JP5547412B2 - Planar composite - Google Patents

Planar composite Download PDF

Info

Publication number
JP5547412B2
JP5547412B2 JP2009051916A JP2009051916A JP5547412B2 JP 5547412 B2 JP5547412 B2 JP 5547412B2 JP 2009051916 A JP2009051916 A JP 2009051916A JP 2009051916 A JP2009051916 A JP 2009051916A JP 5547412 B2 JP5547412 B2 JP 5547412B2
Authority
JP
Japan
Prior art keywords
fiber layer
planar composite
thermoplastic resin
fiber
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009051916A
Other languages
Japanese (ja)
Other versions
JP2010202824A (en
Inventor
裕規 長倉
大 佐藤
治朗 定延
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Ltd
Original Assignee
Teijin Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Ltd filed Critical Teijin Ltd
Priority to JP2009051916A priority Critical patent/JP5547412B2/en
Publication of JP2010202824A publication Critical patent/JP2010202824A/en
Application granted granted Critical
Publication of JP5547412B2 publication Critical patent/JP5547412B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Reinforced Plastic Materials (AREA)

Description

本発明はドレープ性に優れたプリプレグとして有用な面状複合体、およびその製造方法に関するものである。   The present invention relates to a planar composite useful as a prepreg excellent in drapability, and a method for producing the same.

近年、炭素繊維、ガラス繊維、アラミド繊維等を強化繊維として用いた複合材料は、その高い比強度、比剛性を利用して、航空機等の構造材として多く用いられてきている。これらの複合材料は、強化繊維にマトリックス樹脂が含浸された中間製品であるプリプレグから、加熱・加圧・賦形といった成形・加工工程を経て成形される場合が多い。   In recent years, composite materials using carbon fibers, glass fibers, aramid fibers, and the like as reinforcing fibers have been widely used as structural materials for aircraft and the like by utilizing their high specific strength and specific rigidity. These composite materials are often molded from a prepreg, which is an intermediate product in which a reinforcing fiber is impregnated with a matrix resin, through molding / processing steps such as heating, pressing, and shaping.

従来のプリプレグは、そのほとんどは、マトリックス樹脂を強化繊維に完全に含浸したものが使用されている。これらの完全含浸プリプレグを成形する場合、成形時に層間に空気が閉じ込められ、成形物中にボイドが発生することで物性が低下してしまうという問題があり、高圧で成形を行う必要があった。   Most of the conventional prepregs are made by completely impregnating reinforcing fibers into a matrix resin. When these fully impregnated prepregs are molded, there is a problem that air is trapped between the layers during molding and voids are generated in the molded product, resulting in deterioration of physical properties, and it is necessary to perform molding at a high pressure.

そこで、近年では、部分的にマトリックス樹脂を強化繊維に含浸した部分含浸プリプレグが提案され、成形時に未含浸部分の強化繊維を空気の脱気路とすることで、従来のプリプレグより低圧でボイドの少ない成形物を得る手法が用いられるようになってきている。   Therefore, in recent years, partially impregnated prepregs in which reinforcing fibers are partially impregnated with a matrix resin have been proposed, and voids are formed at a lower pressure than conventional prepregs by making the reinforcing fibers in the non-impregnated parts into air deaeration paths at the time of molding. Techniques for obtaining a small number of molded products have been used.

提案されている部分含浸プリプレグとしては、例えば、強化繊維層(F)が1層とマトリックス樹脂層(M)が1層の計2層からなるもの(タイプF/M)、強化繊維層(F)が1層とマトリックス樹脂層(M)の2層の計3層からなるもの(タイプM/F/M)、強化繊維層(F)が2層とマトリックス樹脂層(M)の1層の計3層からなるもの(タイプF/M/F)がある。   As the partially impregnated prepregs proposed, for example, a reinforcing fiber layer (F) and a matrix resin layer (M) consisting of two layers (type F / M), a reinforcing fiber layer (F) ) Consists of three layers (type M / F / M), one layer and two matrix resin layers (M), and one reinforcing fiber layer (F) consists of two layers and one matrix resin layer (M). There are three layers (type F / M / F).

