JP2001030279A - Manufacture of laminated sheet - Google Patents

Manufacture of laminated sheet

Info

Publication number
JP2001030279A
JP2001030279A JP11211450A JP21145099A JP2001030279A JP 2001030279 A JP2001030279 A JP 2001030279A JP 11211450 A JP11211450 A JP 11211450A JP 21145099 A JP21145099 A JP 21145099A JP 2001030279 A JP2001030279 A JP 2001030279A
Authority
JP
Japan
Prior art keywords
temperature
resin composition
region
laminate
glass transition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP11211450A
Other languages
Japanese (ja)
Inventor
Tsutomu Ichiki
勉 一木
Hideto Misawa
英人 三澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Priority to JP11211450A priority Critical patent/JP2001030279A/en
Publication of JP2001030279A publication Critical patent/JP2001030279A/en
Withdrawn legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a method for manufacturing a laminated sheet, by which the dimensional stability of the laminated sheet is high through the checking of the accumulation of an internal stress to the laminated sheet during the heating and cooling process in molding and the development of warpage and twisting in the laminated sheet is checked. SOLUTION: In the manufacturing method of a laminated sheet, in which a laminated matter is formed by laminating a plurality of sheets of prepreg made of a thermosetting resin composition and a base material to one another so as to be molded under heat and pressure to obtain a laminated sheet, a temperature region in which resin temperature exceeds the glass transition temperature of a set thermosetting resin composition, is set and, at the same time, a pressure region in which a mold pressure is 5 kg/cm2 or less, is set. As a result, the internal stress of the laminated sheet can be prevented from accumulating at its molding.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、電気・電子機器等
に使用されるプリント配線板の製造等に用いられる積層
板の製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a laminated board used for manufacturing a printed wiring board used for electric / electronic equipment and the like.

【0002】[0002]

【従来の技術】従来、プリント配線板の製造に用いられ
る積層板は、例えばガラスクロス等の基材にエポキシ樹
脂等の熱硬化性樹脂組成物を含浸した後、乾燥して半硬
化させることによってプリプレグを作製し、このプリプ
レグを所要枚数重ねると共に、必要に応じて銅箔等の金
属箔をその片側又は両側に配して積層して積層物を形成
し、この積層物を加熱加圧することにより製造されてい
た。
2. Description of the Related Art Conventionally, a laminated board used for manufacturing a printed wiring board is obtained by impregnating a base material such as a glass cloth with a thermosetting resin composition such as an epoxy resin, and then drying and semi-curing. By preparing a prepreg, stacking the required number of prepregs, and arranging a metal foil such as a copper foil on one side or both sides as necessary to form a laminate, and by heating and pressing the laminate, Had been manufactured.

【0003】ここで、加熱加圧成形時においては、積層
板の絶縁層にボイドやカスレ等の不良の発生を抑制した
り、成形される積層板の表面粗度が増大することを抑制
して成形性を向上するために、10kg/cm以上の
成形圧力をかけていた。
[0003] In the heat-press molding, the occurrence of defects such as voids and frays in the insulating layer of the laminate is suppressed, and the increase in the surface roughness of the laminate to be formed is suppressed. In order to improve moldability, a molding pressure of 10 kg / cm 2 or more was applied.

【0004】[0004]

【発明が解決しようとする課題】しかし、加熱加圧時に
おいては、プリプレグ又はプリプレグによって形成され
る絶縁層は、加熱時には熱硬化性樹脂組成物の熱膨脹に
より膨脹し、冷却時や熱硬化性樹脂組成物の硬化反応の
進行時は収縮するものであり、上記の従来技術のよう
に、成形圧力を10kg/cm以上とすると、加熱加
圧時における積層板の寸法変化が抑制されて、プリプレ
グ又はプリプレグによって形成される絶縁層の膨脹・収
縮に起因する内部応力が積層板内に蓄積されることとな
る。このような内部応力が蓄積された積層板は、プリン
ト配線板を成形するためのレジスト被膜のスクリーン印
刷工程等の次工程において加熱された際、に内部応力が
解放されて、積層板の寸法が変化したり、反りやねじれ
が発生したりするものであって、製品の寸法誤差や形状
誤差が生じる原因となっていた。
However, at the time of heating and pressurizing, the prepreg or the insulating layer formed by the prepreg expands at the time of heating due to the thermal expansion of the thermosetting resin composition, and at the time of cooling or the thermosetting resin. When the curing reaction of the composition progresses, the composition shrinks. When the molding pressure is set to 10 kg / cm 2 or more, the dimensional change of the laminate at the time of heating and pressing is suppressed, and the prepreg is hardened. Alternatively, internal stress resulting from expansion and contraction of the insulating layer formed by the prepreg is accumulated in the laminate. When the laminated board in which such internal stress is accumulated is heated in a next step such as a screen printing step of a resist film for forming a printed wiring board, the internal stress is released, and the dimensions of the laminated board are reduced. They change, warp or twist, and cause dimensional errors and shape errors of products.

【0005】本発明は上記の点に鑑みてなされたもので
あり、成形時の加熱・冷却過程における積層板への内部
応力の蓄積を抑制して、寸法安定性が高く、かつ反りや
ねじれの発生が抑制された積層板を製造することができ
る積層板の製造方法を提供することを目的とするもので
ある。
The present invention has been made in view of the above points, and suppresses the accumulation of internal stress in a laminate during the heating / cooling process during molding, has high dimensional stability, and is free from warpage and twist. It is an object of the present invention to provide a method for manufacturing a laminated board capable of producing a laminated board in which generation is suppressed.

【0006】[0006]

【課題を解決するための手段】本発明の請求項1に係る
積層板の製造方法は、熱硬化性樹脂組成物及び基材から
なるプリプレグを複数枚積層して積層物を形成し、この
積層物を加熱加圧成形する積層板の製造方法において、
加熱加圧過程中に、樹脂温度が熱硬化性樹脂組成物の硬
化物のガラス転移温度を超える温度となる領域を設定す
ると共にこの領域中に成形圧力が5kg/cm以下と
なる領域を設定することを特徴とするものである。
According to a first aspect of the present invention, there is provided a method for manufacturing a laminate, comprising: laminating a plurality of prepregs each comprising a thermosetting resin composition and a base material to form a laminate; In a method of manufacturing a laminate by heating and pressing a product,
During the heating and pressurizing process, a region where the resin temperature exceeds the glass transition temperature of the cured product of the thermosetting resin composition is set, and a region where the molding pressure is 5 kg / cm 2 or less is set in this region. It is characterized by doing.

