JPH02169633A - Fiber-reinforced composite material - Google Patents

Fiber-reinforced composite material

Info

Publication number
JPH02169633A
JPH02169633A JP63325217A JP32521788A JPH02169633A JP H02169633 A JPH02169633 A JP H02169633A JP 63325217 A JP63325217 A JP 63325217A JP 32521788 A JP32521788 A JP 32521788A JP H02169633 A JPH02169633 A JP H02169633A
Authority
JP
Japan
Prior art keywords
layers
fiber
composite material
resin
fibers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63325217A
Other languages
Japanese (ja)
Other versions
JPH0443931B2 (en
Inventor
Atsushi Fujimoto
淳 藤本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP63325217A priority Critical patent/JPH02169633A/en
Publication of JPH02169633A publication Critical patent/JPH02169633A/en
Priority to US07/905,222 priority patent/US5487928A/en
Publication of JPH0443931B2 publication Critical patent/JPH0443931B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To obtain the title material which can realize the reduction of vibrations and noises when used in various structures by laminating at least two composite material layers each formed by impregnating a reinforcing fiber with a resin in such a manner that the angles of orientation vary among part or the whole of the layers, inserting viscoelastic material layers between the above layers and integrating the assemblage. CONSTITUTION:At least two prepreg sheets 1 each formed by impregnating an inorganic reinforcing fiber such as a carbon fiber or a glass fiber or an organic reinforcing fiber such as an aramid fiber with a resin such as an epoxy resin are laminated in such a manner that the angles of orientation of the fibers are different among at least part of the layers, and viscoelastic material layers 2 are inserted between at least part of the layers of different angles of orientation. The assemblage is integrated to obtain a fiber-reinforced composite material. This material can realize the reduction of vibration and noises when used in aerospace structures such as artificial satellites and structures such as OA machines, automobiles, commodities for leisure, etc.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は人工衛星等の宇宙構造物、 OA種機器自動車
、レジャー用品などの構造体に用いて振動・騒音の低減
を実現する繊維強化複合材料に関するものである。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention is a fiber-reinforced composite material that can be used in structures such as space structures such as artificial satellites, OA type equipment automobiles, and leisure goods to reduce vibration and noise. It's about materials.

〔従来の技術〕[Conventional technology]

CFRPなとの繊維強化複合材料は、カーボンやガラス
繊維などの無機繊維又はアラミド繊維などの有機繊維を
エポキシ樹脂、ポリイミド樹脂、ポリエーテルエーテル
ケトン樹脂などの樹脂で固型化したものである。
Fiber-reinforced composite materials such as CFRP are made by solidifying inorganic fibers such as carbon and glass fibers or organic fibers such as aramid fibers with resins such as epoxy resins, polyimide resins, and polyether ether ketone resins.

繊維強化複合材料は、従来の金属構造材料に比較して、
軽址、高強度であること、及び繊維配向角を制御すれば
所望の機械特性を実現できる点で優れている。このため
、軽量化が特に要求される宇宙構造物、航空機、自動車
、レジャー用品などの構造材料に111広く用いられる
用になってきている。
Compared to traditional metal structural materials, fiber-reinforced composite materials have
It is excellent in that it is light in strength, has high strength, and can achieve desired mechanical properties by controlling the fiber orientation angle. For this reason, it has come to be widely used as a structural material for space structures, aircraft, automobiles, leisure goods, etc., which particularly require weight reduction.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

ところで、この種複合材料で作製した構造体の用途の拡
大に伴い、構造体の振動が問題となっている。
By the way, with the expansion of the uses of structures made of this type of composite material, vibration of the structures has become a problem.

繊維強化複合材料は、軽軟であり、従来の金)aC構造
材料と同程度の小さな振動減衰特性(損失係数η=o、
oot〜0.1)をもつため、振動を生じ易い。
The fiber-reinforced composite material is light and soft, and has small vibration damping properties (loss coefficient η = o,
oot~0.1), vibrations are likely to occur.

