JP6415885B2 - Method for producing perforated carbon fiber composite material - Google Patents

Method for producing perforated carbon fiber composite material Download PDF

Info

Publication number
JP6415885B2
JP6415885B2 JP2014151763A JP2014151763A JP6415885B2 JP 6415885 B2 JP6415885 B2 JP 6415885B2 JP 2014151763 A JP2014151763 A JP 2014151763A JP 2014151763 A JP2014151763 A JP 2014151763A JP 6415885 B2 JP6415885 B2 JP 6415885B2
Authority
JP
Japan
Prior art keywords
carbon fiber
composite material
hole
fiber composite
recess
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014151763A
Other languages
Japanese (ja)
Other versions
JP2016028838A (en
Inventor
淳 大藪
淳 大藪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Inoac Corp
Original Assignee
Inoac Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Inoac Corp filed Critical Inoac Corp
Priority to JP2014151763A priority Critical patent/JP6415885B2/en
Publication of JP2016028838A publication Critical patent/JP2016028838A/en
Application granted granted Critical
Publication of JP6415885B2 publication Critical patent/JP6415885B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Perforating, Stamping-Out Or Severing By Means Other Than Cutting (AREA)
  • Reinforced Plastic Materials (AREA)
  • Laminated Bodies (AREA)
  • Casting Or Compression Moulding Of Plastics Or The Like (AREA)
  • Moulding By Coating Moulds (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Description

本発明は、孔あき炭素繊維複合材の製造方法に関する。 The present invention relates to a method for producing a perforated carbon fiber composite material.

炭素繊維に樹脂を含浸させて半乾燥させた炭素繊維プリプレグを複数枚積層して、熱プレスにより一体化した炭素繊維複合材が、軽量性と剛性が求められる部材に使用されるようになってきた。前記炭素繊維複合材は、製品あるいは使用部位によっては孔が必要となることがある。   Carbon fiber composites made by laminating a plurality of carbon fiber prepregs impregnated with resin and impregnated with carbon fiber, and integrated by hot pressing, have come to be used for members that require lightweight and rigidity. It was. The carbon fiber composite material may require holes depending on the product or the use site.

従来、炭素繊維複合材の孔あけ加工は、図6の(6−1)、(6−2)に示すように、ドリルの刃71を回転させながら、炭素繊維複合材61の表面から炭素繊維複合材61内に押し込んで孔63を貫通形成し、その後に図6の(6−3)のように前記孔63からドリルの刃71を引き抜いている。符号62A〜62Dは各層を示す。   Conventionally, as shown in (6-1) and (6-2) of FIG. 6, the drilling process of the carbon fiber composite material is performed by rotating carbon fibers from the surface of the carbon fiber composite material 61 while rotating the drill blade 71. The hole 63 is penetrated by being pushed into the composite material 61, and then the drill blade 71 is pulled out from the hole 63 as shown in (6-3) of FIG. Reference numerals 62A to 62D denote the respective layers.

しかし、前記炭素繊維複合材61の表面側の層62Aは、内側の中間層62B、62Cと異なって内側のみが他の層62Bと接着し、外側には他の層が存在しないため、他の中間層62B、62Cと較べて剥離強度が低くなっており、前記ドリルの刃71を孔63から引き抜く際に、図6の(6−3)のように、孔63の周縁部分64がドリルの刃71で剥がされて外方へめくれしまう。また、めくれが生じた表面は、ピラピラと動くため、塗装後に不良品になってしまう。なお、めくれた部分を除去するには、めくれた部分の周縁までやすりで削り取らねばならず、多大な工数を必要とする。   However, the layer 62A on the surface side of the carbon fiber composite material 61 is different from the inner intermediate layers 62B and 62C in that only the inner side is bonded to the other layer 62B, and there is no other layer on the outer side. The peel strength is lower than that of the intermediate layers 62B and 62C, and when the drill blade 71 is pulled out from the hole 63, the peripheral portion 64 of the hole 63 is made of the drill as shown in FIG. It is peeled off by the blade 71 and turns outward. In addition, the surface where the turn is generated moves smoothly, so that it becomes a defective product after painting. In addition, in order to remove the turned-up portion, the periphery of the turned-up portion must be scraped off with a file, which requires a great number of man-hours.

なお、孔開け加工の際のバリ発生を抑制するため、炭素繊維強化樹脂基材の両面にガラス繊維強化樹脂表皮材を貼付して孔開け加工を行うものが提案されている。しかし、この場合には、ガラス繊維の存在によって製品が重くなる問題がある。   In addition, in order to suppress the generation | occurrence | production of the burr | flash at the time of a punching process, what sticks a glass fiber reinforced resin skin material on both surfaces of a carbon fiber reinforced resin base material, and performs a punching process is proposed. However, in this case, there is a problem that the product becomes heavy due to the presence of the glass fiber.