【0007】また本発明の請求項2に係る積層板の製造
方法は、請求項1の構成に加えて、樹脂温度が熱硬化性
樹脂組成物のガラス転移温度を超える温度となる領域中
における、成形圧力が5kg/cm以下となる領域の
加圧時間を、加熱温度が熱硬化性樹脂組成物の硬化物の
ガラス転移温度を超える温度となる領域における加圧時
間の50〜100%の時間とすることを特徴とするもの
である。
According to a second aspect of the present invention, there is provided a method for manufacturing a laminated board according to the first aspect, wherein the resin temperature is in a region where the resin temperature exceeds a glass transition temperature of the thermosetting resin composition. The pressing time in the region where the molding pressure is 5 kg / cm 2 or less is 50 to 100% of the pressing time in the region where the heating temperature is higher than the glass transition temperature of the cured product of the thermosetting resin composition. It is characterized by the following.

【0008】また本発明の請求項3に係る積層板の製造
方法は、請求項1又は2の構成に加えて、加熱加圧過程
中に、樹脂温度が熱硬化性樹脂組成物が最低溶融粘度を
示す温度よりも20℃低い温度から最低溶融粘度を示す
温度よりも20℃高い温度まで昇温される領域を設定す
ると共に、この領域における成形圧力を10〜30kg
/cmとすることを特徴とするものである。
According to a third aspect of the present invention, there is provided a method for manufacturing a laminated board according to the first or second aspect, wherein the temperature of the thermosetting resin composition is set to a minimum melt viscosity during the heating and pressing process. Is set from a temperature 20 ° C. lower than the temperature indicating the lowest melt viscosity to a temperature 20 ° C. higher than the temperature indicating the lowest melt viscosity, and the molding pressure in this region is set to 10 to 30 kg.
/ Cm 2 .

【0009】また本発明の請求項4に係る積層板の製造
方法は、請求項1乃至3のいずれかの構成に加えて、加
熱加圧成形時に、樹脂温度が熱硬化性樹脂組成物の硬化
物のガラス転移温度を超える温度から熱硬化性樹脂組成
物の硬化物のガラス転移温度未満の温度まで降温される
領域を設定すると共に、この領域中の、少なくとも樹脂
温度がガラス転移温度を超える領域中に、成形圧力が1
0〜30kg/cmとなる領域を設定することを特徴
とするものである。
According to a fourth aspect of the present invention, there is provided a method of manufacturing a laminated board according to any one of the first to third aspects, further comprising: A region where the temperature is lowered from a temperature exceeding the glass transition temperature of the product to a temperature lower than the glass transition temperature of the cured product of the thermosetting resin composition is set, and in this region, at least the region where the resin temperature exceeds the glass transition temperature. During the molding pressure is 1
It is characterized in that an area of 0 to 30 kg / cm 2 is set.

【0010】また本発明の請求項5に係る積層板の製造
方法は、請求項4の構成に加えて、加熱加圧成形時に、
樹脂温度が熱硬化性樹脂組成物の硬化物のガラス転移温
度を超える温度から熱硬化性樹脂組成物の硬化物のガラ
ス転移温度未満の温度まで降温される領域において、樹
脂温度がガラス転移温度以下となる領域中にも成形圧力
が10〜30kg/cmとなる領域を設定することを
特徴とするものである。
According to a fifth aspect of the present invention, there is provided a method of manufacturing a laminated board according to the fourth aspect, further comprising the steps of:
In a region where the resin temperature is lowered from a temperature exceeding the glass transition temperature of the cured product of the thermosetting resin composition to a temperature lower than the glass transition temperature of the cured product of the thermosetting resin composition, the resin temperature is not higher than the glass transition temperature. A region where the molding pressure is 10 to 30 kg / cm 2 is also set in the region where

【0011】[0011]

【発明の実施の形態】以下、本発明に係る積層板の製造
方法を説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, a method for manufacturing a laminate according to the present invention will be described.

【0012】まず、本発明に用いることができるプリプ
レグについて説明する。
First, a prepreg that can be used in the present invention will be described.

【0013】基材としては、ガラス等の無機繊維、ポリ
エステル、ポリアミド、ポリアクリル、ポリイミド等の
有機質繊維、木綿等の天然繊維等からなる織布、不織
布、紙等を用いることができる。尚、ガラス繊維等の織
布(ガラスクロス)が耐熱性、耐湿性に優れ、かつ、本
発明の効果が得られやすく、好ましい。
As the base material, woven fabric, non-woven fabric, paper and the like made of inorganic fibers such as glass, organic fibers such as polyester, polyamide, polyacryl and polyimide, and natural fibers such as cotton can be used. A woven fabric (glass cloth) such as glass fiber is preferable because it has excellent heat resistance and moisture resistance, and the effects of the present invention can be easily obtained.

【0014】また熱硬化性樹脂組成物としては、エポキ
シ樹脂系、フェノール樹脂系、ポリイミド樹脂系、不飽
和ポリエステル樹脂系、ポリフェニレンエーテル系等の
単独、変性物、混合物のように、熱硬化性樹脂組成物全
般を用いることができる。
The thermosetting resin composition may be a thermosetting resin such as an epoxy resin, a phenol resin, a polyimide resin, an unsaturated polyester resin, a polyphenylene ether, etc., alone, modified or a mixture. The entire composition can be used.

【0015】この熱硬化性樹脂組成物中には、熱硬化性
樹脂を必須として含有し、必要に応じてその熱硬化性樹
脂の硬化剤、硬化促進剤及び無機充填材等を含有させる
ことができる。尚、エポキシ樹脂等のように自己硬化性
の低い熱硬化性樹脂組成物は、その樹脂を硬化するため
の硬化物等を含有することが必要である。
The thermosetting resin composition contains a thermosetting resin as an essential component, and may contain a curing agent, a curing accelerator, an inorganic filler and the like of the thermosetting resin as required. it can. Note that a thermosetting resin composition having a low self-curing property, such as an epoxy resin, needs to contain a cured product or the like for curing the resin.

