JPH04268342A - Production of carbon fiber-reinforced composite material - Google Patents

Production of carbon fiber-reinforced composite material

Info

Publication number
JPH04268342A
JPH04268342A JP3050702A JP5070291A JPH04268342A JP H04268342 A JPH04268342 A JP H04268342A JP 3050702 A JP3050702 A JP 3050702A JP 5070291 A JP5070291 A JP 5070291A JP H04268342 A JPH04268342 A JP H04268342A
Authority
JP
Japan
Prior art keywords
epoxy resin
composite material
carbon fiber
reinforced composite
prepreg sheet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3050702A
Other languages
Japanese (ja)
Inventor
Tetsuya Tamura
徹也 田村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP3050702A priority Critical patent/JPH04268342A/en
Publication of JPH04268342A publication Critical patent/JPH04268342A/en
Pending legal-status Critical Current

Links

Landscapes

  • Reinforced Plastic Materials (AREA)
  • Moulding By Coating Moulds (AREA)

Abstract

PURPOSE:To impart excellent mechanical strengths to a carbon fiber-reinforced composite material produced by the prior art techniques. CONSTITUTION:A prepreg sheet prepared by impregnating a carbon fiber with an epoxy resin and curing the resin into a tack-free srate is cut in consideration of the shape, size and number of laminated of the member to be made. The cut prepreg sheets are coated with an uncured epoxy resin containing a flexibilizer such as polyethylene glocol, polypropylene glycol or liquid rubber. They are laminated, subjected to vacuum bag molding, placed in an autoclave and cured under elevated pressure and temperature. A technique such as press molding can be employed in the same way.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、特に宇宙構造物、航空
機、自動車、レジャー用品などの構造体に有用な炭素繊
維強化複合材料の作製方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a carbon fiber reinforced composite material particularly useful for structures such as space structures, aircraft, automobiles, and leisure equipment.

【0002】0002

【従来の技術】炭素繊維をベースにした繊維強化複合材
料(CFRP)は、比強度、比弾性率の点で、他の強化
繊維であるガラス、アラミド、ボロン繊維などを用いた
、繊維強化複合材料より優れており、航空、宇宙、自動
車、レジャー用品などの構造材料として幅広く用いられ
るようになってきている。CFRPの中で現在主な作製
方法は、一方向、またはクロスにした炭素繊維をエポキ
シ樹脂で固化した複合材料である。エポキシ樹脂を用い
たCFRPは、フレキシブルな半硬化状態で、積層し樹
脂を硬化させるもので、複雑な形状の一体成形が可能で
あるなどの特徴を有する。
[Prior Art] Fiber-reinforced composite materials (CFRP) based on carbon fibers are characterized by their specific strength and specific modulus. It is superior to other materials and has come to be widely used as a structural material for aviation, space, automobiles, leisure goods, etc. Currently, the main manufacturing method for CFRP is a composite material in which unidirectional or crossed carbon fibers are solidified with epoxy resin. CFRP using epoxy resin is in a flexible semi-hardened state, and the resin is laminated and hardened, and has features such as being able to be integrally molded into complex shapes.

【0003】0003

【発明が解決しようとする課題】炭素繊維自体の性能が
高まるにつれてエポキシ樹脂の脆性的特性が問題になっ
てくる。従来、CFRPに用いられていたエポキシ樹脂
は、脆性的であるため、引っ張り、繰り返し、圧縮荷重
が加わった場合、強化繊維よりも先に破壊を生じる。C
FRP全体の破壊は、前記破壊が引き金となり、繊維が
破壊することにより生じていた。また、エポキシ樹脂の
脆性的特性は、CFRPの強度特性のバラつきを大きく
するため、構造物を設計する際に安全率が大きくなる欠
点もあった。そこで樹脂の靱性を変えるものとして、ポ
リエーテルエーテルケトン(PEEK)などの熱可塑性
樹脂が期待されている。しかしエポキシ樹脂に比べ成形
温度が非常に高くなり現有の設備では作製できないとい
う欠点を有する。
[Problems to be Solved by the Invention] As the performance of carbon fiber itself increases, the brittle characteristics of epoxy resin become a problem. The epoxy resin conventionally used in CFRP is brittle, so when tensile, repeated, or compressive loads are applied, it breaks before the reinforcing fibers. C
The destruction of the entire FRP was triggered by the destruction of the fibers. Furthermore, the brittle characteristics of the epoxy resin increase the variation in the strength characteristics of the CFRP, which has the disadvantage of increasing the safety factor when designing a structure. Therefore, thermoplastic resins such as polyetheretherketone (PEEK) are expected to be used to change the toughness of resins. However, it has the disadvantage that the molding temperature is much higher than that of epoxy resin, and it cannot be manufactured using existing equipment.

