JP2006224587A - Manufacturing process of metal foil stretched laminate - Google Patents

Manufacturing process of metal foil stretched laminate Download PDF

Info

Publication number
JP2006224587A
JP2006224587A JP2005043873A JP2005043873A JP2006224587A JP 2006224587 A JP2006224587 A JP 2006224587A JP 2005043873 A JP2005043873 A JP 2005043873A JP 2005043873 A JP2005043873 A JP 2005043873A JP 2006224587 A JP2006224587 A JP 2006224587A
Authority
JP
Japan
Prior art keywords
metal foil
prepreg
glass cloth
resin composition
stretched laminate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005043873A
Other languages
Japanese (ja)
Inventor
Kiyoshi Saito
清 斉藤
Yoshihiro Takahashi
佳弘 高橋
Fumio Ishigami
富美男 石上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko Materials Co Ltd
Original Assignee
Hitachi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP2005043873A priority Critical patent/JP2006224587A/en
Publication of JP2006224587A publication Critical patent/JP2006224587A/en
Pending legal-status Critical Current

Links

Landscapes

  • Laminated Bodies (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a manufacturing process of a metal foil stretched laminate excellent in warp characteristics for obtaining a printed-wiring board with a little warp in a working procedure and also after the working procedure. <P>SOLUTION: The manufacturing process of a metal foil stretched laminate comprises: superimposing a metal foil onto a prepreg in which a thermosetting resin composition is impregnated into a glass cloth with a thickness of 20-200 μm; and adding heat and pressure to manufacture a metal foil stretched laminate, wherein the prepreg elongation percentage expressed in the following equation of the above prepreg is not more than 0.3%. The prepreg elongation percentage = (prepreg size - prepreg size of resin elimination)/prepreg size of resin elimination ×100%. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、電気・電子機器等に使用される金属箔張り積層板の製造方法に関するものである。   The present invention relates to a method for producing a metal foil-clad laminate used for electrical / electronic devices and the like.

従来金属箔張り積層板を材料とするプリント多層配線板は、例えばガラスクロス等の基材にエポキシ樹脂組成物等の熱硬化性樹脂組成物を含浸した後、加熱乾燥して半硬化(Bステージ化)させることによってプリプレグを作製し、このプリプレグを所要枚数重ねるとともに、銅箔等の金属箔をその片側又は両側に配して積層し、加熱加圧して成形を行うことによって金属箔張り積層板を作製する。そしてその金属箔張り積層板の表面の金属箔をエッチングして表面に導体回路及びプリント配線板を製造するとき用いるガイドマークを形成した内層用基板を作製した後、必要に応じて粗面化処理を行い、次いでその導体回路等を形成した内層用基板に、上記と同様にして作製したプリプレグをその片側又は両側に所要枚数重ねるとともに、必要に応じて金属箔をその片側又は両側に配して積層し、加熱加圧して成形することによって製造を行っている。   Conventional printed multilayer wiring boards made of metal foil-clad laminates are made by, for example, impregnating a base material such as glass cloth with a thermosetting resin composition such as an epoxy resin composition, followed by heat drying and semi-curing (B stage The prepreg is prepared by stacking the required number of prepregs, and a metal foil such as a copper foil is laminated on one side or both sides thereof, and is laminated by heating and pressing to form a metal foil-clad laminate. Is made. And after etching the metal foil on the surface of the metal foil-clad laminate to produce a guide mark used on the surface for producing a conductor circuit and a printed wiring board, an inner layer substrate is produced, and then a roughening treatment is performed as necessary. Then, on the inner layer substrate on which the conductor circuit and the like are formed, the required number of prepregs produced in the same manner as described above are stacked on one side or both sides, and a metal foil is disposed on one side or both sides as necessary. Manufacture is performed by laminating and molding by heating and pressing.

近年の電子機器およびプリント配線板の高密度に伴い、その材料となる金属箔張り積層板の高品質高信頼性が要求されている。
金属箔張り積層板への品質要求特性の中にそり特性があり、そりの発生は、プリント配線板の加工工程中でのトラブルまたは実装後の接続信頼性の低下などにつながることから、そりが小さい材料が望まれている。
With the recent increase in density of electronic devices and printed wiring boards, high quality and high reliability of metal foil-clad laminates that are used as the materials is required.
Warpage is one of the quality requirements for metal foil-clad laminates, and warpage can cause troubles during the process of processing printed wiring boards or lower connection reliability after mounting. Small materials are desired.