【0016】ここで熱硬化性樹脂組成物がエポキシ樹脂
系である場合、電気特性及び接着性のバランスが良好で
あり好ましい。エポキシ樹脂系の樹脂組成物に含有させ
ることができるエポキシ樹脂としては、例えばビスフェ
ノールA型エポキシ樹脂、ビスフェノールF型エポキシ
樹脂、ビスフェノールS型エポキシ樹脂、フェエノール
ノボラック型エポキシ樹脂、ビスフェノールAノボラッ
ク型エポキシ樹脂、ビスフェノールFノボラック型エポ
キシ樹脂、クレゾールノボラック型エポキシ樹脂、ジア
ミノジフェニルメタン型エポキシ樹脂、及びブロム化ビ
スフェノールA型エポキシ樹脂等のようにこれらのエポ
キシ樹脂構造体中の水素原子の一部をハロゲン化するこ
とにより難燃化したエポキシ樹脂等が挙げられる。エポ
キシ樹脂系の熱硬化性樹脂組成物においては、上記のよ
うなエポキシ樹脂のうちの一種又は複数種を混合し、樹
脂総量に対するハロゲン重量が15〜20重量%となる
ようにすることが好ましい。
Here, when the thermosetting resin composition is an epoxy resin-based composition, the balance between the electrical properties and the adhesiveness is good, which is preferable. Examples of the epoxy resin that can be contained in the epoxy resin-based resin composition include bisphenol A epoxy resin, bisphenol F epoxy resin, bisphenol S epoxy resin, phenol novolak epoxy resin, and bisphenol A novolak epoxy resin. Halogenating some of the hydrogen atoms in these epoxy resin structures, such as bisphenol F novolak epoxy resin, cresol novolak epoxy resin, diaminodiphenylmethane epoxy resin, and brominated bisphenol A epoxy resin Epoxy resin which has been made flame-retardant. In the epoxy resin-based thermosetting resin composition, it is preferable to mix one or more of the above epoxy resins so that the halogen weight is 15 to 20% by weight based on the total amount of the resin.

【0017】またこのエポキシ樹脂系の樹脂組成物に含
有させることができる硬化剤としては、例えばジシアン
ジアミド、脂肪族ポリアミド等のアミド系硬化剤や、ア
ンモニア、トリエチルアミン、ジエチルアミン等のアミ
ン系硬化剤や、フェノールノボラック樹脂、クレゾール
ノボラック樹脂、p−キシレン−ノボラック樹脂等のフ
ェノール系硬化剤や、酸無水物等が挙げられる。エポキ
シ樹脂系の熱硬化性樹脂組成物においては、上記のよう
な硬化剤のうちの一種又は複数種を混合したものを、
1.5〜20重量%含むことが好ましい。
Examples of the curing agent which can be contained in the epoxy resin-based resin composition include amide-based curing agents such as dicyandiamide and aliphatic polyamide; amine-based curing agents such as ammonia, triethylamine and diethylamine; Examples thereof include phenolic hardeners such as phenol novolak resin, cresol novolak resin, and p-xylene-novolak resin, and acid anhydrides. In the epoxy resin-based thermosetting resin composition, a mixture of one or more of the above curing agents,
It is preferable to contain 1.5 to 20% by weight.

【0018】また硬化促進剤としては、イミダゾール化
合物等を用いるこができ、特に2−エチル−4−メチル
イミダゾール(2E4MZ)を配合すると、樹脂組成物
の保存時の硬化が進みにくくなり、保存性が向上するこ
とができて、ワニスライフを維持することができる点で
好ましい。エポキシ樹脂系の熱硬化性樹脂組成物におい
ては、2E4MZを0.01〜0.05重量%含むこと
が好ましい。
As a curing accelerator, an imidazole compound or the like can be used. In particular, when 2-ethyl-4-methylimidazole (2E4MZ) is blended, curing of the resin composition during storage becomes difficult to proceed, and This is preferable in that the varnish life can be maintained and the varnish life can be maintained. The epoxy resin-based thermosetting resin composition preferably contains 2E4MZ in an amount of 0.01 to 0.05% by weight.

【0019】また上記熱硬化性樹脂組成物に含有させる
ことができる無機充填材としては、シリカ、炭酸カルシ
ウム、水酸化アルミニウム、タルク等の無機質粉末充填
材や、ガラス繊維、パルプ繊維、合成繊維、セラミック
繊維等の繊維質充填材が挙げられ、これらの無機充填材
を、10〜80重量%の範囲で配合することができる。
Examples of the inorganic filler that can be contained in the thermosetting resin composition include inorganic powder fillers such as silica, calcium carbonate, aluminum hydroxide, and talc; glass fibers, pulp fibers, and synthetic fibers. Examples include fibrous fillers such as ceramic fibers, and these inorganic fillers can be blended in the range of 10 to 80% by weight.

【0020】熱硬化性樹脂組成物及び基材からプリプレ
グを製造する方法としては、特に限定するものではな
く、例えば上記基材を、上記熱硬化性樹脂組成物を溶剤
で粘度調整した樹脂ワニスに浸漬して含浸させた後、必
要に応じて加熱乾燥して半硬化して得られるものであ
り、例えばエポキシ樹脂系の熱硬化性樹脂組成物を用い
る場合は、130〜200℃で3〜15分間加熱乾燥す
ることができる。ここで、熱硬化性樹脂組成物の粘度調
整に用いることができる溶剤としては、N,N−ジメチ
ルホルムアミド(DME)等のアミド類、プロピレング
リコールモノブチルエーテル(PC)、エチレングリコ
ールモノメチルエーテル等のエーテル類、アセトン、メ
チルエチルケトン(MEK)等のケトン類、メタノー
ル、エタノール等のアルコール類、ベンゼン、トルエン
等の芳香族炭化水素類等が挙げられ、これらの溶剤のう
ちの一又は複数種を混合したものを、5〜40重量%の
範囲で配合することができる。
The method for producing the prepreg from the thermosetting resin composition and the base material is not particularly limited. For example, the base material may be converted into a resin varnish obtained by adjusting the viscosity of the thermosetting resin composition with a solvent. After being immersed and impregnated, it is obtained by heat-drying and semi-curing as necessary. For example, when using an epoxy resin-based thermosetting resin composition, it is 3 to 15 at 130 to 200 ° C. It can be heated and dried for minutes. Here, examples of the solvent that can be used for adjusting the viscosity of the thermosetting resin composition include amides such as N, N-dimethylformamide (DME) and ethers such as propylene glycol monobutyl ether (PC) and ethylene glycol monomethyl ether. And ketones such as acetone and methyl ethyl ketone (MEK); alcohols such as methanol and ethanol; aromatic hydrocarbons such as benzene and toluene; and mixtures of one or more of these solvents. Can be blended in the range of 5 to 40% by weight.

【0021】ここで、プリプレグ中の樹脂量が、プリプ
レグの重量(熱硬化性樹脂組成物及び基材の合計重量)
100重量部に対し、40〜70重量部であると好まし
い。40重量部未満である場合は、積層物を加熱加圧成
形したとき基材内部に気泡が残留し、電気的特性が低下
する場合があり、70重量部を超える場合は、積層物を
加熱加圧するとき樹脂流れが多く、板厚のばらつきが大
きくなる場合がある。
Here, the amount of resin in the prepreg is determined by the weight of the prepreg (the total weight of the thermosetting resin composition and the base material).
It is preferable that the amount be 40 to 70 parts by weight based on 100 parts by weight. When the amount is less than 40 parts by weight, bubbles may remain inside the substrate when the laminate is heated and pressed, and the electrical characteristics may be reduced. When the amount exceeds 70 parts by weight, the laminate may be heated and heated. When the resin is pressed, the resin flow is large, and the variation in the plate thickness may be large.