主としてエポキシ樹脂等の熱硬化性樹脂組成物に関して特許文献1では、タイプF/MとタイプM/F/Mが記載されており、特許文献2では、タイプF/MとタイプタイプF/M/Fが記載され、また特許文献3では、プリプレグの厚み方向に通気パスを設ける部分含浸プリプレグが提案されている。   Patent Document 1 describes type F / M and type M / F / M mainly regarding thermosetting resin compositions such as epoxy resins, and Patent Document 2 describes type F / M and type type F / M /. F is described, and Patent Document 3 proposes a partially impregnated prepreg in which a ventilation path is provided in the thickness direction of the prepreg.

しかしこれらの手法は、いずれもマトリックス樹脂層への強化繊維層の含浸深さがプリプレグの幅方向において均一であるため、マトリックス樹脂層が熱可塑性樹脂の場合は、部分含浸プリプレグは、剛直なシート状となり、ドレ−プ性が乏しくなり、複雑な形状物への適用が難しいという難点があった。ドレープ性を付与するため、未含浸部分を増すと強化繊維層とマトリックス樹脂層が分離しやすくなり、裁断時の毛羽立ちが増加し、ハンドリングできないという問題があった。
一方特許文献4には、凹凸を形成した面を該樹脂成形体の一面または複数面に有することで接着性能に優れた強化繊維含有樹脂成形体の記載がある。
However, in these methods, since the impregnation depth of the reinforcing fiber layer into the matrix resin layer is uniform in the width direction of the prepreg, the partially impregnated prepreg is a rigid sheet when the matrix resin layer is a thermoplastic resin. However, the drapability is poor and it is difficult to apply to complicated shapes. When the unimpregnated portion is increased in order to impart drape properties, the reinforcing fiber layer and the matrix resin layer are easily separated, and there is a problem that fluffing at the time of cutting increases and handling is impossible.
On the other hand, Patent Document 4 has a description of a reinforced fiber-containing resin molded article having excellent adhesion performance by having one or a plurality of surfaces on which the concave and convex portions are formed.

特表2001−511827号公報JP-T-2001-511827 国際公開第00/27632号パンフレットInternational Publication No. 00/27632 Pamphlet 特開2002−249605号公報JP 2002-249605 A 特開平10−296866号公報Japanese Patent Laid-Open No. 10-296866

本発明の目的は従来の熱可塑性樹脂プリプレグでは賦形ができなかったような形状にも適応可能なドレープ性の優れたプリプレグを提供することである。   An object of the present invention is to provide a prepreg having excellent drapeability that can be applied to shapes that cannot be shaped by conventional thermoplastic resin prepregs.

本発明は、幅0.1mm〜100mm、高さ0.1mm〜3mmの規則的な凹凸を表面に有する熱可塑性樹脂層と、比弾性率が20GPa/g/cm以上の繊維からなる繊維層とから構成され繊維層には熱可塑性樹脂が部分含浸されていることを特徴とする面状複合体である。 The present invention relates to a thermoplastic resin layer having regular irregularities with a width of 0.1 mm to 100 mm and a height of 0.1 mm to 3 mm on the surface, and a fiber layer comprising fibers having a specific modulus of 20 GPa / g / cm 3 or more. The planar composite is characterized in that the fiber layer is partially impregnated with a thermoplastic resin.

本発明の面状複合体を用いることで、従来の熱可塑性樹脂プリプレグでは賦形ができなかったような自由形状の成形が可能になる。   By using the planar composite of the present invention, it becomes possible to form a free shape that could not be shaped by a conventional thermoplastic resin prepreg.

面状複合体の断面の模式図。The schematic diagram of the cross section of a planar composite. 面状複合体の凹凸形状の一例の模式図。The schematic diagram of an example of the uneven | corrugated shape of a planar composite. 実施例1の面状複合体のエンボス形状写真。3 is an embossed shape photograph of the planar composite of Example 1. FIG. 実施例1の面状複合体の切断面の断面写真。2 is a cross-sectional photograph of a cut surface of the planar composite of Example 1. FIG.

