JPH02169634A - Prepreg sheet of fiber-reinforced composite material - Google Patents

Prepreg sheet of fiber-reinforced composite material

Info

Publication number
JPH02169634A
JPH02169634A JP63325218A JP32521888A JPH02169634A JP H02169634 A JPH02169634 A JP H02169634A JP 63325218 A JP63325218 A JP 63325218A JP 32521888 A JP32521888 A JP 32521888A JP H02169634 A JPH02169634 A JP H02169634A
Authority
JP
Japan
Prior art keywords
composite material
fiber
semi
cured
material layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63325218A
Other languages
Japanese (ja)
Other versions
JPH0443932B2 (en
Inventor
Atsushi Fujimoto
淳 藤本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP63325218A priority Critical patent/JPH02169634A/en
Publication of JPH02169634A publication Critical patent/JPH02169634A/en
Priority to US07/905,222 priority patent/US5487928A/en
Publication of JPH0443932B2 publication Critical patent/JPH0443932B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To obtain the title material having large vibration-damping characteristics by laminating a composite material layer formed by impregnating a reinforcing fiber with a resin and bringing the layer into a semi-cured state with a semi-cured or uncured viscoelastic material layer and integrating the assemblage. CONSTITUTION:A composite material layer formed by impregnating an inorganic reinforcing fiber 1 such as a carbon fiber or a glass fiber or an organic reinforcing fiber 1 such as an aramid fiber with a resin 2 such as an epoxy resin and bringing the layer into a semi-cured state is laminated with a semi-cured or uncured viscoelastic material layer 3, and the assemblage is integrated to obtain a prepreg sheet of fiber-reinforced composite material. This material can realize the reduction of vibrations and noises when used in aerospace structures such as artificial satellites and structures such as OA machines, automobiles, commodities for leisure, etc.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は人工衛星等の宇宙構造物、 OA機器、自動車
、レジャー用品などの構造体に用いて振動・騒音の低減
を実現する繊維強化複合材料プリプレグシートに関する
ものである。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention is a fiber-reinforced composite material that can be used in structures such as space structures such as artificial satellites, OA equipment, automobiles, and leisure goods to reduce vibration and noise. The present invention relates to material prepreg sheets.

〔従来の技術〕[Conventional technology]

CFRPなどの繊維強化複合材料は、カーボンやガラス
繊維などの無機繊維又はアラミド繊維などの有機繊維を
エポキシ樹脂、ポリイミド樹脂、ポリエーテルエーテル
ケトン樹脂などの樹脂で固型化したものである。
Fiber-reinforced composite materials such as CFRP are made by solidifying inorganic fibers such as carbon and glass fibers or organic fibers such as aramid fibers with resins such as epoxy resins, polyimide resins, and polyether ether ketone resins.

繊維強化複合材料は、従来の金属構造材料に比較して軽
量、高強度であること、及び繊維配向角を制御すれば所
望の機械特性を実現できる点で優れている。このため、
軽量化が特に要求される宇宙構造物、航空機、自動車、
レジャー用品などの構造材料に巾広く用いられるように
なってきている。
Fiber-reinforced composite materials are superior to conventional metal structural materials in that they are lightweight and have high strength, and desired mechanical properties can be achieved by controlling the fiber orientation angle. For this reason,
Space structures, aircraft, automobiles, etc. that especially require weight reduction.
It is becoming widely used as a structural material for leisure goods and other products.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

ところで、この種複合材料で作製した構造体の用途の拡
大に伴い、構造体の振動が問題となっている。
By the way, with the expansion of the uses of structures made of this type of composite material, vibration of the structures has become a problem.

繊維強化複合材料は、軽量であり、従来の金属構造材料
と同程度の小さな振動減衰特性(損失係数η=0.00
1−0.1)をもつため、振動を生じ易い。
Fiber-reinforced composite materials are lightweight and have low vibration damping properties (loss coefficient η = 0.00) comparable to conventional metal structural materials.
1-0.1), it is easy to generate vibrations.

また、構造物を一体成型で作製することが多く。In addition, structures are often manufactured by integral molding.

従来の金属構造材料とは異なり、接続部での摩擦による
振動減衰(構造減衰)を期待できない、このため、人工
衛星などの宇宙構造物では、構造体の振動による搭載機
器の故障、アンテナの位置精度の低下などの問題が生じ
、繊維強化複合材料の振動減衰特性の改善は、重要な課
題となっている。
Unlike conventional metal structural materials, vibration damping (structural damping) due to friction at connections cannot be expected. Therefore, in space structures such as artificial satellites, vibrations in the structure can cause damage to onboard equipment and damage to the antenna position. Problems such as decreased accuracy have arisen, and improving the vibration damping properties of fiber-reinforced composite materials has become an important issue.

