JPH02209235A - Preparation of fiber reinforced composite material - Google Patents

Preparation of fiber reinforced composite material

Info

Publication number
JPH02209235A
JPH02209235A JP3150789A JP3150789A JPH02209235A JP H02209235 A JPH02209235 A JP H02209235A JP 3150789 A JP3150789 A JP 3150789A JP 3150789 A JP3150789 A JP 3150789A JP H02209235 A JPH02209235 A JP H02209235A
Authority
JP
Japan
Prior art keywords
fiber
composite material
semi
cured
sheet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3150789A
Other languages
Japanese (ja)
Inventor
Atsushi Fujimoto
淳 藤本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP3150789A priority Critical patent/JPH02209235A/en
Publication of JPH02209235A publication Critical patent/JPH02209235A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain high vibration damping characteristics by laminating a semi-cured visoelastic material sheet to a fiber reinforced composite material prepreg sheet and curing both sheets under pressure and heating. CONSTITUTION:Carbon and an inorg. reinforcing fiber such as a glass fiber or an org. reinforcing fiber such as an aramid fiber are impregnated with a resin such as an epoxy resin and subjected to semi-curing treatment to prepare a prepreg 2 which is, in turn, cut with due regard to the size and shape of a member to be prepared. The prepreg sheets 2 and semi-cured viscoelastic material sheets 1 are laminated according to a required laminating order and fiber direction. A release film or a pressure sheet is placed on this laminate to be covered with a vacuum pack (bagging process). This constituted structure is introduced into an autoclave and cured under heating in a pressurized state.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は人工衛星等宇宙構造物、 OA機器、自動車、
レジャー用品などの構造体に用いて振動・騒音の低減を
実現する繊維強化複合材料の作製方法に関するものであ
る。
[Detailed Description of the Invention] [Industrial Application Field] The present invention is applicable to space structures such as artificial satellites, OA equipment, automobiles,
The present invention relates to a method for producing a fiber-reinforced composite material that can be used in structures such as leisure goods to reduce vibration and noise.

〔従来の技術〕[Conventional technology]

CFRPなどの繊維強化複合材料は、カーボン、ガラス
繊維などの無機繊維又はアラミド繊維などの有機繊維を
エポキシ樹脂、ポリイミド樹脂、ポリエーテルエーテル
ケトン樹脂などの樹脂で固型化したものである。
Fiber-reinforced composite materials such as CFRP are made by solidifying inorganic fibers such as carbon and glass fibers or organic fibers such as aramid fibers with resins such as epoxy resins, polyimide resins, and polyether ether ketone resins.

繊維強化複合材料は、従来の金属構造材料に比較して軽
量、高強度である、繊維配向角を制御することにより所
望の機械特性を実現できる点で優れている。このため、
強く軽量化が要求される宇宙構造物、航空機、自動車、
レジャー用品などの構造材料に巾広く用いられるように
なった。
Fiber-reinforced composite materials are superior in that they are lighter and stronger than conventional metal structural materials, and desired mechanical properties can be achieved by controlling the fiber orientation angle. For this reason,
Space structures, aircraft, automobiles, etc. that require strong weight reduction.
It has come to be widely used as a structural material for leisure goods and other items.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

この種の複合材料で作製した構造体の用途の拡大に伴い
、構造体の振動が問題となっている。
As the uses of structures made of this type of composite material expand, vibration of the structures has become a problem.

繊維強化複合材料は軽量であり、従来の金属構造材料と
同程度の小さな振動減衰特性(損失係数η:0.001
〜0.1)をもつため振動を生じ易い。また、構造物を
一体成型で作製することが多く、従来の金属構造材料と
は異なり、接続部での摩擦による振動減衰(構造減衰)
を期待できない。このため、人工衛星などの宇宙構造物
では、構造体の振動による搭載機器の故障、アンテナの
位置精度の低下などが生じている。このため、繊維強化
複合材料の振動減衰特性の増加は、重要な課題となって
いる。
Fiber-reinforced composite materials are lightweight and have low vibration damping properties (loss coefficient η: 0.001) comparable to conventional metal structural materials.
~0.1), it is easy to generate vibrations. In addition, structures are often manufactured by integral molding, and unlike conventional metal structural materials, vibration damping (structural damping) due to friction at connections
I can't expect that. For this reason, in space structures such as artificial satellites, vibrations of the structure cause failures of onboard equipment and a decrease in antenna position accuracy. Therefore, increasing the vibration damping properties of fiber-reinforced composite materials has become an important issue.