本発明は、幅0.1mm〜100mm、高さ0.1mm〜3mmの規則的な凹凸を表面に有する熱可塑性樹脂層と、比弾性率が20GPa/g/cm以上の繊維からなる繊維層とから構成され繊維層には熱可塑性樹脂が部分含浸されていることを特徴とする面状複合体である。ここで部分含浸とは熱可塑性樹脂が繊維層に部分的、すなわち繊維層の厚み方向でみて完全には含浸されていない状態、繊維層厚さの0.1〜50%程度、好ましくは0.5〜10%程度、熱可塑性樹脂により含浸されている状態である。本発明の面状複合体は、繊維層に熱可塑性樹脂が部分的に含浸されていることで自由形状の成形が可能となるプリプレグとして用いることができる。
熱可塑性樹脂層について凹凸を表面に有するとは、熱可塑性樹脂層の二面のうち繊維層側とは異なる面、すなわち外表面に凹凸を有するとの意味である。
The present invention relates to a thermoplastic resin layer having regular irregularities with a width of 0.1 mm to 100 mm and a height of 0.1 mm to 3 mm on the surface, and a fiber layer comprising fibers having a specific modulus of 20 GPa / g / cm 3 or more. The planar composite is characterized in that the fiber layer is partially impregnated with a thermoplastic resin. Here, the partial impregnation is a state in which the thermoplastic resin is partially impregnated in the fiber layer, that is, not completely impregnated in the thickness direction of the fiber layer, about 0.1 to 50% of the fiber layer thickness, preferably 0.8. About 5 to 10% of the resin is impregnated with the thermoplastic resin. The planar composite of the present invention can be used as a prepreg that can be molded into a free shape by partially impregnating a fiber layer with a thermoplastic resin.
Having the irregularities on the surface of the thermoplastic resin layer means that the two surfaces of the thermoplastic resin layer have irregularities on the surface different from the fiber layer side, that is, on the outer surface.

本発明の面状複合体の凹凸構造は幅0.1mm〜100mm、高さ0.1mm〜3.0mmの規則的な構造であるが、幅は0.5mm〜1.5mm、高さは0.5mm〜2.0mmが好ましい。凹凸の幅が0.1mmよりも小さいと凸部と凹部の境界が曖昧となりドレープ性が失われ、幅が100mmよりも大きいと凹部の樹脂含浸部分が広くなりドレープ性が失われる。高さ0.1mm以下では本発明によるドレープ性の効果は小さく、高さ3.0mm以上だと面状複合体が嵩高くなるためドレープ性が失われる。図1に示すとおり、凹凸構造における幅とは凸部の幅であり、高さとは凸部の高さである。   The uneven structure of the planar composite of the present invention is a regular structure having a width of 0.1 mm to 100 mm and a height of 0.1 mm to 3.0 mm, but the width is 0.5 mm to 1.5 mm and the height is 0. 0.5 mm to 2.0 mm is preferable. When the width of the unevenness is smaller than 0.1 mm, the boundary between the convex portion and the concave portion becomes ambiguous and the drape property is lost. When the width is larger than 100 mm, the resin-impregnated portion of the concave portion becomes wide and the drape property is lost. If the height is 0.1 mm or less, the effect of the drapeability according to the present invention is small, and if the height is 3.0 mm or more, the planar composite becomes bulky and the drape property is lost. As shown in FIG. 1, the width in the concavo-convex structure is the width of the convex portion, and the height is the height of the convex portion.

本発明の面状複合体の繊維層を構成する繊維は、比弾性率が20GPa/g/cm以上であるが、具体的には炭素繊維、ガラス繊維、アラミド繊維等が挙げられる。なかでも比弾性率が100GPa/g/cm以上であることが好ましい。比弾性率100GPa/g/cm以上の繊維として具体的にはアラミド繊維、炭素繊維が挙げられる。比弾性率は、繊維軸方向の弾性率(GPa)を密度(g/cm)で除した値である。 The fiber constituting the fiber layer of the planar composite of the present invention has a specific modulus of 20 GPa / g / cm 3 or more, and specific examples include carbon fiber, glass fiber, and aramid fiber. In particular, the specific elastic modulus is preferably 100 GPa / g / cm 3 or more. Specific examples of fibers having a specific elastic modulus of 100 GPa / g / cm 3 or more include aramid fibers and carbon fibers. The specific elastic modulus is a value obtained by dividing the elastic modulus (GPa) in the fiber axis direction by the density (g / cm 3 ).

