目にはアラミド繊維織物を長さ1.5m、幅0.4mに裁断したものを2枚、長さ1.5m、幅0.7mに裁断したものを1枚用意して積層した。6層目から9層目については5層目が対称面となるように4層目から1層目と同じパターンで炭素繊維織物を積層した。この上にピールプライとしてポリエステルタフタを置き、さらにポリプロピレン製のネットを置いた。さらに、内部の空気を抜くためのホースと樹脂を注入するためのホースをセットした後、全体をナイロン製バッグフィルムで覆った。次に内部の空気を抜いて真空状態とした後、樹脂注入用ホースからエポキシ樹脂を吸引させ、樹脂が行き渡った状態で真空用、樹脂注入用それぞれのホースを折り曲げて樹脂を封入し、樹脂が硬化するまで1時間放置した。なお、このとき金型の温度は100℃になるようヒーターで加熱した。樹脂が硬化後、バッグフィルムをはぎ取り、成形品を型から取り外した。さらにネット、ピールプライを合わせてはぎ取り自動車用ルーフを得た。
Example 1
The automotive roof having the laminated structure shown in Table 1 was molded by the following method. First, the carbon fiber woven fabric was cut into a length of 1.5 m and a width of 0.5 m, and three sheets were arranged on a roof-shaped female mold coated with a release agent, and the first layer was laminated. At this time, adjacent fabrics were overlapped by about 20 mm. Next, two carbon fiber fabrics cut to a length of 1.5 m and a width of 0.25 m were prepared, and one piece cut to a length of 1.5 m and a width of 1.0 m was prepared, and the second layer was laminated. . Similarly, for the third layer, two fabrics cut to a width of 0.3 m and one fabric cut to a width of 0.9 m were prepared and laminated. For the fourth layer, two fabrics cut to a width of 0.45 m and one fabric cut to a width of 0.6 m were prepared and laminated. In the fifth layer, two aramid fiber fabrics cut to a length of 1.5 m and a width of 0.4 m were prepared, and one piece cut to a length of 1.5 m and a width of 0.7 m was prepared and laminated. Regarding the 6th layer to the 9th layer, carbon fiber fabrics were laminated in the same pattern as the 4th layer to the 1st layer so that the 5th layer was a symmetry plane. A polyester taffeta was placed thereon as a peel ply, and a polypropylene net was further placed. Furthermore, after setting a hose for extracting the air inside and a hose for injecting resin, the whole was covered with a nylon bag film. Next, after the inside air is evacuated to make a vacuum state, the epoxy resin is sucked from the resin injection hose, and with the resin spread, the vacuum hose and the resin injection hose are bent to enclose the resin. It was left for 1 hour until it hardened. At this time, the mold was heated with a heater so that the temperature of the mold was 100 ° C. After the resin was cured, the bag film was peeled off and the molded product was removed from the mold. In addition, the roof for automobiles was obtained by combining the net and peel ply.

得られた自動車用ルーフの外観は炭素繊維織物が均一に現れ美しい仕上がりであったが、拡大鏡で見ると織物の目にごく小さい気泡が見られた。さらに、この自動車用ルーフの中央付近から曲げ試験片をダイヤモンドカッターで切り出し、万能試験機で3点曲げ試験を行った。試験は1分当たり5mmの速度で負荷し、試験片が破壊した後もほぼ荷重を負担しなくなるまで試験を続けた。試験の結果、3本の試験片は分断することなく繋がった状態を保持した。また、曲げ強度の平均値は670MPaであった。   The appearance of the resulting automobile roof was a beautiful finish with a uniform appearance of carbon fiber fabric, but when viewed with a magnifier, very small bubbles were observed in the fabric. Further, a bending test piece was cut out from the vicinity of the center of the automobile roof with a diamond cutter, and a three-point bending test was conducted with a universal testing machine. The test was applied at a speed of 5 mm per minute, and the test was continued until almost no load was applied after the test piece was broken. As a result of the test, the three test pieces were kept connected without being divided. Moreover, the average value of bending strength was 670 MPa.