これらの問題を解決する目的で、マトリックス樹脂の振
動減衰を増加させて複合材料の振動減衰を増加させる手
法が検討されている。これは、マトリックス樹脂にポリ
エチレングリコール、ポリプロピレングリコール、液状
ゴムなどの可撓性付与剤を添加し、振動減衰特性を増加
させた樹脂を用いて複合材料を作製する手法である。し
かし可撓性付与剤の添加により樹脂の振動減衰特性を数
十倍程度に改善できるものの、複合材料の振動減衰特性
は数倍程度の増加しか得られず、また大きな剛性の低下
を伴うので効果的ではない。
In order to solve these problems, methods are being considered to increase the vibration damping of composite materials by increasing the vibration damping of matrix resins. This is a method of producing a composite material using a resin that has increased vibration damping properties by adding a flexibility imparting agent such as polyethylene glycol, polypropylene glycol, or liquid rubber to a matrix resin. However, although the vibration damping properties of the resin can be improved several tens of times by adding a flexibility agent, the vibration damping properties of the composite material can only be increased by several times, and this is accompanied by a large decrease in rigidity, so it is not effective. Not the point.

本発明は前記問題点を解決するものであり、その目的と
するところは大きな振動減衰特性を有する繊維強化複合
材料を提供することにある。
The present invention is intended to solve the above-mentioned problems, and its purpose is to provide a fiber-reinforced composite material with high vibration damping properties.

〔課題を解決するための手段〕 上記目的を達成するため、本発明による繊維強化複合材
料の作製方法においては、カーボン、ガラス繊維などの
無機強化繊維又はアラミド繊維などの有機強化繊維をエ
ポキシ樹脂などの樹脂に含浸し半硬化処理したプリプレ
グシートと半硬化状の粘弾性材料シートとを積層し、加
圧加熱により硬化させるものである。
[Means for Solving the Problems] In order to achieve the above object, in the method for producing a fiber-reinforced composite material according to the present invention, inorganic reinforcing fibers such as carbon and glass fibers or organic reinforcing fibers such as aramid fibers are combined with epoxy resin, etc. A prepreg sheet impregnated with a semi-cured resin and a semi-cured viscoelastic material sheet are laminated and cured by pressure heating.

〔作用〕[Effect]

本発明の作製方法においては、半硬化状の粘弾性材料シ
ートと繊維強化複合材料プリプレグシートとを積層し、
これを加圧加熱硬化させるため、カーボンやガラス繊維
などの無機強化繊維又はアラミド繊維などの有機強化繊
維をエポキシ樹脂などの樹脂に含浸した複合材料層と粘
弾性材料層とが積層一体化された繊維強化複合材料を実
現できる。前記複合材料は1層間の粘弾性材料の効果に
より、大きな振動減衰特性を有する。
In the production method of the present invention, a semi-cured viscoelastic material sheet and a fiber-reinforced composite material prepreg sheet are laminated,
In order to cure this by pressure and heat, a composite material layer in which inorganic reinforcing fibers such as carbon or glass fibers or organic reinforcing fibers such as aramid fibers are impregnated with resin such as epoxy resin and a viscoelastic material layer are laminated and integrated. Fiber-reinforced composite materials can be realized. The composite material has great vibration damping properties due to the effect of the viscoelastic material between the layers.

〔実施例〕〔Example〕

以下に本発明の実施例を図によって説明する。 Embodiments of the present invention will be described below with reference to the drawings.

