JP6368748B2 - Molding method for molding fiber reinforced resin - Google Patents

Molding method for molding fiber reinforced resin Download PDF

Info

Publication number
JP6368748B2
JP6368748B2 JP2016159832A JP2016159832A JP6368748B2 JP 6368748 B2 JP6368748 B2 JP 6368748B2 JP 2016159832 A JP2016159832 A JP 2016159832A JP 2016159832 A JP2016159832 A JP 2016159832A JP 6368748 B2 JP6368748 B2 JP 6368748B2
Authority
JP
Japan
Prior art keywords
resin
fiber
intermediate material
reinforced resin
fiber reinforced
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016159832A
Other languages
Japanese (ja)
Other versions
JP2018027625A (en
Inventor
秋夫 大野
秋夫 大野
伊東 宏
伊東  宏
白銀屋 司
司 白銀屋
拓也 二山
拓也 二山
岩本 拓也
拓也 岩本
茂樹 井上
茂樹 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Steel Works Ltd
Original Assignee
Japan Steel Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Steel Works Ltd filed Critical Japan Steel Works Ltd
Priority to JP2016159832A priority Critical patent/JP6368748B2/en
Publication of JP2018027625A publication Critical patent/JP2018027625A/en
Application granted granted Critical
Publication of JP6368748B2 publication Critical patent/JP6368748B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、樹脂粉体が外面に融着した繊維強化樹脂中間材を加熱、加圧して所定形状の繊維強化樹脂成形品を成形する成形加工方法に関する。   The present invention relates to a molding processing method in which a fiber reinforced resin intermediate material in which resin powder is fused to the outer surface is heated and pressed to form a fiber reinforced resin molded article having a predetermined shape.

近年、機械強度の向上や軽量化を目的として、炭素繊維、ガラス繊維、天然繊維などの強化繊維基材に樹脂を含浸させて複合化した繊維強化樹脂が種々の分野・用途に広く利用されている。特に、繊維強化樹脂の航空機部品や自動車部品への適用が積極的に進められている。このような繊維強化樹脂成形品は、複雑な形状でボイドなどの欠陥が少ないものが求められており、この要求に対し繊維強化樹脂成形品のための繊維強化樹脂中間材や成形方法が種々提案されている。   In recent years, for the purpose of improving mechanical strength and reducing weight, fiber reinforced resins obtained by impregnating a resin with a reinforcing fiber substrate such as carbon fiber, glass fiber, and natural fiber have been widely used in various fields and applications. Yes. In particular, the application of fiber reinforced resin to aircraft parts and automobile parts is being actively promoted. Such fiber reinforced resin molded products are required to have complex shapes and few defects such as voids. In response to this requirement, various fiber reinforced resin intermediate materials and molding methods for fiber reinforced resin molded products are proposed. Has been.

特許文献1に、複数の補強繊維を所定方向に引き揃えた補強繊維シート材をマトリックス樹脂となる熱可塑性樹脂シート材の両面に付着させてシート状の熱可塑性樹脂補強シート材を作成するシート形成工程と、前記熱可塑性樹脂補強シート材を厚さ方向に複数枚重ね合わせる積層工程と、複数枚積層された前記熱可塑性樹脂補強シート材を一体化する一体化工程とを備える熱可塑性樹脂多層補強シート材の製造方法が提案されている。この熱可塑性樹脂補強シート材は、補強繊維間に熱可塑性樹脂材料が含浸したプリプレグシートとは異なって補強繊維シート材に熱可塑性樹脂シート材が付着していることから、熱可塑性樹脂補強シート材の形態が維持されて取り扱い易く、補強繊維の分散性が維持され、シートしてのドレープ性に優れているとされる。   Patent Document 1 discloses a sheet formation in which a reinforcing fiber sheet material in which a plurality of reinforcing fibers are aligned in a predetermined direction is attached to both surfaces of a thermoplastic resin sheet material serving as a matrix resin to create a sheet-like thermoplastic resin reinforcing sheet material Thermoplastic resin multilayer reinforcement comprising: a step, a laminating step of stacking a plurality of the thermoplastic resin reinforcing sheet materials in a thickness direction, and an integrating step of integrating the thermoplastic resin reinforcing sheet materials laminated in a plurality A method for manufacturing a sheet material has been proposed. Unlike the prepreg sheet in which the thermoplastic resin material is impregnated with the thermoplastic resin material between the reinforcing fibers, the thermoplastic resin reinforced sheet material has the thermoplastic resin sheet material attached to the reinforcing fiber sheet material. The form is maintained and is easy to handle, the dispersibility of the reinforcing fibers is maintained, and the sheet is excellent in drapeability.

特許文献2に、強化繊維と、エラストマーを含む樹脂からなる繊維とを用いた複合基材であって、(1)強化繊維布帛と、エラストマーを含む樹脂からなる繊維が含まれる布帛との積層物、(2)強化繊維と、エラストマーを含む樹脂からなる繊維との交織織物、または、(3)強化繊維と、エラストマーを含む樹脂からなる繊維との混繊糸が含まれる織編物、からなる複合基材を一枚ないしは複数枚積層して加熱加圧し、エラストマーを含む樹脂からなる繊維を一部または全部溶融させることにより得られる繊維強化樹脂複合体が記載されている。この繊維強化樹脂複合体に係る発明は、高い剛性と制振性、耐候性を兼ね揃え、かつ賦形成形性に優れる繊維強化樹脂複合体基材を提供することを目的としている。   Patent Document 2 discloses a composite base material using reinforcing fibers and fibers made of a resin containing an elastomer, and (1) a laminate of a reinforcing fiber cloth and a cloth containing fibers made of a resin containing an elastomer (2) A woven or knitted fabric including a woven or knitted fabric including a mixed yarn of a reinforcing fiber and a fiber made of a resin containing an elastomer; or (3) a woven or knitted fabric containing a mixed fiber of a reinforcing fiber and a fiber made of a resin containing an elastomer. There is described a fiber reinforced resin composite obtained by laminating one or a plurality of base materials, heating and pressurizing them, and melting a part or all of fibers made of a resin containing an elastomer. The object of the invention relating to this fiber reinforced resin composite is to provide a fiber reinforced resin composite base material that has both high rigidity, vibration damping properties, and weather resistance and is excellent in formability.