【0004】本発明は、かかる従来技術によって製造さ
れた炭素繊維強化複合材料の問題を解決し、優れた機械
的強度を付与する技術を提供することを目的とする。
The object of the present invention is to solve the problems of carbon fiber reinforced composite materials produced by such conventional techniques and to provide a technique for imparting excellent mechanical strength.

【0005】[0005]

【課題を解決するための手段】前記目的を達成するため
、本発明に係る炭素繊維強化複合材料の作製方法におい
ては、塗布工程と、加熱・加圧処理工程とを有する炭素
繊維強化複合材料の作製方法であって、塗布工程は、炭
素繊維を半硬化状態の熱硬化性樹脂に含浸したプリプレ
グシートに、ポリエチレングリコール、ポリプロピレン
グリコール、液状ゴムなどの可とう性付与剤を添加した
未硬化のエポキシ樹脂を塗布するものであり、加熱・加
圧処理工程は、エポキシ樹脂を塗布したプリプレグシー
トを加熱・加圧により硬化させるものである。
[Means for Solving the Problems] In order to achieve the above object, the method for producing a carbon fiber reinforced composite material according to the present invention includes a coating step and a heating/pressure treatment step. In the manufacturing method, the coating process involves applying uncured epoxy to which a flexibility imparting agent such as polyethylene glycol, polypropylene glycol, or liquid rubber is added to a prepreg sheet in which carbon fibers are impregnated with semi-cured thermosetting resin. A resin is applied, and the heat/pressure treatment step is to harden the prepreg sheet coated with an epoxy resin by heat/pressure.

【0006】[0006]

【作用】本発明の作製方法では、プリプレグシートと、
これに塗布したポリエチレングリコール、ポリプロピレ
ングリコール、液状ゴムなどの可とう性付与剤を添加し
た未硬化エポキシ樹脂(以下、変性エポキシ樹脂という
。)を加熱加圧硬化させるため、プリプレグシートと変
形エポキシ樹脂が積層一体化された繊維強化複合材料を
実現できる。変性エポキシ樹脂は、可とう性付与剤の添
加により、マトリクス樹脂に用いているエポキシ樹脂よ
りも大きな破断伸びを示す。このため、層間破壊靱性を
高めることが可能となり、層間はく離などの損傷の進展
が抑制され、引張強度、疲労強度などの機械特性の改善
を実現できる。
[Operation] In the production method of the present invention, a prepreg sheet,
The uncured epoxy resin (hereinafter referred to as modified epoxy resin) coated with a flexibility imparting agent such as polyethylene glycol, polypropylene glycol, or liquid rubber is cured under heat and pressure. A fiber-reinforced composite material with integrated lamination can be realized. The modified epoxy resin exhibits a larger elongation at break than the epoxy resin used for the matrix resin due to the addition of a flexibility imparting agent. Therefore, it becomes possible to increase interlaminar fracture toughness, suppress the progress of damage such as interlaminar delamination, and improve mechanical properties such as tensile strength and fatigue strength.

【0007】また、本発明で用いる変性エポキシ樹脂層
は、プリプレグシートと接着性がよく、靱性の高いもの
であればよい。
[0007] The modified epoxy resin layer used in the present invention may be any material as long as it has good adhesion to the prepreg sheet and high toughness.

【0008】成形は、上記のエポキシ樹脂を塗布したプ
リプレグシートを積層し、加熱加圧成形することが望ま
しい。
[0008]For molding, it is preferable to laminate prepreg sheets coated with the above-mentioned epoxy resin and heat and pressure mold them.

【0009】[0009]

【実施例】以下に本発明の実施例としてオートクレーブ
で加熱加圧硬化を行った場合を説明する。図1は、本発
明の作製方法のフロー図を示す。図において、作製する
部材の大きさや、形状、積層枚数などを考慮して、プリ
プレグシートを切断する(ステップS1)。
[Example] As an example of the present invention, a case where heat and pressure curing was carried out in an autoclave will be described below. FIG. 1 shows a flow diagram of the fabrication method of the present invention. In the figure, the prepreg sheet is cut in consideration of the size, shape, number of laminated sheets, etc. of the member to be manufactured (step S1).

【0010】前記のプリプレグシートと変性エポキシ樹
脂を要求される積層順序に従って塗布し(ステップS2
)、これを積層する(ステップS3)。
[0010] The prepreg sheet and modified epoxy resin are applied according to the required lamination order (step S2).
), which are stacked (step S3).

【0011】前記積層物に離型フィルムや加圧シートな
どを載せ真空バッグで覆い、バギング処理を行う(ステ
ップS4)。
[0011] A release film, a pressure sheet, or the like is placed on the laminate and covered with a vacuum bag to perform a bagging process (step S4).