実施例2、3、比較例1〜5
実施例1と同様に実施例2から比較例5を表1に示す積層構成で製作し、試験を行った。実施例2ではアラミド繊維の積層枚数を3枚に増やしたが、実施例1と同様に高い曲げ強度であった。しかしながらアラミド繊維の積層枚数を5枚まで増やすと曲げ強度が著しく低下した(比較例5)。部材に曲げ荷重が働いた場合、板厚方向中央部付近の中立軸から離れるほど大きな荷重が働くが、アラミド繊維の層が厚くなると圧縮強度が低いため、この荷重に耐えられなくなるためである。実施例3では製品の意匠面ガラスサーフェースマットを配したため、実施例1と同等の曲げ強度、耐分断性を有したまま、外観品位が向上した。すなわち、製品表面を拡大鏡で観察しても気泡は確認できなかった。比較例1では曲げ強度は高いものの、試験片は分断してしまった。比較例2、3ではアラミド繊維が引張側に偏って配されているため、大きな引張荷重が働き試験片は分断してしまった。また、比較例3では表面の炭素繊維織物層1枚が応力集中により低い荷重で破壊したため、曲げ強度が大きく低下した。比較例2の外観は内側面からアラミド繊維が見えるし、比較例3の外観でも内面の炭素繊維繊維織物の織り目の隙間からアラミド繊維が見えるため商品価値が低下する。比較例4ではアラミド繊維が圧縮側に配されているため、曲げ強度が著しく低くなってしまった。これは先に述べたようにアラミド繊維の圧縮強度が低いためである。
Examples 2, 3 and Comparative Examples 1-5
In the same manner as in Example 1, Examples 2 to 5 were manufactured with the laminated structure shown in Table 1 and tested. In Example 2, the number of laminated aramid fibers was increased to 3, but the bending strength was high as in Example 1. However, when the number of laminated aramid fibers was increased to 5, the bending strength was significantly reduced (Comparative Example 5). This is because when a bending load is applied to the member, a larger load is applied as the distance from the neutral axis near the center in the plate thickness direction increases. However, when the aramid fiber layer becomes thicker, the compressive strength becomes lower and the load cannot be endured. In Example 3, since the design surface glass surface mat of the product was arranged, the appearance quality was improved while having the same bending strength and split resistance as in Example 1. That is, even when the product surface was observed with a magnifying glass, bubbles could not be confirmed. In Comparative Example 1, although the bending strength was high, the test piece was broken. In Comparative Examples 2 and 3, since the aramid fibers were arranged biased toward the tension side, a large tensile load acted and the test piece was divided. In Comparative Example 3, one carbon fiber fabric layer on the surface was broken at a low load due to stress concentration, and the bending strength was greatly reduced. In the appearance of Comparative Example 2, the aramid fibers can be seen from the inner surface, and in the appearance of Comparative Example 3, since the aramid fibers can be seen from the gap between the weaves of the carbon fiber fiber fabric on the inner surface, the commercial value is lowered. In Comparative Example 4, since the aramid fiber was arranged on the compression side, the bending strength was remarkably lowered. This is because the compressive strength of the aramid fiber is low as described above.

Figure 2005271350
Figure 2005271350

本発明に係る炭素繊維強化プラスチック製カバー部材は、車両用部材に適用してとくに好適なものであるが、車両用カバー部材に限らずスキーやスノーボードなど板状のスポーツ用品にも応用することができる。また、本発明の適用範囲はこれらに限られるものではない。   The carbon fiber reinforced plastic cover member according to the present invention is particularly suitable when applied to a vehicle member. However, the carbon fiber reinforced plastic cover member can be applied not only to a vehicle cover member but also to plate-like sports equipment such as skis and snowboards. it can. The scope of application of the present invention is not limited to these.

Claims (4)

補強材に主として炭素繊維を用いた繊維強化プラスチックからなるカバー部材において、該部材の板厚方向中央部に有機繊維を補強材とする層を配したことを特徴とする炭素繊維強化プラスチック製カバー部材。   A cover member made of fiber reinforced plastic mainly using carbon fiber as a reinforcing material, wherein a cover layer made of organic fiber as a reinforcing material is arranged at a central portion in the plate thickness direction of the member. . 前記有機繊維を補強材とする層の厚みが部材全体の厚みの10%以上40%以下であることを特徴とする、請求項1に記載の炭素繊維強化プラスチック製カバー部材。   The carbon fiber-reinforced plastic cover member according to claim 1, wherein the thickness of the layer using the organic fiber as a reinforcing material is 10% or more and 40% or less of the total thickness of the member. 最外層または外側から2層目に厚みが0.05〜0.3mmのマット層を配したことを特徴とする、請求項1または2に記載の炭素繊維強化プラスチック製カバー部材。   The carbon fiber reinforced plastic cover member according to claim 1 or 2, wherein a mat layer having a thickness of 0.05 to 0.3 mm is disposed on the outermost layer or the second layer from the outside. 車両用部材に用いられる、請求項1〜3のいずれかに記載の炭素繊維強化プラスチック製カバー部材。   The carbon fiber reinforced plastic cover member according to any one of claims 1 to 3, which is used for a vehicle member.
JP2004086471A 2004-03-24 2004-03-24 Cover member made of carbon fiber-reinforced plastic Pending JP2005271350A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004086471A JP2005271350A (en) 2004-03-24 2004-03-24 Cover member made of carbon fiber-reinforced plastic

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004086471A JP2005271350A (en) 2004-03-24 2004-03-24 Cover member made of carbon fiber-reinforced plastic

Publications (1)

Publication Number Publication Date
JP2005271350A true JP2005271350A (en) 2005-10-06