特許文献3に、強化繊維と熱可塑性樹脂とを含むプリプレグであって、強化繊維を切断する方向に切込を有し、その切込の全ての部分において、強化繊維が全て不連続であり、その切込の少なくとも一部において熱可塑性樹脂同士が切込を挟んで繋がっているプリプレグに係る発明が記載されている。そして、このプリプレグの実施例において、強化繊維を炭素繊維とし、ポリプロピレンを熱可塑性樹脂とする1辺が40cmの正方形、厚み0.1mmのプリプレグを用い、長さ30cmの直交する切込を2本入れた後、そのプリプレグを平板金型の中に入れて、その金型を220℃に加熱したプレス成形機に入れて圧力3MPaで5分間プレスした。その後、金型を取り出し、温度50℃に保たれたプレス成形機に移し変えて、圧力3MPaで5分間プレスした。プリプレグの全領域で熱可塑性樹脂同士が切込を挟んで、繋がっており、プリプレグの取り扱い性は良好であったと記載されている。   Patent Document 3 is a prepreg containing a reinforcing fiber and a thermoplastic resin, having a cut in the direction of cutting the reinforcing fiber, and in all parts of the cut, the reinforcing fibers are all discontinuous, An invention relating to a prepreg in which thermoplastic resins are connected to each other with at least a part of the cut is described. In this embodiment of the prepreg, a prepreg having a 40 cm square side and a thickness of 0.1 mm made of carbon fiber as a reinforcing fiber and polypropylene as a thermoplastic resin is cut into two orthogonal cuts having a length of 30 cm. After that, the prepreg was put into a flat plate mold, and the mold was put into a press molding machine heated to 220 ° C. and pressed at a pressure of 3 MPa for 5 minutes. Thereafter, the mold was taken out, transferred to a press molding machine maintained at a temperature of 50 ° C., and pressed at a pressure of 3 MPa for 5 minutes. It is described that thermoplastic resins are connected to each other with a notch in the entire region of the prepreg, and the prepreg is easy to handle.

特開2012-148568号公報JP 2012-148568 特開2015-193751号公報Japanese Unexamined Patent Publication No. 2015-193751 特開2014-169411号公報JP 2014-169411 A

繊維強化樹脂成形品を航空機部品、自動車部品等に適用するためには、形状が複雑な部品を成形するための賦形性が求められる。賦形性を付与するために繊維強化樹脂中間材が形状的安定性を保持しつつ移動可能になっている必要があり、このため特許文献1〜3に示すような方法が提案されている。特許文献1に記載の熱可塑性樹脂補強シート材は熱可塑性樹脂シート材の両面に補強繊維シート材を付着させたものであり、このような熱可塑性樹脂補強シート材が積層されたものを加熱押圧して繊維強化樹脂成形品が成形すると、その加熱押圧時に補強繊維シート材の中に含まれる空気の排出が熱可塑性樹脂シート材に阻止され空気の排出が容易でないという問題がある。   In order to apply a fiber reinforced resin molded article to aircraft parts, automobile parts, etc., shapeability for molding parts having complicated shapes is required. In order to impart formability, the fiber reinforced resin intermediate material needs to be movable while maintaining the shape stability. For this reason, methods as shown in Patent Documents 1 to 3 have been proposed. The thermoplastic resin reinforced sheet material described in Patent Document 1 is obtained by adhering a reinforcing fiber sheet material on both sides of a thermoplastic resin sheet material, and heat-pressing a laminate of such thermoplastic resin reinforced sheet materials. When the fiber reinforced resin molded product is molded, there is a problem that the thermoplastic resin sheet material prevents the air contained in the reinforcing fiber sheet material from being discharged during the heating and pressing, and the air is not easily discharged.

特許文献2に記載の強化繊維とエラストマーを含む樹脂繊維からなる繊維強化樹脂複合体、又は特許文献3に記載の切込みを入れたプリプレグは、特許文献1に記載の熱可塑性樹脂補強シート材のような問題は無いが、特許文献2に記載の繊維強化樹脂複合体は特別のエラストマーを含む樹脂繊維を要し、特許文献3に記載のプリプレグは特別の処理を要するという問題がある。   The fiber reinforced resin composite composed of the reinforcing fiber described in Patent Document 2 and a resin fiber containing an elastomer, or the prepreg having a notch described in Patent Document 3, is similar to the thermoplastic resin reinforced sheet material described in Patent Document 1. However, the fiber reinforced resin composite described in Patent Document 2 requires a resin fiber containing a special elastomer, and the prepreg described in Patent Document 3 has a problem that a special treatment is required.

本発明は、このような従来の問題点に鑑み、市販の強化繊維基材を使用することができる賦形性及び取扱性に優れ、空気排出性に優れた繊維強化樹脂中間材を用いて、複雑な形状の航空機部品や自動車部品を成形することができる成形加工方法を提供することを目的とする。   In view of such conventional problems, the present invention uses a fiber reinforced resin intermediate material that is excellent in formability and handleability that can use a commercially available reinforcing fiber substrate, and excellent in air exhaustability. It is an object of the present invention to provide a molding method capable of molding aircraft parts and automobile parts having complicated shapes.

本発明に係る成形加工方法は、強化繊維で形成された強化繊維基材の外面に樹脂が融着した繊維強化樹脂中間材を、加熱された固定及び移動金型からなる成形金型により加熱、加圧し、前記樹脂が含浸され所定形状に成形された繊維強化樹脂成形品を成形する成形加工方法であって、前記樹脂が前記強化繊維基材の外面に融着した状態で前記繊維強化樹脂中間材を押しつぶすようにその繊維強化樹脂中間材を加熱、加圧してこれを保持する加熱促進工程と、前記繊維強化樹脂中間材の温度が前記強化繊維基材に融着した樹脂の軟化温度以上になったときその加圧力を除荷してこれを保持し、その後前記樹脂が流動性を示す状態になったとき加圧力を所定圧まで漸増させた後その所定圧で保持するように前記繊維強化樹脂中間材を再加圧するとともに、加熱して前記樹脂の含浸を行う含浸賦形工程と、を有してなる。   In the molding method according to the present invention, a fiber reinforced resin intermediate material in which a resin is fused to the outer surface of a reinforcing fiber base formed of reinforcing fibers is heated by a molding die composed of a heated fixed and moving mold, A molding method for forming a fiber reinforced resin molded article that is pressed and impregnated with the resin into a predetermined shape, wherein the fiber reinforced resin intermediate is formed in a state where the resin is fused to the outer surface of the reinforced fiber substrate. Heating and pressing the fiber reinforced resin intermediate material so as to crush the material and holding it, and the temperature of the fiber reinforced resin intermediate material is higher than the softening temperature of the resin fused to the reinforced fiber base material The fiber reinforced so that the applied pressure is unloaded and held, and then the pressure is gradually increased to a predetermined pressure and then held at the predetermined pressure when the resin is in a fluid state. When the resin intermediate material is repressurized Moni, heated to become a, impregnation shaping step for impregnation of the resin.

上記発明において、加熱促進工程は、繊維強化樹脂中間材に負荷する加圧力が、0MPa<加圧力<20MPaの範囲に維持されるように強化繊維基材にかかる圧力を調整して行うことができる。   In the above invention, the heating promotion step can be performed by adjusting the pressure applied to the reinforcing fiber base so that the applied pressure applied to the fiber reinforced resin intermediate material is maintained in the range of 0 MPa <applied pressure <20 MPa. .

含浸賦形工程は、成形金型内を一旦真空引きした後に行うのがよい。   The impregnation shaping step is preferably performed after the mold is once evacuated.

