JPH0443932B2 - - Google Patents

Info

Publication number
JPH0443932B2
JPH0443932B2 JP63325218A JP32521888A JPH0443932B2 JP H0443932 B2 JPH0443932 B2 JP H0443932B2 JP 63325218 A JP63325218 A JP 63325218A JP 32521888 A JP32521888 A JP 32521888A JP H0443932 B2 JPH0443932 B2 JP H0443932B2
Authority
JP
Japan
Prior art keywords
composite material
fiber
fibers
resins
cured
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63325218A
Other languages
Japanese (ja)
Other versions
JPH02169634A (en
Inventor
Atsushi Fujimoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Co Ltd filed Critical Nippon Electric Co Ltd
Priority to JP63325218A priority Critical patent/JPH02169634A/en
Publication of JPH02169634A publication Critical patent/JPH02169634A/en
Priority to US07/905,222 priority patent/US5487928A/en
Publication of JPH0443932B2 publication Critical patent/JPH0443932B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は人工衛星等の宇宙構造物、OA機器、
自動車、レジヤー用品などの構造体に用いて振
動・騒音の低減を実現する繊維強化複合材料プリ
プレグシートに関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention is applicable to space structures such as artificial satellites, OA equipment,
The present invention relates to fiber-reinforced composite prepreg sheets that are used in structures such as automobiles and leisure goods to reduce vibration and noise.

〔従来の技術〕[Conventional technology]

CFRPなどの繊維強化複合材料は、カーボンや
ガラス繊維などの無機繊維又はアラミド繊維など
の有機繊維をエポキシ樹脂、ポリイミド樹脂、ポ
リエーテルエーテルケトン樹脂などの樹脂で固型
化したものである。
Fiber-reinforced composite materials such as CFRP are made by solidifying inorganic fibers such as carbon and glass fibers or organic fibers such as aramid fibers with resins such as epoxy resins, polyimide resins, and polyether ether ketone resins.

繊維強化複合材料は、従来の金属構造材料に比
較して軽量、高強度であること、及び繊維配向角
を制御すれば所望の機械特性を実現できる点で優
れている。このため、軽量化が特に要求される宇
宙構造物、航空機、自動車、レジヤー用品などの
構造材料に巾広く用いられるようになつてきてい
る。
Fiber-reinforced composite materials are superior to conventional metal structural materials in that they are lightweight and have high strength, and desired mechanical properties can be achieved by controlling the fiber orientation angle. For this reason, it has come to be widely used as a structural material for space structures, aircraft, automobiles, leisure goods, etc., which particularly require weight reduction.

〔発明が解決しようとする課題〕 ところで、この種複合材料で作製した構造体の
用途の拡大に伴い、構造体の振動が問題となつて
いる。
[Problems to be Solved by the Invention] Incidentally, with the expansion of the uses of structures made of this type of composite material, vibration of the structures has become a problem.

繊維強化複合材料は、軽量であり、従来の金属
構造材料と同程度の小さな振動減衰特性(損失係
数η=0.001〜0.1)をもつため、振動を生じ易
い。また、構造物を一体成型で作製することが多
く、従来の金属構造材料とは異なり、接続部での
摩擦による振動減衰(構造減衰)を期待できな
い。このため、人工衛星などの宇宙構造物では、
構造体の振動による搭載機器の故障、アンテナの
位置精度の低下などの問題が生じ、繊維強化複合
材料の振動減衰特性の改善は、重要な課題となつ
ている。
Fiber-reinforced composite materials are lightweight and have low vibration damping characteristics (loss coefficient η = 0.001 to 0.1) comparable to those of conventional metal structural materials, so they are susceptible to vibration. In addition, structures are often manufactured by integral molding, and unlike conventional metal structural materials, vibration damping (structural damping) due to friction at connections cannot be expected. For this reason, in space structures such as artificial satellites,
Improving the vibration damping properties of fiber-reinforced composite materials has become an important issue, as vibrations in the structure cause problems such as failure of mounted equipment and a decrease in antenna positioning accuracy.

これらの問題を解決する目的で、マトリツクス
樹脂の振動減衰を増加させて複合材料の振動減衰
を増加させる手法が検討されている。これは、マ
トリツクス樹脂にポリエチレングリコール、ポリ
プロピレングリコール、液状ゴムなどの可撓性付
与剤を添加し、振動減衰特性を増加させた樹脂を
用いて複合材料を作製する手法である。しかし可
撓性付与剤の添加により樹脂の振動減衰特性を数
十倍程度に改善できるものの、複合材料の振動減
衰特性は数倍程度の増加しか得られず、また大き
な剛性の低下を伴うので効果的ではない。
In order to solve these problems, methods of increasing the vibration damping of the composite material by increasing the vibration damping of the matrix resin are being considered. This is a method of producing a composite material using a resin that has increased vibration damping properties by adding a flexibility imparting agent such as polyethylene glycol, polypropylene glycol, or liquid rubber to a matrix resin. However, although the vibration damping properties of the resin can be improved several tens of times by adding a flexibility agent, the vibration damping properties of the composite material can only be increased by several times, and this is accompanied by a large decrease in rigidity, so it is not effective. Not the point.