本発明の面状複合体を構成する熱可塑性樹脂の種類は特に限定は無く、具体的にはポリプロピレン等のポリオレフィン、ポリ塩化ビニル、ナイロン等のポリアミド、ポリカーボネート、ポリエチレンテレフタレート、ポリエチレンナフタレートあるいはポリブチレンテレフタレート等のポリエステル、ポリ乳酸、ポリアセタール、ポリオキシメチレン、ポリフェニレンスルフィド、ポリ(スチレン−アクリロニトリル−ブタジエン)系共重合体(ABS樹脂)、ポリ(アクリロニトリル−スチレン)系共重合体(AS樹脂)あるいはハイインパクトポリスチレン(HIPS)等のスチレン系樹脂、ポリメチルメタクリレート等のアクリル系樹脂等を挙げることができる。   The kind of the thermoplastic resin constituting the planar composite of the present invention is not particularly limited, and specifically, polyolefin such as polypropylene, polyamide such as polyvinyl chloride and nylon, polycarbonate, polyethylene terephthalate, polyethylene naphthalate or polybutylene. Polyester such as terephthalate, polylactic acid, polyacetal, polyoxymethylene, polyphenylene sulfide, poly (styrene-acrylonitrile-butadiene) copolymer (ABS resin), poly (acrylonitrile-styrene) copolymer (AS resin) or high Examples thereof include styrene resins such as impact polystyrene (HIPS) and acrylic resins such as polymethyl methacrylate.

本発明の面状複合体は、比弾性率が20GPa/g/cm以上の繊維からなる繊維層と熱可塑性樹脂層との積層体を得て、さらに熱可塑性樹脂層の表面に凹凸処理を行ことによって、好ましく得られる。 The planar composite of the present invention obtains a laminate of a fiber layer composed of fibers having a specific modulus of elasticity of 20 GPa / g / cm 3 or more and a thermoplastic resin layer, and further performs uneven treatment on the surface of the thermoplastic resin layer. Preferably obtained.

本発明の面状複合体の断面模式図を図1に示す。凹凸処理によって繊維層には熱可塑性樹脂が含浸される。繊維層における含浸の様子は、面状複合体の断面を顕微鏡により50〜500倍で観察することができ、これにより凹部での繊維層への樹脂含浸深さd1、および、凸部における樹脂含浸深さd2を求めることができる。   A schematic cross-sectional view of the planar composite of the present invention is shown in FIG. The fiber layer is impregnated with the thermoplastic resin by the uneven treatment. As for the state of impregnation in the fiber layer, the cross-section of the planar composite can be observed with a microscope at 50 to 500 times, whereby the resin impregnation depth d1 into the fiber layer at the concave portion and the resin impregnation at the convex portion The depth d2 can be determined.

熱可塑性樹脂層の樹脂の形態はエンボスローラー等を用いることにより凹凸処理が可能であれば良く、具体的には不織布状、シート状、フィルム状、パウダー状または、溶融樹脂をキャストする方法が挙げられるが、取り扱い性とドレープ性から特に不織布状が好ましい。不織布状とは例えばメルトブロー法により作製され、樹脂からなる単繊維同士が複数本交絡または接着したようなものである。   The form of the resin of the thermoplastic resin layer is not particularly limited as long as it can be processed by using an embossing roller or the like. Specifically, a nonwoven fabric, a sheet, a film, a powder, or a method of casting a molten resin is mentioned. However, the nonwoven fabric is particularly preferred from the viewpoint of handling and drapeability. The non-woven fabric is produced by, for example, a melt-blowing method, and a plurality of single fibers made of resin are entangled or bonded.

本発明の面状複合体の凸部が一軸方向に直線または曲線状に連続形成されていることが好ましい。さらには凸部が多軸方向に直線または曲線状に連続形成されていることが好ましい。具体的形状の模式図を図2に例示するが、凸部が一軸方向に直線または曲線状に連続形成されていること、さらには凸部が多軸方向に直線または曲線状に連続形成されていることが好ましい。具体的には縞状、格子状、または斜め格子状のものが挙げられる。また凹凸の形状はとくに限定はなく、丸、四角、ハニカム状でも良い。   The convex portions of the planar composite of the present invention are preferably continuously formed in a uniaxial direction in a straight line or a curved line. Furthermore, it is preferable that the convex portions are continuously formed in a linear or curved shape in the multiaxial direction. A schematic diagram of a specific shape is illustrated in FIG. 2, and the convex part is continuously formed in a straight line or a curved line in a uniaxial direction. Preferably it is. Specifically, a striped shape, a lattice shape, or an oblique lattice shape can be mentioned. The shape of the irregularities is not particularly limited, and may be round, square, or honeycomb.

本発明における繊維層の形態としては特に限定はないが、繊維束を経糸及び/又は緯糸として使用した平織物、綾織物、朱子織物や、平行に引き揃えた強化繊維束の集合からなる一方向織物、二方向織物、多軸織物等が挙げられる。あるいは、強化繊維からなる不織布、マット、ニット、組み紐などであっても良い。多軸織物とは、一方向に引き揃えた繊維強化材の束をシート状にして角度を変えて積層し、ナイロン糸、ポリエステル糸、ガラス繊維糸等のステッチ糸で、この積層体を厚さ方向に貫通して、積層体の表面と裏面の間を表面方向に沿って往復しステッチした織物をいう。繊維層の厚みは0.1mm〜0.5mm、繊維層を構成する繊維径は5μm〜30μmが好ましい。   Although there is no limitation in particular as a form of the fiber layer in the present invention, it is one direction which consists of a set of reinforcing fiber bundles arranged in parallel, plain fabric, twill fabric, satin fabric using fiber bundles as warp and / or weft Examples include woven fabrics, bi-directional woven fabrics, and multiaxial woven fabrics. Alternatively, it may be a nonwoven fabric made of reinforcing fibers, mat, knit, braid or the like. Multiaxial woven fabric is a bundle of fiber reinforcements aligned in one direction, laminated at different angles, and stitched yarns such as nylon yarn, polyester yarn, and glass fiber yarn. It refers to a woven fabric that penetrates in the direction and stitches by reciprocating along the surface direction between the front and back surfaces of the laminate. The thickness of the fiber layer is preferably 0.1 mm to 0.5 mm, and the fiber diameter constituting the fiber layer is preferably 5 μm to 30 μm.

本発明の面状複合体の好ましい製造法としては、上述のとおり、比弾性率が20GPa/g/cm以上の繊維からなる繊維層と熱可塑性樹脂層との積層体を得て、さらに熱可塑性樹脂層の表面に凹凸処理を行うことである。具体的には繊維層片面へ熱可塑性樹脂層を不織布状、シート状、フィルム状、パウダー状、または、溶融状態で連続的に供給し、エンボス加工等の凹凸処理を施す方法が挙げられる。なかでも熱可塑性樹脂層は不織布状で供給することが好ましい。繊維層片面へ熱可塑性樹脂層を設ける方法としては、メルトブロー法により不織布状で連続的に供給する方法が好ましく挙げられる。 As a preferred method for producing the planar composite of the present invention, as described above, a laminate of a fiber layer composed of fibers having a specific elastic modulus of 20 GPa / g / cm 3 or more and a thermoplastic resin layer is obtained, and further, The surface of the plastic resin layer is subjected to uneven processing. Specifically, there may be mentioned a method in which a thermoplastic resin layer is continuously supplied to one side of the fiber layer in a nonwoven fabric, sheet, film, powder, or molten state and subjected to uneven treatment such as embossing. Especially, it is preferable to supply a thermoplastic resin layer with a nonwoven fabric form. As a method of providing the thermoplastic resin layer on one side of the fiber layer, a method of continuously supplying the nonwoven fabric by a melt blow method is preferable.

エンボス加工におけるカレンダーローラー温度としては、結晶性熱可塑性樹脂の場合、マトリックス樹脂側はガラス転移温度(Tg:℃)以上、融点(Tm:℃)以下とし、繊維層側を融点(Tm:℃)以上、融点(Tm:℃)+50℃以内とし、非晶性熱可塑性樹脂の場合、マトリックス樹脂側はガラス転移温度(Tg:℃)以上、溶融温度以下とし、繊維層側を溶融温度以上とすることが好ましい。   As the calender roller temperature in embossing, in the case of a crystalline thermoplastic resin, the matrix resin side is not lower than the glass transition temperature (Tg: ° C.) and not higher than the melting point (Tm: ° C.), and the fiber layer side is the melting point (Tm: ° C.). As described above, the melting point (Tm: ° C.) is within + 50 ° C. In the case of an amorphous thermoplastic resin, the matrix resin side is set to the glass transition temperature (Tg: ° C.) or higher and the melting temperature or lower, and the fiber layer side is set to the melting temperature or higher. It is preferable.

本発明の面状複合体は部分含浸プリプレグとして用いられ、十分なドレープ性を有していることから従来の熱可塑性樹脂プリプレグでは賦形ができなかったような形状にも適応可能である。   Since the planar composite of the present invention is used as a partially impregnated prepreg and has sufficient drapability, it can be applied to shapes that could not be shaped by conventional thermoplastic resin prepregs.

以下に実施例を示すが、本発明はこれらに制限されるものではない。   Examples are shown below, but the present invention is not limited thereto.