Family

ID=35171507

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004086471A Pending JP2005271350A (en) 2004-03-24 2004-03-24 Cover member made of carbon fiber-reinforced plastic

Country Status (1)

Country Link
JP (1) JP2005271350A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008094146A (en) * 2006-10-06 2008-04-24 Honda Motor Co Ltd Fuel cell mounting structure
JP2012515667A (en) * 2009-01-26 2012-07-12 ダイムラー・アクチェンゲゼルシャフト Composite parts with coating layers
JP2013194623A (en) * 2012-03-21 2013-09-30 Suzuki Motor Corp Air cleaner for vehicle
WO2015108021A1 (en) * 2014-01-17 2015-07-23 東レ株式会社 Stampable sheet
KR101765637B1 (en) * 2016-03-08 2017-08-07 현대자동차 주식회사 Vehicle body structure using CFRP
JP2018052471A (en) * 2016-09-30 2018-04-05 本田技研工業株式会社 Exterior part of saddle-riding type vehicle
JPWO2018139659A1 (en) * 2017-01-30 2019-11-14 ヤマハ発動機株式会社 Straddled vehicle

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008094146A (en) * 2006-10-06 2008-04-24 Honda Motor Co Ltd Fuel cell mounting structure
JP4684977B2 (en) * 2006-10-06 2011-05-18 本田技研工業株式会社 Fuel cell mounting structure
JP2012515667A (en) * 2009-01-26 2012-07-12 ダイムラー・アクチェンゲゼルシャフト Composite parts with coating layers
JP2013194623A (en) * 2012-03-21 2013-09-30 Suzuki Motor Corp Air cleaner for vehicle
WO2015108021A1 (en) * 2014-01-17 2015-07-23 東レ株式会社 Stampable sheet
JP5843048B1 (en) * 2014-01-17 2016-01-13 東レ株式会社 Stampable seat
KR101765637B1 (en) * 2016-03-08 2017-08-07 현대자동차 주식회사 Vehicle body structure using CFRP
CN107161219A (en) * 2016-03-08 2017-09-15 现代自动车株式会社 Use the body structure of the fine reinforced plastics of carbon
US10232894B2 (en) 2016-03-08 2019-03-19 Hyundai Motor Company Vehicle body structure using CFRP
JP2018052471A (en) * 2016-09-30 2018-04-05 本田技研工業株式会社 Exterior part of saddle-riding type vehicle
US10549806B2 (en) 2016-09-30 2020-02-04 Honda Motor Co., Ltd. Exterior part of saddled vehicle
JPWO2018139659A1 (en) * 2017-01-30 2019-11-14 ヤマハ発動機株式会社 Straddled vehicle
JP7038673B2 (en) 2017-01-30 2022-03-18 ヤマハ発動機株式会社 Straddle vehicle

Similar Documents

Publication Publication Date Title
US11001033B2 (en) Prepreg laminate and fiber-reinforced composite material, and method of producing fiber-reinforced composite material
Campbell Jr Manufacturing processes for advanced composites
CA2505241C (en) Polymer composite structure reinforced with shape memory alloy and method of manufacturing same
Park et al. Element and processing
KR102006511B1 (en) Composite laminate having improved impact strength and the use thereof
CN104677194B (en) A kind of modularity multidimensional bullet proof composite plating and preparation method thereof
EP2711172A1 (en) Improvements in or relating to fibre reinforced composites
CA2580751A1 (en) Textile core sandwich structures
CN102786776A (en) Carbon fiber/aramid fiber reinforced resin base composite material and vehicle front anticollision beam prepared from same
Akay An Introduction to Polymer Matrix Composites
EP2410576A2 (en) Compound component with solar active layer and method for manufacturing same
KR20130028561A (en) Large tow carbon fiber composite with improved flexural property and surface property
CN107757320A (en) A kind of crashworthy plate of vehicle door and preparation method, car door
JP2005271350A (en) Cover member made of carbon fiber-reinforced plastic
CN106626436A (en) Hybrid fiber woven roving composite material automobile battery box and manufacturing method thereof
JP2885038B2 (en) Fiber reinforced thermoplastic resin sheet and method for producing the same
US20120108132A1 (en) Composite Compositions
JP5151499B2 (en) Method for forming fiber-reinforced composite material and fiber-reinforced composite material
Mubashir et al. Carbon fibre composites: Outlook for the automobile sector
JP2004338270A (en) Method for producing fiber-reinforced resin composite material and fiber-reinforced resin composite material
Kim A Simple Method to Produce Fiber Metal Laminates with Enhanced Mechanical Properties Using an Ethylene Vinyl Acetate (EVA)-based Adhesive Film
JP2008189739A (en) Method for producing structural member and structural member
JP2005126557A (en) Molding material for and manufacturing method of fiber-reinforced resin composite material
Drechsler et al. 12.1 Carbon Fiber Reinforced Polymers
CN214462010U (en) Novel composite material sound-insulation heat-insulation interior trim panel