これらの問題を解決する目的で、マトリックス樹脂の振
動減衰を増加させて複合材料の振動減衰を増加させる手
法が検討されている。これは、マトリックス樹脂にポリ
エチレングリコール、ポリプロピレングリコール、液状
ゴムなどの可撓性付与剤を添加し、振動減衰特性を増加
させた樹脂を用いて複合材料を作製する手法である。し
かし可撓性付与剤の添加により樹脂の振動減衰特性を数
十倍程度に改善できるものの、複合材料の振動減衰特性
は数倍程度の増加しか得られず、また大きな剛性の低下
を伴うので効果的ではない。
In order to solve these problems, methods are being considered to increase the vibration damping of composite materials by increasing the vibration damping of matrix resins. This is a method of producing a composite material using a resin that has increased vibration damping properties by adding a flexibility imparting agent such as polyethylene glycol, polypropylene glycol, or liquid rubber to a matrix resin. However, although the vibration damping properties of the resin can be improved several tens of times by adding a flexibility agent, the vibration damping properties of the composite material can only be increased by several times, and this is accompanied by a large decrease in rigidity, so it is not effective. Not the point.

本発明は前記問題点を解決するものであり、その目的と
するところは大きな振動減衰特性を有する繊維強化複合
材料プリプレグシートを提供することにある。
The present invention is intended to solve the above-mentioned problems, and its purpose is to provide a fiber-reinforced composite material prepreg sheet having high vibration damping properties.

〔課題を解決するための手段〕 上記目的を達成するため、本発明の繊維強化複合材料プ
リプレグシートにおいては、カーボン。
[Means for Solving the Problems] In order to achieve the above object, the fiber-reinforced composite material prepreg sheet of the present invention uses carbon.

ガラス繊維などの無機強化繊維又はアラミド繊維などの
有機強化繊維をエポキシ樹脂などの樹脂に含浸して半硬
化処理した複合材料層と、半硬化状又は未硬化状の粘弾
性材料層とを積層一体化したものである。
A composite material layer made by semi-curing inorganic reinforcing fibers such as glass fibers or organic reinforcing fibers such as aramid fibers impregnated with resin such as epoxy resin, and a semi-cured or uncured viscoelastic material layer are laminated together. It has become.

〔作用〕[Effect]

本発明の複合材料プリプレグシートにおいては、半硬化
状又は未硬化状の粘弾性材料層を設けている。このため
、本発明の複合材料プリプレグシートを用いて、オート
クレーブ法や加熱プレス法などの成形法で複合材料を試
作した場合、カーボンやガラス繊維などの無機強化繊維
又はアラミド繊維などの有機強化繊維をエポキシ樹脂な
どの樹脂に含浸した複合材料層と粘弾性材料層とが積層
−体化された繊維強化複合材料を実現できる。前記複合
材料は1層間の粘弾性材料の効果により、大きな振動減
衰特性を有する(特願昭63−029480号。
In the composite material prepreg sheet of the present invention, a semi-cured or uncured viscoelastic material layer is provided. Therefore, when a composite material is trial-produced using a composite material prepreg sheet of the present invention by a molding method such as an autoclave method or a hot press method, inorganic reinforcing fibers such as carbon or glass fibers or organic reinforcing fibers such as aramid fibers are used. A fiber-reinforced composite material in which a composite material layer impregnated with a resin such as an epoxy resin and a viscoelastic material layer are laminated can be realized. The composite material has great vibration damping characteristics due to the effect of the viscoelastic material between the layers (Japanese Patent Application No. 63-029480).

特願昭63−029433号)。(Patent Application No. 1983-029433).

〔実施例〕〔Example〕

以下に本発明の実施例を図によって説明する。 Embodiments of the present invention will be described below with reference to the drawings.

第1図に本発明繊維強化複合材料プリプレグシートの断
面図を示す1図において、カーボン繊維1は一方向に配
向して半硬化処理したエポキシ樹脂2に充填したもので
ある。この複合材料層の上には、未硬化状の粘弾性材料
3を層状に設けている。粘弾性材料3には、ポリオール
樹脂とポリイソシアネート化合物からなる材料を用いた
。前記材料は、硬化した状態で、室温でtanδ=1.
5をもつ。
FIG. 1 shows a cross-sectional view of a fiber-reinforced composite material prepreg sheet of the present invention, in which carbon fibers 1 are oriented in one direction and filled in an epoxy resin 2 that has been semi-cured. On this composite material layer, an uncured viscoelastic material 3 is provided in a layered manner. As the viscoelastic material 3, a material made of a polyol resin and a polyisocyanate compound was used. In the cured state, the material has tan δ=1.
Has 5.