【0022】上記のようにして得られるプリプレグを用
いて積層板を製造する方法を説明する。尚、以下におい
て「樹脂温度」というときは、加熱加圧過程中における
熱硬化性樹脂組成物の温度又はこの熱硬化性樹脂組成物
の硬化物の温度を、「ガラス転移温度」というときは熱
硬化性樹脂組成物の硬化物のガラス転移温度を、「最低
溶融粘度温度」というときには熱硬化性樹脂組成物が最
低溶融粘度を示す温度をそれぞれ意味するものとする。
A method for manufacturing a laminate using the prepreg obtained as described above will be described. In the following, the term “resin temperature” refers to the temperature of the thermosetting resin composition during the heating and pressurizing process or the temperature of the cured product of the thermosetting resin composition, and the term “glass transition temperature” refers to the heat. When the glass transition temperature of the cured product of the curable resin composition is referred to as “minimum melt viscosity temperature”, it means the temperature at which the thermosetting resin composition exhibits the minimum melt viscosity.

【0023】まず上記のような熱硬化性樹脂組成物及び
基材よりなるプリプレグを複数枚重ね、必要に応じての
その片側又は両側に金属箔を配置して積層物を構成す
る。ここで金属箔としては、銅、アルミニウム、真鍮、
ニッケル等の単独、合金、複合の金属箔を用いることが
でき、金属箔の代わりに、絶縁樹脂層に金属箔が積層成
形された片面金属箔張積層板、両面金属箔張積層板を用
いることもできる。この金属箔の厚みとしては、12〜
70μmが一般的である。
First, a plurality of prepregs composed of the above-described thermosetting resin composition and a base material are laminated, and a metal foil is arranged on one or both sides thereof as required to form a laminate. Here, as metal foil, copper, aluminum, brass,
Single, alloy, or composite metal foils such as nickel can be used.Instead of metal foil, use a single-sided metal foil-clad laminate or a double-sided metal foil-clad laminate in which a metal foil is laminated and formed on an insulating resin layer. Can also. The thickness of the metal foil is 12 to
70 μm is common.

【0024】積層物を加熱加圧するにあたっては、積層
物を熱盤間に配置してホットプレスすることにより行う
ことができる。また積層物を加圧プレート間に配置して
加圧すると共に積層物を構成する金属箔に通電して金属
箔を加熱することもできる。このときの加熱温度、すな
わち熱盤の温度又は金属箔の加熱温度はガラス転移温度
を超える温度に設定するものであり、具体的には130
〜200℃の範囲に設定することが好ましい。またこの
ときの積層物への成形圧力を、積層物中の樹脂温度の変
化に応じて変化させるものである。すなわち樹脂温度が
ガラス転移温度を超える温度範囲にある場合において、
積層物への成形圧力が5kg/cm以下となる領域を
設定するものであり、この場合、成形される積層板中の
内部応力が低減されるものである。このときの成形圧力
の下限は0kg/cm、すなわち熱盤による積層物へ
の加圧力が0kg/cmであっても良いものである。
またここでこの積層物への成形圧力が5kg/cm
下となる領域の時間は、樹脂温度がガラス転移温度を超
える温度範囲にある領域の時間の50〜100%の範囲
とすることが好ましい。
The heating and pressurization of the laminate can be performed by placing the laminate between hot plates and hot pressing. Further, the laminate may be arranged between the pressure plates to apply pressure, and at the same time, the metal foil constituting the laminate may be energized to heat the metal foil. The heating temperature at this time, that is, the temperature of the hot platen or the heating temperature of the metal foil is set to a temperature exceeding the glass transition temperature, and specifically, 130
It is preferable to set the temperature in the range of 200 to 200 ° C. At this time, the molding pressure on the laminate is changed in accordance with a change in the temperature of the resin in the laminate. That is, when the resin temperature is in a temperature range exceeding the glass transition temperature,
The region where the molding pressure on the laminate is 5 kg / cm 2 or less is set. In this case, the internal stress in the laminated plate to be molded is reduced. The lower limit of the molding pressure at this time may be 0 kg / cm 2 , that is, the pressure applied to the laminate by the hot plate may be 0 kg / cm 2 .
Here, the time in the region where the molding pressure on the laminate is 5 kg / cm 2 or less is preferably in the range of 50 to 100% of the time in the region where the resin temperature is in a temperature range exceeding the glass transition temperature. .

【0025】また加熱加圧過程中において、積層物が加
熱されることにより樹脂温度が最低溶融粘度温度よりも
20℃だけ低い温度から最低溶融粘度温度よりも20℃
だけ高い温度まで昇温される領域を設定し、この領域に
おける成形圧力を10〜30kg/cmの範囲とする
ことが好ましく、更に好ましくは、この成形圧力を20
〜30kg/cmの範囲とする。このようにすると熱
硬化性樹脂組成物中のボイドを解消すると共に基材への
熱硬化性樹脂組成物を基材に再含浸させることができ
て、積層板におけるボイドやカスレ等の成形不良の発生
を抑制して成形性を向上することができるものである。
ここで熱硬化性樹脂組成物としてエポキシ樹脂組成物を
用いる場合、最低溶融粘度温度よりも20℃だけ高い温
度は、通常150〜160℃の範囲となり、このときの
積層物の加熱温度は、この最低溶融粘度温度よりも20
℃だけ高い温度よりも更に高い温度に設定される。
During the heating and pressurizing process, the resin is heated from a temperature lower by 20 ° C. than the lowest melt viscosity temperature to a temperature of 20 ° C. lower than the lowest melt viscosity temperature by heating the laminate.
It is preferable to set a region where the temperature is raised to a higher temperature, and to set the molding pressure in this region to a range of 10 to 30 kg / cm 2 , and more preferably to set the molding pressure to 20 kg / cm 2.
-30 kg / cm 2 . By doing so, it is possible to eliminate the voids in the thermosetting resin composition and to re-impregnate the substrate with the thermosetting resin composition to the base material, and to reduce molding defects such as voids and frays in the laminate. This can improve the moldability by suppressing the occurrence.
Here, when using an epoxy resin composition as the thermosetting resin composition, the temperature higher by 20 ° C. than the lowest melt viscosity temperature is usually in the range of 150 to 160 ° C., and the heating temperature of the laminate at this time is 20 above the minimum melt viscosity temperature
The temperature is set to be higher than the temperature which is higher by only ° C.