本発明は前記問題点を解決するものであり、そ
の目的とするところは大きな振動減衰特性を有す
る繊維強化複合材料プリプレグシートを提供する
ことにある。
The present invention is intended to solve the above-mentioned problems, and its purpose is to provide a fiber-reinforced composite material prepreg sheet having high vibration damping properties.

〔課題を解決するための手段〕[Means to solve the problem]

上記目的を達成するため、本発明の繊維強化複
合材料プリプレグシートにおいては、カーボン、
ガラス繊維などの無機強化繊維又はアラミド繊維
などの有機強化繊維をエポキシ樹脂などの樹脂に
含浸して半硬化処理した複合材料層と、半硬化状
又は未硬化状の粘弾性材料層とを積層一体化した
ものである。
In order to achieve the above object, the fiber-reinforced composite material prepreg sheet of the present invention includes carbon,
A composite material layer made by semi-curing inorganic reinforcing fibers such as glass fibers or organic reinforcing fibers such as aramid fibers impregnated with resin such as epoxy resin, and a semi-cured or uncured viscoelastic material layer are laminated together. It has become.

〔作用〕[Effect]

本発明の複合材料プリプレグシートにおいて
は、半硬化状又は未硬化状の粘弾性材料層を設け
ている。このため、本発明の複合材料プリプレグ
シートを用いて、オートフレーブ法や加熱プレス
法などの成形法で複合材料を試作した場合、カー
ボンやガラス繊維などの無機強化繊維又はアラミ
ド繊維などの有機強化繊維をエポキシ樹脂などの
樹脂に含浸した複合材料層と粘弾性材料層とが積
層一体化された繊維強化複合材料を実現できる。
前記複合材料は、層間の粘弾性材料の効果によ
り、大きな振動減衰特性を有する(特願昭63−
029480号(特開平1−204735号)、特願昭63−
29443号(特開平1−204733号))。
In the composite material prepreg sheet of the present invention, a semi-cured or uncured viscoelastic material layer is provided. Therefore, when a composite material is prototyped by a molding method such as an autoflave method or a hot press method using the composite prepreg sheet of the present invention, inorganic reinforcing fibers such as carbon or glass fibers or organic reinforcing fibers such as aramid fibers are used. A fiber-reinforced composite material can be realized in which a composite material layer impregnated with a resin such as epoxy resin and a viscoelastic material layer are laminated and integrated.
The composite material has a large vibration damping property due to the effect of the viscoelastic material between the layers (Japanese Patent Application No. 1983-
No. 029480 (Unexamined Japanese Patent Publication No. 1-204735), Patent Application No. 1983-
No. 29443 (Unexamined Japanese Patent Publication No. 1-204733).

粘弾性材料は、ビスフエノール型エポキシ樹脂、
ポリオールまたはその重合体のポリグリシジルエ
ーテルであるエポキシ樹脂、ポリイソシアネート
化合物とポリオール樹脂とを反応させて得られる
ポリウレタン系樹脂などの熱硬化性樹脂をベース
にしたもの、又は、ポリオレフイン樹脂、塩化ビ
ニル樹脂、アクリル樹脂などの熱可塑性樹脂をベ
ースにしたもの等公知のものが使用できる。ま
た、熱接着性を有する粘弾性材料硬化物も使用で
きる。これら材料としては、弾性率50Kgf/mm2
下、好ましくは10Kgf/mm2以下のもの、力学的損
失tanδは0.1以上のもの、好ましくは0.5以上のも
のが使用できる。
The viscoelastic material is bisphenol type epoxy resin,
Epoxy resins that are polyglycidyl ethers of polyols or their polymers, thermosetting resins such as polyurethane resins obtained by reacting polyisocyanate compounds and polyol resins, polyolefin resins, vinyl chloride resins Known materials such as those based on thermoplastic resins such as acrylic resins can be used. Further, a cured product of a viscoelastic material having thermal adhesive properties can also be used. As these materials, those having an elastic modulus of 50 Kgf/mm 2 or less, preferably 10 Kgf/mm 2 or less, and a mechanical loss tan δ of 0.1 or more, preferably 0.5 or more can be used.

〔実施例〕〔Example〕

以下に本発明の実施例を図によつて説明する。 Embodiments of the present invention will be described below with reference to the drawings.