第1図に本発明繊維強化複合材料の作製方法のフローを
示す。実施例はオートクレーブで加圧加熱効果を行った
例である。図において、プリプレグシート2を、作製す
べき部材の大きさや形状を考慮して切断する。前記プリ
プレグシート2と半硬化状(Bステージ)の粘弾性材料
シート1を要求される積層順序及び繊維方向に従って積
層する。
FIG. 1 shows the flow of the method for producing the fiber-reinforced composite material of the present invention. The example is an example in which the pressurized heating effect was performed in an autoclave. In the figure, a prepreg sheet 2 is cut in consideration of the size and shape of the member to be manufactured. The prepreg sheet 2 and the semi-cured (B stage) viscoelastic material sheet 1 are laminated according to the required lamination order and fiber direction.

その積層物に離型フィルムや加圧シートなどを載せ、真
空バッグで覆う(バギング工程)。その構成物をオート
クレーブの中に入れ、圧力を加えた状態で加熱硬化させ
る。
A release film, pressure sheet, etc. is placed on the laminate and covered with a vacuum bag (bagging process). The composition is placed in an autoclave and heated and cured under pressure.

第2図に第1図の実施例の作製方法を用いて作製した複
合材料の断面図を示す、実施例はカーボン繊維とエポキ
シ樹脂硬化物とからなる複合材料層4と粘弾性材料層3
とを積層一体化したものである。
FIG. 2 shows a cross-sectional view of a composite material manufactured using the manufacturing method of the example shown in FIG.
This is a laminated and integrated structure.

第3図に、第2図実施例の複合材料の損失係数と周波数
との関係を示す、測定は複合材料試験片に曲げ振動を加
えて行った6図中実線5は第2図の複合材料の特性、破
線6は、従来の作製方法で作製した繊維強化複合材料の
特性である。いずれも固有振動数での自由減衰カーブよ
り損失係数を求めた。図に明らかなとおり、本発明の作
製方法による複合材料は、従来のものに比較して、太き
な振動減衰特性が得られている。なお、複合材料層には
カーボン繊維とエポキシ樹脂との硬化物に限らず、ガラ
ス繊維などの無機強化繊維又はアラミド繊維などの有機
強化繊維をエポキシ樹脂などの樹脂に含浸させて半硬化
処理したプリプレグシートを用いても同効である。
Figure 3 shows the relationship between the loss coefficient and frequency of the composite material of the example in Figure 2.The measurement was carried out by applying bending vibration to the composite material test piece. The broken line 6 indicates the characteristics of the fiber-reinforced composite material produced by the conventional production method. In both cases, the loss coefficient was determined from the free damping curve at the natural frequency. As is clear from the figure, the composite material produced by the manufacturing method of the present invention has greater vibration damping characteristics than the conventional material. Note that the composite material layer is not limited to a cured product of carbon fiber and epoxy resin, but also prepreg that is semi-cured by impregnating inorganic reinforcing fibers such as glass fibers or organic reinforcing fibers such as aramid fibers in resin such as epoxy resin. The same effect can be obtained using a sheet.

〔発明の効果〕〔Effect of the invention〕

以上のように本発明によれば、振動減衰特性の大きな繊
維強化複合材料を実現することが可能となり、人工衛星
などの宇宙構造物における搭載機器の故障やアンテナの
位置精度の低下、自動車などの騒音問題を解決できる効
果を有するものである。
As described above, according to the present invention, it is possible to realize a fiber-reinforced composite material with high vibration damping characteristics, which can prevent equipment failures in space structures such as artificial satellites, decrease in antenna position accuracy, etc. This has the effect of solving noise problems.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例の作製方法のフロー図、第2図
は実施例の作製方法を用いて作製した複合材料の断面図
、第3図は実施例の複合材料と従来の作製方法を用いて
作製した複合材料の損失係数の比較を示す図である。 1・・・半硬化状(Bステージ)の粘弾性材料シート2
・・・プリプレグシート 3・・・粘弾性材料層 4・・・複合材料層
Figure 1 is a flow diagram of the manufacturing method of the example of the present invention, Figure 2 is a cross-sectional view of the composite material manufactured using the manufacturing method of the example, and Figure 3 is the composite material of the example and the conventional manufacturing method. FIG. 2 is a diagram showing a comparison of loss coefficients of composite materials produced using the following methods. 1... Semi-cured (B stage) viscoelastic material sheet 2
... Prepreg sheet 3 ... Viscoelastic material layer 4 ... Composite material layer

Claims (1)