【0012】前記構成物をオートクレーブの中にいれ、
圧力を加えた状態で加熱硬化させる(ステップS5)。
[0012] Putting the composition into an autoclave,
It is heated and cured under pressure (step S5).

【0013】本実施例では、加熱加圧硬化をオートクレ
ーブで行ったが、プレス成形などの手法も同様に使用で
きる。
[0013] In this example, heat and pressure curing was carried out in an autoclave, but methods such as press molding can be similarly used.

【0014】ここで用いた変性エポキシ樹脂は、#25
00エポキシ樹脂(東レ株式会社)に可とう性付与剤ポ
リエチレングリコールを60重量部充填したものである
The modified epoxy resin used here was #25
00 epoxy resin (Toray Industries, Inc.) filled with 60 parts by weight of polyethylene glycol, a flexibility imparting agent.

【0015】図2に、図1の実施例の作製方法を用いて
作製した炭素繊維強化複合材料の断面図を示す。本実施
例では、プリプレグシートが硬化した複合材料層3と、
0°/45°層間に塗布した変性エポキシ樹脂層4が積
層一体化した構造を持つ。
FIG. 2 shows a cross-sectional view of a carbon fiber reinforced composite material manufactured using the manufacturing method of the embodiment shown in FIG. In this example, a composite material layer 3 made of a hardened prepreg sheet,
It has a structure in which modified epoxy resin layers 4 applied between 0°/45° layers are laminated and integrated.

【0016】図3に、45°/90°層間、図4に90
°層間、図5には全層間に変性エポキシ樹脂を塗布した
炭素繊維強化複合材料の断面図を示す。
FIG. 3 shows a 45°/90° interlayer, and FIG. 4 shows a 90° interlayer.
Figure 5 shows a cross-sectional view of a carbon fiber reinforced composite material in which a modified epoxy resin is applied between all layers.

【0017】図6に、図2〜図5の実施例の炭素繊維強
化複合材料と変性エポキシ樹脂層を持たない従来の複合
材料の引張破断荷重を示す。試験片は、全て25mm幅
の短冊状とした。この結果より、従来のものに比較して
大きな破断強度が得られている。また強度のばらつきを
表す変動係数も小さくなっており、信頼性が向上してい
ることが分かる。
FIG. 6 shows the tensile breaking loads of the carbon fiber reinforced composite materials of the examples shown in FIGS. 2 to 5 and the conventional composite material without a modified epoxy resin layer. All test pieces were in the form of strips with a width of 25 mm. From this result, greater breaking strength was obtained compared to the conventional one. It can also be seen that the coefficient of variation, which represents variations in strength, has become smaller, indicating that reliability has improved.

【0018】[0018]

【発明の効果】以上のように本発明によれば、機械的強
度に優れた炭素繊維強化複合材料を実現することが可能
となり、強度のばらつきも小さくできるため、宇宙・航
空関連の構造体の信頼性を向上できる効果を有するもの
である。
[Effects of the Invention] As described above, according to the present invention, it is possible to realize a carbon fiber reinforced composite material with excellent mechanical strength, and the variation in strength can be reduced. This has the effect of improving reliability.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本発明の作製方法のフローを示した図である。FIG. 1 is a diagram showing the flow of the manufacturing method of the present invention.

【図2】実施例の作製方法を用いて作製した複合材料の
断面図である。
FIG. 2 is a cross-sectional view of a composite material manufactured using the manufacturing method of the example.

【図3】実施例の作製方法を用いて作製した複合材料の
断面図である。
FIG. 3 is a cross-sectional view of a composite material manufactured using the manufacturing method of the example.

【図4】実施例の作製方法を用いて作製した複合材料の
断面図である。
FIG. 4 is a cross-sectional view of a composite material manufactured using the manufacturing method of the example.

【図5】実施例の作製方法を用いて作製した複合材料の
断面図である。
FIG. 5 is a cross-sectional view of a composite material manufactured using the manufacturing method of the example.

【図6】図2〜図5の実施例の複合材料と、同型状の変
性エポキシ樹脂層を持たない従来の複合材料との引張強
度及び変動係数を示す図である。
FIG. 6 is a diagram showing the tensile strength and coefficient of variation of the composite material of the example of FIGS. 2 to 5 and a conventional composite material that does not have a modified epoxy resin layer of the same shape.