第1図に本発明繊維強化複合材料プリプレグシ
ートの断面図を示す。図において、カーボン繊維
1は一方向に配向して半硬化処理したエポキシ樹
脂2に充填したものである。この複合材料層の上
には、未硬化状の粘弾性材料3を層状に設けてい
る。粘弾性材料3には、ポリオール樹脂とポリイ
ソシアネート化合物からなる材料を用いた。前記
材料は、硬化した状態で、室温でtanδ=1.5をも
つ。
FIG. 1 shows a cross-sectional view of the fiber-reinforced composite material prepreg sheet of the present invention. In the figure, carbon fibers 1 are oriented in one direction and filled in an epoxy resin 2 that has been semi-cured. On this composite material layer, an uncured viscoelastic material 3 is provided in a layered manner. As the viscoelastic material 3, a material made of a polyol resin and a polyisocyanate compound was used. The material has tan δ=1.5 at room temperature in the cured state.

第2図に第1図実施例のプリプレグシートを用
いて、オートクレーブ法により作製した複合材料
の断面図を示す。この例では第1図に示したカー
ボン繊維1とエポキシ樹脂2の硬化物からなる複
合材料層4と、粘弾性材料3とを積層一体化した
ものである。
FIG. 2 shows a cross-sectional view of a composite material produced by an autoclave method using the prepreg sheet of the example shown in FIG. In this example, a composite material layer 4 made of a cured product of carbon fiber 1 and epoxy resin 2 shown in FIG. 1 and a viscoelastic material 3 are laminated and integrated.

第3図に、第2図実施例の複合材料の損失係数
と周波数との関係を示す。複合材料試験片に曲げ
振動を加え測定した。図中実線5は第2図実施例
の複合材料の特性、破線6は従来のプリプレグを
用いて作製した繊維強化複合材料の特性である。
いずれも、固有振動数での自由減衰カーブより損
失係数を求めた。図より明らかなとおり、本発明
のプリプレグを用いて作製した複合材料は従来の
ものに比較して、大きな振動減衰特性が得られ
た。
FIG. 3 shows the relationship between the loss coefficient and frequency of the composite material of the example in FIG. 2. Bending vibration was applied to the composite material test piece and measured. The solid line 5 in the figure shows the characteristics of the composite material of the example in FIG. 2, and the broken line 6 shows the characteristics of the fiber-reinforced composite material produced using conventional prepreg.
In both cases, the loss coefficient was determined from the free damping curve at the natural frequency. As is clear from the figure, the composite material produced using the prepreg of the present invention had greater vibration damping characteristics than the conventional material.

以上実施例ではカーボン繊維を使用した例を示
したが、その他ガラス繊維などの無機強化繊維、
アラミド繊維などの有機強化繊維を用いても同効
である。
In the above examples, carbon fibers were used, but other inorganic reinforcing fibers such as glass fibers,
The same effect can be obtained by using organic reinforcing fibers such as aramid fibers.

〔発明の効果〕〔Effect of the invention〕

以上のように本発明によれば、振動減衰特性の
大きな繊維強化複合材料を実現することが可能と
なり、人工衛星などの宇宙構造物における搭載機
器の故障やアンテナの位置精度の低下、自動車な
どの騒音問題を解決できる効果を有するものであ
る。
As described above, according to the present invention, it is possible to realize a fiber-reinforced composite material with high vibration damping characteristics, which can prevent the failure of onboard equipment in space structures such as artificial satellites, reduce the positional accuracy of antennas, etc. This has the effect of solving noise problems.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例を示す断面図、第2図
は第1図実施例のプリプレグシートを用いて作製
した複合材料の断面図、第3図は第2図実施例の
複合材料と従来のプリプレグシートを用いて作製
した複合材料の損失係数の比較を示す図である。 1……カーボン繊維、2……半硬化処理したエ
ポキシ樹脂、3……粘弾性材料、4……複合材料
層。
FIG. 1 is a sectional view showing an example of the present invention, FIG. 2 is a sectional view of a composite material made using the prepreg sheet of the example of FIG. 1, and FIG. 3 is a sectional view of the composite material of the example of FIG. 2. FIG. 3 is a diagram showing a comparison of loss coefficients of composite materials produced using conventional prepreg sheets. 1... Carbon fiber, 2... Semi-cured epoxy resin, 3... Viscoelastic material, 4... Composite material layer.

Claims (1)

【特許請求の範囲】[Claims] 1 カーボン、ガラス繊維などの無機強化繊維又
はアラミド繊維などの有機強化繊維をエポキシ樹
脂などの樹脂に含浸して半硬化処理した複合材料
層と、半硬化状又は未硬化状の粘弾性材料層とを
積層一体化したことを特徴とする繊維強化複合材
料プリプレグシート。
1 A composite material layer in which inorganic reinforcing fibers such as carbon and glass fibers or organic reinforcing fibers such as aramid fibers are impregnated with resin such as epoxy resin and semi-cured, and a semi-cured or uncured viscoelastic material layer. A fiber-reinforced composite material prepreg sheet characterized by an integrated lamination of.
JP63325218A 1988-12-22 1988-12-22 Prepreg sheet of fiber-reinforced composite material Granted JPH02169634A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP63325218A JPH02169634A (en) 1988-12-22 1988-12-22 Prepreg sheet of fiber-reinforced composite material
US07/905,222 US5487928A (en) 1988-12-22 1992-06-29 Fiber reinforced composite material and a process for the production thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63325218A JPH02169634A (en) 1988-12-22 1988-12-22 Prepreg sheet of fiber-reinforced composite material

Publications (2)

Publication Number Publication Date
JPH02169634A JPH02169634A (en) 1990-06-29
JPH0443932B2 true JPH0443932B2 (en) 1992-07-20

Family

ID=18174344

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63325218A Granted JPH02169634A (en) 1988-12-22 1988-12-22 Prepreg sheet of fiber-reinforced composite material

Country Status (1)

Country Link
JP (1) JPH02169634A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04251714A (en) * 1991-01-28 1992-09-08 Nec Corp Manufacture of carbon fiber reinforced composite material
CN104763100B (en) * 2015-03-06 2016-09-14 中国人民解放军国防科学技术大学 Big plate of shelter with radar invisible and bulletproof function and preparation method thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3472730A (en) * 1967-12-28 1969-10-14 Minnesota Mining & Mfg Heat-curable filament-reinforced resinous sheeting and laminating process using same
JPS6063229A (en) * 1983-08-01 1985-04-11 アメリカン・サイアナミド・カンパニ− Interleaved resin matrix composite material with improved compression properties
JPS60231738A (en) * 1984-03-30 1985-11-18 アメリカン・サイアナミド・カンパニ− Manufacture of interleaf-containing fiber resin matrix prepreg textile
JPS62187706A (en) * 1986-01-31 1987-08-17 Mitsubishi Petrochem Co Ltd Catalyst for olefin polymerization
JPS6397998A (en) * 1986-10-15 1988-04-28 株式会社ブリヂストン Magnetic composite type damping material

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3472730A (en) * 1967-12-28 1969-10-14 Minnesota Mining & Mfg Heat-curable filament-reinforced resinous sheeting and laminating process using same
JPS6063229A (en) * 1983-08-01 1985-04-11 アメリカン・サイアナミド・カンパニ− Interleaved resin matrix composite material with improved compression properties
JPS60231738A (en) * 1984-03-30 1985-11-18 アメリカン・サイアナミド・カンパニ− Manufacture of interleaf-containing fiber resin matrix prepreg textile
JPS62187706A (en) * 1986-01-31 1987-08-17 Mitsubishi Petrochem Co Ltd Catalyst for olefin polymerization
JPS6397998A (en) * 1986-10-15 1988-04-28 株式会社ブリヂストン Magnetic composite type damping material

Also Published As

Publication number Publication date
JPH02169634A (en) 1990-06-29

Similar Documents

Publication Publication Date Title
US4323623A (en) Composite plastic structure and method for producing same
KR100286153B1 (en) Complex molding apparatus, high pressure co-curing molding method using the same, and honeycomb core molded product manufactured therefrom
US5401564A (en) Materials and processes for fabricating formed composite articles and use in shoe arch
US5034256A (en) Closeout configuration for honeycomb core composite sandwich panels
US6632502B1 (en) Method for fabricating an advanced composite aerostructure article having an integral co-cured fly away hollow mandrel
US5518796A (en) Near-surface enhancement of honeycomb sandwich structures to improve durability using a foaming fiber-filled adhesive
US4680216A (en) Method for stabilizing thick honeycomb core composite articles
JPH04312237A (en) Laminated damping material, fiber reinforced composite material having the material in inner layer and its manufacture
EP1660307B1 (en) Window skin panel and method of making same
US10611328B2 (en) Composite material structural member and method of manufacturing the composite material structural member
US5487928A (en) Fiber reinforced composite material and a process for the production thereof
JPH0443931B2 (en)
JPH0443932B2 (en)
JPH0554825B2 (en)
JPH084280Y2 (en) Fiber reinforced composite cylindrical shell
JPH0554824B2 (en)
US20180370185A1 (en) Sandwich Panel
JPH0798365B2 (en) Method for producing fiber-reinforced composite material
JPH04125136A (en) Fiber reinforced composite material
JPH0558395A (en) Thrust tube
JP2705319B2 (en) Method for producing carbon fiber reinforced composite material
JPH03120035A (en) Manufacture of fiber-reinforced composite material
JPH02209234A (en) Preparation of fiber reinforced composite material
JPH02209235A (en) Preparation of fiber reinforced composite material
JPH01204733A (en) Fiber-reinforced composite