また、本発明に係る成形加工方法は、樹脂が外面に融着した繊維強化樹脂中間材を所定温度に加熱された成形金型により加熱及び加圧し、前記繊維強化樹脂中間材に前記樹脂が含浸した繊維強化樹脂成形品を成形する成形加工方法であって、強化繊維間に空隙を含んで嵩張ってなる前記繊維強化樹脂中間材を前記成形金型内で加熱、加圧して、前記強化繊維と前記融着した樹脂を急速に加熱し、その樹脂が軟化したとき先ず前記繊維強化樹脂中間材への加圧力を除荷してこれを保持し、その後前記樹脂が流動性を示す状態になったとき加圧力が所定圧まで漸増するように前記繊維強化樹脂中間材を再加圧し、所定加圧力でこれを保持してその繊維強化樹脂中間材への前記樹脂の含浸を行うことにより実施される。   Further, the molding method according to the present invention includes heating and pressurizing a fiber reinforced resin intermediate material in which a resin is fused to an outer surface with a molding die heated to a predetermined temperature, and impregnating the fiber reinforced resin intermediate material with the resin. A molded processing method for molding a fiber reinforced resin molded product, wherein the fiber reinforced resin intermediate material, which is bulky including voids between the reinforced fibers, is heated and pressurized in the molding die, and the reinforced fibers When the fused resin is rapidly heated and the resin is softened, the pressure applied to the fiber reinforced resin intermediate material is first unloaded and held, and then the resin exhibits fluidity. The fiber reinforced resin intermediate material is re-pressurized so that the applied pressure gradually increases to a predetermined pressure, and the fiber reinforced resin intermediate material is impregnated with the fiber reinforced resin intermediate material while maintaining the predetermined pressure. The

上記成形加工方法に係る発明において、成形金型を加熱する所定温度は、樹脂が外面に融着した繊維強化樹脂中間材の急速加熱を行う加熱促進段階温度と、それよりも高温で行う繊維強化樹脂中間材の外面に融着した樹脂の繊維強化樹脂中間材への含浸を行う含浸段階温度と、2つの段階的な温度とすることができる。   In the invention related to the molding method, the predetermined temperature for heating the molding die is a heating acceleration stage temperature for rapidly heating the fiber reinforced resin intermediate material in which the resin is fused to the outer surface, and fiber reinforcement performed at a temperature higher than that. The impregnation step temperature for impregnating the fiber reinforced resin intermediate material with the resin fused to the outer surface of the resin intermediate material can be set to two step temperatures.

本発明によれば、繊維強化樹脂中間材は、加熱促進工程において温度ムラが少なく、速やかに加熱され、また、含浸賦形工程において繊維強化樹脂中間材は流動性を示す状態の樹脂が含浸し易い状態にすることができる。このため、本発明により成形された繊維強化樹脂成形品は、ボイドが少なく、複雑な形状の航空機部品、自動車部品等を成形することができる。   According to the present invention, the fiber reinforced resin intermediate material is heated quickly with little temperature unevenness in the heating promotion step, and the fiber reinforced resin intermediate material is impregnated with a resin in a fluid state in the impregnation shaping step. It can be in an easy state. For this reason, the fiber reinforced resin molded product molded according to the present invention has few voids, and can form aircraft parts, automobile parts and the like having complicated shapes.

本発明に係る繊維強化樹脂中間材の断面を示す模式図である。It is a schematic diagram which shows the cross section of the fiber reinforced resin intermediate material which concerns on this invention. 成形金型の説明図である。It is explanatory drawing of a shaping die. 本発明に係る成形加工方法の説明図である。It is explanatory drawing of the shaping | molding processing method which concerns on this invention. 実施例の成形加工方法の説明図である。It is explanatory drawing of the shaping | molding processing method of an Example.

以下、本発明を実施するための形態について説明する。本発明に係る成形加工方法は、強化繊維で形成された強化繊維基材の外面に樹脂が融着した繊維強化樹脂中間材を加熱された固定及び移動金型からなる成形金型により加熱、加圧し、前記樹脂が含浸され所定形状に成形された繊維強化樹脂成形品を成形する成形加工方法である。そして、前記樹脂が前記強化繊維基材の外面に融着した状態で前記繊維強化樹脂中間材を押しつぶすようにその繊維強化樹脂中間材を加熱、加圧してこれを保持する加熱促進工程と、前記繊維強化樹脂中間材が前記強化繊維基材に融着した樹脂の軟化温度以上になったときその加圧力を除荷してこれを保持し、その後前記樹脂が流動性を示す状態になったとき加圧力を所定圧まで漸増させた後その所定圧で保持するように前記繊維強化樹脂中間材を再加圧するとともに、加熱して前記樹脂の含浸を行う含浸賦形工程と、を有してなる。ここで、樹脂が流動性を示す状態とは、粘度が10〜10,000Pa・sの範囲にある樹脂の状態を意味する。   Hereinafter, modes for carrying out the present invention will be described. The molding method according to the present invention is a method in which a fiber reinforced resin intermediate material in which a resin is fused to the outer surface of a reinforcing fiber substrate formed of reinforcing fibers is heated and applied by a molding die comprising a heated fixed and moving die. This is a molding method for molding a fiber-reinforced resin molded product that is pressed and impregnated with the resin and molded into a predetermined shape. And the heating promotion process which heats and pressurizes the fiber reinforced resin intermediate material so as to crush the fiber reinforced resin intermediate material in a state where the resin is fused to the outer surface of the reinforcing fiber base, and When the fiber reinforced resin intermediate material becomes higher than the softening temperature of the resin fused to the reinforced fiber base material, the applied pressure is unloaded and held, and then the resin becomes fluid. The fiber reinforced resin intermediate material is re-pressurized so that the pressure is gradually increased to a predetermined pressure and then held at the predetermined pressure, and the impregnation shaping step is performed to impregnate the resin by heating. . Here, the state in which the resin exhibits fluidity means a state of the resin having a viscosity in the range of 10 to 10,000 Pa · s.

本成形加工方法は、強化繊維で形成された強化繊維基材の外面に樹脂が融着した繊維強化樹脂中間材を使用する。すなわち、空隙を含んで嵩張った強化繊維基材からなる繊維強化樹脂中間材を使用し、先ず圧縮してその熱伝導率を高めた上でこれの加熱を行う。従って、繊維強化樹脂中間材を積層するほど嵩張るから、積層数が多い繊維強化樹脂中間材ほど加熱効率が高くなる。この繊維強化樹脂中間材の圧縮を行う加熱促進工程は、樹脂が強化繊維基材の外面に融着した状態で繊維強化樹脂中間材を押しつぶすように行われる。この加熱促進工程において強化繊維基材の外面に融着した樹脂がその状態を保持可能な温度範囲で繊維強化樹脂中間材の圧縮が行われ、次工程の含浸賦形工程において圧密化した繊維強化樹脂中間材の弛緩が行われて樹脂の含浸が適切に行われる。   This molding method uses a fiber-reinforced resin intermediate material in which a resin is fused to the outer surface of a reinforcing fiber base formed of reinforcing fibers. That is, a fiber reinforced resin intermediate material made of a reinforced fiber base material including a void is used. First, the material is compressed to increase its thermal conductivity and then heated. Therefore, the more the fiber reinforced resin intermediate material is laminated, the more bulky, and the more the fiber reinforced resin intermediate material is laminated, the higher the heating efficiency. The heating promotion step of compressing the fiber reinforced resin intermediate material is performed so as to crush the fiber reinforced resin intermediate material in a state where the resin is fused to the outer surface of the reinforced fiber base material. The fiber reinforced resin intermediate material is compressed in a temperature range in which the resin fused to the outer surface of the reinforced fiber base material can maintain its state in this heating promotion process, and the fiber reinforcement consolidated in the next impregnation shaping process The resin intermediate material is relaxed to properly impregnate the resin.