また、構造物を一体成型で作製することが多く、従来の
金属構造材料とは異なり、接続部での摩擦による振動減
衰(構造減衰)を期待できない。このため1人工衛星な
どの宇宙構造物では、構造体の振動による搭載機器の故
障、アンテナの位置精度の低下などの問題が生じ、繊維
強化複合材料の振動減衰特性の改善は、重要な課題とな
っている。
In addition, structures are often manufactured by integral molding, and unlike conventional metal structural materials, vibration damping (structural damping) due to friction at connections cannot be expected. For this reason, in space structures such as artificial satellites, problems such as failure of onboard equipment due to vibration of the structure and reduction in antenna positioning accuracy occur, and improving the vibration damping characteristics of fiber-reinforced composite materials is an important issue. It has become.

これらの問題を解決する目的で、マトリックス樹脂の振
動減衰を増加させて複合材料の振動減衰を増加させる手
法が検討されている。これは、マトリックス樹脂にポリ
エチレングリコール、ポリプロピレングリコール、液状
ゴムなどの可撓性付与剤を添加し、振動減衰特性を増加
させた樹脂を用いて複合材料を作製する手法である。し
かし可撓性付与剤の添加により、樹脂の振動減衰特性を
数十倍程度に改善できるものの、複合材料の振動減衰特
性は数倍程度の増加しか得られず、また大きな剛性の低
下を伴うので効果的ではない。
In order to solve these problems, methods are being considered to increase the vibration damping of composite materials by increasing the vibration damping of matrix resins. This is a method of producing a composite material using a resin that has increased vibration damping properties by adding a flexibility imparting agent such as polyethylene glycol, polypropylene glycol, or liquid rubber to a matrix resin. However, although the vibration damping properties of the resin can be improved several tens of times by adding a flexibility imparting agent, the vibration damping properties of the composite material can only be increased by several times, and this is accompanied by a large decrease in rigidity. Not effective.

本発明は前記課題を解決するものであり、その目的とす
るところは大きな振動減衰特性を有する繊維強化複合材
料を提供することにある。
The present invention is intended to solve the above problems, and its purpose is to provide a fiber-reinforced composite material that has high vibration damping properties.

〔課題を解決するための手段〕 上記目的を達成するため1本発明の繊維強化複合材料に
おいては、カーボン、ガラス繊維などの無機強化繊維又
はアラミド繊維などの有機強化繊維をエポキシ樹脂など
の樹脂に含浸した2以上の複合材料層を繊維の配向角が
各層又は一部の層で異なるように積層し、配向の異なる
層間の一部又は全部に粘弾性材料層を設けて積層一体化
したものである。
[Means for Solving the Problems] In order to achieve the above objects, 1. In the fiber reinforced composite material of the present invention, inorganic reinforcing fibers such as carbon and glass fibers or organic reinforcing fibers such as aramid fibers are added to resin such as epoxy resin. Two or more impregnated composite material layers are laminated so that the orientation angle of the fibers is different in each layer or some layers, and a viscoelastic material layer is provided in part or all between the layers with different orientations to integrate the lamination. be.

〔作用〕[Effect]

一方向繊維強化複合材料に曲げ振動を加えた場合、振動
減衰特性ηCは、マトリックス樹脂の振動減衰特性η、
(損失係数)及び弾性率E、、繊維の振動減衰特性ηf
、及び弾性率E、をそれぞれ用いて次式で表わされる。
When bending vibration is applied to a unidirectional fiber reinforced composite material, the vibration damping property ηC is the vibration damping property η of the matrix resin,
(loss coefficient) and elastic modulus E, vibration damping characteristics ηf of the fiber
, and elastic modulus E, respectively.

ζ;でνfは繊維の体積含有率である。ζ; and νf is the volume content of fibers.

例えば−カーボン繊維を50Vo1%充填した場合を考
える。樹脂の弾性率は200kg / an”程度であ
るので1弾性率比E、/E、は〜100となる。この場
合(1)式は次式のように書き換えられる。
For example, consider the case where carbon fiber is filled at 50Vo1%. Since the elastic modulus of the resin is about 200 kg/an'', the 1 elastic modulus ratio E, /E is ~100. In this case, equation (1) can be rewritten as the following equation.