そりを改善する手段として特許文献1に示されるようにガラスクロスの打ち込み本数を調整するなどのさまざまな手法が検討されている。   As means for improving warpage, various methods such as adjusting the number of driven glass cloths as disclosed in Patent Document 1 have been studied.

特開平10−272733号公報JP-A-10-272733

本発明は、加工工程中および加工工程後もそりの小さいプリント配線板を得るための、そり特性に優れた金属箔張り積層板の製造方法を提供することにある。   An object of the present invention is to provide a method for producing a metal foil-clad laminate having excellent warpage characteristics to obtain a printed wiring board having a small warp during and after the processing step.

前記課題を解決するために検討を重ねた結果、その要因として、プリプレグに残留する歪がその後の加工工程のそりに大きく影響することが明らかになった。すなわち、プリプレグは樹脂の含浸、乾燥工程からなる塗工機で製造されるのが一般的であるが、この際、主として、たて型乾燥機の場合、乾燥炉の高さとガラスクロスにかかるテンションがプリプレグに歪として残り、加工工程のそりとなって表われるものである。
更には、この残留歪を評価する手法を検討した結果、残留歪は、プリプレグの寸法とこのプリプレグの樹脂を除去した後の寸法変化率(以後は伸び率と称す)として表すことが可能であり、この伸び率が0.3%以下のプリプレグを用いることでそり特性が優れることを見出した。
As a result of investigations to solve the above problems, it has been clarified that the strain remaining in the prepreg has a great influence on the warpage of the subsequent processing steps. That is, the prepreg is generally manufactured by a coating machine comprising a resin impregnation and drying process. At this time, mainly in the case of a vertical dryer, the height of the drying furnace and the tension applied to the glass cloth are used. Remains as strain in the prepreg and appears as a warp in the processing step.
Furthermore, as a result of examining a method for evaluating the residual strain, the residual strain can be expressed as the size of the prepreg and the dimensional change rate after removing the resin of the prepreg (hereinafter referred to as the elongation rate). The present inventors have found that warp characteristics are excellent by using a prepreg having an elongation of 0.3% or less.

すなわち本発明は、厚み20〜200μmのガラスクロスに熱硬化性樹脂組成物を含浸したプリプレグと金属箔を重ね合わせ、次いで加熱加圧してなる金属箔張り積層板において、上記プリプレグの次式で表されるプリプレグ伸び率が0.3%以内であることを特徴とする金属箔張り積層板の製造方法に関する。

Figure 2006224587
That is, the present invention is a metal foil-clad laminate obtained by superposing a metal foil with a prepreg impregnated with a thermosetting resin composition on a glass cloth having a thickness of 20 to 200 μm, and then applying the following formula of the prepreg. The present invention relates to a method for producing a metal foil-clad laminate, wherein the prepreg elongation rate is within 0.3%.
Figure 2006224587

本発明に係る金属張積層板は、これに用いる基材に伸び率0.3%以内のプリプレグを適用した場合、そり特性が優れた金属張積層板を得ることができる。   The metal-clad laminate according to the present invention can provide a metal-clad laminate having excellent warpage characteristics when a prepreg having an elongation of 0.3% or less is applied to the substrate used for the metal-clad laminate.

本発明に係る金属張積層板は、厚み20〜200μmのガラスクロスに熱硬化性樹脂組成物を含浸後硬化させて得た伸び率が0.3%以内のプリプレグと金属箔と金属箔と積層し加熱加圧して得られる。   The metal-clad laminate according to the present invention is a laminate of a prepreg, a metal foil, and a metal foil obtained by impregnating a thermosetting resin composition into a glass cloth having a thickness of 20 to 200 μm and then curing the glass cloth. And heated and pressurized.