【符号の説明】[Explanation of symbols]

3  複合材料層 4  変性エポキシ樹脂層 3 Composite material layer 4 Modified epoxy resin layer

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  塗布工程と、加熱・加圧処理工程とを
有する炭素繊維強化複合材料の作製方法であって、塗布
工程は、炭素繊維を半硬化状態の熱硬化性樹脂に含浸し
たプリプレグシートに、ポリエチレングリコール、ポリ
プロピレングリコール、液状ゴムなどの可とう性付与剤
を添加した未硬化のエポキシ樹脂を塗布するものであり
、加熱・加圧処理工程は、エポキシ樹脂を塗布したプリ
プレグシートを加熱・加圧により硬化させるものである
ことを特徴とする炭素繊維強化複合材料の作製方法。
1. A method for producing a carbon fiber reinforced composite material comprising a coating step and a heating/pressure treatment step, the coating step comprising preparing a prepreg sheet in which carbon fibers are impregnated with a thermosetting resin in a semi-cured state. An uncured epoxy resin to which flexibility imparting agents such as polyethylene glycol, polypropylene glycol, and liquid rubber have been added is applied to the epoxy resin. In the heat and pressure treatment process, the prepreg sheet coated with the epoxy resin is heated and A method for producing a carbon fiber reinforced composite material, characterized in that the material is cured under pressure.
JP3050702A 1991-02-22 1991-02-22 Production of carbon fiber-reinforced composite material Pending JPH04268342A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3050702A JPH04268342A (en) 1991-02-22 1991-02-22 Production of carbon fiber-reinforced composite material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3050702A JPH04268342A (en) 1991-02-22 1991-02-22 Production of carbon fiber-reinforced composite material

Publications (1)

Publication Number Publication Date
JPH04268342A true JPH04268342A (en) 1992-09-24

Family

ID=12866239

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3050702A Pending JPH04268342A (en) 1991-02-22 1991-02-22 Production of carbon fiber-reinforced composite material

Country Status (1)

Country Link
JP (1) JPH04268342A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014024337A (en) * 2007-09-26 2014-02-06 Fiberforge Corp System and method for rapid, automated manufacture of advanced composite tailored blanks
US9597842B2 (en) 2012-03-30 2017-03-21 Dieffenbacher GmbH Maschinen- und Anlangenbau Methods and systems for manufacturing advanced composite components

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014024337A (en) * 2007-09-26 2014-02-06 Fiberforge Corp System and method for rapid, automated manufacture of advanced composite tailored blanks
US8992715B2 (en) 2007-09-26 2015-03-31 Dieffenbacher GmbH Maschinen-und Anlagenbau System and method for the rapid, automated creation of advanced composite tailored blanks
US9597842B2 (en) 2012-03-30 2017-03-21 Dieffenbacher GmbH Maschinen- und Anlangenbau Methods and systems for manufacturing advanced composite components
US9802368B2 (en) 2012-03-30 2017-10-31 Dieffenbacher GmbH Maschinen-und Anlagenbau Methods and systems for manufacturing advanced composite components

Similar Documents

Publication Publication Date Title
EP2922685B1 (en) Bonding of composite materials
JP6966848B2 (en) Composite structure with reinforcing material and its manufacturing method
JP5054258B2 (en) Molding material
US20170274621A1 (en) Fabrication of Composite Laminates Using Temporarily Stitched Preforms
US7267868B2 (en) Composite products and molded articles obtained from said products
US11370183B2 (en) Composite material manufacturing method and composite material
JP2009179065A (en) Method of manufacturing frp structure
JP2005022171A (en) Core for composite material sandwich panel, composite material sandwich panel and its manufacturing method
JPH0583072B2 (en)
KR102418441B1 (en) Forming method of carbon fiber reinforced plastic
JPH04268342A (en) Production of carbon fiber-reinforced composite material
JP2004276355A (en) Preform and method for manufacturing fiber reinforced resin composite using the preform
JPH04251715A (en) Manufacture of carbon fiber reinforced composite material
JPH04267139A (en) Carbon fiber reinforced composite material prepreg sheet
JP2002248620A (en) Base material for molding fiber-reinforced plastic and molding method of fiber-reinforced plastic
JPH084280Y2 (en) Fiber reinforced composite cylindrical shell
JPH04251714A (en) Manufacture of carbon fiber reinforced composite material
JP2004338270A (en) Method for producing fiber-reinforced resin composite material and fiber-reinforced resin composite material
JPH02209234A (en) Preparation of fiber reinforced composite material
JP6368748B2 (en) Molding method for molding fiber reinforced resin
JP6696975B2 (en) Molding material and method of forming the same
JPH044107A (en) Prepreg sheet of carbon fiber reinforced composite material
JPH02209235A (en) Preparation of fiber reinforced composite material
US10800070B2 (en) Mould tools
JPH04244839A (en) Manufacture of carbon fiber-reinforced composite material