【0026】また積層物への加熱を停止した後、積層物
を冷却する過程において、樹脂温度がガラス転移温度を
超え、かつ成形圧力が10〜30kg/cmの範囲と
なる領域を設定することが好ましい。このようにすると
基材のうねりを抑制し、かつ熱硬化性樹脂組成物を均一
に硬化収縮させることができるため、積層板の表面粗度
を低減して成形性を向上することができるものである。
またこの積層板の冷却過程において、樹脂温度がガラス
転移温度以下となる領域においても成形圧力を引き続き
10〜30kg/cmの範囲とすると、ガラス転移温
度を超える樹脂の粘性領域のみならず、ガラス転移温度
以下の樹脂の弾性領域においても加圧を続けることとな
るため、積層板の表面粗度を更に低減することができる
ものである。
In the process of cooling the laminate after stopping the heating of the laminate, a region where the resin temperature exceeds the glass transition temperature and the molding pressure is in the range of 10 to 30 kg / cm 2 is set. Is preferred. In this way, the undulation of the substrate can be suppressed, and the thermosetting resin composition can be uniformly cured and shrunk, so that the surface roughness of the laminate can be reduced and the moldability can be improved. is there.
In the process of cooling the laminate, if the molding pressure is kept in the range of 10 to 30 kg / cm 2 even in the region where the resin temperature is lower than the glass transition temperature, not only the viscosity region of the resin exceeding the glass transition temperature but also the glass Since the pressing is continued even in the elastic region of the resin having a transition temperature or lower, the surface roughness of the laminate can be further reduced.

【0027】このような積層物の加熱加圧成形過程にお
ける、樹脂温度に対する成形圧力の制御の例を図1に示
す。この図中に示す加熱加圧成形過程においては、積層
物の加熱開始後、樹脂温度が最低溶融粘度温度より20
℃低い温度よりも更に低い温度である温度領域Aでは、
成形圧力はまず5〜10kg/cmの範囲とし、樹脂
温度が最低溶融粘度温度Mpより20℃低い温度に近づ
いてきたら成形圧力を増大させ、樹脂温度が最低溶融粘
度温度Mpより20℃低い温度に達したら成形圧力を2
0〜30kg/cmの範囲とする。次に樹脂温度が最
低溶融粘度温度Mpよりも20℃低い温度から最低溶融
粘度温度Mpよりも20℃高い温度まで昇温される温度
領域Bにおいて、成形圧力を20〜30kg/cm
範囲に維持する。次に樹脂温度が最低溶融粘度温度Mp
よりも20℃高い温度を超えた後、しばらくの間の温度
領域Cにおいて、引き続き成形圧力を20〜30kg/
cmの範囲に維持する。次に樹脂温度が更に上昇した
後、積層物への加熱が停止され、樹脂温度が低下し始め
てしばらく経つまでの間の温度領域Dにおいて、成形圧
力を0〜5kg/cmの範囲とする。この温度領域D
は、樹脂温度がガラス転移温度Tgを超える温度領域F
中に設定され、またその時間は樹脂温度がガラス転移温
度Tgを超える温度領域Fの時間の50%以上の範囲に
設定される。ここで温度領域Fは温度領域Cを全て含み
また温度領域Bと一部重複している。次に樹脂温度が更
に低下して樹脂温度がガラス転移温度Tgを超える温度
からガラス転移温度以下の温度となる領域Eにおいて、
成形圧力を10〜30kg/cmの範囲とする。
FIG. 1 shows an example of the control of the molding pressure with respect to the resin temperature in the process of heating and pressing the laminate. In the heating and pressing molding process shown in this figure, after the heating of the laminate is started, the resin temperature is lower than the lowest melt viscosity temperature by 20%.
In the temperature range A, which is a temperature lower than the temperature lower by ° C.,
The molding pressure is first in the range of 5 to 10 kg / cm 2 , and when the resin temperature approaches a temperature 20 ° C. lower than the minimum melt viscosity temperature Mp, the molding pressure is increased. When the pressure reaches 2
The range is 0 to 30 kg / cm 2 . Next, in a temperature range B in which the resin temperature is raised from a temperature 20 ° C. lower than the minimum melt viscosity temperature Mp to a temperature 20 ° C. higher than the minimum melt viscosity temperature Mp, the molding pressure is set in the range of 20 to 30 kg / cm 2 . maintain. Next, the resin temperature is set to the minimum melt viscosity temperature Mp.
After the temperature exceeds 20 ° C. higher than that, in the temperature range C for a while, the molding pressure is continuously increased to 20 to 30 kg /
Maintain in the range of cm 2 . Next, after the resin temperature further rises, the heating of the laminate is stopped, and the molding pressure is set to a range of 0 to 5 kg / cm 2 in a temperature range D until the resin temperature starts to decrease and a while later. This temperature range D
Is the temperature range F where the resin temperature exceeds the glass transition temperature Tg.
The time is set in a range of 50% or more of the time in the temperature region F in which the resin temperature exceeds the glass transition temperature Tg. Here, the temperature region F includes the entire temperature region C and partially overlaps with the temperature region B. Next, in a region E in which the resin temperature further decreases and the resin temperature becomes a temperature equal to or lower than the glass transition temperature from a temperature exceeding the glass transition temperature Tg,
The molding pressure is in the range of 10 to 30 kg / cm 2 .

【0028】このような加熱加圧過程を経て成形される
積層板は内部応力が低減されるため、表面の金属箔をエ
ッチングにて除去した場合や、ガラス転移温度以上にま
で加熱された場合においても寸法変化や反りの発生が抑
制されるものであり、またボイドやカスレ等の成形不良
の発生が抑制されて成形性が向上されるものである。
Since the internal stress of the laminate formed through such a heating and pressurizing process is reduced, when the metal foil on the surface is removed by etching or when the laminate is heated to a temperature higher than the glass transition temperature. This also suppresses the occurrence of dimensional change and warpage, and also suppresses the occurrence of molding defects such as voids and blurring, thereby improving moldability.

【0029】[0029]

【実施例】以下、本発明を実施例によって詳述する。The present invention will be described below in detail with reference to examples.