なお、本発明に用いるガラスクロスは、厚み20〜200μmのガラスクロスに限定される。ガラスクロスの厚みが20μm未満の場合はガラスクロスの製造に使用する単糸が細くなって、ガラスクロスの製造が困難となる。また、ガラスクロスの厚みが200μmを超える厚みの場合、プリプレグ面内および厚み方向において均一な樹脂の含浸が困難であり、そり特性等が劣る。   The glass cloth used in the present invention is limited to a glass cloth having a thickness of 20 to 200 μm. When the thickness of the glass cloth is less than 20 μm, the single yarn used for the production of the glass cloth becomes thin, and the production of the glass cloth becomes difficult. Moreover, when the thickness of the glass cloth exceeds 200 μm, it is difficult to impregnate the resin uniformly in the prepreg surface and in the thickness direction, and the warp characteristics and the like are poor.

また、本発明に用いるガラスクロスは、縦糸と横糸が共にIPC規格4412に規定されるヤーンであると好ましい。このヤーンを用いて厚み20〜200μmの平織りのガラスクロスを製造すると、ガラスクロスに含浸する熱硬化性樹脂組成物の比率を、成形するのに適度な範囲に製造することができ好ましい。   In the glass cloth used in the present invention, both the warp and the weft are preferably yarns stipulated in IPC standard 4412. When this yarn is used to produce a plain weave glass cloth having a thickness of 20 to 200 μm, the ratio of the thermosetting resin composition impregnated into the glass cloth can be produced in an appropriate range for molding.

本発明に用いられる熱硬化性樹脂組成物としては、金属箔張り積層板の製造に用いる熱硬化性樹脂組成物は、エポキシ樹脂系、フェノール樹脂系、ポリイミド樹脂系、不飽和ポリエステル樹脂系、ポリフェニレンエーテル樹脂系等の単独、変性物、混合物のように、熱硬化性樹脂全般を用いることができる。   As the thermosetting resin composition used in the present invention, the thermosetting resin composition used for the production of the metal foil-clad laminate is epoxy resin type, phenol resin type, polyimide resin type, unsaturated polyester resin type, polyphenylene. Thermosetting resins in general, such as ether resins alone, modified products, and mixtures, can be used.

この熱硬化性樹脂組成物中には、熱硬化性樹脂を必須として含有し、必要に応じてその熱硬化性樹脂の硬化剤、硬化促進剤、無機充填材及び溶剤等を含有することができる。なおエポキシ樹脂等のように自己硬化性の低い熱硬化性樹脂は、その樹脂を硬化するための硬化剤等も含有することが必要である。   The thermosetting resin composition contains a thermosetting resin as an essential component, and can contain a curing agent, a curing accelerator, an inorganic filler, a solvent, and the like of the thermosetting resin as necessary. . Note that a thermosetting resin with low self-curing property such as an epoxy resin needs to contain a curing agent for curing the resin.

なお、熱硬化性樹脂組成物が、エポキシ樹脂系の場合、電気特性及び接着性のバランスが良好であり好ましい。エポキシ樹脂系の樹脂組成物に含有するエポキシ樹脂としては、例えばビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールS型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、ビスフェノールAノボラック型エポキシ樹脂、ビスフェノールFノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、ジアミノジフェニルメタン型エポキシ樹脂、及びこれらエポキシ樹脂構造体中の水素原子の一部をハロゲン化することにより難燃化したエポキシ樹脂等が挙げられる。また、このエポキシ樹脂系の樹脂組成物に含有する硬化剤としては、例えばジシアンジアミド、脂肪族ポリアミド等のアミド系硬化剤や、アンモニア、トリエチルアミン、ジエチルアミン等のアミン系硬化剤や、フェノールノボラック樹脂、クレゾールノボラック樹脂、p−キシレン−ノボラック樹脂等のフェノール系硬化剤や、酸無水物類等が挙げられる。   In addition, when a thermosetting resin composition is an epoxy resin type | system | group, the balance of an electrical property and adhesiveness is favorable and preferable. Examples of the epoxy resin contained in the epoxy resin-based resin composition include bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol S type epoxy resin, phenol novolac type epoxy resin, bisphenol A novolac type epoxy resin, and bisphenol F novolak. Type epoxy resin, cresol novolac type epoxy resin, diaminodiphenylmethane type epoxy resin, and epoxy resin flame-retardant by halogenating a part of hydrogen atoms in these epoxy resin structures. Examples of the curing agent contained in the epoxy resin-based resin composition include amide-based curing agents such as dicyandiamide and aliphatic polyamide, amine-based curing agents such as ammonia, triethylamine, and diethylamine, phenol novolac resins, and cresols. Examples thereof include phenolic curing agents such as novolak resin and p-xylene-novolak resin, and acid anhydrides.