この繊維強化樹脂中間材は、柔軟性を有しており成形金型の形状によく追従する。このため、強化繊維を破断させることなく、また成形金型の形状に沿った形に変形させることができるから、繊維強化樹脂中間材の加熱を促進させることができる。   This fiber reinforced resin intermediate material is flexible and follows the shape of the molding die. For this reason, since the reinforcing fiber can be deformed without breaking the reinforcing mold and along the shape of the molding die, heating of the fiber reinforced resin intermediate material can be promoted.

また、本成形加工方法は、圧縮され急速に昇温した繊維強化樹脂中間材の温度がこれに融着した樹脂の軟化温度以上になると、先ず繊維強化樹脂中間材の加圧力を除荷してその状態を保持する。そして、さらに加熱して繊維強化樹脂中間材の融着させた樹脂が流動性を示す状態になると再加圧を行う。繊維強化樹脂中間材への加圧力を除荷することにより、圧密化していた強化繊維基材は強化繊維の反発力とも相俟って、流動性を示す状態の樹脂が含浸しやすい状態になる。このような樹脂が含浸しやすくなった状態において、強化繊維基材への加圧力を漸増させつつ溶融した樹脂の強化繊維基材への含浸が行われ、そして加圧力が所定圧に達した後その所定圧に保持されて強化繊維基材への樹脂の含浸が完了する。本成形加工方法においては、流動性を示す状態の樹脂の強化繊維基材への含浸が効率的かつ充分に行われ、ボイドなど欠陥の少ない繊維強化樹脂成形品を成形することができる。加圧力を除荷して圧密化していた強化繊維基材が弛緩したときに、成形金型の真空引きを行って強化繊維基材中に含まれる空気を排出すると、さらにボイドなど欠陥の少ない繊維強化樹脂成形品を成形することができる。   In addition, when the temperature of the fiber reinforced resin intermediate material that has been compressed and rapidly raised is equal to or higher than the softening temperature of the resin fused thereto, the molding processing method first unloads the applied pressure of the fiber reinforced resin intermediate material. Hold that state. Then, re-pressurization is performed when the resin further heated and fused with the fiber reinforced resin intermediate material exhibits fluidity. By unloading the pressure applied to the fiber reinforced resin intermediate material, the consolidated reinforcing fiber base material is easily impregnated with resin in a fluid state, coupled with the repulsive force of the reinforcing fiber. . In such a state that the resin is easily impregnated, after the molten fiber is impregnated into the reinforcing fiber base while gradually increasing the pressure applied to the reinforcing fiber base, and the pressure reaches a predetermined pressure By maintaining the predetermined pressure, the impregnation of the resin into the reinforcing fiber base is completed. In this molding method, a fiber reinforced resin molded article having few defects such as voids can be efficiently and sufficiently impregnated into the reinforcing fiber base with a resin in a fluid state. When the reinforcing fiber base material that has been consolidated by unloading the applied pressure is relaxed, if the air contained in the reinforcing fiber base material is exhausted by evacuating the molding die, fibers with fewer defects such as voids A reinforced resin molded product can be molded.

本発明において、強化繊維基材の外面に樹脂が融着した繊維強化樹脂中間材とは、溶融した樹脂が強化繊維基材の外面のみならず外面からわずかに含浸した状態をも含む意であり、その含浸深さは強化繊維基材を形成する強化繊維の数本分の深さ以下である。例えば、強化繊維が外径7μmの炭素繊維からなる厚みが200μmの強化繊維基材の場合は、含浸深さが20μm以下のものをいう。かかる繊維強化樹脂中間材は、例えば図1に示す形態をしており、強化繊維基材に樹脂粉体を付着、溶融して成形することができる。この方法によると、内部に空隙を有するとともに外面に開口した空隙を有する強化繊維基材を容易に成形することができる。外面に開口した空隙を有する強化繊維基材からなる繊維強化樹脂中間材は、その内部の空気を加熱促進工程及び含浸賦形工程において容易に排出することができるので好ましい。図1に繊維強化樹脂中間材の例を示す。この繊維強化樹脂中間材10は、樹脂粉体12を強化繊維基材11の外面に付着させた後、その樹脂粉体12の形状、大きさ又は付着状態に由来する凹凸状の形態が消失しない程度に加熱・溶融させることによって得られたものであって、外面に融着した樹脂20を有する。   In the present invention, the fiber reinforced resin intermediate material in which the resin is fused to the outer surface of the reinforcing fiber base means that the melted resin includes not only the outer surface of the reinforcing fiber base but also a slightly impregnated state from the outer surface. The impregnation depth is not more than the depth of several reinforcing fibers forming the reinforcing fiber substrate. For example, when the reinforcing fiber is a reinforcing fiber substrate having a thickness of 200 μm made of carbon fibers having an outer diameter of 7 μm, the impregnation depth is 20 μm or less. Such a fiber reinforced resin intermediate material has, for example, the form shown in FIG. 1, and can be molded by adhering and melting resin powder on a reinforced fiber base material. According to this method, it is possible to easily form a reinforcing fiber substrate having voids inside and voids opened on the outer surface. A fiber reinforced resin intermediate material made of a reinforced fiber base material having voids opened on the outer surface is preferable because air inside the fiber reinforced resin intermediate material can be easily discharged in the heating promotion step and the impregnation shaping step. FIG. 1 shows an example of a fiber reinforced resin intermediate material. In this fiber reinforced resin intermediate material 10, after the resin powder 12 is attached to the outer surface of the reinforced fiber base material 11, the uneven shape derived from the shape, size or attached state of the resin powder 12 does not disappear. It is obtained by heating and melting to the extent that it has a resin 20 fused to the outer surface.

樹脂粉体の強化繊維基材への付着は、静電付着方法を使用するのがよい。樹脂粉体は、平均粒子径が1〜500μmのものを使用することができる。樹脂粉体の静電付着は、樹脂粉体が強化繊維基材の外面に付着するように、樹脂粉体を帯電させた状態で強化繊維基材に吹きつけて行う。この静電付着は溶媒などを用いないドライな状態で行われる。樹脂粉体は、マクロ的に観察すれば強化繊維基材の表面に均一の厚さ、均一の分布で付着しているのであるが、ミクロ的に観察すれば、束になった多数の強化繊維から形成される強化繊維基材の表面は、樹脂粉体が一層又は複層に付着した部分があり、あるいは樹脂粉体が付着していない部分がある。かかる部分は、強化繊維の内部に存在する空隙が強化繊維基材の外面に開口した状態になっており、強化繊維は外面に開口した空隙を有する。このような状態は、強化繊維基材を形成する強化繊維の外径とその強化繊維基材の嵩密度に基づいて、強化繊維基材の繊維体積含有率が所定の値になるように、所定の平均粒径の樹脂粉体を、強化繊維基材に静電付着させることによって生じさせることができる。なお、本発明において、強化繊維基材の外面とは、強化繊維基材の開放された表面をいう。   Adhesion of the resin powder to the reinforcing fiber base is preferably performed using an electrostatic adhesion method. The resin powder having an average particle diameter of 1 to 500 μm can be used. The electrostatic adhesion of the resin powder is performed by spraying the resin powder on the reinforcing fiber base in a charged state so that the resin powder adheres to the outer surface of the reinforcing fiber base. This electrostatic adhesion is performed in a dry state without using a solvent or the like. The resin powder adheres to the surface of the reinforcing fiber substrate with a uniform thickness and uniform distribution when observed macroscopically, but when observed microscopically, a large number of reinforcing fibers bundled together. The surface of the reinforcing fiber base formed from the above has a portion where the resin powder is adhered to one or more layers, or a portion where the resin powder is not adhered. In such a portion, the voids present inside the reinforcing fibers are in a state of opening on the outer surface of the reinforcing fiber base, and the reinforcing fibers have voids opened on the outer surface. Such a state is determined so that the fiber volume content of the reinforcing fiber base becomes a predetermined value based on the outer diameter of the reinforcing fiber forming the reinforcing fiber base and the bulk density of the reinforcing fiber base. Can be produced by electrostatically adhering a resin powder having an average particle diameter of 2 to a reinforcing fiber substrate. In the present invention, the outer surface of the reinforcing fiber base means an open surface of the reinforcing fiber base.

本発明において対象とする樹脂は熱可塑性樹脂に限定されない。例えば、硬化反応を生じた部分が10%以下のときに熱可塑性樹脂様の挙動を示す熱硬化性樹脂も本願発明の対象にすることができる。熱可塑性樹脂は、ポリカーボネート(PC)、ポリスルホン(PSU)、ポリエーテルスルホン(PES)、ポリアミドイミド(PAI)、ポリエーテルイミド(PEI)、ポリアミド系樹脂(PA6、PA11、PA66)、ポリブチレンテレフタレート(PBT)、ポリエチレンテレフタレート(PET)、ポリフェニレンスルフィド(PPS)、ポリエーテルエーテルケトン(PEEK)、ポリエーテルケトンケトン(PEKK)等を使用することができる。熱硬化性樹脂は、フェノール樹脂、ポリイミド樹脂等を使用することができる。   The target resin in the present invention is not limited to a thermoplastic resin. For example, a thermosetting resin that exhibits a thermoplastic resin-like behavior when the portion where the curing reaction has occurred is 10% or less can also be the subject of the present invention. Thermoplastic resins include polycarbonate (PC), polysulfone (PSU), polyethersulfone (PES), polyamideimide (PAI), polyetherimide (PEI), polyamide resins (PA6, PA11, PA66), polybutylene terephthalate ( PBT), polyethylene terephthalate (PET), polyphenylene sulfide (PPS), polyether ether ketone (PEEK), polyether ketone ketone (PEKK) and the like can be used. A phenol resin, a polyimide resin, etc. can be used for a thermosetting resin.

強化繊維は、炭素繊維が好ましく、ガラス繊維、天然繊維、アラミド繊維、ボロン繊維、ポリエチレン繊維、強化ポリプロピレン繊維を使用することができる。強化繊維基材は、強化繊維を用いた繊条状若しくは織物状の強化繊維からなるもの、または、二次元若しくは三次元的にランダムに配向した不連続状の強化繊維からなるものを使用することができる。例えば、繊条状の強化繊維基材としてUDシートを使用することができる。繊維強化樹脂中間材は、単層のものであってもよく、積層したものであってもよい。   The reinforcing fibers are preferably carbon fibers, and glass fibers, natural fibers, aramid fibers, boron fibers, polyethylene fibers, and reinforced polypropylene fibers can be used. Reinforcing fiber base material should be composed of filamentous or woven reinforcing fibers using reinforcing fibers, or discontinuous reinforcing fibers that are randomly oriented two-dimensionally or three-dimensionally. Can do. For example, a UD sheet can be used as a filamentous reinforcing fiber substrate. The fiber reinforced resin intermediate material may be a single layer or may be laminated.

本発明において、上記繊維強化樹脂中間材を加熱、加圧するための成形金型は、固定及び可動金型からなり温度制御が可能なものが使用される。成形金型の温度は、例えば、熱可塑性樹脂においては、結晶性樹脂の場合に融点以上の所定温度、非結晶性樹脂の場合にガラス転移温度以上の所定温度、熱硬化性樹脂の場合に硬化反応を生じる所定温度とされる。しかしながら、かかる場合は加熱促進工程及び含浸賦形工程における繊維強化樹脂中間材の温度管理が厳しくなる場合がある。このため、加熱促進工程と含浸賦形工程において成形金型の温度を異なる所定温度にすることができる。例えば、結晶性熱可塑性樹脂の融点をTmとする場合に、加熱促進工程における成形金型の温度をTL、含浸賦形工程における成形金型の温度をTUとするとき、TL≦Tm<TUとする。 In the present invention, the molding die for heating and pressurizing the fiber reinforced resin intermediate material is composed of a fixed and movable die and capable of temperature control. For example, in the case of a thermoplastic resin, the temperature of the molding die is a predetermined temperature that is higher than the melting point in the case of a crystalline resin, a predetermined temperature that is higher than the glass transition temperature in the case of an amorphous resin, and is cured in the case of a thermosetting resin. The temperature is set to a predetermined temperature at which reaction occurs. However, in such a case, the temperature control of the fiber reinforced resin intermediate material in the heating promotion step and the impregnation shaping step may be strict. For this reason, the temperature of the molding die can be set to different predetermined temperatures in the heating promotion step and the impregnation shaping step. For example, when the melting point of the crystalline thermoplastic resin is T m , when the temperature of the molding die in the heating acceleration step is T L , and the temperature of the molding die in the impregnation shaping step is T U , T L ≦ Let T m <T U.

本発明において強化繊維基材に融着した樹脂の軟化温度として、ビカット軟化温度(JIS K7206)あるいは荷重たわみ温度(JIS K7191-3)を使用することができる。軟化温度としてビカット軟化温度又は荷重たわみ温度のいずれを使用するかは、対象とする樹脂の種類や成形条件などを考慮し、本発明の実施に最適なものが使用される。   In the present invention, the Vicat softening temperature (JIS K7206) or the deflection temperature under load (JIS K7191-3) can be used as the softening temperature of the resin fused to the reinforcing fiber substrate. Whether the Vicat softening temperature or the deflection temperature under load is used as the softening temperature is determined in consideration of the type of resin to be used, molding conditions, and the like.