【0030】(実施例1〜7、比較例1)熱硬化性樹脂
組成物として、下記のエポキシ樹脂、硬化剤、硬化促進
剤よりなる熱硬化性樹脂組成物を使用した。ここでこの
熱硬化性樹脂組成物の最低溶融粘度を示す温度は127
℃であり、またこの熱硬化性樹脂組成物の硬化物のガラ
ス転移温度は137℃である。 ・エポキシ樹脂:エポキシ樹脂当量が500であるテト
ラブロモビスフェノールA型エポキシ樹脂[東都化成株
式会社製、商品名 YDB−500]を100重量部。 ・硬化剤:ジシアンジアミドを3重量部。 ・硬化促進剤:2−エチル−4−メチルイミダゾールを
0.2重量部。
(Examples 1 to 7, Comparative Example 1) As a thermosetting resin composition, a thermosetting resin composition comprising the following epoxy resin, curing agent and curing accelerator was used. Here, the temperature at which this thermosetting resin composition exhibits the minimum melt viscosity is 127.
° C, and the glass transition temperature of the cured product of the thermosetting resin composition is 137 ° C. Epoxy resin: 100 parts by weight of a tetrabromobisphenol A type epoxy resin having an epoxy resin equivalent of 500 [trade name: YDB-500, manufactured by Toto Kasei Co., Ltd.] Curing agent: 3 parts by weight of dicyandiamide. -Cure accelerator: 0.2 parts by weight of 2-ethyl-4-methylimidazole.

【0031】基材として厚み0.19mm、幅1mのガ
ラスクロス[旭シュエーベル株式会社製;7628W
AS750S]を用い、この基材を、上記熱硬化性樹脂
組成物をN,N−ジメチルホルムアミド(DME)を溶
剤として加えて粘度調整した樹脂ワニス中に浸漬して含
浸させ、次いで、最高温度180℃で3分間加熱乾燥し
て、樹脂量が42〜45重量%の範囲であるプリプレグ
を作製した。
As a substrate, a glass cloth having a thickness of 0.19 mm and a width of 1 m [manufactured by Asahi Schwebel; 7628W
AS750S], the base material was impregnated by immersing the thermosetting resin composition in a resin varnish of which viscosity was adjusted by adding N, N-dimethylformamide (DME) as a solvent. By heating and drying at a temperature of 3 ° C. for 3 minutes, a prepreg having a resin amount in the range of 42 to 45% by weight was produced.

【0032】このように作製されたプリプレグを8枚重
ね合わせ、その両外側に厚み18μmの銅箔を配置して
積層物を作製した。更にこの積層物をプレート状の金型
を間に挟み、14組重ねたものをクラフト紙を挟んで成
形プレスの熱盤間に挟み、熱盤温度180℃で加熱加圧
成形した。ここで成形圧力は、図1に示すA〜Eの各温
度領域において、各実施例及び比較例につき、表1に示
すように制御した。
Eight prepregs thus prepared were superimposed, and a copper foil having a thickness of 18 μm was arranged on both outer sides to prepare a laminate. Further, this laminate was sandwiched between plate-shaped dies, and 14 stacks were sandwiched between hot plates of a molding press with kraft paper sandwiched therebetween, and were heated and pressed at a hot plate temperature of 180 ° C. Here, the molding pressure was controlled as shown in Table 1 for each of Examples and Comparative Examples in each of the temperature ranges A to E shown in FIG.

【0033】(評価試験)実施例1〜7並びに比較例1
で得られた、250mm×250mmの寸法の両面銅張
積層板の両面の銅箔をエッチング処理にて除去した後、
ボイド及びカスレを目視にて観察し、成形性を評価し
た。
(Evaluation Test) Examples 1 to 7 and Comparative Example 1
After removing the copper foil on both sides of the double-sided copper-clad laminate having the dimensions of 250 mm × 250 mm obtained in
Voids and blurring were visually observed to evaluate the formability.

【0034】また上記エッチング処理後、更にE−0.
5/170処理を施し、JIS C6481に準拠して
寸法変化率及び基板の反り・ねじれ量を測定した。ここ
で寸法変化率は各実施例及び比較例につき32個の積層
板を試料として作製し、これらの試料について寸法変化
率を測定して、その寸法変化率の範囲を導出した。
After the above-mentioned etching treatment, E-0.
A 5/170 treatment was performed, and the dimensional change rate and the amount of warpage / twist of the substrate were measured in accordance with JIS C6481. Here, for the dimensional change rate, 32 laminates were prepared as samples for each of the examples and comparative examples, and the dimensional change rates were measured for these samples to derive the range of the dimensional change rate.

【0035】また東京精密製の表面粗さ計を用いて両面
銅張積層板の表面粗度を測定した。
The surface roughness of the double-sided copper-clad laminate was measured using a surface roughness meter manufactured by Tokyo Seimitsu.

【0036】結果は、表1に示した通り、実施例1〜7
では、比較例1と比べると寸法変化率及び反り・ねじれ
量が低減された。また実施例1〜7のうち、特に実施例
1〜5及び実施例7では積層板の表面粗度が低減され、
また特に実施例1〜4では成形性が向上された。
As shown in Table 1, the results are shown in Examples 1-7.
As compared with Comparative Example 1, the dimensional change rate and the amount of warpage / twist were reduced. In Examples 1 to 7, particularly in Examples 1 to 5 and Example 7, the surface roughness of the laminate was reduced,
Particularly, in Examples 1 to 4, the moldability was improved.

【0037】[0037]

【表1】 [Table 1]

【0038】[0038]

【発明の効果】上記のように本発明に係る積層板の製造
方法は、熱硬化性樹脂組成物及び基材からなるプリプレ
グを複数枚積層して積層物を形成し、この積層物を加熱
加圧成形する積層板の製造方法において、加熱加圧過程
中に、樹脂温度が熱硬化性樹脂組成物の硬化物のガラス
転移温度を超える温度となる領域を設定すると共にこの
領域中に成形圧力が5〜0kg/cm以下となる領域
を設定するものであり、積層板の成形時において積層板
中に内部応力が蓄積されることを抑制し、エッチング処
理や加熱処理を施した場合における寸法安定性が高く、
かつ反りやねじれの発生が抑制された積層板を得ること
ができるものである。
As described above, in the method for manufacturing a laminate according to the present invention, a laminate is formed by laminating a plurality of prepregs each comprising a thermosetting resin composition and a base material, and the laminate is heated and heated. In the method of manufacturing a laminate to be pressure-formed, during the heating and pressing process, a region where the resin temperature is higher than the glass transition temperature of the cured product of the thermosetting resin composition is set and the molding pressure is set in this region. The area is set to 5 to 0 kg / cm 2 or less, which suppresses the accumulation of internal stress in the laminated plate during molding of the laminated plate, and ensures dimensional stability when subjected to etching or heat treatment. Nature,
In addition, it is possible to obtain a laminated board in which occurrence of warpage and twist is suppressed.