通常、#j脂の振動減衰特性η、は0.01以下であり
、またカーボン繊維のη1は0.002程度であるので
、(2)式よりη。は0.002程度になる。また可撓
性を付与し、樹脂のη1を増加させても、(Z)式より
明らかなように、ηCの大きな増加は期待できない。
Normally, the vibration damping characteristic η of #j fat is 0.01 or less, and η1 of carbon fiber is about 0.002, so η is determined from equation (2). is approximately 0.002. Furthermore, even if flexibility is imparted and η1 of the resin is increased, a large increase in ηC cannot be expected, as is clear from equation (Z).

本発明の複合材料では、配向角の異なる層の間に粘弾性
材料を設けている。したがって、前記複合材料が伸縮変
形を生じた場合、各層の異方性により各層の変形状態が
異なるため、層間の粘弾性材料にせん断変形を生じる。
In the composite material of the present invention, a viscoelastic material is provided between layers having different orientation angles. Therefore, when the composite material undergoes expansion/contraction deformation, shear deformation occurs in the viscoelastic material between the layers since the deformation state of each layer differs due to the anisotropy of each layer.

粘弾性材料は一般に粘性が大きいので、前記せん断変形
により振動エネルギーの一部が熱エネルギーに変わり、
振動を吸収する。このため、振動減衰特性が増加する。
Since viscoelastic materials generally have high viscosity, part of the vibrational energy is converted into thermal energy by the shearing deformation,
Absorb vibrations. Therefore, the vibration damping characteristics are increased.

前記振動減衰特性は、粘弾性材料の振動エネルギーを熱
エネルギーに変換する効率(力学的損失tanδ)に依
存する。そこで、低周波数tanδの大きな粘弾性材料
を用いることで、低周波数でも大きな振動減衰特性を実
現できる。
The vibration damping characteristics depend on the efficiency (mechanical loss tan δ) of the viscoelastic material in converting vibration energy into thermal energy. Therefore, by using a viscoelastic material with a large low frequency tan δ, large vibration damping characteristics can be achieved even at low frequencies.

また、前記複合材料が曲げの変形を受けた場合に、制振
鋼板と同様な拘束タイプの制振機構が生じ、高周波で大
きな振動減衰特性を実現できる。
Further, when the composite material undergoes bending deformation, a restraining type vibration damping mechanism similar to that of a vibration damping steel plate is generated, and large vibration damping characteristics can be realized at high frequencies.

同じ配向角をもつ層の間に、粘弾性材料を設けると、後
者の拘束タイプの制振機構のみ生じ、伸縮変形下での大
きな振動減衰特性は期待できない。
If a viscoelastic material is provided between layers having the same orientation angle, only the latter constraint type vibration damping mechanism will occur, and large vibration damping characteristics under expansion and contraction deformation cannot be expected.

〔実施例〕〔Example〕

以下に本発明の実施例を図によって説明する。 Embodiments of the present invention will be described below with reference to the drawings.

第1図に本発明繊維強化複合材料の断面図を示す1図に
おいて、実施例はカーボン繊維及びエポキシ樹脂からな
るプリプレグシート(AS/J1201;住友化学工業
■)1を〔0/±45/90)Sに積層し、各層間に粘
弾性材料2を設けて積層一体化した例を示している。粘
弾性材料2には、ポリオール樹脂をポリイソシアネート
化合物と反応させて作製したポリウレ゛タン樹脂系材料
を用いた。前記材料は。
FIG. 1 shows a cross-sectional view of the fiber-reinforced composite material of the present invention. In the example, a prepreg sheet (AS/J1201; Sumitomo Chemical ■) 1 made of carbon fiber and epoxy resin was ) S is laminated, and a viscoelastic material 2 is provided between each layer to integrate the lamination. As the viscoelastic material 2, a polyurethane resin material prepared by reacting a polyol resin with a polyisocyanate compound was used. The said material is.

室温でtanδ=1.5の値をもつ。It has a value of tan δ = 1.5 at room temperature.

尚、実施例ではプリプレグシートに未硬化の粘弾性材料
を塗布し、前記の積層順に重ね合せ、圧力下で加熱硬化
させて作製した。
In the examples, prepreg sheets were coated with an uncured viscoelastic material, stacked on top of each other in the above-mentioned stacking order, and heated and cured under pressure.