[実施例1]
炭素繊維HTA−3K(東邦テナックス社製)を使用した幅1000mmの綾織織物W3161(CF目付 200g/m)の上面にポリプロピレン樹脂(プライムポリマー社製J709QG)をメルトブロー法により目付け125g/mの不織布にして供給し、不織布側のエンボスローラーの加熱温度を140℃、繊維側のエンボスローラーの加熱温度を160℃として、線圧3MPa、ラインスピード1m/min.で加圧含浸し、繊維層厚み250μmに対して、凸部で0.8%、凹部で8%含浸している面状複合体を得た。
得られた面状複合体の樹脂層表面の50倍での顕微鏡写真を図3に示す。凹凸の幅は1mm、高さは0.4mmであった。得られた面状複合体は、90°の直角の形状を有する金型面に対しても割れを生じることなく賦形することができ、十分なドレープ性を有していた。
面状複合体を幅1cm、長さ5cmで切り出して、切断面を100倍で観察した(図4)。面状複合体の凹部凸部それぞれで繊維層に樹脂が部分含浸している状態が確認できた。
得られた面状複合体の凹部における繊維層への樹脂含浸深さd1は2μm、凸部における樹脂含浸深さd2は20μmであり、d2/d1は0.1であった。
[Example 1]
A polypropylene resin (J709QG manufactured by Prime Polymer Co., Ltd.) having a basis weight of 125 g / m 2 is applied to the upper surface of a twill weave W3161 (CF weight 200 g / m 2 ) having a width of 1000 mm using carbon fiber HTA-3K (manufactured by Toho Tenax Co., Ltd.). The nonwoven fabric-side embossing roller is heated to 140 ° C., the fiber-side embossing roller is heated to 160 ° C., the linear pressure is 3 MPa, and the line speed is 1 m / min. The planar composite was obtained by impregnating at 0.8% with the convex part and 8% with the concave part with respect to the fiber layer thickness of 250 μm.
FIG. 3 shows a photomicrograph at 50 times the surface of the resin layer of the obtained planar composite. The width of the unevenness was 1 mm and the height was 0.4 mm. The obtained planar composite could be shaped without causing cracks even on a mold surface having a right angle of 90 °, and had sufficient drape.
The planar composite was cut out with a width of 1 cm and a length of 5 cm, and the cut surface was observed 100 times (FIG. 4). It was confirmed that the fiber layer was partially impregnated with the resin at each of the concave and convex portions of the planar composite.
The resin impregnation depth d1 into the fiber layer in the concave portion of the planar composite obtained was 2 μm, the resin impregnation depth d2 in the convex portion was 20 μm, and d2 / d1 was 0.1.

[実施例2]
炭素繊維HTA−3K(東邦テナックス社製)を使用した幅1000mmの平織織物W3101(CF目付200g/m)の上面にポリプロピレン樹脂(日本ポリプロ社製BC06C、MG05ES)をメルトブロー法により目付け125g/mの不織布にして供給し、不織布側のエンボスローラーの加熱温度を140℃、繊維側のエンボスローラーの加熱温度を160℃として、線圧3MPa、ラインスピード1m/min.で加圧含浸し、繊維層厚み250μmに対して、凸部で1.0%、凹部で6%含浸している面状複合体を得た。
得られた面状複合体は、90°の直角の形状を有する金型面に対しても割れを生じることなく賦形することができ、十分なドレープ性を有していた。凹凸の幅は1mm、高さは0.4mmであった。
[Example 2]
A polypropylene resin (BC06C, MG05ES, manufactured by Nippon Polypro Co., Ltd.) is applied to the upper surface of a plain woven fabric W3101 (CF weight per unit area: 200 g / m 2 ) having a width of 1000 mm using carbon fiber HTA-3K (manufactured by Toho Tenax). 2 , the heating temperature of the embossing roller on the nonwoven fabric side is 140 ° C., the heating temperature of the embossing roller on the fiber side is 160 ° C., the linear pressure is 3 MPa, and the line speed is 1 m / min. The sheet composite was obtained by impregnating with a pressure of 1.0% at the convex part and 6% at the concave part with respect to the fiber layer thickness of 250 μm.
The obtained planar composite could be shaped without causing cracks even on a mold surface having a right angle of 90 °, and had sufficient drape. The width of the unevenness was 1 mm and the height was 0.4 mm.