【0039】また本発明の請求項2に係る積層板の製造
方法は、請求項1の構成に加えて、樹脂温度が熱硬化性
樹脂組成物のガラス転移温度を超える温度となる領域中
における、成形圧力が5kg/cm以下となる領域の
加圧時間を、加熱温度が熱硬化性樹脂組成物の硬化物の
ガラス転移温度を超える温度となる領域における加圧時
間の50〜100%の時間とするものであり、積層板の
成形時における積層板中への内部応力の蓄積を更に抑制
することができるものである。
Further, according to the method for producing a laminate according to claim 2 of the present invention, in addition to the constitution of claim 1, the method for producing a laminate in a region where the resin temperature exceeds the glass transition temperature of the thermosetting resin composition, The pressing time in the region where the molding pressure is 5 kg / cm 2 or less is 50 to 100% of the pressing time in the region where the heating temperature is higher than the glass transition temperature of the cured product of the thermosetting resin composition. It is possible to further suppress the accumulation of internal stress in the laminate during molding of the laminate.

【0040】また本発明の請求項3に係る積層板の製造
方法は、請求項1又は2の構成に加えて、加熱加圧過程
中に、樹脂温度が熱硬化性樹脂組成物が最低溶融粘度を
示す温度よりも20℃低い温度から最低溶融粘度を示す
温度よりも20℃高い温度まで昇温される領域を設定す
ると共に、この領域における成形圧力を10〜30kg
/cmとするものであり、積層板中のボイドやカスレ
の発生を抑制し、積層板の成形性を向上することができ
るものである。
According to a third aspect of the present invention, there is provided a method for manufacturing a laminate according to the first or second aspect, wherein the thermosetting resin composition has a minimum melt viscosity during the heating and pressing process. Is set from a temperature 20 ° C. lower than the temperature indicating the lowest melt viscosity to a temperature 20 ° C. higher than the temperature indicating the lowest melt viscosity, and the molding pressure in this region is set to 10 to 30 kg.
/ Cm 2, which can suppress the occurrence of voids and debris in the laminate and improve the formability of the laminate.

【0041】また本発明の請求項4に係る積層板の製造
方法は、請求項1乃至3のいずれかの構成に加えて、加
熱加圧成形時に、樹脂温度が熱硬化性樹脂組成物の硬化
物のガラス転移温度を超える温度から熱硬化性樹脂組成
物の硬化物のガラス転移温度未満の温度まで降温される
領域を設定すると共に、この領域中の、少なくとも樹脂
温度がガラス転移温度を超える領域中に、成形圧力が1
0〜30kg/cmとなる領域を設定するものであ
り、表面粗度が低減された積層板を得ることができるも
のである。
According to a fourth aspect of the present invention, there is provided a method for manufacturing a laminated board according to any one of the first to third aspects, further comprising: A region where the temperature is lowered from a temperature exceeding the glass transition temperature of the product to a temperature lower than the glass transition temperature of the cured product of the thermosetting resin composition is set, and in this region, at least the region where the resin temperature exceeds the glass transition temperature. During the molding pressure is 1
An area of 0 to 30 kg / cm 2 is set, and a laminate having reduced surface roughness can be obtained.

【0042】また本発明の請求項5に係る積層板の製造
方法は、請求項4の構成に加えて、加熱加圧成形時に、
樹脂温度が熱硬化性樹脂組成物の硬化物のガラス転移温
度を超える温度から熱硬化性樹脂組成物の硬化物のガラ
ス転移温度未満の温度まで降温される領域において、樹
脂温度がガラス転移温度以下となる領域中にも成形圧力
が10〜30kg/cmとなる領域を設定するもので
あり、積層板の表面粗度を更に低減することができるも
のである。
According to a fifth aspect of the present invention, there is provided a method for manufacturing a laminated board according to the fourth aspect, further comprising the steps of:
In a region where the resin temperature is lowered from a temperature exceeding the glass transition temperature of the cured product of the thermosetting resin composition to a temperature lower than the glass transition temperature of the cured product of the thermosetting resin composition, the resin temperature is not higher than the glass transition temperature. The region where the molding pressure is 10 to 30 kg / cm 2 is also set in the region where the surface pressure is to be reduced, and the surface roughness of the laminate can be further reduced.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施の形態の一例を示すものであり、
樹脂温度に対する成形圧力の変化を示すグラフである。
FIG. 1 shows an example of an embodiment of the present invention,
4 is a graph showing a change in a molding pressure with respect to a resin temperature.

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 4F204 AA36 AA39 AB03 AB19 AD16 AG03 AH36 AR02 AR06 AR11 FA01 FB01 FB22 FF01 FF06 FN15 FN17  ──────────────────────────────────────────────────続 き Continued on the front page F term (reference) 4F204 AA36 AA39 AB03 AB19 AD16 AG03 AH36 AR02 AR06 AR11 FA01 FB01 FB22 FF01 FF06 FN15 FN17

