JP6685616B2 - Carbon fiber composite material and manufacturing method thereof - Google Patents

Carbon fiber composite material and manufacturing method thereof Download PDF

Info

Publication number
JP6685616B2
JP6685616B2 JP2018217108A JP2018217108A JP6685616B2 JP 6685616 B2 JP6685616 B2 JP 6685616B2 JP 2018217108 A JP2018217108 A JP 2018217108A JP 2018217108 A JP2018217108 A JP 2018217108A JP 6685616 B2 JP6685616 B2 JP 6685616B2
Authority
JP
Japan
Prior art keywords
carbon fiber
prepreg
porous
composite material
prepregs
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018217108A
Other languages
Japanese (ja)
Other versions
JP2019043143A (en
Inventor
淳 大藪
淳 大藪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Inoac Corp
Original Assignee
Inoac Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Inoac Corp filed Critical Inoac Corp
Priority to JP2018217108A priority Critical patent/JP6685616B2/en
Publication of JP2019043143A publication Critical patent/JP2019043143A/en
Application granted granted Critical
Publication of JP6685616B2 publication Critical patent/JP6685616B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、表面に凹部と凸部の何れか一方又は両方が賦形された炭素繊維複合材とその製造方法に関する。   TECHNICAL FIELD The present invention relates to a carbon fiber composite material having a surface on which either or both of a concave portion and a convex portion are formed, and a method for producing the same.

近年、ノートパソコンやプリンタなどのOA機器の筐体や機械部品、義足のインソールなどのように軽量性と剛性が求められる部材に、炭素繊維に樹脂を含浸させて半乾燥させた炭素繊維プリプレグを複数枚積層して、加熱、加圧により一体化した炭素繊維強化プラスチックが使用されるようになってきた。   In recent years, carbon fiber prepregs made by impregnating carbon fiber with resin and semi-drying carbon fiber prepreg have been used for members that require light weight and rigidity, such as casings and machine parts for office automation equipment such as laptop computers and printers, and insoles for artificial legs. Carbon fiber reinforced plastics, which are integrated by heating and pressing by laminating a plurality of sheets, have come to be used.

従来、部位によって厚みを異ならせて凸部や凹部を表面に賦形した炭素繊維強化プラスチックを得るには、図10に示すように、厚みの異なる部位毎に炭素繊維プリプレグ91A〜91Gの積層数を異ならせ、かつ正確な位置に積層させて一体化する必要がある。しかも、その場合には、積層する炭素繊維プリプレグ91A〜91Gは、積層する部位に合わせた異なる形状のものを多数用意しなければならず、必要な炭素繊維プリプレグの種類が大幅に増加し、段取りも成形も複雑になるため、実用的ではなかった。   Conventionally, in order to obtain a carbon fiber reinforced plastic in which convex portions or concave portions are formed on the surface by varying the thickness depending on the portion, as shown in FIG. 10, the number of laminated carbon fiber prepregs 91A to 91G is different for each portion having different thickness. It is necessary to make them different from each other and to stack them at correct positions to integrate them. Moreover, in that case, it is necessary to prepare a large number of carbon fiber prepregs 91A to 91G to be laminated that have different shapes according to the site to be laminated. It is not practical because it also complicates molding.

また、炭素繊維プリプレグを複数枚積層し、予め型面に凹凸を設けた加圧型を用いて加圧、加熱成形する際に炭素繊維強化プラスチックの表面に凹凸を賦形する場合、複数枚の炭素繊維プリプレグを一方の型面の凸部で他方の型面の凹部へ押して賦形するため、図11に示すように、複数枚の炭素繊維プリプレグ92A、92B、92C、92Dからなる炭素繊維強化プラスチック90は、一側の凸部95と反対側の凹部96が対になって形成されることになり、形状に制約がある。さらに、凹凸のない一般部91も凹部及び凸部も同一厚みからなる一定厚みの繊維強化プラスチックしか得られず、部分的に厚みを変化させたものが得られないため、デザインの自由度が低く、用途に制約がある。   Further, when a plurality of carbon fiber prepregs are laminated and pressure is applied by using a pressure die having irregularities on the mold surface in advance, when irregularities are formed on the surface of the carbon fiber reinforced plastic during heat molding, a plurality of carbons are formed. Since the fiber prepreg is shaped by pressing the convex portion of one mold surface to the concave portion of the other mold surface, as shown in FIG. 11, a carbon fiber reinforced plastic composed of a plurality of carbon fiber prepregs 92A, 92B, 92C, 92D. 90 is formed by forming a pair of a convex portion 95 on one side and a concave portion 96 on the opposite side, and there is a restriction on the shape. Further, since the general portion 91 having no unevenness and the concave portion and the convex portion can obtain only the fiber reinforced plastic having a constant thickness and the thickness is partially changed, the degree of freedom in design is low. , There are restrictions on usage.

特開2012−106461号公報JP 2012-106461 A 特開2004−209717号公報JP 2004-209717 A 特開平07−243147号公報JP, 07-243147, A

本発明は前記の点に鑑みなされたものであって、表面に凹部及び凸部の賦形が容易になり、かつデザインの設計自由度が高い炭素繊維複合材とその製造方法の提供を目的とする。   The present invention has been made in view of the above points, and it is an object of the present invention to provide a carbon fiber composite material having a high degree of freedom in design and a method of manufacturing the same, which facilitates shaping of concave portions and convex portions on the surface. To do.

請求項1の発明は、縦糸と横糸で構成される織り方からなる炭素繊維織物に熱硬化性樹脂が含浸した炭素繊維プリプレグの複数枚と、連続気泡構造の発泡体からなる多孔質材に熱硬化性樹脂が含浸した多孔質プリプレグの少なくとも1枚が積層されて加熱、加圧により、前記炭素繊維織物及び前記多孔質材に含浸した前記熱硬化性樹脂が硬化して一体化された炭素繊維複合材であって、前記多孔質プリプレグが前記炭素繊維プリプレグ間に配置されて前記炭素繊維複合材の表面が前記炭素繊維プリプレグで構成され、前記炭素繊維複合材の少なくとも一側の表面には、前記一体化の加熱、加圧で形成された凹部と凸部の何れか一方又は両方が賦形され、前記凹部と凸部に対応して、前記多孔質プリプレグの厚みが減少又は増大し、前記炭素繊維プリプレグと前記多孔質プリプレグが一体化すると共に形状が固定されていることを特徴とする。 According to the invention of claim 1, a plurality of carbon fiber prepregs in which a thermosetting resin is impregnated into a carbon fiber woven fabric made of a weave composed of warp yarns and weft yarns and a porous material made of a foam having an open cell structure are heated. At least one sheet of porous prepreg impregnated with a curable resin is laminated, and the carbon fiber woven fabric and the thermosetting resin impregnated in the porous material are cured and integrated by heating and pressurization to form an integrated carbon fiber. A composite material, wherein the porous prepreg is arranged between the carbon fiber prepregs and the surface of the carbon fiber composite material is constituted by the carbon fiber prepregs, and the surface of at least one side of the carbon fiber composite material, Either one or both of the concave portion and the convex portion formed by the integral heating and pressurization are shaped, and the thickness of the porous prepreg is reduced or increased corresponding to the concave portion and the convex portion, Carbon fiber Wherein the shape is fixed with prepreg and the porous prepreg are integrated.

請求項の発明は、請求項において、前記凹部及び凸部の反対側の表面は凹凸の無い平面からなることを特徴とする。 According to a second aspect of the present invention, in the first aspect , the surface on the opposite side of the concave portion and the convex portion is a flat surface having no unevenness.

請求項の発明は、請求項1又は2において、前記複数の炭素繊維プリプレグと前記多孔質プリプレグは平面視同一形状からなることを特徴とする。 According to a third aspect of the invention, in the first or second aspect , the plurality of carbon fiber prepregs and the porous prepreg have the same shape in plan view.

請求項の発明は、請求項1から3の何れか一項において、前記多孔質プリプレグは、複数枚重なって前記炭素繊維プリプレグ間に配置されていることを特徴とする。 A fourth aspect of the present invention is characterized in that, in any one of the first to third aspects, a plurality of the porous prepregs are overlapped and arranged between the carbon fiber prepregs.

請求項の発明は、請求項1から4の何れか一項において、前記炭素繊維複合材の一側の表面と該表面に最も近い前記多孔質プリプレグまでの間に存在する前記炭素繊維プリプレグの枚数と、他側の表面と該表面に最も近い前記多孔質プリプレグまでの間に存在する前記炭素繊維プリプレグの枚数が等しいことを特徴とする。 According to a fifth aspect of the present invention, in any one of the first to fourth aspects, the carbon fiber prepreg is present between a surface on one side of the carbon fiber composite material and the porous prepreg closest to the surface. The number of carbon fiber prepregs is equal to the number of carbon fiber prepregs existing between the surface on the other side and the porous prepreg closest to the surface.

請求項の発明は、請求項1から4の何れか一項において、前記炭素繊維複合材の一側の表面と該表面に最も近い前記多孔質プリプレグまでの間に存在する前記炭素繊維プリプレグの枚数と、他側の表面と該表面に最も近い前記多孔質プリプレグまでの間に存在する前記炭素繊維プリプレグの枚数が異なることを特徴とする。 A sixth aspect of the present invention is the carbon fiber prepreg according to any one of the first to fourth aspects, wherein the carbon fiber prepreg exists between a surface on one side of the carbon fiber composite material and the porous prepreg closest to the surface. It is characterized in that the number of sheets and the number of carbon fiber prepregs existing between the surface on the other side and the porous prepreg closest to the surface are different.

請求項の発明は、炭素繊維プリプレグ間に多孔質プリプレグが配置された炭素繊維複合材の製造方法であって、前記炭素繊維プリプレグは、縦糸と横糸で構成される織り方からなる炭素繊維織物に熱硬化性樹脂を含浸させたものからなり、前記多孔質プリプレグは、連続気泡構造の発泡体からなる多孔質材に熱硬化性樹脂を含浸させたものからなり、下側加圧型と上側加圧型の少なくとも一方の加圧型の型面に凹部と凸部の少なくとも一方又は両方が形成された前記下側加圧型と前記上側加圧型間に、前記炭素繊維プリプレグと前記多孔質プリプレグを、前記炭素繊維プリプレグ間に前記多孔質プリプレグが位置する積層状態で配置し、前記積層状態の前記炭素繊維プリプレグと前記多孔質プリプレグを、前記下側加圧型と前記上側加圧型で加圧して前記多孔質プリプレグを全面圧縮し、前記型面の凹部及び凸部では該型面の凹部及び凸部に応じた圧縮量にすると共に加熱し、前記炭素繊維織物及び前記多孔質材に含浸している前記熱硬化性樹脂を硬化させることにより、前記炭素繊維プリプレグと前記多孔質プリプレグを一体化して炭素繊維複合材を形成すると共に、前記炭素繊維複合材の少なくとも一側の表面には前記型面の凹部と凸部により、凹部と凸部の少なくとも一方を賦形し、前記凹部と凸部の少なくとも一方を賦形した炭素繊維複合材の表面に対応して、前記多孔質プリプレグの厚みを減少又は増大させて前記多孔質プリプレグの厚みを固定することを特徴とする。 The invention of claim 7 is a method for producing a carbon fiber composite material in which porous prepregs are arranged between carbon fiber prepregs, wherein the carbon fiber prepregs are carbon fiber woven fabrics composed of warp and weft yarns. The thermosetting resin is impregnated into the porous prepreg, and the porous prepreg is formed by impregnating a thermosetting resin into a porous material made of a foam having an open cell structure. Between the lower pressure mold and the upper pressure mold in which at least one or both of the concave portion and the convex portion are formed on the mold surface of at least one pressure mold of the pressure mold, the carbon fiber prepreg and the porous prepreg, the carbon Arranged in a laminated state in which the porous prepreg is located between the fiber prepregs, the carbon fiber prepreg and the porous prepreg in the laminated state, the lower pressure mold and the upper pressure mold Under pressure to the entire surface compressing the porous prepreg, the concave and convex portions of the mold surface is heated while the amount of compression in accordance with the concave and convex portions of the mold surface, the carbon fiber woven fabric and the porous material By curing the thermosetting resin impregnated in, to form a carbon fiber composite material by integrating the carbon fiber prepreg and the porous prepreg, on the surface of at least one side of the carbon fiber composite material. Is a concave portion and a convex portion of the mold surface, at least one of the concave portion and the convex portion is shaped , corresponding to the surface of the carbon fiber composite material shaped at least one of the concave portion and the convex portion, the porous prepreg The thickness of the porous prepreg is fixed by decreasing or increasing the thickness of the porous prepreg .

請求項1の発明によれば、複数の炭素繊維プリプレグ間に多孔質プリプレグを配して加熱、加圧することにより、表面に凹部と凸部の何れか一方又は両方が賦形された炭素繊維複合材を得ることができるようになり、凹部及び凸部を賦形するために形状の異なる多種類の炭素繊維プリプレグや多孔質プリプレグを積層する必要がなくなり、凹凸の賦形が容易になると共にデザインの設計自由度が高くなる。   According to the invention of claim 1, a carbon fiber composite in which one or both of a concave portion and a convex portion are formed on the surface by arranging a porous prepreg between a plurality of carbon fiber prepregs and applying heat and pressure. It becomes possible to obtain a material, and it is not necessary to stack various types of carbon fiber prepregs or porous prepregs having different shapes in order to shape the concave and convex portions, and it is easy to shape the unevenness and design The degree of freedom in designing is increased.

請求項の発明によれば、凹部と凸部に対応して、多孔質プリプレグの厚みが減少又は増大している構成からなるため、凹部及び凸部を賦形するために形状の異なる多種類の炭素繊維プリプレグや多孔質プリプレグを積層する必要がなくなり、凹凸の賦形が容易になると共にデザインの設計自由度が高くなる。 According to the invention of claim 1 , since the thickness of the porous prepreg is reduced or increased corresponding to the concave portion and the convex portion, various types having different shapes for shaping the concave portion and the convex portion are formed. Since it is not necessary to stack the carbon fiber prepreg and the porous prepreg, it becomes easy to shape the unevenness and the degree of freedom in design is increased.

請求項の発明によれば、凹部及び凸部の反対側の表面は凹凸の無い平面からなるため、凹部及び凸部とは反対側の表面では、凹部及び凸部による形状の影響を上記平面に及ぼすことなく設計でき、デザイン設計の自由度が高くなる。たとえば、部品であるならば収納される空間に対して無駄なく、収納空間を有効に活用できる。 According to the invention of claim 2 , since the surface on the opposite side of the concave portion and the convex portion is a flat surface without irregularities, the surface on the side opposite to the concave portion and the convex portion is affected by the influence of the shape of the concave portion and the convex portion on the flat surface. The design can be performed without affecting the design, and the degree of freedom in design design is increased. For example, if it is a component, the storage space can be effectively used without waste in the storage space.

請求項の発明によれば、複数の炭素繊維プリプレグと多孔質プリプレグは平面視同一形状からなるため、凹部及び凸部を賦形するために形状の異なる多種類の炭素繊維プリプレグや多孔質プリプレグを積層する必要がなくなり、凹凸の賦形が容易になると共に、製品内の寸法ばらつきを抑えることができ、量産性が高まるとともに、作業工数の削減につながる。 According to the invention of claim 3 , since the plurality of carbon fiber prepregs and the porous prepreg have the same shape in a plan view, various types of carbon fiber prepregs and porous prepregs having different shapes for forming the concave portions and the convex portions are formed. Since it is not necessary to stack them, unevenness can be easily shaped, dimensional variation in the product can be suppressed, mass productivity can be improved, and work man-hours can be reduced.

請求項の発明によれば、多孔質プリプレグが複数枚重なって炭素繊維プリプレグ間に配置されているため、凹部の深さや凸部の高さを大きなものにすることができる。 According to the invention of claim 4 , since a plurality of porous prepregs are overlapped and arranged between the carbon fiber prepregs, it is possible to increase the depth of the concave portion and the height of the convex portion.

請求項5及び6の発明によれば、炭素繊維複合材の一側表面のみに凹部及び凸部が形成される場合、あるいは両側表面に凹部及び凸部が形成される場合等に応じて、炭素繊維複合材の両側表面と多孔質プリプレグ間に配置される炭素繊維プリプレグの枚数を変化させることにより、良好な凹部や凸部を形成し、かつ反りの無い炭素繊維複合材を得ることができる。また、多孔質プリプレグの配列位置を適宜変更することで、反り量を制御できる。 According to the fifth and sixth aspects of the present invention, carbon is formed depending on the case where the recess and the projection are formed on only one surface of the carbon fiber composite material, or when the recess and the projection are formed on both surfaces. By changing the number of carbon fiber prepregs arranged between both side surfaces of the fiber composite material and the porous prepreg, it is possible to obtain a carbon fiber composite material in which favorable recesses and protrusions are formed and which is free from warpage. Further, the warp amount can be controlled by appropriately changing the arrangement position of the porous prepreg.

請求項の発明によれば、複数の炭素繊維プリプレグ間に多孔質プリプレグを配して加熱、加圧することにより、表面に凹部と凸部の何れか一方又は両方が賦形された炭素繊維複合材を得ることができるようになり、凹部及び凸部を賦形するために形状の異なる多種類の炭素繊維プリプレグや多孔質プリプレグを積層する必要がなくなり、凹凸の賦形が容易になると共にデザインの設計自由度が高くなる。 According to the invention of claim 7 , by disposing a porous prepreg between a plurality of carbon fiber prepregs and heating and pressurizing the carbon fiber prepregs, one or both of the concave portions and the convex portions are shaped on the surface of the carbon fiber composite. It becomes possible to obtain a material, and it is not necessary to stack various types of carbon fiber prepregs or porous prepregs having different shapes in order to shape the concave and convex portions, and it is easy to shape the unevenness and design The degree of freedom in designing is increased.

本発明の第1実施形態に係る炭素繊維複合材の平面図である。It is a top view of the carbon fiber composite material which concerns on 1st Embodiment of this invention. 図1の2−2断面図である。2 is a sectional view taken along line 2-2 of FIG. 1. 図2のA部拡大断面図である。FIG. 3 is an enlarged cross-sectional view of part A in FIG. 2. 第1実施形態の炭素繊維複合材を成形する際の装置を示す概略断面図である。It is a schematic sectional drawing which shows the apparatus at the time of molding the carbon fiber composite material of 1st Embodiment. 本発明の第2実施形態に係る炭素繊維複合材の平面図である。It is a top view of the carbon fiber composite material which concerns on 2nd Embodiment of this invention. 図5の6−6断面図である。FIG. 6 is a sectional view taken along line 6-6 of FIG. 5. 図6のB部拡大断面図である。It is a B section expanded sectional view of FIG. 第2実施形態の炭素繊維複合材を成形する際の装置を示す概略断面図である。It is a schematic sectional drawing which shows the apparatus at the time of molding the carbon fiber composite material of 2nd Embodiment. 第3実施形態に係る炭素繊維複合材の一部を示す拡大断面図である。It is an expanded sectional view showing a part of carbon fiber compound material concerning a 3rd embodiment. 従来の積層によって炭素繊維強化プラスチックに形成した凸部を示す拡大断面図である。It is an expanded sectional view which shows the convex part formed in the carbon fiber reinforced plastic by the conventional lamination. 従来の加圧によって炭素繊維強化プラスチックに形成した凸部を示す拡大断面図である。It is an expanded sectional view which shows the convex part formed in the carbon fiber reinforced plastic by the conventional pressurization.

以下に、本発明の実施形態について説明する。図1に示す第1実施形態の炭素繊維複合材10は、ノートパソコンの筐体における蓋の外板として使用されるものであり、図2及び図3にも示すように、外側表面には枠形状の凹部101で囲まれた部分に凹部103で構成された文字が形成されている。なお、前記凹部101、103には、金属箔が貼着されたり、装飾用の着色樹脂が積層されたりすることもある。   Hereinafter, embodiments of the present invention will be described. The carbon fiber composite material 10 of the first embodiment shown in FIG. 1 is used as an outer plate of a lid in a case of a notebook computer, and as shown in FIGS. 2 and 3, a frame is provided on the outer surface. A character constituted by the concave portion 103 is formed in a portion surrounded by the concave portion 101 having a shape. A metal foil may be attached to the recesses 101 and 103, or a colored resin for decoration may be laminated.

前記炭素繊維複合材10は、2枚の炭素繊維プリプレグ11、13間に1枚の多孔質プリプレグ21が配置されて加熱、加圧により一体化された積層体で構成されている。
前記炭素繊維プリプレグ11、13は、炭素繊維織物に熱硬化性樹脂が含浸したものからなる。前記炭素繊維織物は、軽量及び高剛性に優れるものであり、特に、繊維が一方向のみではない織り方のものが好ましく、例えば、縦糸と横糸で構成される平織、綾織、朱子織及び3方向の糸で構成される三軸織などが好適である。また、前記炭素繊維織物は、熱硬化性樹脂の含浸及び剛性の点から、繊維重さが50〜600g/mのものが好ましい。
The carbon fiber composite material 10 is composed of a laminated body in which one porous prepreg 21 is arranged between two carbon fiber prepregs 11 and 13 and integrated by heating and pressing.
The carbon fiber prepregs 11 and 13 are made of carbon fiber woven fabric impregnated with a thermosetting resin. The carbon fiber woven fabric is excellent in light weight and high rigidity, and in particular, it is preferable that the woven fabric is not unidirectional in fiber, for example, plain weave, twill weave, satin weave and three-way weave composed of warp and weft. A triaxial weave composed of the above-mentioned threads is suitable. Further, the carbon fiber woven fabric preferably has a fiber weight of 50 to 600 g / m 2 from the viewpoint of impregnation with a thermosetting resin and rigidity.

前記炭素繊維織物に含浸する熱硬化性樹脂は、特に限定されないが、前記炭素繊維複合材10の剛性を高めるためには、熱硬化性樹脂自体がある程度の剛性を有する必要があり、エポキシ樹脂、フェノール樹脂、エポキシ樹脂とフェノール樹脂の混合物からなる群より選択することができる。また、前記炭素繊維複合材10に難燃性が求められる場合、前記熱硬化性樹脂は難燃性のものが好ましい。フェノール樹脂は、その組成を理由に難燃性を付与する添加物を削減でき良好な難燃性を有するため、前記炭素繊維織物に含浸させる熱硬化性樹脂として好適なものである。   The thermosetting resin with which the carbon fiber woven fabric is impregnated is not particularly limited, but in order to increase the rigidity of the carbon fiber composite material 10, the thermosetting resin itself must have a certain degree of rigidity. It can be selected from the group consisting of phenolic resins and mixtures of epoxy resins and phenolic resins. When the carbon fiber composite material 10 is required to have flame retardancy, the thermosetting resin is preferably flame retardant. Phenolic resin is suitable as a thermosetting resin to be impregnated in the carbon fiber woven fabric, because it can reduce additives that impart flame retardancy due to its composition and has good flame retardancy.

また、前記熱硬化性樹脂は、炭素繊維プリプレグにおける樹脂重量比率が50〜80%、特には55〜70%となるように前記炭素繊維織物に含浸させることが好ましい。前記樹脂比率とすることにより、軽量性及び剛性をより良好にすることができる。   The thermosetting resin is preferably impregnated into the carbon fiber woven fabric so that the resin weight ratio in the carbon fiber prepreg is 50 to 80%, particularly 55 to 70%. By setting the resin ratio as described above, it is possible to further improve the lightness and the rigidity.

前記多孔質プリプレグ21は、多孔質材に熱硬化性樹脂が含浸したものである。
多孔質材としては、特に限定されるものではなく、発泡体を挙げることができる。発泡体としては連続気泡構造からなる発泡体が適し、例えば、ウレタン樹脂発泡体、メラミン樹脂発泡体、ポリオレフィン(ポリアミド)発泡体等から選択することができる。発泡体は連続気泡であることで、熱硬化性樹脂が含浸できるだけでなく、高い圧縮率で成形が可能となる。上記素材を多孔質材として選ぶことにより炭素繊維織物を積層した厚みにまで圧縮成形が可能である。特に、前記多孔質材として、メラミン樹脂発泡体もしくはポリアミド樹脂発泡体が好ましい。また、前記炭素繊維複合材10に難燃性が求められる場合には、前記多孔質材としては難燃性のものが好ましく、メラミン樹脂発泡体は良好な難燃性を有するため、前記多孔質材として好適なものである。前記多孔質材の圧縮前の元厚みは適宜設定され、例えば1〜25mmを挙げる。また、前記多孔質材が発泡体からなる場合、発泡体は圧縮容易性、含浸性、軽量性、剛性の点から、圧縮前の密度が5〜80kg/mのものが好ましい。
The porous prepreg 21 is a porous material impregnated with a thermosetting resin.
The porous material is not particularly limited and may be a foam. As the foam, a foam having an open cell structure is suitable, and for example, it can be selected from urethane resin foam, melamine resin foam, polyolefin (polyamide) foam and the like. Since the foam is open-celled, it can be impregnated with a thermosetting resin and can be molded at a high compression rate. By selecting the above-mentioned material as the porous material, it is possible to perform compression molding to a thickness in which carbon fiber woven fabrics are laminated. In particular, a melamine resin foam or a polyamide resin foam is preferable as the porous material. Further, when the carbon fiber composite material 10 is required to have flame retardancy, the porous material is preferably flame retardant, and the melamine resin foam has good flame retardancy. It is a suitable material. The original thickness of the porous material before compression is appropriately set and is, for example, 1 to 25 mm. When the porous material is a foam, the foam preferably has a density before compression of 5 to 80 kg / m 3 in terms of ease of compression, impregnation, lightness, and rigidity.

前記多孔質材に含浸する熱硬化性樹脂は、特に限定されないが、前記炭素繊維複合材10の剛性を高めるためには、熱硬化性樹脂自体がある程度の剛性を有する必要があり、エポキシ樹脂、フェノール樹脂、エポキシ樹脂とフェノール樹脂の混合物からなる群より選択することができる。また、前記炭素繊維複合材10に難燃性が求められる場合、前記熱硬化性樹脂は難燃性のものが好ましい。フェノール樹脂は良好な難燃性を有するため、前記多孔質材に含浸させる熱硬化性樹脂として好適なものである。また、多孔質プリプレグに含浸させる熱硬化性樹脂と、炭素繊維プリプレグに含浸させる熱硬化性樹脂は、同じものであることが好ましく、密着性が高まることで層間剥離の発生が著しく低減される。   The thermosetting resin with which the porous material is impregnated is not particularly limited, but in order to increase the rigidity of the carbon fiber composite material 10, the thermosetting resin itself needs to have a certain degree of rigidity. It can be selected from the group consisting of phenolic resins and mixtures of epoxy resins and phenolic resins. When the carbon fiber composite material 10 is required to have flame retardancy, the thermosetting resin is preferably flame retardant. Phenolic resin has good flame retardancy and is therefore suitable as a thermosetting resin for impregnating the porous material. Further, it is preferable that the thermosetting resin impregnated in the porous prepreg and the thermosetting resin impregnated in the carbon fiber prepreg are the same, and the increase in the adhesiveness significantly reduces the occurrence of delamination.

前記炭素繊維複合材10は、外側となる一側の表面に前記枠状の凹部101と文字の凹部103が形成され、前記凹部101、103の位置では、凹部及び凸部の無い一般部111と比べ、前記多孔質プリプレグ21の圧縮量が大にされて多孔質プリプレグ21の厚みが減少し、それにより前記炭素繊維複合材10の厚みが減少している。また、前記凹部101、103の位置における反対側の表面は、凹凸の無い平面で構成されている。   The carbon fiber composite material 10 has the frame-shaped concave portion 101 and the concave portion 103 of a character formed on the outer surface, and at the positions of the concave portions 101 and 103, a general portion 111 without a concave portion and a convex portion is formed. On the other hand, the amount of compression of the porous prepreg 21 is increased and the thickness of the porous prepreg 21 is reduced, which reduces the thickness of the carbon fiber composite material 10. The surface on the opposite side of the recesses 101 and 103 is formed of a flat surface without unevenness.

前記炭素繊維プリプレグ11、13と多孔質プリプレグ21は、平面視形状が同一である。なお、前記炭素繊維プリプレグ及び多孔質プリプレグの積層枚数は、前記炭素繊維複合材の用途及び要求される強度等に応じて適宜設定される。ちなみに、図1の枠状及び文字の凹部からなる図柄部分は、縦横30mm×100mmの大きさで、凹部の深さは、0.5mmである。   The carbon fiber prepregs 11 and 13 and the porous prepreg 21 have the same plan view shape. The number of laminated carbon fiber prepregs and porous prepregs is appropriately set according to the application of the carbon fiber composite material and the required strength. By the way, the pattern portion consisting of the frame shape and the concave portion of the character in FIG. 1 has a size of 30 mm long and 100 mm wide, and the depth of the concave portion is 0.5 mm.

前記第1実施形態の炭素繊維複合材10について成形方法の一例を示す。図4に示すように、下側加圧型31と、型面に凹部形成用突起33、34が形成された上側加圧型32間に、硬化前の前記炭素繊維プリプレグ11と前記多孔質プリプレグ21と前記炭素繊維プリプレグ13をこの順序で積層し、前記下側加圧型31と上側加圧型32を接近させて前記炭素繊維プリプレグ11と前記多孔質プリプレグ21と前記炭素繊維プリプレグ13を積層状態で加圧すると共に加熱する。前記下側加圧型31と上側加圧型33は、電熱ヒーター等の加熱手段によって前記熱硬化性樹脂が硬化可能な温度に加熱されている。   An example of a molding method for the carbon fiber composite material 10 of the first embodiment will be described. As shown in FIG. 4, the carbon fiber prepreg 11 and the porous prepreg 21 before being cured are provided between the lower pressure mold 31 and the upper pressure mold 32 having the recess forming projections 33 and 34 formed on the mold surface. The carbon fiber prepreg 13 is laminated in this order, and the lower pressure die 31 and the upper pressure die 32 are brought close to each other to press the carbon fiber prepreg 11, the porous prepreg 21, and the carbon fiber prepreg 13 in a laminated state. Heat with. The lower pressure die 31 and the upper pressure die 33 are heated to a temperature at which the thermosetting resin can be cured by a heating means such as an electric heater.

前記下側加圧型31と上側加圧型32による前記炭素繊維プリプレグ11、13と多孔質プリプレグ21の加圧、加熱時に、前記上側加圧型32の突起33、34によって押圧された部位に前記凹部101、103が形成され、その状態で前記炭素繊維プリプレグ11、13及び多孔質プリプレグ21に含浸している熱硬化性樹脂が硬化することにより、前記炭素繊維プリプレグ11、13と多孔質プリプレグ21が一体化すると共に形状が固定され、前記炭素繊維複合材10が得られる。   At the time of pressing and heating the carbon fiber prepregs 11 and 13 and the porous prepreg 21 by the lower pressure mold 31 and the upper pressure mold 32, the recess 101 is formed at a portion pressed by the protrusions 33 and 34 of the upper pressure mold 32. , 103 are formed, and the thermosetting resin impregnated in the carbon fiber prepregs 11 and 13 and the porous prepreg 21 is cured in that state, so that the carbon fiber prepregs 11 and 13 and the porous prepreg 21 are integrated. The carbon fiber composite material 10 is obtained as the carbon fiber composite material 10 is solidified and its shape is fixed.

図5に示す第2実施形態の炭素繊維複合材50は、義足用インソールとして使用されるものであり、図6及び図7にも示すように、足の指の付け根付近、土踏まず部分、及びかかと部分と対応する部位に凹部501、503と、凸部502、504、506が形成されている。   The carbon fiber composite material 50 of the second embodiment shown in FIG. 5 is used as an insole for a prosthesis, and as shown in FIGS. 6 and 7, the vicinity of the base of the toes, the arch part, and the heel. Concave portions 501 and 503 and convex portions 502, 504 and 506 are formed at portions corresponding to the portions.

前記炭素繊維複合材50は、裏側の最下層から順に、炭素繊維プリプレグ51、52、53、54、多孔質プリプレグ61、炭素繊維プリプレグ55、多孔質プリプレグ62、炭素繊維プリプレグ56、57、58が積層されて、加熱、加圧により一体化された10層の積層体で構成されている。第2実施形態における炭素繊維プリプレグ51〜58及び多孔質プリプレグ61、62は、前記第1実施形態の炭素繊維プリプレグ11、13及び多孔質プリプレグ21と同様の構成からなる。   The carbon fiber composite material 50 includes, in order from the bottommost layer on the back side, carbon fiber prepregs 51, 52, 53, 54, a porous prepreg 61, a carbon fiber prepreg 55, a porous prepreg 62, and carbon fiber prepregs 56, 57, 58. It is composed of a laminated body of 10 layers that are laminated and integrated by heating and pressing. The carbon fiber prepregs 51 to 58 and the porous prepregs 61 and 62 in the second embodiment have the same configurations as the carbon fiber prepregs 11 and 13 and the porous prepreg 21 in the first embodiment.

前記炭素繊維複合材50は、凹部501、503及び凸部502、504、506の形成されている表面と該表面に最も近い前記多孔質プリプレグ62までの間に存在する前記炭素繊維プリプレグの枚数が3枚とされているのに対し、凹部及び凸部の無い反対側の表面と該表面に最も近い前記多孔質プリプレグ61までの間に存在する前記炭素繊維プリプレグの枚数が4枚とされ、凹部及び凸部側寄りに多孔質プリプレグ62が配置されている。この配置により、前記凹部及び凸部の賦形が容易とされている。   In the carbon fiber composite material 50, the number of carbon fiber prepregs existing between the surface on which the concave portions 501, 503 and the convex portions 502, 504, 506 are formed and the porous prepreg 62 closest to the surface is Whereas the number of the carbon fiber prepregs is 3, the number of the carbon fiber prepregs existing between the surface on the opposite side having no recesses and protrusions and the porous prepreg 61 closest to the surface is 4 and Further, the porous prepreg 62 is arranged near the convex portion side. This arrangement facilitates shaping of the concave and convex portions.

前記凹部501、503の位置では、凹部及び凸部の無い一般部511と比べ、前記多孔質プリプレグ61、62の圧縮量が大にされて多孔質プリプレグの厚みが減少し、それにより前記炭素繊維複合材50の厚みが減少している。一方、前記凸部502、504、506の位置では、凹部及び凸部の無い一般部511と比べ、前記多孔質プリプレグ61、62の圧縮量が小にされて多孔質プリプレグの厚みが増大し、それにより前記炭素繊維複合材50の厚みが増大している。また、前記凹部501、503及び凸部502、504、506の位置における反対側の表面は、凹凸の無い平面で構成されている。   At the positions of the recesses 501 and 503, the amount of compression of the porous prepregs 61 and 62 is increased and the thickness of the porous prepregs is reduced as compared with the general portion 511 having no recesses and protrusions, whereby the carbon fiber is reduced. The thickness of the composite material 50 is reduced. On the other hand, at the positions of the convex portions 502, 504, 506, the amount of compression of the porous prepregs 61, 62 is reduced and the thickness of the porous prepreg is increased as compared with the general portion 511 having no concave portion or convex portion. As a result, the thickness of the carbon fiber composite material 50 is increased. Further, the surfaces of the concave portions 501, 503 and the convex portions 502, 504, 506 on the opposite side are formed by flat surfaces without irregularities.

前記複数の炭素繊維プリプレグ51〜58と多孔質プリプレグ61、62は、何れも平面視形状が同一である。また、前記炭素繊維プリプレグ及び多孔質プリプレグの積層枚数は、前記炭素繊維複合材の用途及び要求される強度等に応じて適宜設定される。   The plurality of carbon fiber prepregs 51 to 58 and the porous prepregs 61 and 62 have the same plan view shape. Further, the number of laminated carbon fiber prepregs and porous prepregs is appropriately set according to the application of the carbon fiber composite material and the required strength.

前記炭素繊維複合材50の成形方法の一例を示す。図8に示すように、下側加圧型71と、型面に凹部形成用突起73、75及び凸部形成用の窪み74、76、78が形成された上側加圧型72間に、硬化前の前記炭素繊維プリプレグ51、52、53、54、多孔質プリプレグ61、炭素繊維プリプレグ55、多孔質プリプレグ62、炭素繊維プリプレグ56、57、58をこの順序で積層し、前記下側加圧型71と上側加圧型72を接近させて前記積層状態の炭素繊維プリプレグ及び多孔質プリプレグを加圧すると共に加熱する。前記下側加圧型71と上側加圧型72は、電熱ヒーター等の加熱手段によって前記熱硬化性樹脂が硬化可能な温度に加熱されている。   An example of a method of forming the carbon fiber composite material 50 will be described. As shown in FIG. 8, before curing, between the lower pressure die 71 and the upper pressure die 72 in which the depression forming projections 73 and 75 and the protrusion forming depressions 74, 76 and 78 are formed on the die surface. The carbon fiber prepregs 51, 52, 53, 54, the porous prepreg 61, the carbon fiber prepreg 55, the porous prepreg 62, and the carbon fiber prepregs 56, 57, 58 are laminated in this order, and the lower pressure mold 71 and the upper side are laminated. The pressing mold 72 is brought close to pressurize and heat the carbon fiber prepreg and the porous prepreg in the laminated state. The lower pressure mold 71 and the upper pressure mold 72 are heated to a temperature at which the thermosetting resin can be cured by heating means such as an electric heater.

前記下側加圧型71と上側加圧型72による前記炭素繊維プリプレグ及び多孔質プリプレグの加圧、加熱時に、前記上側加圧型72の突起73、75によって押圧された部位に前記凹部501、503が形成され、一方、前記窪み74、76、78に当接する部位に前記凸部502、504、506が形成され、その状態で前記炭素繊維プリプレグ51〜56及び多孔質プリプレグ61、62に含浸している熱硬化性樹脂が硬化することにより、前記炭素繊維プリプレグ51〜58と多孔質プリプレグ61、62が一体化すると共に形状が固定され、前記炭素繊維複合材50が得られる。   When the carbon fiber prepreg and the porous prepreg are pressed and heated by the lower pressure mold 71 and the upper pressure mold 72, the recesses 501 and 503 are formed at the portions pressed by the protrusions 73 and 75 of the upper pressure mold 72. On the other hand, the convex portions 502, 504, 506 are formed at the portions contacting the depressions 74, 76, 78, and in that state, the carbon fiber prepregs 51-56 and the porous prepregs 61, 62 are impregnated. By curing the thermosetting resin, the carbon fiber prepregs 51 to 58 and the porous prepregs 61 and 62 are integrated and the shape is fixed, and the carbon fiber composite material 50 is obtained.

図9には、他の積層構造からなる第3実施形態の炭素繊維複合材80の一部を拡大して示す。前記炭素繊維複合材80は、2枚の多孔質プリプレグ81A、81Bが重ねられ、その両側にそれぞれ4枚の炭素繊維プリプレグ82A、82B、82C、82D、83A、83B、83C、83Dが積層されて、加熱、加圧により一体化された10層の積層体で構成され、炭素繊維複合材80の両側表面に凸部85、87が形成されている。第3実施形態における炭素繊維プリプレグ82A〜82D、83A〜83D及び多孔質プリプレグ81A、81Bは、前記第1実施形態の炭素繊維プリプレグ11、13及び多孔質プリプレグ21と同様の構成からなる。   FIG. 9 shows an enlarged part of the carbon fiber composite material 80 of the third embodiment having another laminated structure. In the carbon fiber composite material 80, two porous prepregs 81A and 81B are stacked, and four carbon fiber prepregs 82A, 82B, 82C, 82D, 83A, 83B, 83C and 83D are stacked on both sides thereof. It is composed of a laminated body of 10 layers integrated by heating and pressing, and convex portions 85 and 87 are formed on both side surfaces of the carbon fiber composite material 80. The carbon fiber prepregs 82A to 82D, 83A to 83D and the porous prepregs 81A and 81B in the third embodiment have the same configurations as the carbon fiber prepregs 11 and 13 and the porous prepreg 21 in the first embodiment.

前記炭素繊維複合材80は、凸部85の形成された一側の表面と該表面に最も近い前記多孔質プリプレグ81Aまでの間に存在する前記炭素繊維プリプレグ82A〜82Dの枚数と、反対側の凸部87の形成された表面と該表面に最も近い前記多孔質プリプレグ81Bまでの間に存在する前記炭素繊維プリプレグ83A〜83Dの枚数は、何れも4枚からなり、両側で等しく配置されている。この配置により、両側表面で凸部85、87の賦形が容易とされている。   The carbon fiber composite material 80 includes the number of the carbon fiber prepregs 82A to 82D existing between the surface on one side where the convex portion 85 is formed and the porous prepreg 81A closest to the surface, and the number of the carbon fiber prepregs 82A to 82D on the opposite side. The number of the carbon fiber prepregs 83A to 83D existing between the surface on which the convex portion 87 is formed and the porous prepreg 81B closest to the surface is all four, and the carbon fiber prepregs 83A to 83D are equally arranged on both sides. . With this arrangement, it is easy to shape the convex portions 85 and 87 on both side surfaces.

前記凸部85、87の位置では、凹部及び凸部の無い一般部811と比べ、前記多孔質プリプレグ81A、81Bの圧縮量が小にされて多孔質プリプレグ81A、81Bの厚みが増大し、それにより前記炭素繊維複合材80の厚みが増大している。また、前記凸部85、87の位置における反対側の表面は、凹凸の無い平面で構成されている。   At the positions of the convex portions 85 and 87, the amount of compression of the porous prepregs 81A and 81B is reduced and the thickness of the porous prepregs 81A and 81B is increased as compared with the general portion 811 having no concave portion or convex portion, This increases the thickness of the carbon fiber composite material 80. The surface on the opposite side of the positions of the convex portions 85 and 87 is formed by a flat surface without irregularities.

前記複数の炭素繊維プリプレグ82A〜82D、83A〜83Dと多孔質プリプレグ81A、81Bは、何れも平面視形状が同一である。また、前記炭素繊維プリプレグ及び多孔質プリプレグの積層枚数は、前記炭素繊維複合材の用途及び要求される強度等に応じて適宜設定される。   The plurality of carbon fiber prepregs 82A to 82D, 83A to 83D and the porous prepregs 81A and 81B have the same plan view shape. Further, the number of laminated carbon fiber prepregs and porous prepregs is appropriately set according to the application of the carbon fiber composite material and the required strength.

・実施例1
図1の炭素繊維複合材10を成形する例を示す。熱硬化性樹脂としてフェノール樹脂(旭有機材料株式会社製、品名;PAPS−4と旭有機材料株式会社製、品名;ヘキサメチレンテトラミンを100:12で混合したもの)をメタノールに30wt%の濃度となるように溶解した。このフェノール樹脂溶液中に平織の炭素繊維織物(東邦テックス株式会社製、品名;W−3101、繊維重さ200g/m)を漬け、取り出した後に25℃の室温にて2時間自然乾燥し、更に60℃の雰囲気下にて1時間乾燥させて炭素繊維プリプレグを2枚形成した。炭素繊維織物は、200×300mmの平面サイズに裁断したもの(重量12g/枚)を使用した。
-Example 1
An example of molding the carbon fiber composite material 10 of FIG. 1 will be shown. As a thermosetting resin, phenol resin (manufactured by Asahi Organic Materials Co., Ltd., product name; PAPS-4 and Asahi Organic Materials Co., Ltd., product name; hexamethylenetetramine mixed at 100: 12) was added to methanol at a concentration of 30 wt%. Dissolved so that A plain weave carbon fiber fabric (manufactured by Toho Tex Co., Ltd., product name: W-3101, fiber weight 200 g / m 2 ) was dipped in this phenol resin solution, taken out, and then naturally dried at room temperature of 25 ° C. for 2 hours, Further, it was dried in an atmosphere of 60 ° C. for 1 hour to form two carbon fiber prepregs. As the carbon fiber woven fabric, one cut into a plane size of 200 × 300 mm (weight: 12 g / sheet) was used.

また、連続気泡構造の発泡体として、厚み10mm、平面サイズ200×300mm(重量5.4g)に切り出したメラミン樹脂発泡体(BASF社製、品名:バソテクトV3012、密度9kg/m)を、炭素繊維織物と同様にしてフェノール樹脂溶液に漬け、取り出した後に25℃の室温にて2時間自然乾燥し、更に60℃の雰囲気下にて1時間乾燥させて多孔質プリプレグを1枚形成した。 Further, as a foam having an open cell structure, a melamine resin foam (manufactured by BASF, product name: Basotect V3012, density 9 kg / m 3 ) cut into a thickness of 10 mm and a plane size of 200 × 300 mm (weight 5.4 g) was used as carbon. It was dipped in a phenol resin solution in the same manner as the fiber woven fabric, taken out, naturally dried at room temperature of 25 ° C. for 2 hours, and further dried in an atmosphere of 60 ° C. for 1 hour to form one porous prepreg.

次に、キャビティを有する上下成形金型に、上記炭素繊維プリプレグと上記多孔質プリプレグを積層加熱して、炭素繊維複合体を得る。すなわち、予め離型剤を表面に塗布したSUS製の下側金型のキャビティ上に、図4に示した積層順序、すなわち炭素繊維プリプレグ、多孔質プリプレグ、炭素繊維プリプレグの順に積層して配置し、下側金型上の積層体を、型面に凹部形成用の突起が形成された上側金型により、180℃で3分間、5MPaの面圧をかけて押圧し、圧縮及び加熱を行ない、前記圧縮状態でフェノール樹脂を反応硬化させた。その際の加熱は、上下金型に取り付けられた鋳込みヒーターにより行なった。圧縮後の厚みは、製品形状に応じて平板を形成する一般部に応じてキャビティを設計した。その後、上下金型を室温で冷却させた後に開き、前記炭素繊維プリプレグと多孔質プリプレグが積層一体化した図1の炭素繊維複合材10を得た。   Next, the carbon fiber prepreg and the porous prepreg are laminated and heated in an upper and lower molding die having a cavity to obtain a carbon fiber composite. That is, on the cavity of the lower mold made of SUS whose surface is previously coated with a release agent, the lamination order shown in FIG. 4, that is, the carbon fiber prepreg, the porous prepreg, and the carbon fiber prepreg are laminated and arranged. , Pressing the laminated body on the lower mold with a surface pressure of 5 MPa at 180 ° C. for 3 minutes by an upper mold having a projection for forming a concave portion on the mold surface to perform compression and heating, The phenol resin was reactively cured in the compressed state. The heating at that time was performed by a casting heater attached to the upper and lower molds. As for the thickness after compression, the cavity was designed according to the general part forming the flat plate according to the product shape. Then, the upper and lower molds were cooled at room temperature and then opened to obtain a carbon fiber composite material 10 of FIG. 1 in which the carbon fiber prepreg and the porous prepreg were laminated and integrated.

・実施例2
図5の炭素繊維複合材50を成形する例を示す。実施例1と同様にして炭素繊維プリプレグを8枚形成し、また多孔質プリプレグを2枚形成した。
次に、予め離型剤を表面に塗布したSUS製の下側金型上に、図8に示した積層順序で、炭素繊維プリプレグと多孔質プリプレグを順に積層して配置し、下側金型上の積層体を、型面に凹部形成用の突起と凸部形成用の窪みが形成された上側金型により、180℃で3分間、5MPaの面圧をかけて押圧し、圧縮及び加熱を行ない、前記圧縮状態でフェノール樹脂を反応硬化させた。その際の加熱は、上下金型に取り付けられた鋳込みヒーターにより行なった。圧縮後の厚みは、製品形状に応じて平板を形成する一般部に応じてキャビティを設計した。その後、上下金型を室温で冷却させた後に開き、前記炭素繊維プリプレグと多孔質プリプレグが積層一体化した炭素繊維複合材を得た。その後、炭素繊維複合材の周囲の余剰部分をカットするトリミングを行い、図5の炭素繊維複合材50を得た。
-Example 2
An example of molding the carbon fiber composite material 50 of FIG. 5 is shown. In the same manner as in Example 1, eight carbon fiber prepregs were formed and two porous prepregs were formed.
Next, a carbon fiber prepreg and a porous prepreg were sequentially laminated and arranged on the lower mold made of SUS having the surface coated with a release agent in the laminating order shown in FIG. The upper laminated body is pressed by applying an surface pressure of 5 MPa for 3 minutes at 180 ° C. by an upper mold having a projection for forming a concave portion and a depression for forming a convex portion on the mold surface, and compression and heating are performed. Then, the phenol resin was reacted and cured in the compressed state. The heating at that time was performed by a casting heater attached to the upper and lower molds. As for the thickness after compression, the cavity was designed according to the general part forming the flat plate according to the product shape. Then, the upper and lower molds were cooled at room temperature and then opened to obtain a carbon fiber composite material in which the carbon fiber prepreg and the porous prepreg were laminated and integrated. After that, trimming is performed to cut an excess portion around the carbon fiber composite material to obtain a carbon fiber composite material 50 in FIG.

このように、本発明によれば、凹部及び凸部を賦形するために形状の異なる多種類の炭素繊維プリプレグや多孔質プリプレグを積層する必要がなく、凹凸の賦形が容易になると共にデザインの設計自由度が高くなる。   As described above, according to the present invention, it is not necessary to stack various types of carbon fiber prepregs or porous prepregs having different shapes in order to shape the recesses and the protrusions, and it is easy to shape the unevenness and design. The degree of freedom in designing is increased.

本明細書と図面を参照することにより、様々な変形例を想到できる。本明細書の教示により、本発明には、以下のものを含む。
前記複数の炭素繊維プリプレグと前記多孔質プリプレグは、平面視形状が同一である場合に限られず、成形する製品の形状に応じて、積層位置に応じて、上記2種類のプリプレグの平面形状を、裁断、設計することができる。特に多孔質プリプレグの平面視形状を、その積層位置に応じて、裁断、設計することができる。
Various modifications can be conceived by referring to the present specification and the drawings. In accordance with the teachings herein, the present invention includes the following.
The plurality of carbon fiber prepregs and the porous prepreg are not limited to the case where the shape in plan view is the same, depending on the shape of the product to be molded, depending on the stacking position, the planar shape of the above two kinds of prepregs, Can be cut and designed. In particular, the plan view shape of the porous prepreg can be cut and designed according to the stacking position.

10、50、80炭素繊維複合材
11、13、51〜58、82A〜82D、83A〜83D 炭素繊維プリプレグ
21、61、62、81A、81B 多孔質プリプレグ
101、103、501、503 凹部
502、504、506、85、87 凸部
111、511、811 一般部
10, 50, 80 Carbon fiber composite material 11, 13, 51-58, 82A-82D, 83A-83D Carbon fiber prepreg 21, 61, 62, 81A, 81B Porous prepreg 101, 103, 501, 503 Recess 502, 504 , 506, 85, 87 Convex part 111, 511, 811 General part

Claims (7)

縦糸と横糸で構成される織り方からなる炭素繊維織物に熱硬化性樹脂が含浸した炭素繊維プリプレグの複数枚と、連続気泡構造の発泡体からなる多孔質材に熱硬化性樹脂が含浸した多孔質プリプレグの少なくとも1枚が積層されて加熱、加圧により、前記炭素繊維織物及び前記多孔質材に含浸した前記熱硬化性樹脂が硬化して一体化された炭素繊維複合材であって、
前記多孔質プリプレグが前記炭素繊維プリプレグ間に配置されて前記炭素繊維複合材の表面が前記炭素繊維プリプレグで構成され、
前記炭素繊維複合材の少なくとも一側の表面には、前記一体化の加熱、加圧で形成された凹部と凸部の何れか一方又は両方が賦形され、
前記凹部と凸部に対応して、前記多孔質プリプレグの厚みが減少又は増大し、前記炭素繊維プリプレグと前記多孔質プリプレグが一体化すると共に形状が固定されていることを特徴とする炭素繊維複合材。
A plurality of carbon fiber prepregs in which a thermosetting resin is impregnated in a carbon fiber woven fabric composed of a warp and a weft, and a porous material made of a foam having an open cell structure and impregnated with the thermosetting resin. A carbon fiber composite material in which at least one sheet of high-quality prepreg is laminated and the thermosetting resin impregnated in the carbon fiber woven fabric and the porous material is cured and integrated by heating and pressing,
The porous prepreg is arranged between the carbon fiber prepregs and the surface of the carbon fiber composite material is composed of the carbon fiber prepregs,
On at least one surface of the carbon fiber composite material, one or both of the concave portion and the convex portion formed by the integrated heating and pressing are shaped,
Corresponding to the concave portion and the convex portion, the thickness of the porous prepreg is reduced or increased, the carbon fiber prepreg and the porous prepreg are integrated and the shape is fixed. Material.
前記凹部及び凸部の反対側の表面は凹凸の無い平面からなることを特徴とする請求項1に記載の炭素繊維複合材。The carbon fiber composite material according to claim 1, wherein a surface opposite to the concave portion and the convex portion is a flat surface having no irregularities. 前記複数の炭素繊維プリプレグと前記多孔質プリプレグは平面視同一形状からなることを特徴とする請求項1又は2に記載の炭素繊維複合材。The carbon fiber composite material according to claim 1 or 2, wherein the plurality of carbon fiber prepregs and the porous prepreg have the same shape in plan view. 前記多孔質プリプレグは、複数枚重なって前記炭素繊維プリプレグ間に配置されていることを特徴とする請求項1から3の何れか一項に記載の炭素繊維複合材。The carbon fiber composite material according to any one of claims 1 to 3, wherein a plurality of the porous prepregs are overlapped and arranged between the carbon fiber prepregs. 前記炭素繊維複合材の一側の表面と該表面に最も近い前記多孔質プリプレグまでの間に存在する前記炭素繊維プリプレグの枚数と、他側の表面と該表面に最も近い前記多孔質プリプレグまでの間に存在する前記炭素繊維プリプレグの枚数が等しいことを特徴とする請求項1から4の何れか一項に記載の炭素繊維複合材。The number of carbon fiber prepregs existing between the surface of one side of the carbon fiber composite material and the porous prepreg closest to the surface, and the surface of the other side and the porous prepreg closest to the surface The carbon fiber composite material according to any one of claims 1 to 4, wherein the number of the carbon fiber prepregs existing between them is equal. 前記炭素繊維複合材の一側の表面と該表面に最も近い前記多孔質プリプレグまでの間に存在する前記炭素繊維プリプレグの枚数と、他側の表面と該表面に最も近い前記多孔質プリプレグまでの間に存在する前記炭素繊維プリプレグの枚数が異なることを特徴とする請求項1から4の何れか一項に記載の炭素繊維複合材。The number of carbon fiber prepregs existing between the surface of one side of the carbon fiber composite material and the porous prepreg closest to the surface, and the surface of the other side and the porous prepreg closest to the surface The carbon fiber composite material according to any one of claims 1 to 4, wherein the number of carbon fiber prepregs existing between them is different. 炭素繊維プリプレグ間に多孔質プリプレグが配置された炭素繊維複合材の製造方法であって、A method for producing a carbon fiber composite material in which a porous prepreg is arranged between carbon fiber prepregs,
前記炭素繊維プリプレグは、縦糸と横糸で構成される織り方からなる炭素繊維織物に熱硬化性樹脂を含浸させたものからなり、  The carbon fiber prepreg is formed by impregnating a thermosetting resin into a carbon fiber woven fabric made of a weave composed of warp yarns and weft yarns,
前記多孔質プリプレグは、連続気泡構造の発泡体からなる多孔質材に熱硬化性樹脂を含浸させたものからなり、  The porous prepreg is formed by impregnating a thermosetting resin into a porous material made of a foam having an open cell structure,
下側加圧型と上側加圧型の少なくとも一方の加圧型の型面に凹部と凸部の少なくとも一方又は両方が形成された前記下側加圧型と前記上側加圧型間に、前記炭素繊維プリプレグと前記多孔質プリプレグを、前記炭素繊維プリプレグ間に前記多孔質プリプレグが位置する積層状態で配置し、  Between the lower pressure mold and the upper pressure mold in which at least one or both of a concave portion and a convex portion are formed on the mold surface of at least one of the lower pressure mold and the upper pressure mold, the carbon fiber prepreg and the above The porous prepreg is arranged in a laminated state in which the porous prepreg is located between the carbon fiber prepregs,
前記積層状態の前記炭素繊維プリプレグと前記多孔質プリプレグを、前記下側加圧型と前記上側加圧型で加圧して前記多孔質プリプレグを全面圧縮し、前記型面の凹部及び凸部では該型面の凹部及び凸部に応じた圧縮量にすると共に加熱し、  The carbon fiber prepreg and the porous prepreg in the laminated state are pressed by the lower pressure die and the upper pressure die to compress the entire surface of the porous prepreg, and the concave and convex portions of the die surface have the die surface. The amount of compression according to the concave and convex parts of
前記炭素繊維織物及び前記多孔質材に含浸している前記熱硬化性樹脂を硬化させることにより、前記炭素繊維プリプレグと前記多孔質プリプレグを一体化して炭素繊維複合材を形成すると共に、前記炭素繊維複合材の少なくとも一側の表面には前記型面の凹部と凸部により、凹部と凸部の少なくとも一方を賦形し、前記凹部と凸部の少なくとも一方を賦形した炭素繊維複合材の表面に対応して、前記多孔質プリプレグの厚みを減少又は増大させて前記多孔質プリプレグの厚みを固定することを特徴とする繊維強化複合材の製造方法。  By curing the carbon fiber woven fabric and the thermosetting resin impregnated in the porous material, the carbon fiber prepreg and the porous prepreg are integrated to form a carbon fiber composite material, and the carbon fiber The surface of at least one side of the composite material, the concave surface and the convex portion of the mold surface, at least one of the concave portion and the convex portion is shaped, the surface of the carbon fiber composite material shaped at least one of the concave portion and the convex portion The method for producing a fiber-reinforced composite material according to, wherein the thickness of the porous prepreg is reduced or increased to fix the thickness of the porous prepreg.
JP2018217108A 2018-11-20 2018-11-20 Carbon fiber composite material and manufacturing method thereof Active JP6685616B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018217108A JP6685616B2 (en) 2018-11-20 2018-11-20 Carbon fiber composite material and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018217108A JP6685616B2 (en) 2018-11-20 2018-11-20 Carbon fiber composite material and manufacturing method thereof

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2014105477A Division JP6479340B2 (en) 2014-05-21 2014-05-21 Carbon fiber composite material

Publications (2)

Publication Number Publication Date
JP2019043143A JP2019043143A (en) 2019-03-22
JP6685616B2 true JP6685616B2 (en) 2020-04-22

Family

ID=65813554

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018217108A Active JP6685616B2 (en) 2018-11-20 2018-11-20 Carbon fiber composite material and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP6685616B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7220004B2 (en) * 2019-08-27 2023-02-09 株式会社イノアックコーポレーション Fiber-reinforced resin composite molding and method for producing the same
JP7467198B2 (en) 2020-03-30 2024-04-15 株式会社イノアックコーポレーション Antibacterial fiber-reinforced resin composite molding and its manufacturing method
JP7139296B2 (en) * 2019-09-11 2022-09-20 株式会社イノアックコーポレーション Fiber-reinforced resin composite molding and method for producing the same
US20220402238A1 (en) * 2019-08-27 2022-12-22 Inoac Corporation Fiber-reinforced-resin composite molded article and method for producing same, antibacterial composite molded article and method for producing same, antibacterial fiber-reinforced resin composite molded article and method for producing same, and fiber-reinforced-resin laminated molded article and method for producing same

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2610642B2 (en) * 1988-03-11 1997-05-14 株式会社クボタ Method for patterning surface irregularities of fiber-reinforced phenolic resin foam
JP4955442B2 (en) * 2007-03-30 2012-06-20 ポリマテック株式会社 Decorative sheet, decorative molded body, decorative key sheet, and method for producing decorative sheet
JP4558091B1 (en) * 2009-10-29 2010-10-06 株式会社イノアックコーポレーション Fiber-reinforced molded body and method for producing the same
JP5755427B2 (en) * 2010-11-04 2015-07-29 株式会社イノアックコーポレーション FIBER-REINFORCED MOLDED BODY AND METHOD FOR PRODUCING THE SAME
CN103648763B (en) * 2012-07-12 2015-07-08 井上株式会社 Carbon fiber-reinforced composite material and method for producing same

Also Published As

Publication number Publication date
JP2019043143A (en) 2019-03-22

Similar Documents

Publication Publication Date Title
JP6479340B2 (en) Carbon fiber composite material
JP6685616B2 (en) Carbon fiber composite material and manufacturing method thereof
JP4558091B1 (en) Fiber-reinforced molded body and method for producing the same
KR101926945B1 (en) Fiber-reinforced composite material molding and manufacturing method therefor
CN102271888A (en) Core for composite laminated article and manufacture thereof
JP6415885B2 (en) Method for producing perforated carbon fiber composite material
JP2008246981A (en) Manufacturing method of fiber-reinforced composite material
JP5755427B2 (en) FIBER-REINFORCED MOLDED BODY AND METHOD FOR PRODUCING THE SAME
CN106739245A (en) Electronic product casing and its manufacture method
JP6389654B2 (en) Method for producing carbon fiber composite material
KR20140050779A (en) Method for forming fiber reinforced plastic composite
ITUA20164146A1 (en) SKI MANUFACTURING PROCEDURE, AND TYPICAL TOOLS FOR SLIDING ON THE SNOW, WITH THERMOFORMABLE MATERIALS WITH CARBON FIBER-BASED STRUCTURES, AND THERMOFORMING MOLDS OF SUCH PRODUCTS, AS WELL AS SKI AND SLIP TOOLS ON THE SNOW SO OBTAINED
EP3991964A1 (en) Honeycomb layered body and production method therefor
JP7356840B2 (en) Honeycomb laminate with irregularities formed on the surface and its manufacturing method
JP7146519B2 (en) Fiber-reinforced resin molded article and method for producing fiber-reinforced resin molded article
JP2019042975A (en) Fiber reinforced molded article and manufacturing method thereof
JP7220004B2 (en) Fiber-reinforced resin composite molding and method for producing the same
JP6752612B2 (en) Fiber reinforced molded product and its manufacturing method
JP7139296B2 (en) Fiber-reinforced resin composite molding and method for producing the same
JP2023150135A (en) Fiber reinforced molded body, prepreg for three-dimensional object molding and production method of fiber reinforced molded body
JP2022093881A (en) Manufacturing method for fiber-reinforced molding and fiber-reinforced molding
CN109849259A (en) A method of manufacture shell
CN103097097A (en) Mould tools
JP2005335242A (en) Method for producing sandwich laminate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181120

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190806

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191004

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200331

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200331

R150 Certificate of patent or registration of utility model

Ref document number: 6685616

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250