なお、上記熱硬化性樹脂組成物に含有することができる無機充填材としては、シリカ、炭酸カルシウム、水酸化アルミニウム、タルク等の無機質粉末充填材や、ガラス繊維、パルプ繊維、合成繊維、セラミック繊維等の繊維質充填材が挙げられ、また、上記熱硬化性樹脂組成物に含有することができる溶剤としてはN,N−ジメチルホルムアミド等のアミド類、エチレングリコールモノメチルエーテル等のエーテル類、アセトン、メチルエチルケトン等のケトン類、メタノール、エタノール等のアルコール類、ベンゼン、トルエン等の芳香族炭化水素類等が挙げられる。   The inorganic filler that can be contained in the thermosetting resin composition includes inorganic powder fillers such as silica, calcium carbonate, aluminum hydroxide, and talc, glass fibers, pulp fibers, synthetic fibers, and ceramic fibers. Examples of the solvent that can be contained in the thermosetting resin composition include amides such as N, N-dimethylformamide, ethers such as ethylene glycol monomethyl ether, acetone, Examples thereof include ketones such as methyl ethyl ketone, alcohols such as methanol and ethanol, and aromatic hydrocarbons such as benzene and toluene.

この熱硬化性樹脂組成物をガラスクロスに含浸する方法としては特に限定するものではないが、ガラスクロスにかける引張りテンションを制御する装置がついていることが望ましい。なお、熱硬化性樹脂組成物をガラスクロスに含浸した後、加熱乾燥しBステージ化した一般的にいうプリプレグを得る。   The method for impregnating the glass cloth with this thermosetting resin composition is not particularly limited, but it is desirable to have an apparatus for controlling the tensile tension applied to the glass cloth. In addition, after impregnating a thermosetting resin composition into a glass cloth, a general prepreg obtained by heating and drying to obtain a B-stage is obtained.

本発明に用いられる金属箔としては銅、アルミニウム、真鍮、ニッケル等の単独、合金、複合の金属箔を用いることができ、金属箔の代わりに金属箔が積層成形された片面金属張積層板、両面金属張積層板を用いることもできる。なお、この金属箔は、金属箔張り積層板の作製のみに用いることに限定するものではなく、内層用基板とプリプレグとを積層したその積層物の片側又は両側に積層して用いてもよい。この金属箔の厚みとしては、金属箔張り積層板の作製に用いる場合0.003〜0.070mmが一般的である。   As the metal foil used in the present invention, copper, aluminum, brass, nickel, etc. can be used alone, alloy, composite metal foil, a single-sided metal-clad laminate in which metal foil is laminated and formed instead of metal foil, A double-sided metal-clad laminate can also be used. In addition, this metal foil is not limited to use only for preparation of a metal foil-clad laminate, and may be used by being laminated on one side or both sides of the laminate obtained by laminating an inner layer substrate and a prepreg. The thickness of the metal foil is generally 0.003 to 0.070 mm when used for producing a metal foil-clad laminate.

金属箔張り積層板を製造するときの加熱加圧する条件としては、熱硬化性樹脂組成物が硬化する条件で適宜調整して加熱加圧すればよいが、加圧の圧力が高いと導体回路の寸法収縮のばらつきが大きくなる場合があるため、成形性を満足する範囲内で、できるだけ低圧で加圧することが好ましい。なお、加熱加圧を300Torr以下の減圧雰囲気下で行うと、ボイドなどの発生がない成形性が良好となり好ましい。   As conditions for heating and pressurizing when producing a metal foil-clad laminate, the thermosetting resin composition may be appropriately adjusted and heated and pressurized under the conditions for curing, but if the pressurization pressure is high, the conductor circuit Since variation in dimensional shrinkage may become large, it is preferable to apply pressure at as low a pressure as possible within a range that satisfies the moldability. Note that it is preferable to perform heating and pressing in a reduced-pressure atmosphere of 300 Torr or less because moldability without generation of voids is improved.

金属箔張り積層板表面の金属箔をエッチングする方法としては特に限定するものではなく、金属箔及びそのエッチングに用いるエッチングレジストにより一般の方法が適用可能である。   The method for etching the metal foil on the surface of the metal foil-clad laminate is not particularly limited, and a general method can be applied depending on the metal foil and the etching resist used for the etching.

(実施例1)
IPC-4412に規定される2116ガラスクロスを基材とした。
Example 1
The base material was 2116 glass cloth specified in IPC-4412.

熱硬化性樹脂組成物として、下記のエポキシ樹脂2種類、硬化剤、硬化促進剤及び溶剤2種類よりなるエポキシ樹脂系樹脂組成物を使用した。
・エポキシ樹脂1:テトラブロモビスフェノールA型エポキシ樹脂[東都化成社製、商品名YDB−500]を固形分として87.5重量部・エポキシ樹脂2:クレゾールノボラック型エポキシ樹脂[東都化成社製、商品名YDCN−220]を固形分として12.5重量部・硬化剤:ジシアンジアミドを2.8重量部・硬化促進剤:2−エチル−4−メチルイミダゾールを0.18重量部・溶剤:N,N−ジメチルホルムアミドを25重量部。
・溶剤2:メチルエチルケトンを100重量部。
As the thermosetting resin composition, an epoxy resin resin composition composed of the following two epoxy resins, a curing agent, a curing accelerator, and two solvents was used.
-Epoxy resin 1: 87.5 parts by weight of tetrabromobisphenol A type epoxy resin [trade name YDB-500, manufactured by Toto Kasei Co., Ltd.]-Epoxy resin 2: Cresol novolac type epoxy resin [product, manufactured by Toto Kasei Co. 12.5 parts by weight of solid name YDCN-220], curing agent: 2.8 parts by weight of dicyandiamide, curing accelerator: 0.18 parts by weight of 2-ethyl-4-methylimidazole, solvent: N, N -25 parts by weight of dimethylformamide.
Solvent 2: 100 parts by weight of methyl ethyl ketone.

この樹脂組成物を、たて型塗工機を用いて、上記ガラスクロスに、乾燥後の熱硬化性樹脂組成物の量が、熱硬化性樹脂組成物及びガラスクロスの合計100重量部に対し、55重量部となるように調整含浸した後、最高温度185℃で乾燥して厚み0.10mmのプリプレグを作製した。   Using the vertical coating machine, the amount of the thermosetting resin composition after drying the resin composition is 100 parts by weight based on the total of the thermosetting resin composition and the glass cloth. After adjusting and impregnating to 55 parts by weight, it was dried at a maximum temperature of 185 ° C. to prepare a prepreg having a thickness of 0.10 mm.

この際、ガラスクロスたて方向に15kgのテンションをかけて塗工し、0.3%の伸び率のプリプレグを得た。なお、伸び率は室温下で計測している。   At this time, coating was performed with a tension of 15 kg in the glass cloth vertical direction, and a prepreg having an elongation rate of 0.3% was obtained. The elongation is measured at room temperature.

このプリプレグの両側に厚み12μmの銅箔を配して積層した後、この積層物を金属プレートで挟み、最高温度180℃、圧力3.0MPaで90分加熱加圧成形して厚み0.06mmの両面銅張り積層板を作製した。   After laminating and laminating a copper foil having a thickness of 12 μm on both sides of the prepreg, the laminate was sandwiched between metal plates, and heated and pressure-molded at a maximum temperature of 180 ° C. and a pressure of 3.0 MPa for 90 minutes. A copper-clad laminate was produced.

(比較例1)
ガラスクロスたて方向に35kgのテンションをかけ、伸び率が0.8%のプリプレグを得た以外は実施例1と同様にして0.1mmの両面銅張り積層板を得た。
(Comparative Example 1)
A 0.1 mm double-sided copper-clad laminate was obtained in the same manner as in Example 1, except that 35 kg of tension was applied in the glass cloth vertical direction to obtain a prepreg having an elongation of 0.8%.

(比較例2)
ガラスクロスたて方向に45kgのテンションをかけ、伸び率が1.2%のプリプレグを得た以外は実施例1と同様にして0.1mmの両面銅張り積層板を得た。
(Comparative Example 2)
A 0.1 mm double-sided copper-clad laminate was obtained in the same manner as in Example 1 except that 45 kg of tension was applied in the glass cloth vertical direction to obtain a prepreg having an elongation rate of 1.2%.

(評価、結果)
実施例1〜2及び比較例1〜2で得られた金属張積層板についてそり特性および寸法特性を評価した。
(Evaluation results)
Warpage characteristics and dimensional characteristics of the metal-clad laminates obtained in Examples 1-2 and Comparative Examples 1-2 were evaluated.

結果は表1に示した通り、実施例は比較例1〜2と比べ、そり、寸法特性が向上されることを確認された。   As a result, as shown in Table 1, it was confirmed that the warpage and dimensional characteristics of the example were improved as compared with Comparative Examples 1 and 2.

Figure 2006224587
Figure 2006224587

Claims (1)

厚み20〜200μmのガラスクロスに熱硬化性樹脂組成物を含浸したプリプレグと金属箔を重ね合わせ、次いで加熱加圧してなる金属箔張り積層板において、上記プリプレグの次式で表されるプリプレグ伸び率が0.3%以内であることを特徴とする金属箔張り積層板の製造方法。
Figure 2006224587
In a metal foil-clad laminate obtained by superposing a metal foil with a prepreg impregnated with a thermosetting resin composition on a glass cloth having a thickness of 20 to 200 μm, the prepreg elongation represented by the following formula of the prepreg Is within 0.3%, a method for producing a metal foil-clad laminate.
Figure 2006224587
JP2005043873A 2005-02-21 2005-02-21 Manufacturing process of metal foil stretched laminate Pending JP2006224587A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005043873A JP2006224587A (en) 2005-02-21 2005-02-21 Manufacturing process of metal foil stretched laminate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005043873A JP2006224587A (en) 2005-02-21 2005-02-21 Manufacturing process of metal foil stretched laminate

Publications (1)

Publication Number Publication Date
JP2006224587A true JP2006224587A (en) 2006-08-31

Family

ID=36986339

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005043873A Pending JP2006224587A (en) 2005-02-21 2005-02-21 Manufacturing process of metal foil stretched laminate

Country Status (1)

Country Link
JP (1) JP2006224587A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010083072A (en) * 2008-10-01 2010-04-15 Hitachi Chem Co Ltd Copper-clad laminated sheet and printed circuit board

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010083072A (en) * 2008-10-01 2010-04-15 Hitachi Chem Co Ltd Copper-clad laminated sheet and printed circuit board

Similar Documents

Publication Publication Date Title
JP6512521B2 (en) Laminated board, metal-clad laminated board, printed wiring board, multilayer printed wiring board
JP5260400B2 (en) Multilayer board for producing multilayer printed wiring boards
KR100925757B1 (en) Insulating material, printed circuit board having the same and manufacturing method thereof
JP6015303B2 (en) Prepreg, laminated board and printed wiring board
JP6624545B2 (en) Thermosetting resin composition, metal-clad laminate, insulating sheet, printed wiring board, method for manufacturing printed wiring board, and package substrate
JP2692508B2 (en) Manufacturing method of laminated board
JP2007277463A (en) Low dielectric prepreg, and metal foil clad laminate and multilayer printed wiring board using the same
JP2006224587A (en) Manufacturing process of metal foil stretched laminate
JP4802541B2 (en) Method for producing metal foil-clad laminate and multilayer printed wiring board
JP2006315392A (en) Method for manufacturing metal foil-clad laminate
JP2003213021A (en) Prepreg, metal-clad laminated plate and printed wiring plate using the same
JP5275533B2 (en) Metal foil laminate and prepreg
JP2003031957A (en) Manufacturing method of multilayer printed wiring board
JP3412572B2 (en) Epoxy resin composition, prepreg, metal foil with resin, adhesive sheet, laminated board and multilayer board
JP2002348754A (en) Glass cloth, prepreg, laminated sheet, and printed wiring board
JP2001030279A (en) Manufacture of laminated sheet
JP2004149577A (en) Prepreg and laminated sheet
JP2005093877A (en) Manufacturing method of metal-foiled laminate
JPH09293971A (en) Manufacture of multilayer board
JP2008187005A (en) Manufacturing method of copper clad laminate with carrier foil
JPH1016100A (en) Preparation of laminated sheet
JP2002088175A (en) Prepreg and laminate
JP4207282B2 (en) Manufacturing method of multilayer printed wiring board
JP2001244588A (en) Composite sheet and laminated board using it
JP2003086939A (en) Method of manufacturing multilayered printed wiring board