第2図に、+45°及び−45°の単層板10に引張応
力Fを加えた場合の変形の様子を示す、前記層間に設け
られた粘弾性材料は、これらの変形を拘束するように働
き、せん断変形を生じる。
Figure 2 shows the deformation when tensile stress F is applied to the single layer plate 10 at +45° and -45°.The viscoelastic material provided between the layers is designed to restrain these deformations. act, causing shear deformation.

第3図に、第1図の積層体による実施例の繊維強化複合
材料の損失係数と周波数との関係を示す。
FIG. 3 shows the relationship between the loss coefficient and frequency of the fiber-reinforced composite material of the example of the laminate shown in FIG.

図中、実線3は曲げ振動での特性、破線4は縦振動での
特性である。どちらの場合においても、損失係数は、0
.02以上の大きな値となっている。
In the figure, the solid line 3 is the characteristic for bending vibration, and the broken line 4 is the characteristic for longitudinal vibration. In both cases, the loss factor is 0
.. It is a large value of 02 or more.

第4図に、第1図の積層体で同じ配向角をもつ層間(す
なわち90°層の間)にのみ粘弾性材料を設けた場合の
特性である。縦振動及び曲げ振動では100Hz以下の
周波数で、損失係数は第3図の場合に比較して小さくな
っている。
FIG. 4 shows the characteristics when the viscoelastic material is provided only between layers having the same orientation angle (that is, between 90° layers) in the laminate shown in FIG. 1. In longitudinal vibration and bending vibration, the loss coefficient is smaller than in the case of FIG. 3 at frequencies of 100 Hz or less.

以上実施例ではカーボン繊維を使用した例を示したが、
その他ガラス繊維などの無機強化繊維。
In the above example, an example using carbon fiber was shown, but
Other inorganic reinforcing fibers such as glass fiber.

アラミド繊維などの有機強化繊維を用いても同効である
The same effect can be obtained by using organic reinforcing fibers such as aramid fibers.

〔発明の効果〕〔Effect of the invention〕

以上のように本発明によれば、振動減衰特性の大きな繊
維強化複合材料を実現することが可能となり、人工衛星
などの宇宙構造物における搭載機器の故障やアンテナの
位置精度の低下、自動車などの騒音問題を解決できる効
果を有するものである。
As described above, according to the present invention, it is possible to realize a fiber-reinforced composite material with high vibration damping characteristics, which can prevent equipment failures in space structures such as artificial satellites, decrease in antenna position accuracy, etc. This has the effect of solving noise problems.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例を示す断面図、第2図は+45
°層の変形の様子を示す図、第3図は第1図実施例の複
合材料の損失係数の周波数特性を示す図、第4図は90
″′層間に粘弾性材料を設けた場合の損失係数の周波数
特性を示す図である。
Fig. 1 is a sectional view showing an embodiment of the present invention, Fig. 2 is a +45
Figure 3 shows the frequency characteristics of the loss coefficient of the composite material of the example shown in Figure 1. Figure 4 shows the deformation of the layer.
It is a figure which shows the frequency characteristic of a loss coefficient when a viscoelastic material is provided between layers.

Claims (1)

【特許請求の範囲】[Claims] (1)カーボン、ガラス繊維などの無機強化繊維又はア
ラミド繊維などの有機強化繊維をエポキシ樹脂などの樹
脂に含浸した2以上の複合材料層を繊維の配向角が各層
又は一部の層で異なるように積層し、配向の異なる層間
の一部又は全部に粘弾性材料層を設けて積層一体化した
ことを特徴とする繊維強化複合材料。
(1) Two or more composite material layers made by impregnating inorganic reinforcing fibers such as carbon or glass fibers or organic reinforcing fibers such as aramid fibers with resin such as epoxy resin, so that the orientation angle of the fibers is different in each layer or some layers. A fiber-reinforced composite material characterized in that the layers are laminated together, and a viscoelastic material layer is provided between some or all of the layers having different orientations to form an integrated lamination.
JP63325217A 1988-12-22 1988-12-22 Fiber-reinforced composite material Granted JPH02169633A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP63325217A JPH02169633A (en) 1988-12-22 1988-12-22 Fiber-reinforced composite material
US07/905,222 US5487928A (en) 1988-12-22 1992-06-29 Fiber reinforced composite material and a process for the production thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63325217A JPH02169633A (en) 1988-12-22 1988-12-22 Fiber-reinforced composite material