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 熱硬化性樹脂組成物及び基材からなるプ
リプレグを複数枚積層して積層物を形成し、この積層物
を加熱加圧成形する積層板の製造方法において、加熱加
圧過程中に、樹脂温度が熱硬化性樹脂組成物の硬化物の
ガラス転移温度を超える温度となる領域を設定すると共
にこの領域中に成形圧力が5kg/cm以下となる領
域を設定することを特徴とする積層板の製造方法。
1. A method of manufacturing a laminate, comprising laminating a plurality of prepregs each comprising a thermosetting resin composition and a base material to form a laminate, and forming the laminate by heat and pressure. In addition, a region where the resin temperature exceeds the glass transition temperature of the cured product of the thermosetting resin composition is set, and a region where the molding pressure is 5 kg / cm 2 or less is set in this region. Manufacturing method of the laminated plate to be performed.
【請求項2】 樹脂温度が熱硬化性樹脂組成物のガラス
転移温度を超える温度となる領域中における、成形圧力
が5kg/cm以下となる領域の加圧時間を、加熱温
度が熱硬化性樹脂組成物の硬化物のガラス転移温度を超
える温度となる領域における加圧時間の50〜100%
の時間とすることを特徴とする請求項1に記載の積層板
の製造方法。
2. The pressurizing time in the region where the molding pressure is 5 kg / cm 2 or less in the region where the resin temperature exceeds the glass transition temperature of the thermosetting resin composition, 50 to 100% of the pressurization time in a region where the temperature exceeds the glass transition temperature of the cured product of the resin composition
The method for producing a laminated board according to claim 1, wherein the time is set to a predetermined time.
【請求項3】 加熱加圧過程中に、樹脂温度が熱硬化性
樹脂組成物が最低溶融粘度を示す温度よりも20℃低い
温度から最低溶融粘度を示す温度よりも20℃高い温度
まで昇温される領域を設定すると共に、この領域におけ
る成形圧力を10〜30kg/cmとすることを特徴
とする請求項1又は2に記載の積層板の製造方法。
3. During the heating and pressurizing process, the resin temperature is raised from a temperature 20 ° C. lower than the temperature at which the thermosetting resin composition exhibits the lowest melt viscosity to a temperature 20 ° C. higher than the temperature at which the thermosetting resin composition exhibits the lowest melt viscosity. The method for producing a laminate according to claim 1, wherein a region to be formed is set, and a molding pressure in this region is set to 10 to 30 kg / cm 2 .
【請求項4】 加熱加圧成形時に、樹脂温度が熱硬化性
樹脂組成物の硬化物のガラス転移温度を超える温度から
熱硬化性樹脂組成物の硬化物のガラス転移温度未満の温
度まで降温される領域を設定すると共に、この領域中
の、少なくとも樹脂温度がガラス転移温度を超える領域
中に、成形圧力が10〜30kg/cm となる領域を
設定することを特徴とする請求項1乃至3のいずれかに
記載の積層板の製造方法。
4. The resin temperature is thermosetting at the time of heating and pressing
From a temperature above the glass transition temperature of the cured resin composition
Temperature below the glass transition temperature of the cured product of the thermosetting resin composition
Set the area to be cooled down to
At least in the region where the resin temperature exceeds the glass transition temperature
Inside, the molding pressure is 10-30kg / cm 2Area
4. The method according to claim 1, wherein the setting is performed.
The method for producing a laminate according to the above.
【請求項5】 加熱加圧成形時に、樹脂温度が熱硬化性
樹脂組成物の硬化物のガラス転移温度を超える温度から
熱硬化性樹脂組成物の硬化物のガラス転移温度未満の温
度まで降温される領域において、樹脂温度がガラス転移
温度以下となる領域中にも成形圧力が10〜30kg/
cmとなる領域を設定することを特徴とする請求項4
に記載の積層板の製造方法。
5. The method according to claim 1, wherein the temperature of the resin is lowered from a temperature higher than the glass transition temperature of the cured product of the thermosetting resin composition to a temperature lower than the glass transition temperature of the cured product of the thermosetting resin composition during the heat and pressure molding. In the region where the resin temperature is equal to or lower than the glass transition temperature, the molding pressure is 10 to 30 kg /
5. An area having a size of cm 2 is set.
5. The method for producing a laminate according to item 1.
JP11211450A 1999-07-27 1999-07-27 Manufacture of laminated sheet Withdrawn JP2001030279A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11211450A JP2001030279A (en) 1999-07-27 1999-07-27 Manufacture of laminated sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11211450A JP2001030279A (en) 1999-07-27 1999-07-27 Manufacture of laminated sheet

Publications (1)

Publication Number Publication Date
JP2001030279A true JP2001030279A (en) 2001-02-06

Family

ID=16606158

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11211450A Withdrawn JP2001030279A (en) 1999-07-27 1999-07-27 Manufacture of laminated sheet

Country Status (1)

Country Link
JP (1) JP2001030279A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002314250A (en) * 2001-04-13 2002-10-25 Matsushita Electric Works Ltd Method for manufacturing multilayer laminated board
WO2008117711A1 (en) * 2007-03-27 2008-10-02 Panasonic Electric Works Co., Ltd. Metal-plated laminated board, multilayer laminated board and method for manufacturing the same
JP2018027625A (en) * 2016-08-17 2018-02-22 株式会社日本製鋼所 Molding method for molding fiber-reinforced resin
US10603850B2 (en) 2014-09-30 2020-03-31 Safran Aircraft Engines Process for molding a thermosetting resin

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002314250A (en) * 2001-04-13 2002-10-25 Matsushita Electric Works Ltd Method for manufacturing multilayer laminated board
JP4715017B2 (en) * 2001-04-13 2011-07-06 パナソニック電工株式会社 Multilayer laminate manufacturing method
WO2008117711A1 (en) * 2007-03-27 2008-10-02 Panasonic Electric Works Co., Ltd. Metal-plated laminated board, multilayer laminated board and method for manufacturing the same
JP2008307886A (en) * 2007-03-27 2008-12-25 Panasonic Electric Works Co Ltd Metal-clad laminated board, multilayer laminated board and method for manufacturing the same
US10603850B2 (en) 2014-09-30 2020-03-31 Safran Aircraft Engines Process for molding a thermosetting resin
JP2018027625A (en) * 2016-08-17 2018-02-22 株式会社日本製鋼所 Molding method for molding fiber-reinforced resin

Similar Documents

Publication Publication Date Title
JP2008303397A (en) Prepreg, laminate, and wiring board
JP2007314782A (en) Resin composition, prepreg, laminated board and wiring board
JP2005336287A (en) Thermosetting adhesive sheet for flexible printed wiring board, manufacturing method therefor and multilayer flexible printed wiring board and flex-rigid printed wiring board using the same
JP2001030279A (en) Manufacture of laminated sheet
JP6015303B2 (en) Prepreg, laminated board and printed wiring board
JP2005022323A (en) Epoxy resin laminated sheet for reinforcing material of flexible printed circuit board
JP2007277463A (en) Low dielectric prepreg, and metal foil clad laminate and multilayer printed wiring board using the same
JP4802541B2 (en) Method for producing metal foil-clad laminate and multilayer printed wiring board
JP3412572B2 (en) Epoxy resin composition, prepreg, metal foil with resin, adhesive sheet, laminated board and multilayer board
JP5033153B2 (en) Single-sided board manufacturing method and printed wiring board manufacturing method
JP2002348754A (en) Glass cloth, prepreg, laminated sheet, and printed wiring board
JP4207282B2 (en) Manufacturing method of multilayer printed wiring board
JP3605917B2 (en) Manufacturing method of laminated board with inner layer circuit
JP3356010B2 (en) Manufacturing method of metal foil-clad laminate
JP2006315392A (en) Method for manufacturing metal foil-clad laminate
JPH0732544A (en) Coppered laminate with paper base and its manufacture
JPH1016100A (en) Preparation of laminated sheet
JP3211608B2 (en) Manufacturing method of copper-clad laminate
JP2000210962A (en) Manufacture of laminate
JP2008037881A (en) Prepreg, metallic foil-clad laminated plate using prepreg and multi-layer printed wiring board
JP2006224587A (en) Manufacturing process of metal foil stretched laminate
JP3546594B2 (en) Epoxy resin composition, prepreg and laminate
JP4178796B2 (en) Method for producing metal-clad laminate
JPH09293971A (en) Manufacture of multilayer board
JPH09262909A (en) Production of laminated sheet

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20061003