第2図に第1図実施例のプリプレグシートを用いて、オ
ートクレーブ法により作製した複合材料の断面図を示す
。この例では第1図に示したカーボン繊維1とエポキシ
樹脂2の硬化物からなる複合材料層4と、粘弾性材料3
とを積層一体化したものである。
FIG. 2 shows a cross-sectional view of a composite material produced by an autoclave method using the prepreg sheet of the example shown in FIG. In this example, a composite material layer 4 made of a cured product of carbon fiber 1 and epoxy resin 2 shown in FIG. 1, and a viscoelastic material 3
This is a laminated and integrated structure.

第3図に、第2図実施例の複合材料の損失係数と周波数
の関係を示す。複合材料試験片に曲げ振動を加え測定し
た0図中実線5は第2図実施例の複合材料の特性、破線
6は従来のプリプレグを用いて作製した繊維強化複合材
料の特性である。いずれも、固有振動数での自由減衰カ
ーブより損失係数を求めた0図より明らかなとおり1本
発明のプリプレグを用いて作製した複合材料は従来のも
のに比較して、大きな振動減衰特性が得られた。
FIG. 3 shows the relationship between the loss coefficient and frequency of the composite material of the example in FIG. 2. The solid line 5 in Fig. 0 shows the properties of the composite material of the example in Fig. 2, and the broken line 6 shows the properties of the fiber-reinforced composite material produced using conventional prepreg, which were measured by applying bending vibration to the composite material test piece. In both cases, as is clear from Figure 0, which shows the loss coefficient obtained from the free damping curve at the natural frequency, the composite material made using the prepreg of the present invention has greater vibration damping characteristics than the conventional one. It was done.

以上実施例ではカーボン繊維を使用した例を示したが、
その他ガラス繊維などの無機強化繊維。
In the above example, an example using carbon fiber was shown, but
Other inorganic reinforcing fibers such as glass fiber.

アラミド繊維などの有機強化繊維を用いても同効である
The same effect can be obtained by using organic reinforcing fibers such as aramid fibers.

〔発明の効果〕〔Effect of the invention〕

以上のように本発明によれば、振動減衰特性の大きな繊
維強化複合材料を実現することが可能となり1人工衛星
などの宇宙構造物における搭載機器の故障やアンテナの
位置精度の低下、自動車などの騒音問題を解決できる効
果を有するものである。
As described above, according to the present invention, it is possible to realize a fiber-reinforced composite material with high vibration damping properties, which can be used to prevent equipment failures in space structures such as artificial satellites, decreases in antenna position accuracy, etc. This has the effect of solving noise problems.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例を示す断面図、第2図は第1図
実施例のプリプレグシートを用いて作製した複合材料の
断面図、第3図は第2図実施例の複合材料と従来のプリ
プレグシートを用いて作製した複合材料の損失係数の比
較を示す図である。 1・・・カーボン繊維 2・・・半硬化処理したエポキシ樹脂
FIG. 1 is a sectional view showing an example of the present invention, FIG. 2 is a sectional view of a composite material made using the prepreg sheet of the example of FIG. 1, and FIG. 3 is a sectional view of the composite material of the example of FIG. 2. FIG. 3 is a diagram showing a comparison of loss coefficients of composite materials produced using conventional prepreg sheets. 1... Carbon fiber 2... Semi-cured epoxy resin

Claims (1)

【特許請求の範囲】[Claims] (1)カーボン、ガラス繊維などの無機強化繊維又はア
ラミド繊維などの有機強化繊維をエポキシ樹脂などの樹
脂に含浸して半硬化処理した複合材料層と、半硬化状又
は未硬化状の粘弾性材料層とを積層一体化したことを特
徴とする繊維強化複合材料プリプレグシート。
(1) A composite material layer in which inorganic reinforcing fibers such as carbon and glass fibers or organic reinforcing fibers such as aramid fibers are impregnated with resin such as epoxy resin and semi-cured, and a semi-cured or uncured viscoelastic material. A fiber-reinforced composite material prepreg sheet characterized by an integrated lamination of layers.
JP63325218A 1988-12-22 1988-12-22 Prepreg sheet of fiber-reinforced composite material Granted JPH02169634A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP63325218A JPH02169634A (en) 1988-12-22 1988-12-22 Prepreg sheet of fiber-reinforced composite material
US07/905,222 US5487928A (en) 1988-12-22 1992-06-29 Fiber reinforced composite material and a process for the production thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63325218A JPH02169634A (en) 1988-12-22 1988-12-22 Prepreg sheet of fiber-reinforced composite material

Publications (2)

Publication Number Publication Date
JPH02169634A true JPH02169634A (en) 1990-06-29
JPH0443932B2 JPH0443932B2 (en) 1992-07-20

Family

ID=18174344

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63325218A Granted JPH02169634A (en) 1988-12-22 1988-12-22 Prepreg sheet of fiber-reinforced composite material

Country Status (1)

Country Link
JP (1) JPH02169634A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04251714A (en) * 1991-01-28 1992-09-08 Nec Corp Manufacture of carbon fiber reinforced composite material
CN104763100A (en) * 2015-03-06 2015-07-08 中国人民解放军国防科学技术大学 A shelter large plate having a radar stealth function and a bulletproof function and a preparing method thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3472730A (en) * 1967-12-28 1969-10-14 Minnesota Mining & Mfg Heat-curable filament-reinforced resinous sheeting and laminating process using same
JPS6063229A (en) * 1983-08-01 1985-04-11 アメリカン・サイアナミド・カンパニ− Interleaved resin matrix composite material with improved compression properties
JPS60231738A (en) * 1984-03-30 1985-11-18 アメリカン・サイアナミド・カンパニ− Manufacture of interleaf-containing fiber resin matrix prepreg textile
JPS62187706A (en) * 1986-01-31 1987-08-17 Mitsubishi Petrochem Co Ltd Catalyst for olefin polymerization
JPS6397998A (en) * 1986-10-15 1988-04-28 株式会社ブリヂストン Magnetic composite type damping material

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3472730A (en) * 1967-12-28 1969-10-14 Minnesota Mining & Mfg Heat-curable filament-reinforced resinous sheeting and laminating process using same
JPS6063229A (en) * 1983-08-01 1985-04-11 アメリカン・サイアナミド・カンパニ− Interleaved resin matrix composite material with improved compression properties
JPS60231738A (en) * 1984-03-30 1985-11-18 アメリカン・サイアナミド・カンパニ− Manufacture of interleaf-containing fiber resin matrix prepreg textile
JPS62187706A (en) * 1986-01-31 1987-08-17 Mitsubishi Petrochem Co Ltd Catalyst for olefin polymerization
JPS6397998A (en) * 1986-10-15 1988-04-28 株式会社ブリヂストン Magnetic composite type damping material

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04251714A (en) * 1991-01-28 1992-09-08 Nec Corp Manufacture of carbon fiber reinforced composite material
CN104763100A (en) * 2015-03-06 2015-07-08 中国人民解放军国防科学技术大学 A shelter large plate having a radar stealth function and a bulletproof function and a preparing method thereof
CN104763100B (en) * 2015-03-06 2016-09-14 中国人民解放军国防科学技术大学 Big plate of shelter with radar invisible and bulletproof function and preparation method thereof

Also Published As

Publication number Publication date
JPH0443932B2 (en) 1992-07-20

Similar Documents

Publication Publication Date Title
Vinson et al. The behavior of structures composed of composite materials
US3939024A (en) Structural reinforced thermoplastic laminates and method for using such laminates
US5034256A (en) Closeout configuration for honeycomb core composite sandwich panels
US9981444B2 (en) Reinforced stiffeners and method for making the same
US4052523A (en) Composite sandwich lattice structure
US5624622A (en) Method of forming a truss reinforced foam core sandwich structure
US7960674B2 (en) Aerospace articles made from quasi-isotropic chopped prepreg
US20100038030A1 (en) Advanced composite aerostructure article having a braided co-cured fly away hollow mandrel and method for fabrication
RU2531196C2 (en) Improved composite materials
CA2635363A1 (en) Method for producing structures from composite materials, including embedded precured tools
JPH04312237A (en) Laminated damping material, fiber reinforced composite material having the material in inner layer and its manufacture
JPH02169634A (en) Prepreg sheet of fiber-reinforced composite material
JPH02169633A (en) Fiber-reinforced composite material
US20180370185A1 (en) Sandwich Panel
JPH084280Y2 (en) Fiber reinforced composite cylindrical shell
JPH0798365B2 (en) Method for producing fiber-reinforced composite material
JPH01204735A (en) Fiber reinforced composite material
JPH02209234A (en) Preparation of fiber reinforced composite material
Reuterlöv Cost effective infusion of sandwich composites for marine applications
JPH0558395A (en) Thrust tube
JPH04125136A (en) Fiber reinforced composite material
JPH02209235A (en) Preparation of fiber reinforced composite material
JPH04267139A (en) Carbon fiber reinforced composite material prepreg sheet
JPH03120035A (en) Manufacture of fiber-reinforced composite material
JP2705319B2 (en) Method for producing carbon fiber reinforced composite material