繊維強化樹脂中間材の加圧は、加熱促進工程においては加圧力が0MPa<加圧力<20MPaの範囲で行うのがよい。加熱促進工程において加圧力が高すぎると、強化繊維の破断が起こることがある。含浸賦形工程においては、加圧力は、加圧時間、強化繊維基材へのダメージ、経済性などから判断し、40MPa以下で行うのがよい。   The pressurization of the fiber reinforced resin intermediate material is preferably performed in the range of 0 MPa <pressing force <20 MPa in the heating promotion step. If the applied pressure is too high in the heating promotion step, the reinforcing fiber may break. In the impregnation shaping step, the applied pressure is preferably 40 MPa or less, judging from the pressurization time, damage to the reinforcing fiber substrate, economy, and the like.

本発明の実施について図面を基に説明する。先ず、図2に示す固定金型30及び移動金型40からなる成形金型を所定温度Tに加熱する。そして、所定温度に保持された成形金型に繊維強化樹脂中間材10を載置する。次に、移動金型40を固定金型30に閉じて、図3に示すように、(1)繊維強化樹脂中間材を加熱しつつ加圧し、所定圧力になったときその状態を保持する。このとき、繊維強化樹脂中間材は、加圧力が0MPa<加圧力<20MPaの範囲に維持されるよう加圧される。この加熱促進工程においては、繊維強化樹脂中間材の強化繊維間に存在する空隙、および繊維強化樹脂中間材が積層してなるときに積層部分に形成される空隙が押しつぶされて熱伝導率が向上し繊維強化樹脂中間材は急速に加熱される。(2)次に、繊維強化樹脂中間材の温度が樹脂の軟化温度以上になったとき、繊維強化樹脂中間材に加える加圧力を除荷しこの状態を保持する。これにより、加熱促進工程において圧密化していた強化繊維基材は弛緩し、その内部に空隙が生じる。(3)そして、繊維強化樹脂中間材の温度がさらに昇温し樹脂が流動を示す状態になったとき、加圧力を漸増し、所定圧力に達したときこれを保持する。これにより、繊維強化樹脂中間材への樹脂の含浸が適切に行われる。樹脂の含浸が完了すると、繊維強化樹脂中間材は冷却及び加圧力が除荷され、成形金型から離型され、ボイドなどの欠陥の少ない繊維強化樹脂成形品が成形される。   An embodiment of the present invention will be described with reference to the drawings. First, a molding die composed of the fixed die 30 and the moving die 40 shown in FIG. Then, the fiber reinforced resin intermediate material 10 is placed on a molding die maintained at a predetermined temperature. Next, the moving mold 40 is closed to the fixed mold 30, and as shown in FIG. 3, (1) the fiber reinforced resin intermediate material is heated and pressurized, and the state is maintained when a predetermined pressure is reached. At this time, the fiber reinforced resin intermediate material is pressurized so that the applied pressure is maintained in the range of 0 MPa <applied pressure <20 MPa. In this heating promotion step, the gap between the reinforcing fibers of the fiber reinforced resin intermediate material and the gap formed in the laminated portion when the fiber reinforced resin intermediate material is laminated are crushed to improve the thermal conductivity. The intermediate fiber reinforced resin material is heated rapidly. (2) Next, when the temperature of the fiber reinforced resin intermediate material becomes equal to or higher than the softening temperature of the resin, the pressure applied to the fiber reinforced resin intermediate material is unloaded and this state is maintained. As a result, the reinforcing fiber base material that has been consolidated in the heating promotion step is relaxed, and voids are generated inside. (3) Then, when the temperature of the fiber reinforced resin intermediate material is further raised and the resin is in a state of flowing, the applied pressure is gradually increased, and when the predetermined pressure is reached, this is maintained. Thereby, the impregnation of the resin into the fiber reinforced resin intermediate material is appropriately performed. When the impregnation of the resin is completed, the fiber reinforced resin intermediate material is unloaded from the cooling and pressing force, released from the molding die, and a fiber reinforced resin molded product with few defects such as voids is formed.

ポリアミド樹脂(PA6、融点225℃)とPAN系炭素繊維織物(平織、目付198g/m2)を用いて繊維強化樹脂中間材を作製し、繊維強化樹脂成形品を成形する試験を行った。繊維強化樹脂成形品の厚さが10mmになるように繊維強化樹脂中間材を50枚積層したところ厚さが30mmであった。この繊維強化樹脂中間材を220℃に保持した成形金型に載置し、それぞれ、0MPa、0.1MPa、1MPa、5MPa、10MPaで加圧して繊維強化樹脂中間材の中心部の温度変化を測定したところ、表1の結果を得た。表1の結果に基づき、以下に行う繊維強化樹脂中間材への加圧力は1MPaとした。
A fiber reinforced resin intermediate material was produced using a polyamide resin (PA6, melting point 225 ° C.) and a PAN-based carbon fiber woven fabric (plain weave, basis weight 198 g / m 2 ), and a test for molding a fiber reinforced resin molded product was performed. When fifty fiber reinforced resin intermediate materials were laminated so that the thickness of the fiber reinforced resin molded product was 10 mm, the thickness was 30 mm. This fiber-reinforced resin intermediate material was placed on a molding die maintained at 220 ° C., and pressure changes at 0 MPa, 0.1 MPa, 1 MPa, 5 MPa, and 10 MPa were performed to measure temperature changes at the center of the fiber-reinforced resin intermediate material. The results shown in Table 1 were obtained. Based on the results in Table 1, the pressure applied to the fiber-reinforced resin intermediate material to be described below was 1 MPa.

Figure 0006368748
Figure 0006368748

上記強化繊維基材を10枚積層してなる繊維強化樹脂中間材を、図2に示す成形金型を用い、図3に示すように加熱、加圧を行って皿状の繊維強化樹脂成形品を成形した。すなわち、温度が240℃の成形金型に繊維強化樹脂中間材を載置し、繊維強化樹脂中間材を1MPaで加圧した。その加圧力を前記繊維強化樹脂中間材の温度が220℃になるまで保持した後、0.1MPaまで減圧し、その状態を60〜90秒間保持した。次に、前記繊維強化樹脂中間材が成形金型温度の240℃まで昇温され、強化繊維基材の外面に融着したポリアミド樹脂が流動性を示す状態になったとき繊維強化樹脂中間材を徐々に加圧し、加圧力が5MPaになったとき60秒間保持した。その後、成形金型を70℃以下まで冷却した後、成形された繊維強化樹脂成形品を成形金型から取り出した。得られた繊維強化樹脂成形品から曲げ試験用の試験片を作製し、JIS K7074に準拠して曲げ強度を測定した。その曲げ強度は、平均946MPaであった。試験片の断面を観察したところ、ボイド率は0.1%以下であった。なお、本成形試験において温度及び加圧力はプログラム制御で行ったが、加圧力を完全に除荷することが困難で0.1MPaの設定(減圧)とした。   A fiber-reinforced resin intermediate material formed by laminating 10 of the above-mentioned reinforcing fiber bases is heated and pressurized as shown in FIG. 3 using a molding die shown in FIG. Was molded. That is, the fiber reinforced resin intermediate material was placed on a molding die having a temperature of 240 ° C., and the fiber reinforced resin intermediate material was pressurized at 1 MPa. The pressure was maintained until the temperature of the fiber-reinforced resin intermediate material reached 220 ° C., and then the pressure was reduced to 0.1 MPa, and the state was maintained for 60 to 90 seconds. Next, when the fiber reinforced resin intermediate material is heated to a molding die temperature of 240 ° C. and the polyamide resin fused to the outer surface of the reinforced fiber base material becomes fluid, the fiber reinforced resin intermediate material is The pressure was gradually increased and held for 60 seconds when the applied pressure reached 5 MPa. Thereafter, the molding die was cooled to 70 ° C. or lower, and the molded fiber-reinforced resin molded product was taken out from the molding die. A specimen for a bending test was produced from the obtained fiber reinforced resin molded product, and the bending strength was measured according to JIS K7074. The bending strength averaged 946 MPa. When the cross section of the test piece was observed, the void ratio was 0.1% or less. In this molding test, the temperature and the applied pressure were controlled by a program. However, it was difficult to completely unload the applied pressure, and the setting was set to 0.1 MPa (decompression).

実施例2は、成形金型の温度を加熱段階と含浸段階とで異なる温度に保持して繊維強化樹脂成形品を成形した。実施例1と同様に強化繊維基材を10枚積層してなる繊維強化樹脂中間材を作製し、図2に示す成形金型を用い、図4に示すように加熱、加圧を行って皿状の繊維強化樹脂成形品を成形した。すなわち、温度が220℃の成形金型に繊維強化樹脂中間材を載置し、繊維強化樹脂中間材を1MPaで加圧した。その加圧力を60秒間保持した後、0.1MPaまで減圧し、その状態を60〜90秒間保持した。次に、成形金型の温度を240℃に昇温させ、強化繊維基材の外面に融着したポリアミド樹脂が流動性を示す状態になったとき繊維強化樹脂中間材を徐々に加圧し、加圧力が5MPaになったとき60秒間保持した。その後、成形金型を70℃以下まで冷却した後、成形された繊維強化樹脂成形品を成形金型から取り出した。得られた繊維強化樹脂成形品から曲げ試験用の試験片を作成し、JIS K7074に準拠して曲げ強度を測定した。その曲げ強度は、平均950MPaであった。試験片の断面を観察したところ、ボイド率は0.1%以下であった。   In Example 2, the temperature of the molding die was maintained at different temperatures in the heating stage and the impregnation stage, and a fiber-reinforced resin molded article was molded. A fiber reinforced resin intermediate material formed by laminating 10 reinforcing fiber base materials in the same manner as in Example 1 was prepared, and heated and pressed as shown in FIG. 4 using a molding die shown in FIG. A fiber-reinforced resin molded product was molded. That is, the fiber reinforced resin intermediate material was placed on a molding die having a temperature of 220 ° C., and the fiber reinforced resin intermediate material was pressurized at 1 MPa. After maintaining the pressure for 60 seconds, the pressure was reduced to 0.1 MPa and the state was maintained for 60 to 90 seconds. Next, the temperature of the molding die is raised to 240 ° C., and when the polyamide resin fused to the outer surface of the reinforcing fiber base becomes fluid, the intermediate material of the fiber reinforced resin is gradually pressurized and applied. When the pressure reached 5 MPa, the pressure was maintained for 60 seconds. Thereafter, the molding die was cooled to 70 ° C. or lower, and the molded fiber-reinforced resin molded product was taken out from the molding die. A specimen for a bending test was created from the obtained fiber reinforced resin molded product, and the bending strength was measured in accordance with JIS K7074. The bending strength was an average of 950 MPa. When the cross section of the test piece was observed, the void ratio was 0.1% or less.

10 繊維強化樹脂中間材
11 強化繊維基材
12 強化繊維
20 溶融した樹脂粉体
30 固定金型
40 移動金型
10 Fiber reinforced resin intermediate material
11 Reinforcing fiber substrate
12 Reinforcing fiber
20 Molten resin powder
30 Fixed mold
40 Moving mold

Claims (5)

強化繊維で形成された強化繊維基材の外面に樹脂が融着した繊維強化樹脂中間材を、加熱された固定及び移動金型からなる成形金型により加熱、加圧し、前記樹脂が含浸され所定形状に成形された繊維強化樹脂成形品を成形する成形加工方法であって、
前記樹脂が前記強化繊維基材の外面に融着した状態で前記繊維強化樹脂中間材を押しつぶすようにその繊維強化樹脂中間材を加熱、加圧してその加熱及び加圧状態を保持する加熱促進工程と、
前記繊維強化樹脂中間材の温度が前記強化繊維基材に融着した樹脂の軟化温度以上になったときその加圧力を除荷してその除荷の状態を保持し、その後前記樹脂が流動性を示す状態になったとき加圧力を所定圧まで漸増させた後その所定圧で保持するように前記繊維強化樹脂中間材を再加圧するとともに、加熱して前記樹脂の含浸を行う含浸賦形工程と、を有してなる成形加工方法。
A fiber reinforced resin intermediate material in which a resin is fused to the outer surface of a reinforcing fiber base formed of reinforcing fibers is heated and pressed by a molding die composed of a heated fixed and moving die, and the resin is impregnated to be predetermined. A molding processing method for molding a fiber-reinforced resin molded product molded into a shape,
A heating promoting step of heating and pressurizing the fiber reinforced resin intermediate material so as to crush the fiber reinforced resin intermediate material in a state where the resin is fused to the outer surface of the reinforced fiber base material and maintaining the heated and pressurized state. When,
When the temperature of the fiber reinforced resin intermediate material is equal to or higher than the softening temperature of the resin fused to the reinforcing fiber substrate, the pressure is unloaded and the unloaded state is maintained, and then the resin is fluid. The step of impregnating and shaping the fiber-reinforced resin intermediate material is repressurized so that the pressure is gradually increased to a predetermined pressure and then maintained at the predetermined pressure, and the resin is impregnated by heating. And a molding method comprising:
加熱促進工程は、繊維強化樹脂中間材に負荷する加圧力が、0MPa<加圧力<20MPaの範囲に維持されるように強化繊維基材にかかる圧力を調整して行われることを特徴とする請求項1に記載の成形加工方法。   The heating promotion step is performed by adjusting the pressure applied to the reinforcing fiber base so that the pressure applied to the fiber reinforced resin intermediate material is maintained in a range of 0 MPa <pressing pressure <20 MPa. Item 2. A forming method according to Item 1. 含浸賦形工程は、成形金型内を一旦真空引きした後に行われることを特徴とする請求項1又は2に記載の成形加工方法。   3. The molding method according to claim 1, wherein the impregnating and shaping step is performed after the inside of the molding die is once evacuated. 樹脂が外面に融着した繊維強化樹脂中間材を所定温度に加熱された成形金型により加熱及び加圧し、前記繊維強化樹脂中間材に前記樹脂が含浸した繊維強化樹脂成形品を成形する成形加工方法であって、
強化繊維間に空隙を含んで嵩張ってなる前記繊維強化樹脂中間材を前記成形金型内で加熱、加圧して、前記強化繊維と前記融着した樹脂を急速に加熱し、その樹脂が軟化したとき先ず前記繊維強化樹脂中間材への加圧力を除荷してその除荷の状態を保持し、その後前記樹脂が流動性を示す状態になったとき加圧力が所定圧まで漸増するように前記繊維強化樹脂中間材を再加圧し、所定加圧力に達した後にその所定加圧力の状態を保持してその繊維強化樹脂中間材への前記樹脂の含浸を行う成形加工方法。
A molding process in which a fiber reinforced resin intermediate material in which a resin is fused to the outer surface is heated and pressurized by a molding die heated to a predetermined temperature, and a fiber reinforced resin molded product in which the resin is impregnated with the resin is molded. A method,
The fiber reinforced resin intermediate material, which is bulky with voids between the reinforced fibers, is heated and pressurized in the molding die, and the reinforced fibers and the fused resin are rapidly heated to soften the resin. First, the pressure applied to the fiber-reinforced resin intermediate material is unloaded and the unloaded state is maintained, and then the pressure is gradually increased to a predetermined pressure when the resin is in a fluid state. A molding method in which the fiber-reinforced resin intermediate material is re-pressurized, and after the predetermined pressure is reached, the state of the predetermined pressure is maintained and the fiber-reinforced resin intermediate material is impregnated with the resin.
成形金型を加熱する所定温度は、樹脂が外面に融着した繊維強化樹脂中間材の急速加熱を行う加熱促進段階温度と、それよりも高温で行う繊維強化樹脂中間材の外面に融着した樹脂の繊維強化樹脂中間材への含浸を行う含浸段階温度と、2つの段階的な温度であることを特徴とする請求項4に記載の成形加工方法。   The predetermined temperature for heating the molding die is the heating acceleration stage temperature for rapid heating of the fiber reinforced resin intermediate material in which the resin is fused to the outer surface and the outer surface of the fiber reinforced resin intermediate material that is heated at a higher temperature. The molding method according to claim 4, wherein the temperature is an impregnation stage temperature for impregnating a fiber reinforced resin intermediate material with a resin and two stage temperatures.
JP2016159832A 2016-08-17 2016-08-17 Molding method for molding fiber reinforced resin Active JP6368748B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016159832A JP6368748B2 (en) 2016-08-17 2016-08-17 Molding method for molding fiber reinforced resin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016159832A JP6368748B2 (en) 2016-08-17 2016-08-17 Molding method for molding fiber reinforced resin

Publications (2)

Publication Number Publication Date
JP2018027625A JP2018027625A (en) 2018-02-22
JP6368748B2 true JP6368748B2 (en) 2018-08-01

Family

ID=61247744

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016159832A Active JP6368748B2 (en) 2016-08-17 2016-08-17 Molding method for molding fiber reinforced resin

Country Status (1)

Country Link
JP (1) JP6368748B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7326228B2 (en) * 2020-07-06 2023-08-15 株式会社イノアックコーポレーション Fiber-reinforced resin molding and its manufacturing method

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5751423A (en) * 1980-09-12 1982-03-26 Hitachi Chem Co Ltd Preparation of thermosetting resin laminated plate
JP2001030279A (en) * 1999-07-27 2001-02-06 Matsushita Electric Works Ltd Manufacture of laminated sheet
JP4715017B2 (en) * 2001-04-13 2011-07-06 パナソニック電工株式会社 Multilayer laminate manufacturing method
WO2008117711A1 (en) * 2007-03-27 2008-10-02 Panasonic Electric Works Co., Ltd. Metal-plated laminated board, multilayer laminated board and method for manufacturing the same
JP5801658B2 (en) * 2011-09-05 2015-10-28 帝人株式会社 Thin-walled molded product having uniform thickness and method for producing the same
JP5962114B2 (en) * 2012-01-26 2016-08-03 東洋紡株式会社 Manufacturing method of fiber reinforced thermoplastic resin molded article
JP6021256B2 (en) * 2012-12-03 2016-11-09 株式会社名機製作所 Fiber composite molded product press molding method, fiber composite molded product press molding apparatus, and fiber composite molded product mold

Also Published As

Publication number Publication date
JP2018027625A (en) 2018-02-22

Similar Documents

Publication Publication Date Title
KR102085014B1 (en) Method for forming shaped preform
JP6289503B2 (en) Fabrication of thermoplastic reinforced composite parts
JP4821262B2 (en) Reinforcing fiber laminate, preform, FRP, reinforcing fiber laminate manufacturing method and manufacturing apparatus thereof
CN112223789B (en) Fiber-reinforced resin intermediate material and method for producing same
KR20150079589A (en) Method and apparatus for forming thick thermoplastic composite structures
JP2018138383A (en) Material system, and methods for manufacturing material system
CA2877224A1 (en) Fabrication of composite laminates using temporarily stitched preforms
EP2939821B1 (en) Method for obtaining a composite laminate
CN110267785B (en) Fiber-reinforced resin sheet
JP6521895B2 (en) Fiber-reinforced resin intermediate material and method for producing the same
KR101961103B1 (en) Carbon riber and mesh structure tight processing carbon fiber prepreg and manufacturing method of the same
CN113272108A (en) Method for producing preform, method for producing composite material molded article, and mold
JP6368748B2 (en) Molding method for molding fiber reinforced resin
EP3023232B1 (en) Method for manufacturing a composite part from a preimpregnated material with a semi-crystalline matrix having an amorphous surface layer
KR101263976B1 (en) Method For Preparing Composite Sheet Having Excellent Ecomomical Efficiency And Physical Property, Apparatus Thereof And Composite Sheet Prepared Therefrom
EP3585607B1 (en) Fiber composite with reduced surface roughness and method for its manufacture
NL2014282B1 (en) Consolidation Cycle.
Proietti et al. Recycling of carbon fiber laminates by thermo-mechanical disassembly and hybrid panel compression molding
TW201618962A (en) Sandwich components composed of poly(meth)acrylate-based foam bodies and reversibly crosslinkable composites
JP6696975B2 (en) Molding material and method of forming the same
JP2022515398A (en) How to prepare a sandwich-like composite material
JP2004338270A (en) Method for producing fiber-reinforced resin composite material and fiber-reinforced resin composite material
JP7473416B2 (en) Method for producing fiber-reinforced composite material
JP7419291B2 (en) Method for manufacturing fiber-reinforced molded body, resin sheet, and method for manufacturing resin sheet
JPH04251715A (en) Manufacture of carbon fiber reinforced composite material

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180308

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180314

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180523

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180530

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180613

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180709

R150 Certificate of patent or registration of utility model

Ref document number: 6368748

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313114

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250