【特許請求の範囲】[Claims] (1)カーボン、ガラス繊維などの無機強化繊維又はア
ラミド繊維などの有機強化繊維をエポキシ樹脂などの樹
脂に含浸し半硬化処理したプリプレグシートと半硬化状
の粘弾性材料シートとを積層し、加圧加熱により硬化さ
せることを特徴とする繊維強化複合材料の作製方法。
(1) A prepreg sheet in which inorganic reinforcing fibers such as carbon and glass fibers or organic reinforcing fibers such as aramid fibers are impregnated with resin such as epoxy resin and semi-cured, and a semi-cured viscoelastic material sheet are laminated and processed. A method for producing a fiber-reinforced composite material characterized by curing by pressure heating.
JP3150789A 1989-02-10 1989-02-10 Preparation of fiber reinforced composite material Pending JPH02209235A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3150789A JPH02209235A (en) 1989-02-10 1989-02-10 Preparation of fiber reinforced composite material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3150789A JPH02209235A (en) 1989-02-10 1989-02-10 Preparation of fiber reinforced composite material

Publications (1)

Publication Number Publication Date
JPH02209235A true JPH02209235A (en) 1990-08-20

Family

ID=12333133

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3150789A Pending JPH02209235A (en) 1989-02-10 1989-02-10 Preparation of fiber reinforced composite material

Country Status (1)

Country Link
JP (1) JPH02209235A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010077849A1 (en) * 2008-12-15 2010-07-08 3M Innovative Properties Company Composite article including viscoelastic layer with barrier layer
US10525667B2 (en) 2008-12-15 2020-01-07 3M Innovative Properties Company Surfacing film for composites with barrier layer

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010077849A1 (en) * 2008-12-15 2010-07-08 3M Innovative Properties Company Composite article including viscoelastic layer with barrier layer
EP2370250A1 (en) * 2008-12-15 2011-10-05 3M Innovative Properties Company Composite article including viscoelastic layer with barrier layer
JP2012512076A (en) * 2008-12-15 2012-05-31 スリーエム イノベイティブ プロパティズ カンパニー Composite article comprising a viscoelastic layer with a barrier layer
US10525667B2 (en) 2008-12-15 2020-01-07 3M Innovative Properties Company Surfacing film for composites with barrier layer

Similar Documents

Publication Publication Date Title
US5871604A (en) Forming fiber reinforced composite product
EP1128958B2 (en) Moulding materials
US4680216A (en) Method for stabilizing thick honeycomb core composite articles
EP2746042B1 (en) Methods for fabricating stabilized honeycomb core composite laminate structures
JPH08506534A (en) Composite molding apparatus and molding method for high-pressure co-curing molding of a lightweight honeycomb core composite product having a sloped surface using a low-density, stabilized sloped honeycomb core, and product manufactured thereby
JPH02209234A (en) Preparation of fiber reinforced composite material
JPH02209235A (en) Preparation of fiber reinforced composite material
JPH084280Y2 (en) Fiber reinforced composite cylindrical shell
Musch et al. Tooling with reinforced elastomeric materials
JPH03166921A (en) Preparation of fiber reinforced composite material
JPH0558395A (en) Thrust tube
Reuterlöv Cost effective infusion of sandwich composites for marine applications
Kleineberg et al. Advanced liquid resin infusion-A new perspective for space structures
JP2705319B2 (en) Method for producing carbon fiber reinforced composite material
JP2006198866A (en) Core material for sandwich structural material and manufacturing method of sandwich structural material
JPH02169633A (en) Fiber-reinforced composite material
JPH04125136A (en) Fiber reinforced composite material
JPH04267139A (en) Carbon fiber reinforced composite material prepreg sheet
JPH02169634A (en) Prepreg sheet of fiber-reinforced composite material
JPH04251714A (en) Manufacture of carbon fiber reinforced composite material
JPH01204735A (en) Fiber reinforced composite material
KR101884606B1 (en) Epoxy resin composition for fiber reinforced composite with high impact resistance and high strength
JPH04255306A (en) Large pillar and its manufacture
JPH04268342A (en) Production of carbon fiber-reinforced composite material
van Tooren Response 1 Airbus composite aircraft fuselages—next or never