特開平8−281508号公報JP-A-8-281508 特開2009−023163号公報JP 2009-023163 A

本発明は前記の点に鑑みなされたものであって、孔の周縁にめくれを生じ難い軽量な孔あき炭素繊維複合材の製造方法の提供を目的とする。 This invention is made | formed in view of the said point, Comprising: It aims at provision of the manufacturing method of the lightweight perforated carbon fiber composite material which is hard to produce a turn around the periphery of a hole .

請求項1の発明は、炭素繊維プリプレグの硬化層と多孔質プリプレグの硬化層が積層一体化されて孔が形成された孔あき炭素繊維複合材の製造方法であって、発泡体からなる多孔質材に熱硬化性樹脂が含浸した多孔質プリプレグの少なくとも1層を炭素繊維プリプレグ間に配置し、熱プレスして硬化させ前記熱プレス時に前記炭素繊維複合材の表面に炭素繊維プリプレグが屈曲されると共に前記多孔質プリプレグが圧縮されて凹部を形成し、前記炭素繊維を屈曲させて凹部に沿って配置凹部の周縁に前記炭素繊維が屈曲状態で硬化した立壁からなる凹部の内壁面を形成し、前記凹部に孔をあけることを特徴とする。 The invention of claim 1 is a method for producing a perforated carbon fiber composite in which a hardened layer of a carbon fiber prepreg and a hardened layer of a porous prepreg are laminated and integrated to form a hole, the porous fiber comprising a foam at least one layer of porous prepreg of a thermosetting resin is impregnated into wood disposed between the carbon fiber prepreg, hot pressing and cured, the surface carbon fiber prepreg of the carbon fiber composite material during the hot press bending wherein the porous prepreg is compressed to form a recess, the inner wall surface of the recess carbon fiber is bent and arranged along the recess, the carbon fibers to the periphery of the recess consisting of the standing wall and cured at flexion while being And forming a hole in the recess.

請求項2の発明は、請求項1において、前記凹部は、前記孔の径と等しい径であることを特徴とする。
請求項3の発明は、請求項1または2において、前記発泡体は、連続気泡構造であることを特徴とする
請求項4の発明は、請求項1から3の何れか一項において、前記凹部が円形であり、ドリルで前記孔を貫通孔に形成することを特徴とする。
According to a second aspect of the present invention, in the first aspect, the concave portion has a diameter equal to the diameter of the hole.
The invention of claim 3 is characterized in that, in claim 1 or 2, the foam has an open cell structure .
According to a fourth aspect of the present invention, in any one of the first to third aspects, the concave portion is circular, and the hole is formed in the through hole with a drill.

本発明によれば、炭素繊維複合材表面の凹部は、熱プレス時に炭素繊維プリプレグの表面が押圧されて内部の多孔質プリプレグが圧縮されることにより表面が内方へ屈曲して形成される。そのため、凹部の周縁では表面側の層が裏面側へ向けて引っ張られて曲がった状態で硬化しており、凹部に孔をあける際には孔の周縁が表面側へめくれ難くなる。また、凹部の周縁では表面側の層が裏面側へ曲げられているため、形状的に剛性が高まり、孔あけ時に孔の周縁がめくれ難くなる。従って、ドリルの刃を孔から引き抜く際に、孔の周縁がめくれ難くなり、孔周縁の後加工工数を減らすことができると共に、塗装外観が良好となる。さらには、孔周縁のめくれ防止(バリ防止)のためのガラス繊維の層が不要なため、軽量な孔あけ加工品を得ることができる。   According to the present invention, the concave portion on the surface of the carbon fiber composite material is formed by bending the surface inward by pressing the surface of the carbon fiber prepreg and compressing the internal porous prepreg during hot pressing. For this reason, the surface layer is hardened in a bent state by being pulled toward the back side at the periphery of the recess, and it is difficult to turn the periphery of the hole toward the surface when making a hole in the recess. In addition, since the front side layer is bent toward the back side at the peripheral edge of the concave portion, the rigidity is increased in shape, and the peripheral edge of the hole is difficult to be turned at the time of drilling. Accordingly, when the drill blade is pulled out from the hole, the peripheral edge of the hole is difficult to be turned, the post-processing man-hours for the peripheral edge of the hole can be reduced, and the appearance of the coating is improved. Furthermore, since a glass fiber layer for preventing the peripheral edge of the hole from being turned up (preventing burrs) is unnecessary, a lightweight punched product can be obtained.