Publications (2)

Publication Number Publication Date
JPH02169633A true JPH02169633A (en) 1990-06-29
JPH0443931B2 JPH0443931B2 (en) 1992-07-20

Family

ID=18174333

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63325217A Granted JPH02169633A (en) 1988-12-22 1988-12-22 Fiber-reinforced composite material

Country Status (1)

Country Link
JP (1) JPH02169633A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08197668A (en) * 1995-01-23 1996-08-06 Honda Motor Co Ltd Lamination structure of fiber reinforced resin
JP2008260278A (en) * 2007-03-20 2008-10-30 Toray Ind Inc Tubular laminate structure
JP2009078422A (en) * 2007-09-26 2009-04-16 Toray Ind Inc Vibration-damping fiber-reinforced composite material
JP2010513057A (en) * 2006-12-13 2010-04-30 ヘンケル コーポレイション Prepreg laminate
JP2014159155A (en) * 2013-02-19 2014-09-04 Boeing Co Spiral laminated structural cone and manufacturing method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015164833A (en) * 2014-02-05 2015-09-17 株式会社マルイ Bicycle saddle and manufacturing method thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3472730A (en) * 1967-12-28 1969-10-14 Minnesota Mining & Mfg Heat-curable filament-reinforced resinous sheeting and laminating process using same

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3472730A (en) * 1967-12-28 1969-10-14 Minnesota Mining & Mfg Heat-curable filament-reinforced resinous sheeting and laminating process using same

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08197668A (en) * 1995-01-23 1996-08-06 Honda Motor Co Ltd Lamination structure of fiber reinforced resin
JP2010513057A (en) * 2006-12-13 2010-04-30 ヘンケル コーポレイション Prepreg laminate
JP2008260278A (en) * 2007-03-20 2008-10-30 Toray Ind Inc Tubular laminate structure
JP2009078422A (en) * 2007-09-26 2009-04-16 Toray Ind Inc Vibration-damping fiber-reinforced composite material
JP2014159155A (en) * 2013-02-19 2014-09-04 Boeing Co Spiral laminated structural cone and manufacturing method
US10076899B2 (en) 2013-02-19 2018-09-18 The Boeing Company Method of manufacturing a spiral laminated structural cone

Also Published As

Publication number Publication date
JPH0443931B2 (en) 1992-07-20

Similar Documents

Publication Publication Date Title
US5624622A (en) Method of forming a truss reinforced foam core sandwich structure
US5518796A (en) Near-surface enhancement of honeycomb sandwich structures to improve durability using a foaming fiber-filled adhesive
US5034256A (en) Closeout configuration for honeycomb core composite sandwich panels
CN101067343B (en) Grid structural reinforced composite material sandwich structure
JPH04312237A (en) Laminated damping material, fiber reinforced composite material having the material in inner layer and its manufacture
CN101469758B (en) FRP reinforced rubber vibration isolator and method of producing the same
Du et al. Fabrication and flatwise compression property of glass fiber-reinforced polypropylene corrugated sandwich panel
US10611328B2 (en) Composite material structural member and method of manufacturing the composite material structural member
CN106313761A (en) Nano modified vibration damping honeycomb sandwich plate
US5487928A (en) Fiber reinforced composite material and a process for the production thereof
JPH02169633A (en) Fiber-reinforced composite material
Robinson et al. Light-weight fiber-reinforced polymer composite deck panels for extreme applications
JPH01204735A (en) Fiber reinforced composite material
Kim A comparative study of the mechanical performance and cost of metal, FRP, and hybrid beams
JPH084280Y2 (en) Fiber reinforced composite cylindrical shell
JPH0554825B2 (en)
JPH04125136A (en) Fiber reinforced composite material
JPH0798365B2 (en) Method for producing fiber-reinforced composite material
JPH0443932B2 (en)
KR102217436B1 (en) Laminate and molded product including the same
JP2021112849A (en) Laminate and method for producing laminate
JPH04267139A (en) Carbon fiber reinforced composite material prepreg sheet
JPH01204733A (en) Fiber-reinforced composite
JP2705319B2 (en) Method for producing carbon fiber reinforced composite material
JPH03120035A (en) Manufacture of fiber-reinforced composite material

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees