KR101496172B1 - Carbon fibre reinforced composite sheet and production method thereof - Google Patents

Carbon fibre reinforced composite sheet and production method thereof Download PDF

Info

Publication number
KR101496172B1
KR101496172B1 KR1020137030813A KR20137030813A KR101496172B1 KR 101496172 B1 KR101496172 B1 KR 101496172B1 KR 1020137030813 A KR1020137030813 A KR 1020137030813A KR 20137030813 A KR20137030813 A KR 20137030813A KR 101496172 B1 KR101496172 B1 KR 101496172B1
Authority
KR
South Korea
Prior art keywords
carbon fiber
thermoplastic resin
reinforced composite
composite sheet
sheet according
Prior art date
Application number
KR1020137030813A
Other languages
Korean (ko)
Other versions
KR20140034796A (en
Inventor
준 오야부
Original Assignee
이노악 코포레이션
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 이노악 코포레이션 filed Critical 이노악 코포레이션
Publication of KR20140034796A publication Critical patent/KR20140034796A/en
Application granted granted Critical
Publication of KR101496172B1 publication Critical patent/KR101496172B1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/02Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/22Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed
    • B32B5/24Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer
    • B32B5/28Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer impregnated with or embedded in a plastic substance
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/02Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising combinations of reinforcements, e.g. non-specified reinforcements, fibrous reinforcing inserts and fillers, e.g. particulate fillers, incorporated in matrix material, forming one or more layers and with or without non-reinforced or non-filled layers
    • B29C70/026Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising combinations of reinforcements, e.g. non-specified reinforcements, fibrous reinforcing inserts and fillers, e.g. particulate fillers, incorporated in matrix material, forming one or more layers and with or without non-reinforced or non-filled layers and with one or more layers of pure plastics material, e.g. foam layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/28Shaping operations therefor
    • B29C70/40Shaping or impregnating by compression not applied
    • B29C70/42Shaping or impregnating by compression not applied for producing articles of definite length, i.e. discrete articles
    • B29C70/46Shaping or impregnating by compression not applied for producing articles of definite length, i.e. discrete articles using matched moulds, e.g. for deforming sheet moulding compounds [SMC] or prepregs
    • B29C70/465Shaping or impregnating by compression not applied for producing articles of definite length, i.e. discrete articles using matched moulds, e.g. for deforming sheet moulding compounds [SMC] or prepregs and impregnating by melting a solid material, e.g. sheets, powders of fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/12Layered products comprising a layer of synthetic resin next to a fibrous or filamentary layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/34Layered products comprising a layer of synthetic resin comprising polyamides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/36Layered products comprising a layer of synthetic resin comprising polyesters
    • B32B27/365Layered products comprising a layer of synthetic resin comprising polyesters comprising polycarbonates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/02Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by a sequence of laminating steps, e.g. by adding new layers at consecutive laminating stations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/22Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed
    • B32B5/24Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer
    • B32B5/245Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer another layer next to it being a foam layer
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/04Reinforcing macromolecular compounds with loose or coherent fibrous material
    • C08J5/0405Reinforcing macromolecular compounds with loose or coherent fibrous material with inorganic fibres
    • C08J5/042Reinforcing macromolecular compounds with loose or coherent fibrous material with inorganic fibres with carbon fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2260/00Layered product comprising an impregnated, embedded, or bonded layer wherein the layer comprises an impregnation, embedding, or binder material
    • B32B2260/02Composition of the impregnated, bonded or embedded layer
    • B32B2260/021Fibrous or filamentary layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2260/00Layered product comprising an impregnated, embedded, or bonded layer wherein the layer comprises an impregnation, embedding, or binder material
    • B32B2260/04Impregnation, embedding, or binder material
    • B32B2260/046Synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/10Inorganic fibres
    • B32B2262/106Carbon fibres, e.g. graphite fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2266/00Composition of foam
    • B32B2266/02Organic
    • B32B2266/0214Materials belonging to B32B27/00
    • B32B2266/025Polyolefin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2266/00Composition of foam
    • B32B2266/08Closed cell foam
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/51Elastic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/538Roughness
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/54Yield strength; Tensile strength
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/732Dimensional properties
    • B32B2307/734Dimensional stability
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/732Dimensional properties
    • B32B2307/734Dimensional stability
    • B32B2307/736Shrinkable
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24355Continuous and nonuniform or irregular surface on layer or component [e.g., roofing, etc.]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/249921Web or sheet containing structurally defined element or component

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Composite Materials (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Laminated Bodies (AREA)
  • Casting Or Compression Moulding Of Plastics Or The Like (AREA)
  • Reinforced Plastic Materials (AREA)

Abstract

본 발명은, 경량, 박육(薄肉)에 고강성을 담보하면서, 재가공성이나 리사이클성이 뛰어나며 표면 평활성이 양호한 탄소 섬유 강화 복합시트의 제공하는 것이다.
적어도 2매의 탄소 섬유 직물과 열가소성 수지를 포함하는 탄소 섬유 강화 복합시트이며, 상기 적어도 2매의 탄소 섬유 직물의 각각이, 탄소 섬유 다발이 풀어진 개섬사로 이루어지며, 또한, 상기 열가소성 수지가 상기 적어도 2매의 탄소 섬유 직물 내에 고화된 상태로 함침되어 있음으로써, 상기 탄소 섬유 강화 복합시트가 전체적으로 일체화되어 있는 탄소 섬유 강화 복합시트와 그 제조 방법이다.
The present invention provides a carbon fiber-reinforced composite sheet which is lightweight, thin and highly rigid, excellent in reworkability and recyclability, and good in surface smoothness.
A carbon fiber-reinforced composite sheet comprising at least two carbon fiber fabrics and a thermoplastic resin, wherein each of the at least two carbon fiber fabrics is composed of carded yarn in which a carbon fiber bundle is unwound, Reinforced composite sheet, wherein the carbon fiber-reinforced composite sheet is entirely integrated with the carbon fiber-reinforced composite sheet impregnated in a solidified state in two pieces of the carbon fiber fabric, and a method of producing the same.

Description

탄소 섬유 강화 복합시트 및 그 제조 방법{CARBON FIBRE REINFORCED COMPOSITE SHEET AND PRODUCTION METHOD THEREOF}BACKGROUND OF THE INVENTION 1. Field of the Invention [0001] The present invention relates to a carbon fiber-reinforced composite sheet,

본 발명은, 재가공성이나 리사이클성이 뛰어나며 표면 평활성이 양호한 탄소 섬유 강화 복합시트 및 그 제조 방법에 관한 것이다.The present invention relates to a carbon fiber-reinforced composite sheet excellent in reworkability and recyclability and having good surface smoothness, and a method for producing the same.

최근 발달한 모바일 전자 기기는, 야외에서의 사용도 상정된다. 그 때문에, 케이스 재료는, 경량, 박육에 고강성일 필요가 있다. 예를 들면, 특허 문헌 1에는, 탄소 섬유 프리프레그를 2매 적층하고, 그 사이에 심재로서 열경화성 연속 기포 발포체를 적층시킨 샌드위치 구조체로 형성되는, 경량, 박육, 고강성인 탄소 섬유 강화 복합시트가 제안되어 있다.Recently developed mobile electronic devices are also expected to be used outdoors. Therefore, the case material needs to be lightweight and high in rigidity. For example, Patent Document 1 proposes a lightweight, thin and high strength carbon fiber-reinforced composite sheet formed by sandwiching two carbon fiber prepregs and a thermosetting open-cell foam as a core between them, .

일본 특허 공개 2011-093175호 공보Japanese Patent Application Laid-Open No. 2011-093175

그러나, 특허 문헌 1에서 제안된 탄소 섬유 강화 복합시트는, 심재로서 열경화성 수지를 이용하고 있었기 때문에, 가열하여 변형시킬 수 없어, 재가공성이나 리사이클성, 후가공을 실시하여 소정 형상으로 성형하는 것 등이 곤란하였다. 그래서, 본 발명자들은, 열경화성 수지 대신에 열가소성 수지를 이용하는 것을 검토하였다. 그러나, 특허 문헌 1에 관한 기술에서, 열경화성 수지 대신에 열가소성 수지를 이용했을 경우에는, 수지의 용융·경화 과정을 수반하는, 1차 제조 공정 및 재가공 공정에서, 표면 평활성이 나빠진다는 것이 확인되었다. 따라서, 본 발명의 목적은, 경량, 박육에 고강성을 담보하면서, 재가공성이나 리사이클성이 뛰어나며 표면 평활성이 양호한 탄소 섬유 강화 복합시트를 제공하는 것이다.However, since the carbon fiber-reinforced composite sheet proposed in Patent Document 1 uses a thermosetting resin as a core material, it can not be deformed by heating, so that the carbon fiber-reinforced composite sheet can be reworked, recycled, It was difficult. Thus, the present inventors have studied using a thermoplastic resin instead of a thermosetting resin. However, in the technology related to Patent Document 1, it has been confirmed that when a thermoplastic resin is used instead of the thermosetting resin, the surface smoothness is deteriorated in the primary manufacturing process and the reworking process accompanied by the melting and curing process of the resin. Accordingly, an object of the present invention is to provide a carbon fiber-reinforced composite sheet which is lightweight, has high rigidity to a thin wall, is excellent in reworkability and recyclability, and has good surface smoothness.

본 발명자들은, 열경화성 수지 대신에 열가소성 수지를 이용했을 경우에서의 표면 평활성 악화의 원인이, 수지의 용해 과정에서의, 탄소 섬유 강화 복합시트 내부에 잔존하는 보이드라는 것을 발견하고, 본 발명을 완성시킨 것이다.DISCLOSURE OF THE INVENTION The present inventors have found that a cause of deterioration in surface smoothness when a thermoplastic resin is used in place of a thermosetting resin is a void remaining in the carbon fiber-reinforced composite sheet during the dissolution process of the resin, will be.

본 발명은,According to the present invention,

적어도 2매의 탄소 섬유 직물과 열가소성 수지를 포함하는 탄소 섬유 강화 복합시트이며, 상기 적어도 2매의 탄소 섬유 직물의 각각이, 탄소 섬유 다발이 풀어진 개섬사로 이루어지며,A carbon fiber-reinforced composite sheet comprising at least two carbon fiber fabrics and a thermoplastic resin, wherein each of the at least two carbon fiber fabrics comprises an open fiber of a carbon fiber bundle,

상기 열가소성 수지가 상기 적어도 2매의 탄소 섬유 직물 내에 고화된 상태로 함침되어 있음으로써, 상기 탄소 섬유 강화 복합시트가 전체적으로 일체화되어 있는 것을 특징으로 하는 탄소 섬유 강화 복합시트이다.Wherein the thermoplastic resin is impregnated in the at least two carbon fiber fabrics in a solidified state so that the carbon fiber reinforced composite sheet is entirely integrated.

여기서, 본 발명에 따른 탄소 섬유 강화 복합시트의 적어도 한쪽 면 위에는, 열가소성 수지층이 존재하고 있어도 좋다.Here, a thermoplastic resin layer may be present on at least one surface of the carbon fiber-reinforced composite sheet according to the present invention.

또, 본 발명에 따른 탄소 섬유 강화 복합시트에 포함되는 모든 열가소성 수지가 동일종이어도 좋다.Further, all the thermoplastic resins included in the carbon fiber-reinforced composite sheet according to the present invention may be of the same species.

또, 본 발명에 따른 탄소 섬유 강화 복합시트는, 최대 높이(Rmax)가 12.0μm이하이며, 10점 평균 조도(Rz)가 6.0μm이하이어도 좋다.The carbon fiber-reinforced composite sheet according to the present invention may have a maximum height (Rmax) of 12.0 占 퐉 or less and a 10-point average roughness (Rz) of 6.0 占 퐉 or less.

또, 본 발명에 따른 탄소 섬유 강화 복합시트는, 굽힘 탄성율이 25 GPa 이상이며, 굽힘 강도가 170 MPa 이상이어도 좋다.The carbon fiber-reinforced composite sheet according to the present invention may have a bending elastic modulus of 25 GPa or more and a bending strength of 170 MPa or more.

또, 본 발명에 따른 탄소 섬유 강화 복합시트는, 두께가 0.5 mm이하이어도 좋다.The carbon fiber-reinforced composite sheet according to the present invention may have a thickness of 0.5 mm or less.

또, 본 발명에 따른 탄소 섬유 강화 복합시트는, 고화된 상태의 열가소성 수지가 무발포 상태이어도 좋다.In the carbon fiber-reinforced composite sheet according to the present invention, the solidified thermoplastic resin may be in a non-foamed state.

또한, 본 발명은, 탄소 섬유 다발이 풀어진 개섬사로 이루어지는 탄소 섬유 직물을 적어도 2매 포함하고, 상기 적어도 2매의 탄소 섬유 직물 사이에 발포체 형상의 열가소성 수지가 끼워져 있는 적층체를, 상기 발포체 형상의 상기 열가소성 수지가 용융되고, 또한 용융된 상기 열가소성 수지가 상기 적어도 2매의 탄소 섬유 직물 사이에 함침하는 조건에서 열프레스 하는 공정과The present invention also provides a laminated body including at least two carbon fiber fabrics composed of carded yarns obtained by loosening carbon fiber bundles and a foamed thermoplastic resin sandwiched between the at least two carbon fiber fabrics, A step of hot-pressing the thermoplastic resin under a condition that the thermoplastic resin is melted and the melted thermoplastic resin is impregnated between the at least two carbon fiber fabrics;

상기 2매의 탄소 섬유 직물 사이에 함침된, 용융 상태에 있는 상기 열가소성 수지를 고화시키는 공정을 포함하는 것을 특징으로 하는 탄소 섬유 강화 복합시트의 제조 방법이다.And a step of solidifying the thermoplastic resin in a molten state impregnated between the two carbon fiber fabrics.

또, 본 발명에 따른 탄소 섬유 강화 복합시트의 제조 방법은, 발포체 형상의 열가소성 수지가 독립 기포 발포체이어도 좋다.In the method for producing a carbon fiber-reinforced composite sheet according to the present invention, the foamed thermoplastic resin may be a closed-cell foam.

또, 본 발명에 따른 탄소 섬유 강화 복합시트의 제조 방법은, 탄소 섬유 직물의 적어도 한쪽 면에 열가소성 수지 필름이 배치되어 있어도 좋다.Further, in the method for producing a carbon fiber-reinforced composite sheet according to the present invention, a thermoplastic resin film may be disposed on at least one surface of a carbon fiber fabric.

여기서, 「배치하다」란, 탄소 섬유 직물 위에 열가소성 수지 필름이 접합(가용접나 점용착을 포함한다)되어 있는 상태뿐만 아니라, 접합되어 있지 않은 상태(후술 하는 실시예 4와 같이, 단지 접촉 상태에 있는 모양)까지도 포함하는 개념이다.Here, the term " disposition " means not only a state in which the thermoplastic resin film is bonded (including soluble contact or spot welding) to the carbon fiber fabric, but also a state in which the thermoplastic resin film is not bonded And the like).

또, 본 발명에 따른 탄소 섬유 강화 복합시트의 제조 방법은, 적층체가, 한쪽 면으로부터 순차, 열가소성 수지 필름, 탄소 섬유 직물, 발포체 형상의 열가소성 수지, 탄소 섬유 직물, 열가소성 수지 필름의 적어도 5층으로 이루어지는 것이어도 좋다.The method for producing a carbon fiber-reinforced composite sheet according to the present invention is a method for producing a carbon fiber-reinforced composite sheet according to the present invention wherein at least five layers of a thermoplastic resin film, a carbon fiber fabric, a foam thermoplastic resin, a carbon fiber fabric and a thermoplastic resin film .

또, 본 발명에 따른 탄소 섬유 강화 복합시트의 제조 방법은, 적층체가, 한쪽 면으로부터 순차, 열가소성 수지 필름, 탄소 섬유 직물, 열가소성 수지 필름, 발포체 형상의 열가소성 수지, 열가소성 수지 필름, 탄소 섬유 직물, 열가소성 수지 필름의 7층만으로 이루어지는 것이어도 좋다.A method for producing a carbon fiber-reinforced composite sheet according to the present invention is a method for producing a carbon fiber-reinforced composite sheet according to the present invention, wherein a laminate is formed by sequentially laminating a thermoplastic resin film, a carbon fiber fabric, a thermoplastic resin film, a thermoplastic resin in the form of a foam, a thermoplastic resin film, But may be composed of only seven layers of a thermoplastic resin film.

또, 본 발명에 따른 탄소 섬유 강화 복합시트의 제조 방법은, 발포체 형상의 열가소성 수지 및 열가소성 수지 필름이 동일종의 열가소성 수지여도 좋다.Further, in the method for producing a carbon fiber-reinforced composite sheet according to the present invention, the foamed thermoplastic resin and the thermoplastic resin film may be the same kind of thermoplastic resin.

여기서, 열프레스를 실시하는 공정과 용해된 열가소성 수지를 고화시키는 공정은, 다른 공정이어도, 연속적인 공정이어도 좋고, 나아가, 압력을 가하면서 수지를 고화시키는 등, 일부 또는 전부가 동시에 이루어지는 것이어도 좋다.Here, the step of performing the hot pressing and the step of solidifying the dissolved thermoplastic resin may be a different step, a continuous step, or a part or all of them may be simultaneously performed, such as solidifying the resin while applying pressure .

또, 동일종이란, 폴리머를 구성하는 모노머가 완전하게 동일한 상태뿐만 아니라, 폴리머를 구성하는 모노머 골격이 유사한 상태{예를 들면, 모노머의 측쇄나 모노머를 구성하는 원소(구체적으로는 탄소)의 개수 등이 상이한 상태}까지도 포함한다.In addition, the same type means not only a state in which the monomers constituting the polymer are completely identical but also a state in which the monomer skeleton constituting the polymer is in a similar state (for example, the number of the side chains of the monomer or the elements And the like).

또, 실질적으로 무발포 상태란, 육안 관찰에서 발포가 발견되지 않은 상태를 말한다.The substantially no-foaming state refers to a state in which foaming is not observed in visual observation.

본 발명에 따르면, 경량, 박육에 고강성을 담보하면서, 재가공성이나 리사이클성이 뛰어나며 표면 평활성이 양호한 탄소 섬유 강화 복합시트를 제공하는 것이 가능해진다는 효과를 나타낸다.INDUSTRIAL APPLICABILITY According to the present invention, it is possible to provide a carbon fiber-reinforced composite sheet excellent in reworkability, recyclability and surface smoothness while securing a lightweight, high rigidity to a thin wall.

도 1은, 본 형태에 따른, 탄소 섬유 시트 사이에 열가소성 수지 발포체가 끼워진 적층체(열프레스 전)의 개념도이다.
도 2는, 본 형태에 따른, 열프레스 전의 탄소 섬유 시트의 개념도이다.
도 3은, 본 형태에 따른, 탄소 섬유 강화 복합시트 제조에 있어서의, 열프레스 프로세스의 개념도이다.
도 4는, 본 형태에 따른, 형성된 탄소 섬유 강화 복합시트의 개념도이다.
도 5는, 실시예 1에 따른, 탄소 섬유 강화 복합시트의 단면도이다.
도 6은, 비교예 3에 따른, 탄소 섬유 강화 복합시트의 단면도이다.
1 is a conceptual diagram of a laminate (before hot pressing) in which a thermoplastic resin foam is sandwiched between carbon fiber sheets according to this embodiment.
2 is a conceptual view of a carbon fiber sheet before heat press according to this embodiment.
Fig. 3 is a conceptual diagram of a heat press process in the production of a carbon fiber-reinforced composite sheet according to this embodiment.
4 is a conceptual view of a carbon fiber-reinforced composite sheet formed according to this embodiment.
5 is a cross-sectional view of a carbon fiber-reinforced composite sheet according to Example 1. Fig.
Fig. 6 is a cross-sectional view of a carbon fiber-reinforced composite sheet according to Comparative Example 3. Fig.

이하, 본 발명에 따른 탄소 섬유 강화 복합시트의 한 형태에 대해서, 도 1 내지 4를 이용하여 상술한다. 또한, 본 발명의 기술적 범위는, 이 형태에 전혀 한정되지 않는다.Hereinafter, one embodiment of the carbon fiber-reinforced composite sheet according to the present invention will be described in detail with reference to Figs. 1 to 4. Fig. The technical scope of the present invention is not limited to this embodiment at all.

≪ 본 형태에 따른 탄소 섬유 강화 복합시트 ≫&Quot; Carbon fiber-reinforced composite sheet according to this embodiment &

도 1 내지 도 4에 나타내는 바와 같이, 본 형태에 따른 면 형상의 탄소 섬유 강화 복합시트(100)는, 열가소성 수지를 함침한 2매의 탄소 섬유 직물(개섬사 직물)(111 및 112)과 이 2매의 개섬사 직물(111 및 112)에 끼워진 제1 열가소성 수지층(중간 열가소성 수지층)(145)과 이 2매의 개섬사 직물(111 및 112) 각각의, 제1 열가소성 수지층(145)과 접한 면의 반대면(탄소 섬유 강화 복합시트(100)의 외표면에 상당)에 설치된 제2 열가소성 수지층(표층 열가소성 수지층)(151 및 152)으로 구성된다. 그리고, 탄소 섬유 강화 복합시트(100)는, 제1 열가소성 수지층, 제2 열가소성 수지층 및 탄소 섬유 직물이 열가소성 수지에 의해서 일체화된 구조를 가지고 있다. 또한, 이 탄소 섬유 강화 복합시트(100)의 구조 및 물성 등에 대해서는 후술 한다. 이하, 본 형태에 따른 탄소 섬유 강화 복합시트(100)의 제조 방법, 이 제조 방법에 의해 얻어진 탄소 섬유 강화 복합시트(구조, 성질), 본 형태에 따른 탄소 섬유 강화 복합시트의 사용 방법(용도)을 차례로 설명한다.As shown in Figs. 1 to 4, the planar carbon fiber-reinforced composite sheet 100 according to this embodiment comprises two carbon fiber fabrics (filament yarn fabrics) 111 and 112 impregnated with a thermoplastic resin, A first thermoplastic resin layer (intermediate thermoplastic resin layer) 145 sandwiched between two punched filament fabrics 111 and 112 and a first thermoplastic resin layer 145 (intermediate thermoplastic resin layer) of the two punched filament fabrics 111 and 112 (Surface thermoplastic resin layers) 151 and 152 provided on the opposite surface (corresponding to the outer surface of the carbon fiber-reinforced composite sheet 100) opposite to the first thermoplastic resin layer (surface thermoplastic resin layer). The carbon fiber-reinforced composite sheet 100 has a structure in which the first thermoplastic resin layer, the second thermoplastic resin layer, and the carbon fiber fabric are integrated by a thermoplastic resin. The structure and physical properties of the carbon fiber-reinforced composite sheet 100 will be described later. A method for producing a carbon fiber-reinforced composite sheet 100 according to this embodiment, a carbon fiber-reinforced composite sheet (structure and properties) obtained by this manufacturing method, a method of using the carbon fiber- Respectively.

≪ 본 형태에 따른 탄소 섬유 강화 복합시트의 제조 방법 ≫≪ Manufacturing method of carbon fiber-reinforced composite sheet according to this embodiment &

본 형태에 따른 탄소 섬유 강화 복합시트(100)의 제조 방법은, 개섬사(올을 풀어 성기게 한 탄소 섬유 다발)로 이루어지는 개섬사 직물(110)(111 및 112)의, 상면 및 저면에 필름 형상의 열가소성 수지(열가소성 수지 필름)(120)(121 및 122)이 배치된, 탄소 섬유 시트(130)(131 및 132) 사이에, 발포체 형상의 상기 열가소성 수지(열가소성 수지 발포체)(140)가 끼워진 적층체(101)를 열프레스함으로써, 상기 발포체 형상의 상기 열가소성 수지(140) 및 상기 필름 형상의 열가소성 수지(120)을 용융시키고, 또한 용융된 이들 열가소성 수지를 상기 개섬사 직물(110)에 함침시키고, 그 후 개섬사 직물 사이에 함침된, 용융 상태에 있는 상기 열가소성 수지를 냉각·고화하는 프로세스를 포함한다. 이하, 이 제조 방법의 제조 원료 및 제조 프로세스를 상술한다.The method for producing a carbon fiber-reinforced composite sheet 100 according to this embodiment is a method for producing a carbon fiber-reinforced composite sheet 100, which comprises a laminated film 110 (111, 112) composed of a pile of filaments (Thermoplastic resin foam) 140 in the form of a foam is disposed between the carbon fiber sheets 130 (131 and 132) where the thermoplastic resin (thermoplastic resin film) 120 (121 and 122) The thermoplastic resin 140 in the form of a foam and the thermoplastic resin 120 in a film form are melted by hot pressing the laminated body 101 in which the thermoplastic resin 120 is fitted, And then cooling and solidifying the thermoplastic resin in a molten state impregnated and then impregnated between the woven fabrics. Hereinafter, raw materials for production and manufacturing processes of this production method will be described in detail.

<제조 원료>&Lt; Manufacturing raw material &

[개섬사 직물][Fabric of dogsia]

{구조}{rescue}

(개직)(Opening)

본 형태에 따른 개섬사 직물은, 개섬사를 평직함으로써 형성된다. 직포 섬유로서 개섬사를 사용함으로써, 섬유 두께가 얇아지고, 질량도 감소한다. 개섬사 직물을 이용함으로써, 열프레스 프로세스에서, 벌어진 올에서 보이드가 탈포되기 쉬워진다. 그 결과, 탄소 섬유 강화 복합시트(100) 내부에 잔존하는 보이드량이 적어진다. 그 때문에, 재가공시 가열 시에, 탄소 섬유 강화 복합시트(100) 내의 보이드가 표층에 도달하는 것에 기인한, 표면 평활성의 악화(언더필, 셀 거칠음)를 방지할 수 있다. 또한, 본 발명의 개섬사 직물은, 일본 특허 공개 2000-096387호, 일본 특허 공개 2000-110048호, 일본 특허 공개 2001-164441호 등에 개시된 것을 이용할 수 있다.The filament yarn fabric according to this embodiment is formed by plain weaving filament yarn. The use of cordierite as the woven fabric reduces the fiber thickness and mass. By using an embossed yarn fabric, voids are liable to be defoamed in the hot pressed process. As a result, the amount of voids remaining in the carbon fiber-reinforced composite sheet 100 is reduced. Therefore, deterioration (underfilling, cell roughness) of the surface smoothness due to the voids in the carbon fiber-reinforced composite sheet 100 reaching the surface layer can be prevented at the time of heating during reprocessing. Further, as the false-sheen fabric of the present invention, those disclosed in Japanese Patent Application Laid-Open Nos. 2000-096387, 2000-110048 and 2001-164441 can be used.

(두께)(thickness)

개섬사 직물이 너무 두꺼우면, 개섬사 직물 속으로부터의 보이드의 탈포가 진행되지 않아, 탄소 섬유 강화 복합시트(100) 내부에 잔존하는 보이드량이 많아진다. 그러나, 개섬사 직물이 너무 얇으면, 탄소 섬유 강화 복합시트에 필요한 고강성이 발휘되지 않게 되어 버린다. 그 때문에, 개섬사 직물의 두께로서는, 매우 적합하게는, 0.05 내지 0.20 mm이며, 보다 적합하게는, 0.08 내지 0.10 mm이다.If the woven fabric is too thick, the deodorization of voids from the woven fabric does not proceed and the amount of voids remaining in the carbon fiber-reinforced composite sheet 100 increases. However, if the pile fabric is too thin, the high rigidity required for the carbon fiber reinforced composite sheet will not be exhibited. Therefore, the thickness of the woven fabric is preferably from 0.05 to 0.20 mm, and more preferably from 0.08 to 0.10 mm.

{물성·성질}{Physical property, property}

(질량)(mass)

개섬사 직물을 이용함으로써, 탄소 섬유 강화 복합시트(100) 내부에서 형성된 보이드가 탈포되기 쉬워지는데, 개섬사 직물에 있어서의 질량이 너무 작으면 고강성이 발휘되기 어려워진다. 개섬사 직물에 있어서의 질량이 너무 크면, 올이 성기지만 부피가 커지므로, 보이드의 탈포가 진행되기 어려워진다. 그 때문에, 개섬사 직물의 질량은, 매우 적합하게는, 70 내지 400 g/m2이며, 보다 적합하게는 30 내지 160 g/m2이며, 특히 적합하게는 40 내지 90 g/m2이다.The voids formed in the carbon fiber-reinforced composite sheet 100 are liable to be defoamed by using the woven fabric. If the mass of the woven fabric is too small, high rigidity is hardly exhibited. If the mass of the fabric is too large, it is difficult to proceed with the defoaming of the void because the volume is large but bulky. Therefore, the mass of the paddy yarn fabric is very suitably 70 to 400 g / m 2 , more suitably 30 to 160 g / m 2 , particularly preferably 40 to 90 g / m 2 .

{원재료}{Raw materials}

본 형태에 따른 개섬사 직물은, 개섬사를 평직함으로써 형성된다. 여기서, 본 형태에 따른 개섬사 직물의 재질인 개섬사에 대해 상술한다.The filament yarn fabric according to this embodiment is formed by plain weaving filament yarn. Here, the punched filament which is the material of the false eyelash fabric according to this embodiment will be described in detail.

〔개섬사〕[Dog Island Temple]

“구조”"rescue"

개섬사는, 1개 또는 복수개의 얀(멀티 필라멘트사조)을 모노필라멘트가 거의 직선 모양으로, 그리고 평행 상태를 유지하도록 평탄하게 배치한 것을 말한다. 결과, 모노필라멘트가 미세 점착되어 탄소 섬유 다발의 올이 벌어지기 쉬워진 섬유사이다.The carded yarn means one or a plurality of yarns (multifilament yarn) arranged in a flat shape such that the monofilaments are substantially straight and kept parallel to each other. As a result, the monofilaments are closely adhered to each other and the fibers of the carbon fiber bundle are liable to spread.

· 두께· thickness

개섬사가 두꺼우면 개섬사 직물 자체도 두꺼워져, 형성된 탄소 섬유 강화 복합시트에서 박육성이 달성되지 않는다. 그 때문에, 개섬사의 두께는, 적합하게는 1μm 내지 60μm이다.If the open weft yarn is thick, the weft yarn weave itself becomes thick, and the thinness can not be achieved in the formed carbon fiber reinforced composite sheet. Therefore, the thickness of the carded web is preferably 1 to 60 탆.

· 폭· Width

개섬사의 폭은, 적합하게는 1 mm 내지 60 mm이다. 이러한 개섬사폭으로 함으로써, 개섬사의 어스펙트비가 바람직한 형태가 된다.The width of the carded yarn is suitably from 1 mm to 60 mm. By adopting such an opening width, the aspect ratio of the opened fiber becomes a preferable form.

· 어스펙트비· Aspect ratio

본 형태에 따른 탄소 섬유 강화 복합시트에 이용하는 개섬사에서, 개섬사 폭과 개섬사 두께의 비(실 폭/실 두께)인 어스펙트비는, 적합하게는 30 이상이다. 이러한 어스펙트비로 함으로써, 크림프 각도가 작아져 뛰어난 표면 평활성이 얻어진다.In the filament yarn used in the carbon fiber-reinforced composite sheet according to this embodiment, the ratio of the filament yarn width to the filament yarn thickness (yarn width / yarn thickness) is preferably 30 or more. With such an aspect ratio, the crimp angle is reduced and excellent surface smoothness is obtained.

“재질”"material"

개섬사의 재질로서는 특별히 한정되지 않고, PAN계, 피치계, 어느 쪽이어도 좋지만, 널리 사용되고 있는 PAN계가 바람직하다.The material of the carded yarn is not particularly limited and may be either a PAN system or a pitch system, but a PAN system widely used is preferable.

[열가소성 수지 필름][Thermoplastic resin film]

{구조}{rescue}

개섬사 직물(110)의 상면 및 저면에는, 열프레스 프로세스 전에 미리 열가소성 수지 필름을 배치해 두는 것이 바람직하다. 개섬사 직물의 저면에 열가소성 수지 필름을 배치함으로써, 탄소 섬유 강화 복합시트의 수지의 부족을 보충해, 작업성이나 양산성을 향상시킬 수 있다. 개섬사 직물의 상면에 열가소성 수지 필름을 배치함으로써, 열가소성 수지 필름이 함침될 뿐만 아니라, 탄소 섬유 강화 복합시트의 표면, 특히 의장면에 열가소성 수지층이 적층, 피막을 형성함으로써, 복합재의 표면 평활성을 향상시킬 수 있다. 또, 이 열가소성 수지 필름을 개섬사 직물의 상면 및 저면에 미리 가용접해 두는 것이 바람직하다. 또한, 본 실시예에서는 열가소성 수지 필름을 개섬사 직물의 상면에 배치한 재료를 이용했지만, 이 열가소성 수지 필름을 이용하지 않고도 탄소 섬유 강화 복합시트의 표면에 열가소성 수지층을 형성시키는 것이 가능하다. 예를 들면, 열프레스 프로세스에서 열가소성 수지 발포체를 용융시키고, 용융된 열가소성 수지를 개섬사 직물에 충분히 함침시켜 고화시킴으로써, 탄소 섬유 강화 복합시트의 표면에 열가소성 수지층을 형성할 수 있다.It is preferable to arrange the thermoplastic resin film in advance on the upper surface and the lower surface of the woven fabric 110 before the hot press process. By arranging the thermoplastic resin film on the underside of the woven fabric, the insufficient resin of the carbon fiber-reinforced composite sheet can be supplemented, and workability and mass productivity can be improved. By arranging the thermoplastic resin film on the upper surface of the woven fabric, the thermoplastic resin film is impregnated, and the thermoplastic resin layer is laminated on the surface of the carbon fiber-reinforced composite sheet, Can be improved. In addition, it is preferable that the thermoplastic resin film is previously contacted with the upper surface and the lower surface of the woven fabric. Further, in this embodiment, a material in which a thermoplastic resin film is disposed on the upper surface of the woven fabric is used, but it is possible to form the thermoplastic resin layer on the surface of the carbon fiber-reinforced composite sheet without using the thermoplastic resin film. For example, the thermoplastic resin layer can be formed on the surface of the carbon fiber-reinforced composite sheet by melting the thermoplastic resin foam in a hot pressing process and sufficiently solidifying the molten thermoplastic resin by impregnating the thermoplastic resin into the fabric.

(두께)(thickness)

열가소성 수지 필름의 두께는 특별히 제한되지 않지만, 목적으로 하는 복합재 두께부를 얻는데 있어서, 성형시의 버어, 두께 불균일 등의 불량을 줄일 필요가 있다. 그 때문에, 열가소성 수지 필름의 두께는, 적합하게는 10 내지 500μm이며, 보다 적합하게는 15 내지 400μm이며, 특히 적합하게는 20 내지 300μm이다.Although the thickness of the thermoplastic resin film is not particularly limited, it is necessary to reduce defects such as burrs and thickness irregularities at the time of obtaining a desired thickness of composite material. Therefore, the thickness of the thermoplastic resin film is suitably 10 to 500 占 퐉, more preferably 15 to 400 占 퐉, and particularly preferably 20 to 300 占 퐉.

열가소성 수지 필름이 얇으면 개섬사 직물에의 함침이 충분히 이루어지지 않는다. 또, 열가소성 수지 필름이 두꺼운 경우, 두꺼운 복합재를 얻는데 개섬사 직물의 질량을 크게 할 필요가 있어, 개섬사 직물이 부피가 커지므로, 필름의 수지량을 늘릴 필요가 있기 때문이다. 복합재의 평면적은 미리 결정되어 있으므로, 수지량을 늘리려면 두께를 두껍게 할 수 밖에 없다.If the thermoplastic resin film is thin, impregnation into the woven fabric can not be sufficiently performed. Further, when the thermoplastic resin film is thick, it is necessary to increase the mass of the woven fabric to obtain a thick composite material, and since the woven fabric becomes bulky, it is necessary to increase the resin amount of the film. Since the flatness of the composite material is determined in advance, the thickness of the composite material can not but be increased to increase the resin amount.

{물성·성질}{Physical property, property}

(감열 수축율)(Thermal contraction ratio)

열가소성 수지 필름은, 열프레스 성형시에 열수축하지 않는 것이 바람직하고, 열수축에 의해 개섬사 직물이 위치 어긋나 주름 등이 생기지 않는 것이 바람직하다. 열가소성 수지 필름은, 열프레스 성형시에 가열 압축하여 위치 어긋남되지 않고, 용융 함침되어 매트릭스를 형성한다.The thermoplastic resin film is preferably not thermally shrinkable at the time of hot press forming, and it is preferable that wrinkles or the like do not occur due to the positional deviation of the woven fabric by heat shrinkage. The thermoplastic resin film is melted and impregnated to form a matrix without being displaced due to heat compression during hot press forming.

{재질}{material}

열가소성 수지 필름은, 열가소성이기만 하면 특별히 한정되지 않고, 예를 들면, 폴리올레핀계, 예를 들면, 폴리에틸렌, 폴리프로필렌; 폴리아미드계, 예를 들면, 나일론; 폴리에스테르계, 예를 들면, 폴리에틸렌테레프탈레이트, 폴리부티렌테레프탈레이트; 그 외에도, 폴리스티렌, 폴리카보네이트, 폴리페닐렌설파이드를 이용할 수 있다. 여기서, 열가소성 수지 발포체와 동일종의 열가소성 수지를 이용함으로써, 열프레스 프로세스에 있어서의 표리 중간층에 걸치는 수지의 밀착성이 향상되어, 고강성이 얻어진다. 구해진 물성과 아울러 열가소성 수지 발포체와 동일한 재질을 선정하는데 있어서, 열가소성 수지 필름의 재질로서는, 폴리에틸렌, 폴리카보네이트, 폴리아미드가 특히 적합하다.The thermoplastic resin film is not particularly limited as long as it is thermoplastic, and examples thereof include polyolefins such as polyethylene, polypropylene; Polyamides, such as nylon; Polyester-based, for example, polyethylene terephthalate, polybutylene terephthalate; In addition, polystyrene, polycarbonate, and polyphenylene sulfide may be used. By using the same thermoplastic resin as the thermoplastic resin foam, adhesion of the resin over the front and intermediate layers in the hot press process is improved, and high rigidity is obtained. Polyethylene, polycarbonate and polyamide are particularly suitable as the material of the thermoplastic resin film in selecting the same material as the thermoplastic resin foam in addition to the obtained physical properties.

[열가소성 수지 발포체][Thermoplastic resin foam]

{구조}{rescue}

(기포)(bubble)

열가소성 수지 발포체를 이용함으로써, 발포체의 용수철(스프링) 효과가 발휘되어 열프레스 프로세스에서, 용융 수지가 개섬사 직물을 넓히도록 함침하여, 보이드가 없는 균질한 복합재가 된다. 열프레스 프로세스시에, 열가소성 수지 발포체는 용융되면서 완충층이 되는 한편, 탄소 섬유에의 열가소성 수지의 함침을 확실한 것으로 한다.By using the thermoplastic resin foam, the spring effect of the foam is exhibited. In the hot press process, the molten resin impregnates the woven fabric so as to widen the woven fabric, thereby forming a homogeneous composite free from voids. During the hot pressing process, the thermoplastic resin foam is melted and becomes a buffer layer, while impregnating the thermoplastic resin into the carbon fiber is ensured.

또, 열가소성 수지 발포체는, 독립 기포를 갖는 발포체인 것이 바람직하다. 이러한 구성으로 함으로써 보이드가 탈포되기 쉬워진다. 또, 연속 기포 구조물도 사용할 수 있다. 발포체는, 화학 발포, 물리 발포의 어느 제법의 것이어도 좋지만, 독립 기포를 형성 후, 물리적으로 기포를 분쇄하여 연통한 연속 기포 발포체이어도 좋다.The thermoplastic resin foam is preferably a foam having closed cells. With such a constitution, the void can be easily defoamed. Further, an open cell structure may also be used. The foam may be any of chemical foaming and physical foaming, but it may be an open-cell foam which is formed by forming closed bubbles and then physically collapsing the bubbles to communicate with each other.

복합재의 적층 구조에서, 성형 전에 중간층으로서 끼워져 있던 열가소성 수지 발포체는, 성형 후, 중간층을 형성한다. 중간층을 형성하는 열가소성 수지 발포체는, 상하의 탄소 섬유 시트가 접촉, 얽히는 정도까지 압축된다. 그 결과, 탄소 섬유 시트 속에 열가소성 수지가 함침된 탄소 섬유 강화층이 형성된다.In the laminated structure of the composite material, the thermoplastic resin foam that has been sandwiched as the intermediate layer before molding forms an intermediate layer after molding. The thermoplastic resin foam forming the intermediate layer is compressed to such an extent that the upper and lower carbon fiber sheets are in contact and entangled. As a result, a carbon fiber reinforced layer impregnated with a thermoplastic resin is formed in the carbon fiber sheet.

(두께)(thickness)

열가소성 수지 발포체가 너무 두꺼우면, 열프레스 프로세스에 있어서의 발포체의 압축이 곤란해지고, 너무 얇으면 발포체의 용수철(스프링) 효과가 발휘되기 어렵다. 그 때문에, 열가소성 수지 발포체의 두께는, 적합하게는 1.5 mm 내지 2.3 mm이다.If the thermoplastic resin foam is too thick, it is difficult to compress the foam in the hot press process, and if it is too thin, the spring effect of the foam is difficult to be exerted. Therefore, the thickness of the thermoplastic resin foam is suitably 1.5 mm to 2.3 mm.

{물성·성질}{Physical property, property}

열가소성 수지 발포체의 두께가, 두꺼운 경우, 열프레스했다고 해도 2매의 개섬사 직물의 간격이 멀리 퍼지기 때문에, 일반적으로 탄성률이 높아지는 경향이 있다. 한편, 비교적 두께가 얇은 열가소성 수지 발포체를 채용하면, 2매의 개섬사 직물의 간격이 좁아져 탄성률이 낮아진다. 열가소성 수지 발포체의 밀도는, 15 내지 80 kg/m3이다. 이 밀도 범위의 발포체를 사용하면, 목적으로 하는 두께의 복합재를 성형하는데 적당한 용수철(스프링) 효과가 얻어짐과 동시에, 적당한 함침량으로 할 수 있어 목적으로 하는 강성을 가지는 탄소 섬유 강화 복합시트를 얻을 수 있다.When the thickness of the thermoplastic resin foam is thick, even when hot pressed, the interval between the two false-twist textiles spreads away, so that the elastic modulus generally tends to increase. On the other hand, when a thermoplastic resin foam having a relatively small thickness is employed, the interval between the two false-twist textiles becomes narrow and the elastic modulus becomes low. The density of the thermoplastic resin foam is 15 to 80 kg / m 3 . When a foam having such a density range is used, a spring effect suitable for molding a composite material having a desired thickness can be obtained, and an appropriate amount of impregnation can be obtained, thereby obtaining a carbon fiber-reinforced composite sheet having a desired stiffness .

(기포 구조)(Bubble structure)

열프레스 프로세스에서, 열가소성 수지 발포체는 용수철(스프링) 효과를 발휘한다. 즉, 열가소성 수지 발포체의 용수철(스프링) 효과에 의해, 개섬사 직물이 프레스면에 눌려진다. 그 때에, 개섬사 직물의 상면 및 저면에 설치된 열가소성 수지 필름이, 개섬사 직물에 눌려지기 때문에, 용융된 열가소성 수지 필름이 개섬사에 함침되기 쉬워진다. 그 결과, 박육에 고강성임과 동시에, 표면 평활성이 양호한 탄소 섬유 강화 복합시트가 얻어진다. 이와 같은 용수철 효과를 발휘하는데 적합한 열가소성 수지 발포체는, 독립 기포 구조체가 바람직하다. 독립 기포 구조임으로써, 열프레스에 의해 용융될 때에 프레스압에 따라 가스 빠짐이 생기는 것과 동시에, 독립 기포 내에 갇힌 에어가 팽창하면서, 기포가 파열된다고 생각되어 용수철(스프링) 효과가 얻어지는 것이라고 생각한다.In the hot pressing process, the thermoplastic resin foam exhibits a spring effect. That is, by the spring effect of the thermoplastic resin foam, the filament yarn fabric is pressed against the press surface. At this time, since the thermoplastic resin film provided on the upper and lower surfaces of the false-sheen fabric is pressed by the false-sheen fabric, the molten thermoplastic resin film is easily impregnated into the filament. As a result, a carbon fiber-reinforced composite sheet having high strength in a thin film and good surface smoothness can be obtained. The thermoplastic resin foam suitable for exhibiting such a spring effect is preferably a closed cell structure. Since it is a closed cell structure, it is considered that when gas is melted by a hot press, gas escapes in accordance with the press pressure, and the air trapped in the closed cell expands and the cell is ruptured and a spring effect is obtained.

{재질}{material}

열가소성이기만 하면 특별히 한정되지 않고, 예를 들면, 폴리올레핀계, 예를 들면, 폴리에틸렌, 폴리프로필렌; 폴리아미드계, 예를 들면, 나일론; 폴리에스테르계, 예를 들면, 폴리에틸렌테레프탈레이트, 폴리부티렌테레프탈레이트; 그 외에도, 폴리스티렌, 폴리카보네이트, 폴리페닐렌설파이드를 이용할 수 있다. 여기서, 열가소성 수지 필름과 동일종의 열가소성 수지를 이용함으로써, 열프레스 프로세스에 있어서의 수지끼리의 밀착성이 향상되어, 고강성이 얻어진다. 구해지는 물성과 아울러 열가소성 수지 필름과 동일한 재질을 선정하는데 있어서, 열가소성 수지 발포체의 재질은 폴리에틸렌, 폴리카보네이트, 폴리아미드가 특히 적합하다.And is not particularly limited as long as it is thermoplastic, and examples thereof include polyolefins such as polyethylene, polypropylene; Polyamides, such as nylon; Polyester-based, for example, polyethylene terephthalate, polybutylene terephthalate; In addition, polystyrene, polycarbonate, and polyphenylene sulfide may be used. Here, by using the thermoplastic resin film and the same kind of thermoplastic resin, adhesion between the resins in the hot press process is improved, and high rigidity is obtained. In selecting the same material as the thermoplastic resin film in addition to the physical properties to be obtained, polyethylene, polycarbonate and polyamide are particularly suitable as the material of the thermoplastic resin foam.

<제조 프로세스><Manufacturing Process>

[탄소 섬유 시트 형성 프로세스][Carbon fiber sheet forming process]

개섬사 직물(110)의 상면 및 저면에, 열가소성 수지 필름(120)(121 및 122)을 적층시키고, 다시 점용착 등에 의해 열가소성 수지 필름의 가용접을 실시하여, 탄소 섬유 시트(130)를 형성한다(도 2).The thermoplastic resin films 120 and 121 (122 and 121) are laminated on the upper and lower surfaces of the woven fabric 110 and the thermoplastic resin film is peeled by spot welding or the like to form the carbon fiber sheet 130 (Fig. 2).

[적층체 형성 프로세스][Laminate formation process]

다음에, 탄소 섬유 시트(130)(131 및 132)를, 열가소성 수지 독립 발포체(140)의 상면 및 저면에 적층시켜, 적층체(101)을 형성한다(도 1).Next, the carbon fiber sheets 130 (131 and 132) are laminated on the upper and lower surfaces of the thermoplastic resin-free foamed body 140 to form the laminate 101 (Fig. 1).

[열프레스 프로세스][Heat press process]

적층체(101)을 적층면 방향에서 열프레스함으로써, 탄소 섬유 시트에 적층된 각 열가소성 수지 필름 및/또는 열가소성 수지 독립 발포체의 전부 또는 일부가 용융되어, 탄소 섬유 강화 복합시트의 두꺼운 부분을 형성하는 수지가 된다. 이 때, 열가소성 수지 독립 발포체는 열프레스에 의해 압축됨으로써 용수철 효과를 발휘한다(도 3).The laminated body 101 is hot-pressed in the direction of the lamination surface so that all or a part of the respective thermoplastic resin films and / or the thermoplastic resin independent foams laminated on the carbon fiber sheet are melted to form a thick part of the carbon fiber- Resin. At this time, the thermoplastic resin-free foam is compressed by a hot press to exhibit a spring effect (FIG. 3).

성형품의 크기, 성형품의 두께 등에도 따르지만, 통상, 가압은 0.25 내지 0.75 MPa, 분위기 온도는 환경 온도이며 15 내지 35℃, 시간은 3 내지 20분간 행해진다. 가열은 200 내지 300℃까지 승온된다. 본 발명에서는, 0.2 내지 0.5 mm의 비교적 얇은 평판을 성형하고 있고, 프레스시에 스페이서를 이용해 소정의 공간을 확보하지는 않는다.The pressure is 0.25 to 0.75 MPa, the ambient temperature is ambient temperature, 15 to 35 DEG C, and the time is 3 to 20 minutes, depending on the size of the molded article, the thickness of the molded article and the like. The heating is heated to 200 to 300 占 폚. In the present invention, a relatively thin flat plate having a thickness of 0.2 to 0.5 mm is formed, and a predetermined space is not secured using a spacer at the time of pressing.

[냉각 프로세스][Cooling Process]

열프레스 프로세스에 의해서 용융된 수지를, 상온 환경하에 방치하고, 냉각·경화시켜, 탄소 섬유 강화 복합시트(100)를 형성시킨다.The resin melted by the hot press process is left under a room temperature environment and cooled and cured to form a carbon fiber reinforced composite sheet 100.

≪ 본 형태에 따른 탄소 섬유 강화 복합시트의 구조 ≫&Lt; Structure of carbon fiber-reinforced composite sheet according to this embodiment &

탄소 섬유 강화 복합시트(100)는, 열가소성 수지에 의해서 일체화되어 있고, 탄소 섬유 강화 복합시트의 표층에는 표층 열가소성 수지층(151 및 152)이 형성된다. 또, 탄소 섬유 강화 복합시트(100)에 있어서의 개섬사 직물(111 및 112)은, 열가소성 수지 발포체의 용수철 효과에 의해 두께 내의 외측에 배치된다(도 4). 열탄소 섬유 강화 복합시트(100)의 중심부에는, 열프레스 과정에서 용융되지 않았던 열가소성 수지 발포체의 잔사나 그 외의 열가소성 수지에 의해 구성되는 중간 열가소성 수지층(145)가 존재하는 경우가 있다. 또한, 표층 열가소성 수지층은 한쪽 면(예를 들면 의장면이 되는 면)에만 존재하는 등, 반드시 탄소 섬유 강화 복합시트(100)의 표층 양측에 존재하지 않아도 좋다.The carbon fiber-reinforced composite sheet 100 is integrated by a thermoplastic resin, and the surface thermoplastic resin layers 151 and 152 are formed on the surface layer of the carbon fiber-reinforced composite sheet. In addition, the filament yarn fabrics 111 and 112 in the carbon fiber-reinforced composite sheet 100 are arranged on the outer side in the thickness due to the spring effect of the thermoplastic resin foam (Fig. 4). There may be an intermediate thermoplastic resin layer 145 constituted by the residue of the thermoplastic resin foam which has not melted in the hot pressing process or other thermoplastic resin in the center portion of the thermal carbon fiber reinforced composite sheet 100. [ The surface thermoplastic resin layer may be present only on one surface (for example, a surface to be a design surface), or may not necessarily be present on both sides of the surface layer of the carbon fiber-reinforced composite sheet 100.

<두께><Thickness>

탄소 섬유 강화 복합시트의 두께가 얇아짐으로써, 전자 기기 등의 케이스에 사용했을 경우, 경량화와 함께 내용적이 커져, 수납 효율, 내부 설계의 자유도가 높아진다. 그 때문에, 탄소 섬유 강화 복합시트의 두께는, 적합하게는 0.2 내지 0.5 mm, 보다 적합하게는 0.25 내지 0.40 mm, 특히 적합하게는 0.27 내지 0.38 mm이다.As the thickness of the carbon fiber reinforced composite sheet becomes thinner, the weight of the carbon fiber reinforced composite sheet becomes larger as the weight of the carbon fiber reinforced composite sheet is increased. Therefore, the thickness of the carbon fiber-reinforced composite sheet is suitably 0.2 to 0.5 mm, more preferably 0.25 to 0.40 mm, and particularly preferably 0.27 to 0.38 mm.

≪ 본 형태에 따른 탄소 섬유 강화 복합시트의 물성·성질 ≫<< Physical properties and properties of carbon fiber-reinforced composite sheet according to this embodiment >>

개섬사 및 열가소성 수지 발포체를 합하여 이용함으로써, 상승적인 효과가 생겨 표면 평활성이 양호한 탄소 섬유 강화 복합시트가 얻어진다. 즉, 열가소성 수지 발포체의 용수철 효과와 아울러, 탄소 섬유 다발의 올이 벌어져 있음으로써, 개섬사 직물에의 용융 수지의 함침이 신속하게 진행되어, 내부에 존재하는 보이드가 개섬사의 올을 지나 신속하게 탈포된다. 이 때문에, 두께 내에 보이드가 적어져, 1차 생산 공정이나 재가공 공정 중에 있어서의, 보이드에 의한 표면의 요철이 감소하여, 경량, 박육에 고강성을 담보하면서도 표면 평활성이 양호한 탄소 섬유 강화 복합시트가 형성된다. 이 형태에 의해서 얻어진 탄소 섬유 강화 복합시트의, 표면 조도에 관해서는, 최대 높이(Rmax)는, 5.0 내지 12.0μm, 10점 평균 조도(Rz)는, 2.5 내지 6.0μm정도이며, 굽힘 탄성율이 25 내지 65 GPa 정도이며, 굽힘 강도가 170 내지 660 MPa 정도이다.The combined use of the paddy filaments and the thermoplastic resin foam enables a synergistic effect to be obtained and a carbon fiber-reinforced composite sheet excellent in surface smoothness can be obtained. In other words, due to the spring effect of the thermoplastic resin foam and the oozing of the carbon fiber bundle, the impregnation of the molten resin into the woven fabric quickly progresses, and the voids existing therein are rapidly defoamed do. As a result, the number of voids in the thickness decreases and the unevenness of the surface due to the voids during the primary production process and the reworking process is reduced. Thus, a carbon fiber-reinforced composite sheet having a lightweight, high rigidity, . The surface roughness of the carbon fiber-reinforced composite sheet obtained in this embodiment was 5.0 to 12.0 占 퐉 for the maximum height (Rmax), 2.5 to 6.0 占 퐉 for the 10-point average roughness (Rz) To 65 GPa, and a bending strength of about 170 to 660 MPa.

≪ 본 형태에 따른 탄소 섬유 강화 복합시트의 용도 ≫<< Use of carbon fiber-reinforced composite sheet according to this embodiment >>

본 발명은, 재가공성이나 리사이클성이 뛰어남과 동시에, 복합재 내부에 보이드가 적고, 경량, 박육에 고강성을 담보하면서도 표면 평활성의 좋음을 가지는 탄소 섬유 강화 복합시트이며, 모바일 전자 기기를 비롯한, 모든 기기의 케이스 재료로서 유용하다.The present invention relates to a carbon fiber-reinforced composite sheet which is excellent in reworkability and recyclability, has few voids inside the composite material, is lightweight, has high rigidity in a thin wall and has good surface smoothness. And is useful as a case material of a device.

[실시예][Example]

이하, 본 발명의 구체적인 예로서 실시예를 설명한다. 또한, 본 발명의 기술적 범위는 본 실시예에 의해 전혀 한정되지 않는다.Hereinafter, examples will be described as concrete examples of the present invention. Further, the technical scope of the present invention is not limited at all by this embodiment.

≪ 실시예 1 ≫&Lt; Embodiment 1 &gt;

24 K(필라멘트수 24000)의 PAN계 탄소 섬유 원사(인장 강도: 5800 MPa, 인장 탄성률: 290 GPa)를 개섬 처리하여 개섬사로 한다. 이 개섬사를, 개섬 직포 전용의 직기(예를 들면, 일본 특허 공개 2003-253547호 개시)를 이용하여 제직한다. 얻어진 개섬 직포는, 평직, 질량 78 g/m2, 두께 0.1 mm의 개섬사 직물이다.PAN-based carbon fiber yarn (tensile strength: 5800 MPa, tensile elastic modulus: 290 GPa) of 24 K (number of filaments: 24,000) is subjected to carding treatment to obtain an open cell. This weft yarn is woven using a loom for dog-friendly weaving (for example, disclosed in Japanese Patent Application Laid-Open No. 2003-253547). The obtained dog-friendly woven fabric was an open-celled woven fabric having a plain weave, a mass of 78 g / m 2 , and a thickness of 0.1 mm.

또, 열가소성 수지 발포체는, 두께 2.0 mm, 밀도 52 kg/m3의 폴리아미드(6 나일론) 독립 기포 발포체를 이용하였다. 열가소성 수지 필름으로서는, 25μm의, 유니티카사 제품인 폴리아미드 EMBLEM 시트를 이용하였다.As the thermoplastic resin foam, a polyamide (6 nylon) closed cell foam having a thickness of 2.0 mm and a density of 52 kg / m 3 was used. As the thermoplastic resin film, a polyamide EMBLEM sheet of 25 占 퐉 manufactured by UniCasa was used.

개섬사 직물의 양면에 열가소성 수지 필름을 마련하고, 탄소 섬유 시트를 중간 재료로서 형성하였다. 그 후, 열가소성 수지 발포체의 상면 및 저면에, 상기 중간 재료인 탄소 섬유 시트를 적층시킨 적층체에 대해서 열프레스를 실시하였다. 따라서, 중심에 있는 열가소성 수지 발포체의 표리에 열가소성 수지가 위치하고, 나아가 2매의 탄소 섬유 직물이 있고, 최외장에는, 표리에 열가소성 수지 필름이 있는, 합계 7층으로 이루어지는 적층체를 열프레스하였다.A thermoplastic resin film was provided on both sides of the woven fabric, and a carbon fiber sheet was formed as an intermediate material. Thereafter, the laminate obtained by laminating the carbon fiber sheet as the intermediate material on the upper and lower surfaces of the thermoplastic resin foam was hot-pressed. Thus, a laminate composed of seven layers in total was thermo-pressed with thermoplastic resin on the front and back sides of the thermoplastic resin foam at the center, further two pieces of carbon fiber cloth, and a thermoplastic resin film on the outermost surface.

이 적층체에 대해서, 가압 조건으로서 압력 0.49 MPa, 가압 시간 10분, 분위기 23℃, 가열 조건으로서 온도 280℃, 시간 10 분의 열프레스 프로세스를 실시하였다. 다음에, 형틀을 열어 탈형한 후, 상온 환경하에 방치하여, 냉각 경화시켜, 두께 0.27 mm의 탄소 섬유 강화 복합시트를 형성하였다. 이 탄소 섬유 강화 복합시트의 표면 조도를 측정했더니, 최대 높이(Rmax)가 6.9μm, 10점 평균 높이(Rz)가 3.1μm였다.This laminated body was subjected to a hot press process under a pressure condition of 0.49 MPa, a pressurizing time of 10 minutes, an atmosphere of 23 占 폚, and a heating condition of 280 占 폚 for 10 minutes. Next, after the mold was opened and demolded, it was left under a normal temperature environment and cooled and cured to form a carbon fiber-reinforced composite sheet having a thickness of 0.27 mm. The surface roughness of the carbon fiber-reinforced composite sheet was measured. The maximum height (Rmax) was 6.9 mu m and the average height (Rz) of 10 points was 3.1 mu m.

≪ 실시예 2 ≫&Lt; Embodiment 2 &

열가소성 수지 발포체로서 두께 1.8 mm, 밀도 55 kg/m3의 폴리에틸렌 독립 기포 발포체인 ZOTEK, NB-50{(주) 이노악}를 이용하고, 열가소성 수지 필름으로서 두께 25μm의, 유니티카사 제품인 폴리아미드 EMBLEM 시트를 이용하고, 실시예 1의 제조 방법에 준하여 두께 0.36 mm의 탄소 섬유 강화 복합시트를 형성하였다.ZOTEK, NB-50 (manufactured by INOAC), which is a polyethylene closed-cell foam having a thickness of 1.8 mm and a density of 55 kg / m 3 was used as the thermoplastic resin foam and a 25 μm thick polyamide EMBLEM Sheet was used and a carbon fiber-reinforced composite sheet having a thickness of 0.36 mm was formed in accordance with the manufacturing method of Example 1. [

≪ 실시예 3 ≫&Lt; Embodiment 3 &

열가소성 수지 발포체로서 두께 2.0 mm, 밀도 52 kg/m3의 폴리아미드(6 나일론) 독립 기포 발포체인 ZOTEK, NB-50{(주) 이노악}를 이용하고, 열가소성 수지 필름으로서 두께 30μm의, 인터내셔널 케미컬사 제품 폴리카보네이트 시트를 이용하고, 실시예 1의 제조 방법에 준하여 두께 0.28 mm의 탄소 섬유 강화 복합시트를 형성하였다.ZOTEK, NB-50 (manufactured by INOAC), which is a polyamide (6 nylon) closed cell foam having a thickness of 2.0 mm and a density of 52 kg / m 3 was used as a thermoplastic resin foam and a thermoplastic resin film A carbon fiber-reinforced composite sheet having a thickness of 0.28 mm was formed in accordance with the manufacturing method of Example 1 using a polycarbonate sheet manufactured by Chemical Company.

≪ 실시예 4 ≫&Lt; Embodiment 4 &

열가소성 수지 발포체로서 두께 1.8 mm, 밀도 55 kg/m3의 폴리에틸렌 독립 기포 발포체인 ZOTEK, NB-50{(주) 이노악}를 이용하고, 두께 30μm의, 인터내셔널 케미컬사 제품 폴리카보네이트 시트를 이용하여 두께 0.38 mm의 탄소 섬유 강화 복합시트를 형성하였다. 다만, 열프레스 성형시에는, 중간 재료로서의 탄소 섬유 시트를 성형하지 않고, 프레스 형틀에, 순차 열가소성 수지 필름, 탄소 섬유 직물, 열가소성 수지 발포체, 탄소 섬유 직물, 열가소성 수지 필름을 적층하고, 5층으로 하여 단번에 열프레스 성형을 행하였다. 얻어진 복합재의 표면 조도를 측정했더니, Rmax가 10.4μm, Rz가 4.9μm였다.ZOTEK, NB-50 (manufactured by INOAC), which is a polyethylene closed-cell foam having a thickness of 1.8 mm and a density of 55 kg / m 3 , was used as a thermoplastic resin foam and a 30 μm thick polycarbonate sheet manufactured by International Chemical Company Thereby forming a carbon fiber-reinforced composite sheet having a thickness of 0.38 mm. However, at the time of hot press forming, a thermoplastic resin film, a carbon fiber fabric, a thermoplastic resin foam, a carbon fiber fabric, and a thermoplastic resin film are sequentially laminated on a press mold without forming a carbon fiber sheet as an intermediate material, And hot press molding was performed at once. The surface roughness of the obtained composite material was measured, and Rmax was 10.4 占 퐉 and Rz was 4.9 占 퐉.

≪ 평가 시험 ≫«Evaluation Test»

실시예 1 내지 4에서 얻은 탄소 섬유 강화 복합시트에서, 굽힘 탄성율, 굽힘 강도를 비교하였다. 또, 열가소성 수지 발포체를 이용하지 않고, 또 개섬되어 있지 않은 탄소 섬유 직물을 1매만 적층시키고, 매트릭스 수지에 의해서 성형한 탄소 섬유 강화 복합시트를, 비교예로 하였다. 매트릭스 수지가 폴리아미드이고, 복합재의 두께가 0.32 mm인 탄소 섬유 강화 복합시트를 비교예 1, 매트릭스 수지가 폴리카보네이트이고, 복합재의 두께가 0.35 mm인 탄소 섬유 강화 복합시트를 비교예 2로서 준비하였다. 또한 비교예 1에서 얻어진 복합재의 표면 조도를 측정했더니, 개섬되어 있지 않은 탄소 섬유 직물의 올이 반영되어 있어 Rmax가 41.6μm, Rz가 31.3μm였다.The bending elastic modulus and the bending strength of the carbon fiber-reinforced composite sheet obtained in Examples 1 to 4 were compared. Further, a carbon fiber-reinforced composite sheet obtained by laminating only one sheet of carbon fiber cloth, which is not made of a thermoplastic resin foam, and molded by a matrix resin was used as a comparative example. A carbon fiber-reinforced composite sheet having a matrix resin of polyamide and a thickness of 0.32 mm as a composite material, and a carbon fiber-reinforced composite sheet having a composite material of polycarbonate and a composite material having a thickness of 0.35 mm as Comparative Example 1 . Further, the surface roughness of the composite material obtained in Comparative Example 1 was measured, and the value of the carbon fiber fabric that was not carded was reflected, so that Rmax was 41.6 mu m and Rz was 31.3 mu m.

표 1은, 실시예 1 내지 4 및 비교예 1 내지 2에서의 결과이다. 또한, 굽힘 강도, 굽힘 탄성율의 측정 방법은, JIS 규격의 K7017(섬유 강화 플라스틱-굽힘 특성을 구하는 방법)에 준거하고 있다. 표면 조도는, JIS0601-1976에 준거하여, 촉침식 표면 조도 측정기로 계측하였다.Table 1 shows the results in Examples 1 to 4 and Comparative Examples 1 and 2. The method of measuring the bending strength and the bending elastic modulus conforms to JIS K7017 (method of obtaining fiber reinforced plastic-bending properties). The surface roughness was measured by a stylus type surface roughness meter according to JIS0601-1976.

도 5는, 실시예 1에 따른 탄소 섬유 강화 복합시트의 단면도이다. 도 6은, 비교예 3에 따른 탄소 섬유 강화 복합시트의 단면도이다. 비교예 3은, 실시예 1의 개섬사 직물 대신에, 통상의 개섬되어 있지 않는 탄소 섬유 직물을 사용하고, 그 외에는 실시예 1과 동일한 구성으로 하였다.5 is a cross-sectional view of a carbon fiber-reinforced composite sheet according to Example 1; 6 is a cross-sectional view of a carbon fiber-reinforced composite sheet according to Comparative Example 3. Fig. In Comparative Example 3, a carbon fiber fabric which is not normally carded, was used in place of the false-sheathed fabric of Example 1, and the same structure as that of Example 1 was used.

여기서, 이 도면에서, 거의 백색부가 탄소 섬유 강화 복합시트의 단면이고, 이 탄소 섬유 강화 복합시트의 단면에 존재하는 거의 흑색점이 보이드를 나타낸다. 비교예 3에 따른 탄소 섬유 강화 복합시트에서는 보이드에 의한 결점이 관측되고, 실시예 1에 따른 탄소 섬유 강화 복합시트에서는 보이드에 의한 결점이 관측되지 않았다. 얇은 복합재를 성형하는데 있어서, 두께가 얇은 개섬사 직물을 사용하여, 적층체의 각층의 두께를 작게 하는 것은, 열가소성 수지 발포체층에 있어서의 가스 빠짐을 신속하게 하여, 케이스 등 의장면을 가지는 성형물의 성형 가공에서 매우 효과가 있다.Here, in this figure, a substantially white portion is a cross section of the carbon fiber-reinforced composite sheet, and a substantially black spot present on the cross section of the carbon fiber-reinforced composite sheet shows voids. Defects due to voids were observed in the carbon fiber-reinforced composite sheet according to Comparative Example 3, and defects due to voids were not observed in the carbon fiber-reinforced composite sheet according to Example 1. In the case of forming a thin composite material, the thickness of each layer of the laminate is reduced by using a thin fabric having a small thickness to accelerate gas escape from the thermoplastic resin foam layer, It is very effective in forming processing.

마찬가지로, 실시예 2 내지 4의 어느 복합재에서도, 보이드의 발생은 없었다. 보이드에 의한 결점 수는 현격히 감소하여, 성형품 그 자체의 불량율이 반감하였다.Similarly, voids were not generated in any of the composites of Examples 2 to 4. The number of defects due to voids was remarkably decreased, and the defective rate of the molded article itself was halved.

또, 복합재의 표면에 열가소성 수지층을 위치시켰기 때문에, 프레스 형틀의 평활면이 전사되어 있어 개섬사 직물에 의한 요철이 없다는 것을 육안으로 확인하였다.Further, since the thermoplastic resin layer was placed on the surface of the composite material, it was visually confirmed that the smooth surface of the press mold was transferred and there was no unevenness due to the punched fabric.

직포 섬유Woven fiber 매트릭스 수지가 되는 필름
Film that becomes a matrix resin
심재 발포체
Core material foam
적층 전의 심재의 원래 두께(mm)
Original thickness (mm) of core before lamination
성형체 두께(mm)
Molded body thickness (mm)
직포의 적층 매수
Number of woven fabrics
굽힘 탄성율(GPa)
Flexural modulus (GPa)
굽힘 강도(MPa)
Bending strength (MPa)
편직 방법Knitting method 섬유 도께Fiber 질량(g/m2)Mass (g / m2) 실시예1Example 1 평직 개섬Plain weed 폴리아미드Polyamide 6나일론6 Nylon 표리2매2 front and back 실시예2Example 2 평직 개섬Plain weed 폴리아미드Polyamide 올레핀Olefin 표리2매2 front and back 실시예3Example 3 평직 개섬Plain weed 폴리카보네이트Polycarbonate 6나일론6 Nylon 표리2매2 front and back 실시예4Example 4 평직 개섬Plain weed 폴리카보네이트Polycarbonate 올레핀Olefin 표리2매2 front and back 비교예1Comparative Example 1 평직Plain weave 폴리아미드Polyamide 없음none 없음none 비교예1Comparative Example 1 평직Plain weave 폴리카보네이트Polycarbonate 없음none 없음none

100: 탄소 섬유 강화 복합시트
101: 적층체
110 내지 112:개섬사 직물
121 내지 122:열가소성 수지 필름
130 내지 132:탄소 섬유 시트
140: 열가소성 수지 발포체
145: 중간 열가소성 수지층
151 내지 152:표층 열가소성 수지층
100: Carbon fiber reinforced composite sheet
101: laminate
110 to 112: woven fabrics
121 to 122: Thermoplastic resin film
130 to 132: Carbon fiber sheet
140: thermoplastic resin foam
145: Intermediate thermoplastic resin layer
151 to 152: Surface layer thermoplastic resin layer

Claims (20)

적어도 2매의 탄소 섬유 직물과 열가소성 수지를 포함하는 탄소 섬유 강화 복합시트이며, 상기 적어도 2매의 탄소 섬유 직물의 각각이, 탄소 섬유 다발이 풀어진 개섬사로 이루어지며, 또한,
상기 열가소성 수지가 상기 적어도 2매의 탄소 섬유 직물 내에 고화된 상태로 함침되어 있음으로써, 상기 탄소 섬유 강화 복합시트가 전체적으로 일체화되어 있는 것을 특징으로 하는, 탄소 섬유 강화 복합시트.
A carbon fiber-reinforced composite sheet comprising at least two carbon fiber fabrics and a thermoplastic resin, wherein each of the at least two carbon fiber fabrics is composed of carded yarn in which a carbon fiber bundle is unwound,
Wherein the thermoplastic resin is impregnated in a solidified state in the at least two carbon fiber fabrics so that the carbon fiber reinforced composite sheet is entirely integrated.
제1항에 있어서, 상기 탄소 섬유 강화 복합시트의 적어도 한쪽 면 위에는, 열가소성 수지층이 존재하는, 탄소 섬유 강화 복합시트.The carbon fiber-reinforced composite sheet according to claim 1, wherein a thermoplastic resin layer is present on at least one side of the carbon fiber-reinforced composite sheet. 제1항 또는 제2항에 있어서, 상기 탄소 섬유 강화 복합시트에 포함되는 모든 열가소성 수지가 동일종인, 탄소 섬유 강화 복합시트.The carbon fiber-reinforced composite sheet according to claim 1 or 2, wherein all the thermoplastic resins contained in the carbon fiber-reinforced composite sheet are the same type. 제1항 또는 제2항에 있어서, 최대 높이(Rmax)가 12.0μm이하이며, 10점 평균 조도(Rz)가 6.0μm이하이며, 굽힘 탄성율이 25 GPa 이상이며, 굽힘 강도가 170 MPa 이상이며, 두께가 0.5 mm이하인, 탄소 섬유 강화 복합시트.The optical fiber according to claim 1 or 2, wherein the maximum height Rmax is 12.0 占 퐉 or less, the 10-point average roughness Rz is 6.0 占 퐉 or less, the bending elastic modulus is 25 GPa or more, the bending strength is 170 MPa or more, A carbon fiber-reinforced composite sheet having a thickness of 0.5 mm or less. 제1항 또는 제2항에 있어서, 고화된 상태의 상기 열가소성 수지가 실질적으로 무발포 상태인, 탄소 섬유 강화 복합시트.The carbon fiber-reinforced composite sheet according to claim 1 or 2, wherein the thermoplastic resin in a solidified state is substantially in a non-foamed state. 탄소 섬유 다발이 풀어진 개섬사로 이루어지는 탄소 섬유 직물을 적어도 2매 포함하고, 상기 적어도 2매의 탄소 섬유 직물 사이에 발포체 형상의 열가소성 수지가 끼워져 있는 적층체를, 상기 발포체 형상의 상기 열가소성 수지가 용융되고, 또한 용융된 상기 열가소성 수지가 상기 적어도 2매의 탄소 섬유 직물 사이에 함침하는 조건에서 열프레스 하는 공정과;
상기 2매의 탄소 섬유 직물 사이에 함침한, 용융 상태에 있는 상기 열가소성 수지를 고화시키는 공정;
을 포함하는 것을 특징으로 하는, 탄소 섬유 강화 복합시트의 제조 방법.
A laminate in which at least two carbon fiber fabrics each made of carded yarn from which a carbon fiber bundle has been unwound and in which a foamed thermoplastic resin is sandwiched between the at least two carbon fiber cloths is formed by melting the thermoplastic resin in the form of a foam And a step of hot pressing the melted thermoplastic resin under the condition of impregnation between the at least two carbon fiber fabrics;
Solidifying the thermoplastic resin impregnated between the two carbon fiber fabrics in a molten state;
Reinforced composite sheet according to claim 1,
제6항에 있어서, 상기 발포체 형상의 열가소성 수지가 독립 기포 발포체인, 탄소 섬유 강화 복합시트의 제조 방법.The method of producing a carbon fiber-reinforced composite sheet according to claim 6, wherein the foamed thermoplastic resin is a closed-cell foam. 제7항에 있어서, 상기 탄소 섬유 직물의 적어도 한쪽 면에 열가소성 수지 필름이 배치되어 있는, 탄소 섬유 강화 복합시트의 제조 방법.The method of producing a carbon fiber-reinforced composite sheet according to claim 7, wherein a thermoplastic resin film is disposed on at least one side of the carbon fiber fabric. 제6항 또는 제7항에 있어서, 상기 적층체는, 한쪽 면으로부터 순차, 열가소성 수지 필름, 탄소 섬유 직물, 발포체 형상의 열가소성 수지, 탄소 섬유 직물, 열가소성 수지 필름의 적어도 5층으로 이루어지는, 탄소 섬유 강화 복합시트의 제조 방법.The laminated body according to claim 6 or 7, wherein the laminated body is formed of at least five layers of a thermoplastic resin film, a carbon fiber cloth, a foamed thermoplastic resin, a carbon fiber cloth, and a thermoplastic resin film, Reinforced composite sheet. 제6항 또는 제7항에 있어서, 상기 적층체는, 한쪽 면으로부터 순차, 열가소성 수지 필름, 탄소 섬유 직물, 열가소성 수지 필름, 발포체 형상의 열가소성 수지, 열가소성 수지 필름, 탄소 섬유 직물, 열가소성 수지 필름의 7층만으로 이루어지는, 탄소 섬유 강화 복합시트의 제조 방법.The laminate according to claim 6 or 7, wherein the laminate is a laminate of a thermoplastic resin film, a carbon fiber cloth, a thermoplastic resin film, a foam thermoplastic resin, a thermoplastic resin film, a carbon fiber cloth, a thermoplastic resin film Wherein the carbon fiber reinforced composite sheet is composed of only seven layers. 제6항 또는 제7항에 있어서, 발포체 형상의 열가소성 수지 및 열가소성 수지 필름이 동일종의 열가소성 수지인, 탄소 섬유 강화 복합시트의 제조 방법.The method for producing a carbon fiber-reinforced composite sheet according to claim 6 or 7, wherein the foamed thermoplastic resin and the thermoplastic resin film are the same kind of thermoplastic resin. 제6항 또는 제7항에 있어서, 상기 탄소 섬유 강화 복합시트가,
적어도 2매의 탄소 섬유 직물과 열가소성 수지를 포함하는 탄소 섬유 강화 복합시트이며,
상기 적어도 2매의 탄소 섬유 직물의 각각은, 탄소 섬유 다발이 풀어진 개섬사로 이루어지며, 또한,
상기 열가소성 수지가 상기 적어도 2매의 탄소 섬유 직물 내에 고화된 상태로 함침되어 있음으로써, 상기 탄소 섬유 강화 복합시트가 전체적으로 일체화되어 있는 것인, 탄소 섬유 강화 복합시트의 제조 방법.
The carbon fiber-reinforced composite sheet according to claim 6 or 7, wherein the carbon fiber-
A carbon fiber-reinforced composite sheet comprising at least two carbon fiber fabrics and a thermoplastic resin,
Wherein each of the at least two carbon fiber fabrics is composed of carded yarn in which a carbon fiber bundle is loosened,
Wherein the thermoplastic resin is impregnated in a solidified state in the at least two carbon fiber fabrics so that the carbon fiber reinforced composite sheet is entirely integrated.
제12항에 있어서, 상기 탄소 섬유 강화 복합시트의 적어도 한쪽 면 위에는, 열가소성 수지층이 존재하는, 탄소 섬유 강화 복합시트의 제조 방법.13. The method of producing a carbon fiber-reinforced composite sheet according to claim 12, wherein a thermoplastic resin layer is present on at least one side of the carbon fiber-reinforced composite sheet. 제12항에 있어서, 상기 탄소 섬유 강화 복합시트에 포함되는 모든 열가소성 수지가 동일종인, 탄소 섬유 강화 복합시트의 제조 방법.13. The method of producing a carbon fiber-reinforced composite sheet according to claim 12, wherein all of the thermoplastic resins contained in the carbon fiber-reinforced composite sheet are the same type. 제12항에 있어서, 최대 높이(Rmax)가 12.0μm이하이며, 10점 평균 조도(Rz)가 6.0μm이하이며, 굽힘 탄성율이 25 GPa 이상이며, 굽힘 강도가 170 MPa 이상이며, 두께가 0.5 mm이하인, 탄소 섬유 강화 복합시트의 제조 방법.The optical fiber according to claim 12, wherein the maximum height Rmax is 12.0 占 퐉 or less, the 10-point average roughness Rz is 6.0 占 퐉 or less, the flexural modulus is 25 GPa or more, the flexural strength is 170 MPa or more, By mass or less based on the total mass of the carbon fiber-reinforced composite sheet. 제12항에 있어서, 고화된 상태의 상기 열가소성 수지가 실질적으로 무발포 상태인, 탄소 섬유 강화 복합시트의 제조 방법.The method of producing a carbon fiber-reinforced composite sheet according to claim 12, wherein the thermoplastic resin in a solidified state is substantially in a non-foamed state. 삭제delete 삭제delete 삭제delete 삭제delete
KR1020137030813A 2012-07-12 2012-10-01 Carbon fibre reinforced composite sheet and production method thereof KR101496172B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JPJP-P-2012-156939 2012-07-12
JP2012156939 2012-07-12
PCT/JP2012/075422 WO2014010106A1 (en) 2012-07-12 2012-10-01 Carbon fiber-reinforced composite material and method for producing same

Publications (2)

Publication Number Publication Date
KR20140034796A KR20140034796A (en) 2014-03-20
KR101496172B1 true KR101496172B1 (en) 2015-02-27

Family

ID=49915597

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020137030813A KR101496172B1 (en) 2012-07-12 2012-10-01 Carbon fibre reinforced composite sheet and production method thereof

Country Status (7)

Country Link
US (1) US9643380B2 (en)
EP (1) EP2735440B1 (en)
JP (1) JP6325193B2 (en)
KR (1) KR101496172B1 (en)
CN (1) CN103648763B (en)
TW (1) TWI547364B (en)
WO (1) WO2014010106A1 (en)

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ITMI20120244A1 (en) * 2012-02-20 2013-08-21 Automobili Lamborghini Spa CARBON FIBER FABRIC AND PROCESS FOR ITS MANUFACTURE
JP6043678B2 (en) * 2013-03-29 2016-12-14 積水化成品工業株式会社 Method for producing fiber reinforced composite and fiber reinforced composite
WO2015163408A1 (en) * 2014-04-24 2015-10-29 帝人株式会社 Machined carbon-fiber-reinforced resin product having end face and production method therefor
JP6389654B2 (en) * 2014-06-18 2018-09-12 株式会社イノアックコーポレーション Method for producing carbon fiber composite material
JP6248020B2 (en) * 2014-09-29 2017-12-13 積水化成品工業株式会社 Method for producing fiber reinforced composite
JP6431546B2 (en) 2014-09-30 2018-11-28 積水化成品工業株式会社 Resin composite
US20170021596A1 (en) * 2015-05-05 2017-01-26 Sunrez Corp. Fiber Reinforced Core
CN105047618B (en) * 2015-07-27 2018-07-27 电子科技大学 A kind of organic composite material thick devices substrate
JP6942961B2 (en) * 2015-09-18 2021-09-29 東レ株式会社 Electronic device housing
WO2017075818A1 (en) * 2015-11-06 2017-05-11 Hewlett-Packard Development Company, L.P. Carbon fiber composite
US20170217056A1 (en) * 2016-01-29 2017-08-03 Dell Products L.P. Carbon Fiber Information Handling System Housing and Process for Manufacture
US10668674B2 (en) * 2016-05-18 2020-06-02 Dell Products L.P. Apparatus and method for a high performance carbon fiber laminate enclosure part for an information handling system
WO2018221763A1 (en) * 2017-06-01 2018-12-06 윈엔윈(주) Carbon composite and method for preparing carbon composite
CN107053703B (en) * 2017-06-13 2019-09-13 北京汽车集团有限公司 The method and vehicle component and vehicle of manufacture vehicle component
US11440283B2 (en) * 2018-02-02 2022-09-13 The Boeing Company Composite sandwich panels with over-crushed edge regions
WO2020073265A1 (en) * 2018-10-11 2020-04-16 深圳市修颐投资发展合伙企业(有限合伙) Fan-out packaging method and fan-out packaging plate
JP6685616B2 (en) * 2018-11-20 2020-04-22 株式会社イノアックコーポレーション Carbon fiber composite material and manufacturing method thereof
TW202039650A (en) * 2019-03-27 2020-11-01 日商倉敷紡績股份有限公司 Fiber-reinforced resin complex, and method for producing fiber-reinforced resin complex
JP7304259B2 (en) 2019-10-04 2023-07-06 和告 漆原 Decorative sheet, manufacturing method thereof, and molded article
US20230102696A1 (en) * 2019-12-02 2023-03-30 Hokuriku Color Foam Co., Ltd. Method for manufacturing fiber-reinforced resin structure
CN111113937A (en) * 2019-12-17 2020-05-08 胡丽华 Equipment for manufacturing carbon fiber composite material by utilizing resin fluidity
DE102020206028A1 (en) * 2020-05-13 2021-11-18 Ford Global Technologies, Llc Method of making a carrier and carrier
DE102020120315A1 (en) 2020-07-31 2022-02-03 Bayerische Motoren Werke Aktiengesellschaft Process for the production of a multi-layer plastic component
JP7058315B2 (en) * 2020-11-26 2022-04-21 旭化成株式会社 Fiber complex and its manufacturing method
CN117103730B (en) * 2023-10-16 2024-03-08 歌尔股份有限公司 Electronic equipment, composite structural member and processing method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0348337B2 (en) * 1982-01-26 1991-07-24 Yamaha Motor Co Ltd
JP3048337B2 (en) 1996-11-25 2000-06-05 インダストリアル テクノロジー リサーチ インスティテュート Method for producing continuous fiber reinforced extruded plastic composite
JP3124267B2 (en) * 1998-08-28 2001-01-15 積水化学工業株式会社 Laminated foamed sheet, molded product thereof, and method for producing laminated foamed sheet
JP2008201006A (en) * 2007-02-20 2008-09-04 Sakai Ovex Co Ltd Laminate and its manufacturing method

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5043127A (en) 1986-10-22 1991-08-27 Schreiner Luchtvaart Groep B.V. Method of making a shaped article from a sandwich construction
NZ224286A (en) * 1987-04-28 1991-07-26 Dow Chemical Co Multilayer assembly of reinforcing layers and knitted or woven textile outer layers and fibre-reinforced plastic article produced therefrom
JP2968359B2 (en) * 1991-03-04 1999-10-25 東レ株式会社 REINFORCED CARBON FIBER FABRIC AND PROCESS FOR PRODUCING THE SAME
US5447785A (en) * 1993-03-02 1995-09-05 Toray Industries, Inc. Cloth prepreg, process for producing the same and reinforcing fabric
JPH06198794A (en) * 1992-12-28 1994-07-19 Mitsui Toatsu Chem Inc Composite structure
US5401564A (en) * 1993-03-23 1995-03-28 Hexcel Corporation Materials and processes for fabricating formed composite articles and use in shoe arch
JP3094835B2 (en) 1994-03-08 2000-10-03 東レ株式会社 REINFORCED FABRIC, ITS MANUFACTURING METHOD AND MANUFACTURING APPARATUS
JP3440616B2 (en) * 1994-03-31 2003-08-25 東レ株式会社 Carbon fiber woven fabric, prepreg, fiber reinforced composite material, and method for producing them
WO1996027701A1 (en) 1995-03-08 1996-09-12 Toray Industries, Inc. Reinforced woven material and method and apparatus for manufacturing the same
JP2983531B1 (en) 1998-09-29 1999-11-29 福井県 Method and apparatus for producing spread yarn woven fabric
JP2000110048A (en) 1999-08-06 2000-04-18 Fukui Prefecture Opened yarn woven fabric
JP2001164441A (en) 1999-09-29 2001-06-19 Fukui Prefecture Woven fabric of opened yarn
JP3691443B2 (en) 2002-02-26 2005-09-07 サカイオーベックス株式会社 Fabric manufacturing method and apparatus
JP4292994B2 (en) 2002-04-23 2009-07-08 東レ株式会社 Prepreg, manufacturing method thereof and molded product
JP4177041B2 (en) * 2002-07-18 2008-11-05 三菱レイヨン株式会社 Manufacturing method of fiber reinforced composite material
TWI353303B (en) 2004-09-07 2011-12-01 Toray Industries Sandwich structure and integrated molding using th
JP4988229B2 (en) * 2006-03-25 2012-08-01 帝人テクノプロダクツ株式会社 A hybrid composite material excellent in surface smoothness and a molding method thereof.
JP5076053B2 (en) 2006-11-22 2012-11-21 福井県 Thermoplastic resin multilayer reinforced sheet material, method for producing the same, and thermoplastic resin multilayer reinforced molded article
JP2011037910A (en) 2007-12-14 2011-02-24 Nippon Zeon Co Ltd Prepreg, method for producing the same, and fiber-reinforced composite material
JP4558091B1 (en) 2009-10-29 2010-10-06 株式会社イノアックコーポレーション Fiber-reinforced molded body and method for producing the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0348337B2 (en) * 1982-01-26 1991-07-24 Yamaha Motor Co Ltd
JP3048337B2 (en) 1996-11-25 2000-06-05 インダストリアル テクノロジー リサーチ インスティテュート Method for producing continuous fiber reinforced extruded plastic composite
JP3124267B2 (en) * 1998-08-28 2001-01-15 積水化学工業株式会社 Laminated foamed sheet, molded product thereof, and method for producing laminated foamed sheet
JP2008201006A (en) * 2007-02-20 2008-09-04 Sakai Ovex Co Ltd Laminate and its manufacturing method

Also Published As

Publication number Publication date
EP2735440A1 (en) 2014-05-28
TWI547364B (en) 2016-09-01
JP2014031495A (en) 2014-02-20
JP6325193B2 (en) 2018-05-16
EP2735440B1 (en) 2018-03-07
CN103648763B (en) 2015-07-08
US9643380B2 (en) 2017-05-09
CN103648763A (en) 2014-03-19
US20140199515A1 (en) 2014-07-17
EP2735440A4 (en) 2015-03-25
TW201402311A (en) 2014-01-16
KR20140034796A (en) 2014-03-20
WO2014010106A1 (en) 2014-01-16

Similar Documents

Publication Publication Date Title
KR101496172B1 (en) Carbon fibre reinforced composite sheet and production method thereof
JP6737312B2 (en) Sandwich panel manufacturing method
US8628842B2 (en) Fiber-reinforced molded product and method for manufacturing the same
US10800894B2 (en) Resin supply material, preform, and method of producing fiber-reinforced resin
US10086581B2 (en) Carbon fiber composite material
US11034809B2 (en) Resin supply material, preform, and method of producing fiber-reinforced resin
KR20150126066A (en) Surface layer material for cushioning material and cushioning material for hot-pressing
JP5236840B1 (en) Carbon fiber reinforced composite material and method for producing the same
JP6652523B2 (en) Reinforcing fiber substrate and preform.
JP6847510B2 (en) Carbon fiber composite veneer
US20230235140A1 (en) Fiber-reinforced resin molded body and production method thereof, fiber-reinforced resin molding prepreg, fiber-reinforced molded body and production method of fiber-reinforced molded body and resin sheet, fiber-reinforced sandwich composite, and production method of fiberreinforced molded body
JP2006015611A (en) Method for producing sandwich laminate
JP2022120692A (en) Method for producing fiber-reinforced composite material
JP2023140384A (en) Method for manufacturing fiber-reinforced composite material
JP2005335242A (en) Method for producing sandwich laminate
JP2022093881A (en) Manufacturing method for fiber-reinforced molding and fiber-reinforced molding
JP2022148435A (en) Method for manufacturing resin molded product
KR20220088293A (en) Fiber-reinforced thermosetting plastic composite and manufacturing method thereof
JP2007261212A (en) Manufacturing process of sandwich laminate

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20180118

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20190116

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20200115

Year of fee payment: 6