凹部形成時の熱プレス型の断面図である。It is sectional drawing of the hot press type | mold at the time of recessed part formation. 表面に凹部が形成された炭素繊維複合材の断面図である。It is sectional drawing of the carbon fiber composite material in which the recessed part was formed in the surface. 孔あけ時を示す断面図である。It is sectional drawing which shows the time of drilling. 本発明の孔あけ加工方法により孔があけられたロボットハンド用部材の斜視図である。It is a perspective view of the member for robot hands by which the hole was drilled with the drilling method of this invention. 図4の5−5拡大断面図である。FIG. 5 is an enlarged cross-sectional view of 5-5 in FIG. 4. 従来の孔あけ加工を示す断面図である。It is sectional drawing which shows the conventional drilling process.

以下に、本発明の実施形態について説明する。本発明による孔あき炭素繊維複合材の製造方法では、まず凹部形成工程を行う。
凹部形成工程では、図1に示すように、炭素繊維プリプレグ21A、23A間に少なくとも1枚の多孔質プリプレグ31Aを配置した積層体10Aを熱プレスし、図2に示すように表面に凹部11の形成された炭素繊維複合材10Bを成形する。符号21、23は炭素繊維プリプレグが硬化した層、符号31は多孔質プリプレグが硬化した層である。
Hereinafter, embodiments of the present invention will be described. In the method for producing a perforated carbon fiber composite material according to the present invention, a recess forming step is first performed.
In the recess forming step, as shown in FIG. 1, the laminate 10A in which at least one porous prepreg 31A is disposed between the carbon fiber prepregs 21A and 23A is hot-pressed, and the recess 11 is formed on the surface as shown in FIG. The formed carbon fiber composite material 10B is molded. Reference numerals 21 and 23 are layers in which the carbon fiber prepreg is cured, and reference numeral 31 is a layer in which the porous prepreg is cured.

前記炭素繊維プリプレグ21A、23Aは、炭素繊維織物に熱硬化性樹脂が含浸したものからなる。前記炭素繊維織物は、軽量及び高剛性に優れるものであり、特に、繊維が一方向のみではない織り方のものが好ましく、例えば、縦糸と横糸で構成される平織、綾織、朱子織及び3方向の糸で構成される三軸織などが好適である。また、前記炭素繊維織物は、熱硬化性樹脂の含浸及び剛性の点から、繊維重さが50〜600g/mのものが好ましい。 The carbon fiber prepregs 21A and 23A are made of a carbon fiber fabric impregnated with a thermosetting resin. The carbon fiber woven fabric is excellent in light weight and high rigidity, and is particularly preferably a fabric in which the fibers are not only in one direction, for example, plain weave, twill weave, satin weave and three directions composed of warp and weft. A triaxial weaving made of yarn is suitable. The carbon fiber fabric preferably has a fiber weight of 50 to 600 g / m 2 from the viewpoint of impregnation with a thermosetting resin and rigidity.

前記炭素繊維織物に含浸する熱硬化性樹脂は、特に限定されないが、前記炭素繊維複合材10の剛性を高めるためには、熱硬化性樹脂自体がある程度の剛性を有する必要があり、エポキシ樹脂、フェノール樹脂、エポキシ樹脂とフェノール樹脂の混合物からなる群より選択することができる。また、前記炭素繊維複合材10に難燃性が求められる場合、前記熱硬化性樹脂は難燃性のものが好ましい。フェノール樹脂は、その組成を理由に難燃性を付与する添加物を削減でき良好な難燃性を有するため、前記炭素繊維織物に含浸させる熱硬化性樹脂として好適なものである。   The thermosetting resin impregnated in the carbon fiber fabric is not particularly limited, but in order to increase the rigidity of the carbon fiber composite material 10, the thermosetting resin itself needs to have a certain degree of rigidity, and an epoxy resin, It can be selected from the group consisting of phenolic resins, mixtures of epoxy resins and phenolic resins. When the carbon fiber composite material 10 is required to have flame retardancy, the thermosetting resin is preferably flame retardant. The phenol resin is suitable as a thermosetting resin impregnated in the carbon fiber fabric because the additive imparting flame retardancy can be reduced because of its composition and has good flame retardancy.

また、前記熱硬化性樹脂は、炭素繊維プリプレグにおける樹脂重量比率が50〜80%、特には55〜70%となるように前記炭素繊維織物に含浸させることが好ましい。前記樹脂比率とすることにより、軽量性及び剛性をより良好にすることができる。   The thermosetting resin is preferably impregnated in the carbon fiber fabric so that the resin weight ratio in the carbon fiber prepreg is 50 to 80%, particularly 55 to 70%. By setting it as the said resin ratio, lightweight property and rigidity can be made more favorable.

前記多孔質プリプレグ31Aは、多孔質材に熱硬化性樹脂が含浸したものである。
多孔質材としては、特に限定されるものではなく、発泡体、繊維製品等を挙げることができる。発泡体としては連続気泡構造からなる発泡体が適し、例えば、ウレタン樹脂発泡体、メラミン樹脂発泡体、ポリオレフィン(ポリアミド)樹脂発泡体等から選択することができる。発泡体は連続気泡であることで、熱硬化性樹脂が含浸できるだけでなく、高い圧縮率で成形が可能となる。繊維製品としては、具体的には、原繊維、糸、パイル、綿状物、織布、編布、不織布、ネット、植毛布及び、これらの裁断品を挙げることができる。上記素材を多孔質材として選ぶことにより炭素繊維織物を積層した厚みにまで圧縮成形が可能である。炭素繊維複合材に難燃性が求められる場合には、前記多孔質材としては難燃性のものが好ましく、メラミン樹脂発泡体は良好な難燃性を有するため、前記多孔質材として好適なものである。前記多孔質材の圧縮前の元厚みは適宜設定され、例えば1〜25mmを挙げる。また、前記多孔質材が発泡体からなる場合、発泡体は圧縮容易性、含浸性、軽量性、剛性の点から、圧縮前の密度が5〜80kg/mのものが好ましい。
The porous prepreg 31A is obtained by impregnating a porous material with a thermosetting resin.
The porous material is not particularly limited, and examples thereof include foams and fiber products. As the foam, a foam having an open cell structure is suitable, and for example, a urethane resin foam, a melamine resin foam, a polyolefin (polyamide) resin foam and the like can be selected. Since the foam is open-celled, it can be impregnated with a thermosetting resin and can be molded with a high compression ratio. Specific examples of the fiber product include fibrils, yarns, piles, cotton-like materials, woven fabrics, knitted fabrics, nonwoven fabrics, nets, flocked fabrics, and cut products thereof. By selecting the above material as a porous material, compression molding is possible to a thickness in which carbon fiber fabrics are laminated. When the carbon fiber composite material is required to have flame retardancy, the porous material is preferably flame retardant, and the melamine resin foam has good flame retardancy, so it is suitable as the porous material. Is. The original thickness before compression of the porous material is set as appropriate, for example, 1 to 25 mm. Further, when the porous material is made of a foam, the foam preferably has a density before compression of 5 to 80 kg / m 3 from the viewpoint of easy compression, impregnation, light weight and rigidity.

前記多孔質材に含浸する熱硬化性樹脂は、特に限定されないが、前記炭素繊維複合材の剛性を高めるためには、熱硬化性樹脂自体がある程度の剛性を有する必要があり、エポキシ樹脂、フェノール樹脂、エポキシ樹脂とフェノール樹脂の混合物からなる群より選択することができる。また、前記炭素繊維複合材に難燃性が求められる場合、前記熱硬化性樹脂は難燃性のものが好ましい。フェノール樹脂は良好な難燃性を有するため、前記多孔質材に含浸させる熱硬化性樹脂として好適なものである。また、多孔質プリプレグに含浸させる熱硬化性樹脂と、炭素繊維プリプレグに含浸させる熱硬化性樹脂は、同じものであることが好ましく、密着性が高まることで層間剥離の発生が著しく低減される。   The thermosetting resin impregnated in the porous material is not particularly limited, but in order to increase the rigidity of the carbon fiber composite material, the thermosetting resin itself needs to have a certain degree of rigidity. It can be selected from the group consisting of resins, mixtures of epoxy resins and phenolic resins. When the carbon fiber composite material is required to have flame retardancy, the thermosetting resin is preferably flame retardant. Since phenol resin has good flame retardancy, it is suitable as a thermosetting resin impregnated in the porous material. Moreover, it is preferable that the thermosetting resin impregnated in the porous prepreg and the thermosetting resin impregnated in the carbon fiber prepreg are the same, and the occurrence of delamination is remarkably reduced by increasing the adhesion.

なお、前記炭素繊維プリプレグの層数は、炭素繊維複合材の表面と裏面の少なくとも2層であり、それ以上であってもよい。また、前記多孔質プリプレグの層数は、前記炭素繊維プリプレグ間に少なくとも1層であり、それ以上であってもよい。例えば、少なくとも片面側を、炭素繊維プリプレグの2層以上の積層体で構成したり、前記炭素繊維プリプレグ間に多孔質プリプレグを2層以上重ねて設けたり、2層以上の多孔質プリプレグ間にさらに炭素繊維プリプレグを配置したりしてもよい。前記炭素繊維プリプレグの層数及び前記多孔質プリプレグの層数は炭素繊維複合材の用途等に応じて適宜決定される。   In addition, the number of layers of the carbon fiber prepreg is at least two layers on the front surface and the back surface of the carbon fiber composite material, and may be more than that. The number of layers of the porous prepreg is at least one layer between the carbon fiber prepregs, and may be more than that. For example, at least one side is constituted by a laminate of two or more layers of carbon fiber prepregs, or two or more porous prepregs are provided between the carbon fiber prepregs, or further between two or more porous prepregs. A carbon fiber prepreg may be arranged. The number of layers of the carbon fiber prepreg and the number of layers of the porous prepreg are appropriately determined according to the use of the carbon fiber composite material.

熱プレスは、下側熱プレス型41と上側熱プレス型42とにより行われる。前記上側熱プレス型42の型面には凹部形成用突部43が形成されている。前記凹部形成用突部43は、所定突出厚みの円盤状(円柱状)からなる。前記凹部形成用突部43の径aは、形成する凹部11の径bと等しい。前記凹部形成用突部43の立壁は、垂直もしくは傾斜面すなわちテーパがあってもよいが、テーパがある方が、金型の脱型が容易となり好ましい。炭素繊維複合材に形成する孔の径cは、形成する凹部11の径bと等しい。ドリルの刃51の径は、形成する凹部11の径bと等しいものを選ぶ。ドリルの刃51で穿孔した後、刃51を引抜くと、形成する凹部11の底面の径b’の周縁に炭素繊維が分断されたメクレができる。このメクレは、刃51の引抜きと同時に上側熱プレス型方向、凹部11の立壁内側面に添って突き出るようにメクレを形成するが、凹部立壁の深さがあることで炭素繊維複合材の表面まで突き出ることはない。なお、前記凹部形成用突部43の径aは、ドリルの規格に応じた径を選択できるが、5.25mmもしくは6.75mmの孔をあける場合、前記凹部の深さは、0.5mmで良い。   The hot pressing is performed by the lower hot pressing die 41 and the upper hot pressing die 42. A recess forming protrusion 43 is formed on the mold surface of the upper hot press mold 42. The recess forming protrusion 43 has a disk shape (columnar shape) with a predetermined protrusion thickness. The diameter a of the recess forming protrusion 43 is equal to the diameter b of the recess 11 to be formed. The standing wall of the projection 43 for forming the recess may be vertical or inclined, that is, tapered, but it is preferable to have the taper because the mold can be easily removed. The diameter c of the hole formed in the carbon fiber composite material is equal to the diameter b of the recess 11 to be formed. The diameter of the drill blade 51 is selected to be equal to the diameter b of the recess 11 to be formed. After drilling with the drill blade 51, when the blade 51 is pulled out, a meklet with carbon fibers cut off at the periphery of the diameter b 'of the bottom surface of the recess 11 to be formed is formed. At the same time that the blade 51 is pulled out, the mesh is formed so as to protrude along the upper hot press die direction and along the inner wall of the recess 11, but the depth of the recess vertical wall allows the surface of the carbon fiber composite to reach the surface. Never stick out. The diameter a of the projection 43 for forming the recess can be selected according to the drill standard. However, when a 5.25 mm or 6.75 mm hole is formed, the depth of the recess is 0.5 mm. good.

前記下側熱プレス型41と上側熱プレス型42を接近させて前記炭素繊維プリプレグ21Aと前記多孔質プリプレグ31Aと前記炭素繊維プリプレグ23Aとからなる積層体10Aを熱プレス(加圧すると共に加熱)する。前記下側熱プレス型41と上側熱プレス型42は、電熱ヒーター等の加熱手段によって前記熱硬化性樹脂が硬化可能な温度に加熱されている。   The laminated body 10A composed of the carbon fiber prepreg 21A, the porous prepreg 31A, and the carbon fiber prepreg 23A is hot pressed (pressurized and heated) by bringing the lower heat press mold 41 and the upper heat press mold 42 close to each other. . The lower hot press die 41 and the upper hot press die 42 are heated to a temperature at which the thermosetting resin can be cured by heating means such as an electric heater.

前記下側熱プレス型41と上側熱プレス型42による前記積層体10Aの熱プレス時、前記上側熱プレス型42の凹部形成用突部43によって表面側の前記炭素繊維プリプレグ21Aが前記積層体10Aの裏面側へ押されて屈曲すると共に前記多孔質プリプレグ31Aが圧縮されて前記凹部11が表面に形成される。その状態で前記炭素繊維プリプレグ21A、23A及び多孔質プリプレグ31Aに含浸している熱硬化性樹脂が硬化し、それによって、前記炭素繊維プリプレグ21A、23Aと多孔質プリプレグ31Aが一体化すると共に形状が固定され、図2に示した前記凹部11が表面に形成された炭素繊維複合材10Bが得られる。   When the laminated body 10A is hot-pressed by the lower hot press die 41 and the upper hot press die 42, the carbon fiber prepreg 21A on the surface side is formed by the concave forming protrusion 43 of the upper hot press die 42 so that the laminated body 10A. The porous prepreg 31A is compressed while being pushed toward the back surface side of the substrate, and the concave portion 11 is formed on the surface. In this state, the thermosetting resin impregnated in the carbon fiber prepregs 21A and 23A and the porous prepreg 31A is cured, whereby the carbon fiber prepregs 21A and 23A and the porous prepreg 31A are integrated and shaped. The carbon fiber composite material 10B which is fixed and has the concave portion 11 shown in FIG. 2 formed on the surface is obtained.

次に孔あけ工程を行う。孔あけ工程は、図3に示すようにドリルによって行う。図3における符号51はドリルの刃である。図3の(3−1)に示すように回転させたドリルの刃51を前記凹部11に押し当てて、図3の(3−2)に示すようにドリルの刃51を前記凹部11に押し込んで前記炭素繊維複合材10Bの裏面まで貫通した孔13をあける。その後、図3の(3−3)に示すように、回転するドリルの刃51を前記孔13から引き抜く。符号10は孔あけ後の炭素繊維複合材である。   Next, a drilling process is performed. The drilling step is performed by a drill as shown in FIG. Reference numeral 51 in FIG. 3 denotes a drill blade. The drill blade 51 rotated as shown in (3-1) of FIG. 3 is pressed against the recess 11, and the drill blade 51 is pressed into the recess 11 as shown in (3-2) of FIG. The hole 13 penetrated to the back surface of the carbon fiber composite material 10B is opened. Thereafter, as shown in (3-3) of FIG. 3, the rotating drill blade 51 is pulled out from the hole 13. Reference numeral 10 denotes a carbon fiber composite material after drilling.

前記孔あけ加工の際、孔があけられる前記凹部11の周縁は、前記熱プレス時に前記炭素繊維複合材10Bの裏面側へ向けて屈曲し、硬化しているため、屈曲によって剛性が高くなると共に、裏面側へ向かって屈曲し引っ張られた状態で硬化している。そのため、前記ドリルの刃51が、孔をあけてもメクレの繊維長が短く分断されており、前記ドリルの刃51を孔13から引き抜く際に、前記孔13の周縁までメクレが突き出ることなく、きれいな孔13が形成される。
なお、前記ドリルの刃51の径dは、前記凹部の径bおよび形成する孔13の径cと等しい。前記ドリルの刃51の径dが、前記凹部11の径bと等しいことで、前記凹部の立壁内壁面でメクレが生じることなく、前記凹部の底面周縁でメクレが生じることになる。このメクレは、凹部の立壁の深さにより、上側にカエリとなっても複合成形体の表面から突き出ることはない。
In the drilling process, the periphery of the recess 11 in which the hole is drilled is bent and hardened toward the back side of the carbon fiber composite material 10B during the hot pressing, so that the rigidity is increased by the bending. It is cured in a state of being bent and pulled toward the back side. Therefore, even if the drill blade 51 has a hole, the fiber length of the mesh is cut short, and when pulling out the drill blade 51 from the hole 13, the protrusion does not protrude to the periphery of the hole 13, A clean hole 13 is formed.
The diameter d of the drill blade 51 is equal to the diameter b of the recess and the diameter c of the hole 13 to be formed. Since the diameter d of the drill blade 51 is equal to the diameter b of the recess 11, a mecca is generated at the peripheral edge of the bottom surface of the recess without causing a mecca on the inner wall surface of the recess. Due to the depth of the standing wall of the concave portion, this meklet does not protrude from the surface of the composite molded article even if it becomes burrs on the upper side.

図4及び図5に、前記実施形態の孔あけ加工が行われた炭素繊維複合材10を示す。孔あけ後の前記炭素繊維複合材10は、産業用ロボットのアーム部に取り付けられるロボットハンド部材として使用されるものである。炭素繊維複合材10の孔は、ロボットが搬送する搬送物等を支持するための空気吹き出し及び/または吸引路、或いは各種センサーのための電気配線路等を通すための穴あけや、アーム部先端と取り付けるためのネジ孔とするために施される。得られた前記孔13の周縁は、メクレなどのない良好なものであった。なお、実施する形態として、貫通孔を設けた例を示したが、本願発明の孔は、貫通孔に限られず、貫通しない穴、深くえぐり取られたくぼみであっても良い。   4 and 5 show the carbon fiber composite material 10 in which the drilling process of the embodiment has been performed. The carbon fiber composite material 10 after drilling is used as a robot hand member attached to an arm portion of an industrial robot. The hole of the carbon fiber composite material 10 is a hole for passing an air blowing and / or suction path for supporting a transported object or the like transported by a robot, or an electric wiring path for various sensors, It is given to make a screw hole for mounting. The peripheral edge of the obtained hole 13 was a good one without any crevices. In addition, although the example which provided the through-hole was shown as embodiment to implement, the hole of this invention is not restricted to a through-hole, The hole which does not penetrate and the hollow hollowed out deeply may be sufficient.

このように、本発明の孔あき炭素繊維複合材の製造方法によれば、孔の周縁がめくれ難くなり、孔周縁の後加工工数を減らすことができると共に、塗装外観を良好なものにでき、孔を設けた炭素繊維複材で構成される種々の製品に適用することができる。しかも、孔周縁のめくれを防ぐためにガラス繊維などの重くなる部材が不要なため、軽量な孔あけ加工品を得ることができる。 Thus, according to the method for producing a perforated carbon fiber composite material of the present invention, the peripheral edge of the hole is difficult to turn up, the post-processing man-hours of the peripheral edge of the hole can be reduced, and the coating appearance can be improved. The present invention can be applied to various products composed of carbon fiber composite materials having holes. And since the member which becomes heavy, such as glass fiber, is not required in order to prevent the periphery of a hole from being turned over, a lightweight drilling processed product can be obtained.

10 孔あけ後の炭素繊維複合材
10A 炭素繊維プリプレグ間に多孔質プリプレグを配置した積層体
10B 表面に凹部の形成された炭素繊維複合材
11凹部
13 孔
21A、23A 炭素繊維プリプレグ
21、23 炭素繊維プリプレグの硬化層
31A 多孔質プリプレグ
31 多孔質プリプレグの硬化層
41 下側熱プレス型
42 上側熱プレス型
43 凹部形成用突部
51 ドリルの刃
DESCRIPTION OF SYMBOLS 10 Carbon fiber composite material after drilling 10A Laminated body which arrange | positioned porous prepreg between carbon fiber prepregs 10B Carbon fiber composite material with which the recessed part was formed in the surface 11 Recessed part 13 Hole 21A, 23A Carbon fiber prepreg 21, 23 Carbon fiber Hardened layer of prepreg 31A Porous prepreg 31 Hardened layer of porous prepreg 41 Lower heat press mold 42 Upper heat press mold 43 Projection for forming recess 51 Drill blade

Claims (4)

炭素繊維プリプレグの硬化層と多孔質プリプレグの硬化層が積層一体化されて孔が形成された孔あき炭素繊維複合材の製造方法であって、
発泡体からなる多孔質材に熱硬化性樹脂が含浸した多孔質プリプレグの少なくとも1層を炭素繊維プリプレグ間に配置し、
熱プレスして硬化させ
前記熱プレス時に前記炭素繊維複合材の表面に炭素繊維プリプレグが屈曲されると共に前記多孔質プリプレグが圧縮されて凹部を形成し、
前記炭素繊維を屈曲させて凹部に沿って配置凹部の周縁に前記炭素繊維が屈曲状態で硬化した立壁からなる凹部の内壁面を形成し、
前記凹部に孔をあけることを特徴とする孔あき炭素繊維複合材の製造方法
A method for producing a perforated carbon fiber composite in which a cured layer of a carbon fiber prepreg and a cured layer of a porous prepreg are laminated and integrated to form a hole,
At least one layer of porous prepreg of a thermosetting resin is impregnated into the porous material consisting of foam was placed between carbon fiber prepreg,
Heat press to cure ,
The carbon fiber prepreg is bent on the surface of the carbon fiber composite material during the hot pressing and the porous prepreg is compressed to form a recess,
The carbon fiber is bent and arranged along the recess to form the inner wall surface of the recess in which the carbon fibers to the periphery of the recess consisting of the standing wall cured at flexion,
A method for producing a perforated carbon fiber composite material, wherein a hole is formed in the recess.
前記凹部は、前記孔の径と等しい径であることを特徴とする請求項1に記載の孔あき炭素繊維複合材の製造方法 2. The method for producing a perforated carbon fiber composite material according to claim 1, wherein the recess has a diameter equal to the diameter of the hole . 前記発泡体は、連続気泡構造であることを特徴とする請求項1または2に記載の孔あき炭素繊維複合材の製造方法 The method for producing a perforated carbon fiber composite material according to claim 1 or 2, wherein the foam has an open-cell structure . 前記凹部が円形であり、ドリルで前記孔を貫通孔に形成することを特徴とする請求項1から3の何れか一項に記載の孔あき炭素繊維複合材の製造方法。The method for producing a perforated carbon fiber composite material according to any one of claims 1 to 3, wherein the concave portion is circular, and the hole is formed in the through hole with a drill.
JP2014151763A 2014-07-25 2014-07-25 Method for producing perforated carbon fiber composite material Active JP6415885B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014151763A JP6415885B2 (en) 2014-07-25 2014-07-25 Method for producing perforated carbon fiber composite material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014151763A JP6415885B2 (en) 2014-07-25 2014-07-25 Method for producing perforated carbon fiber composite material

Publications (2)

Publication Number Publication Date
JP2016028838A JP2016028838A (en) 2016-03-03
JP6415885B2 true JP6415885B2 (en) 2018-10-31

Family

ID=55435035

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014151763A Active JP6415885B2 (en) 2014-07-25 2014-07-25 Method for producing perforated carbon fiber composite material

Country Status (1)

Country Link
JP (1) JP6415885B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110948567A (en) * 2019-11-22 2020-04-03 西安飞机工业(集团)有限责任公司 Method for eliminating hole-making edge fracture defect of carbon fiber composite part

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6537917B2 (en) * 2015-07-29 2019-07-03 株式会社イノアックコーポレーション Carbon fiber composite material and method for producing the same
CN110431002B (en) 2017-03-10 2021-05-18 日产自动车株式会社 Composite material member, method for producing composite material member, and mold for molding composite material member
CN112339015B (en) * 2020-10-15 2023-04-04 中北大学 Device and method for inhibiting fiber composite material drilling and layering defects
CN113799212A (en) * 2021-09-15 2021-12-17 四川济通工程试验检测有限公司 Novel carbonization depth detector
CN116061264B (en) * 2023-03-09 2023-06-30 四川腾盾科技有限公司 Hole making method for carbon fiber composite material
CN116214777B (en) * 2023-05-10 2023-07-18 宁海县第一注塑模具有限公司 Injection mold for forming carbon fibers

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01110131A (en) * 1987-10-23 1989-04-26 Topy Ind Ltd Method for processing hole part in fiber reinforced resin product
JPH08332529A (en) * 1995-06-09 1996-12-17 Mitsubishi Motors Corp Die for working pierce hole and method thereof
JP2004058421A (en) * 2002-07-26 2004-02-26 Matsushita Electric Works Ltd Frp molded product
JP4327421B2 (en) * 2002-08-02 2009-09-09 ドゥケーヌ バンサン Method for molding parts made from synthetic material and apparatus enabling the method
JP4736906B2 (en) * 2006-03-31 2011-07-27 株式会社豊田自動織機 COMPOSITE MATERIAL AND PROCESS FOR PRODUCING THE SAME
JP4734438B2 (en) * 2009-04-23 2011-07-27 富双合成株式会社 Cushioning tile and method for manufacturing the same
JP5603048B2 (en) * 2009-10-19 2014-10-08 帝人株式会社 Manufacturing method of fiber reinforced composite material
JP4558091B1 (en) * 2009-10-29 2010-10-06 株式会社イノアックコーポレーション Fiber-reinforced molded body and method for producing the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110948567A (en) * 2019-11-22 2020-04-03 西安飞机工业(集团)有限责任公司 Method for eliminating hole-making edge fracture defect of carbon fiber composite part

Also Published As

Publication number Publication date
JP2016028838A (en) 2016-03-03

Similar Documents

Publication Publication Date Title
JP6415885B2 (en) Method for producing perforated carbon fiber composite material
WO2015178141A1 (en) Carbon fiber composite material
JP6537917B2 (en) Carbon fiber composite material and method for producing the same
JP6040166B2 (en) Laminated plate having bending rigidity, molded product from the laminated plate, and manufacturing method thereof
KR102404545B1 (en) Composite material including unidirectional continuous fibers and thermoplastic resin
JP6685616B2 (en) Carbon fiber composite material and manufacturing method thereof
JP2015508026A (en) Method and apparatus for manufacturing a body formed of a composite material having an inner cavity and an outward opening
US20140094077A1 (en) Heat curable composite textile
JP6721107B2 (en) COMPOSITE MATERIAL MEMBER, METHOD OF MANUFACTURING COMPOSITE MATERIAL MEMBER, AND MOLDING DIE
KR20160063781A (en) Light weight multilayer structure using natural fiber and producting method there of
US20150317972A1 (en) Loudspeaker membrane and method for manufacturing such a membrane
JP5651925B2 (en) Fiber-reinforced composite material molded article and its manufacturing method
JP6305714B2 (en) Thermoplastic laminated sheet and method for producing the same
JP6574106B2 (en) Fiber reinforced resin structure and method for producing fiber reinforced resin structure
JP5547412B2 (en) Planar composite
JP6703349B2 (en) Preform, method for producing the preform, and fiber reinforced plastic using the preform.
RU2016119664A (en) FORMED SANITARY AND TECHNICAL CUP AND METHOD FOR PRODUCING SUCH FORMED SANITARY AND TECHNICAL CUP
JP3784658B2 (en) Manufacturing method of thermal protection material
JP6865084B2 (en) Windmill blade
KR101558265B1 (en) Manufacturing Method of Wheel Using Insert Foam and Wheel Manufactured by the Same
JP7356840B2 (en) Honeycomb laminate with irregularities formed on the surface and its manufacturing method
JP2015100930A (en) Preform
CN103097097B (en) Mold tool
JP2021049692A (en) Fiber-reinforced composite panel
CN102909935A (en) Processing method of glass fiber composite board

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170523

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180312

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180327

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180525

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20181002

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20181003

R150 Certificate of patent or registration of utility model

Ref document number: 6415885

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250