[実施例3]
炭素繊維HTA−3K(東邦テナックス社製)を使用した幅1000mmの綾織織物W3161(CF目付 200g/m)の上面にポリプロピレン樹脂(プライムポリマー社製J709QG)をメルトブロー法により目付け250g/mの不織布にして供給し、不織布側のエンボスローラーの加熱温度を140℃、繊維側のエンボスローラーの加熱温度を160℃として、線圧3MPa、ラインスピード1m/min.で加圧含浸し、面状複合体を得た。繊維層厚み250μmに対して、凸部で0.9%、凹部で10%含浸している面状複合体を得た。
得られた面状複合体は、90°の直角の形状を有する金型面に対しても割れを生じることなく賦形することができ、十分なドレープ性を有していた。凹凸の幅は1mm、高さは0.4mmであった。
[Example 3]
A polypropylene resin (J709QG manufactured by Prime Polymer Co., Ltd.) having a basis weight of 250 g / m 2 is formed on the upper surface of a twill woven fabric W3161 (CF weight 200 g / m 2 ) having a width of 1000 mm using carbon fiber HTA-3K (manufactured by Toho Tenax Co., Ltd.). The nonwoven fabric-side embossing roller is heated to 140 ° C., the fiber-side embossing roller is heated to 160 ° C., the linear pressure is 3 MPa, and the line speed is 1 m / min. And a surface composite was obtained. A planar composite body in which 0.9% of the convex portions and 10% of the concave portions were impregnated with respect to the fiber layer thickness of 250 μm was obtained.
The obtained planar composite could be shaped without causing cracks even on a mold surface having a right angle of 90 °, and had sufficient drape. The width of the unevenness was 1 mm and the height was 0.4 mm.

1 熱可塑性樹脂層
2 繊維層
3 凹凸幅
4 凹凸高さ
5 凹部
1 thermoplastic resin layer 2 fiber layer 3 uneven width 4 uneven height 5 recessed

Claims (7)

幅0.1mm〜100mm、高さ0.1mm〜3mmの規則的な凹凸を表面に有する熱可塑性樹脂層と、比弾性率が20GPa/g/cm以上の繊維からなる繊維層とから構成され繊維層には熱可塑性樹脂が部分含浸されていることを特徴とする面状複合体。 It is composed of a thermoplastic resin layer having regular irregularities with a width of 0.1 mm to 100 mm and a height of 0.1 mm to 3 mm on the surface, and a fiber layer made of fibers having a specific elastic modulus of 20 GPa / g / cm 3 or more. A planar composite comprising a fiber layer partially impregnated with a thermoplastic resin. 凹凸処理によって繊維層に熱可塑性樹脂が部分含浸されたものである請求項1記載の面状複合体。 2. A planar composite according to claim 1 , wherein the fiber layer is partially impregnated with a thermoplastic resin by an uneven treatment . 面状複合体の凹部における繊維層への樹脂含浸深さd1と、凸部における繊維層への樹脂含浸深さd2がd2/d1<0.5である請求項1または2に記載の面状複合体。   The planar shape according to claim 1 or 2, wherein a resin impregnation depth d1 into the fiber layer in the concave portion of the planar composite and a resin impregnation depth d2 into the fiber layer in the convex portion are d2 / d1 <0.5. Complex. 凸部が一軸方向に直線または曲線状に連続形成されている請求項1〜3のいずれかに記載の面状複合体。   The planar composite according to any one of claims 1 to 3, wherein the convex portions are continuously formed in a uniaxial direction in a straight line or a curved line. 凸部が多軸方向に直線または曲線状に連続形成されている請求項1〜3のいずれかに記載の面状複合体。   The planar composite according to any one of claims 1 to 3, wherein the convex portions are continuously formed in a linear or curved shape in a multiaxial direction. 繊維層が、連続繊維からなる織物である請求項1〜5のいずれかに記載の面状複合体。   The planar composite according to any one of claims 1 to 5, wherein the fiber layer is a woven fabric composed of continuous fibers. 請求項1〜6のいずれかに記載の面状複合体からなるプリプレグ。   A prepreg comprising the planar composite according to any one of claims 1 to 6.
JP2009051916A 2009-03-05 2009-03-05 Planar composite Expired - Fee Related JP5547412B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009051916A JP5547412B2 (en) 2009-03-05 2009-03-05 Planar composite

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009051916A JP5547412B2 (en) 2009-03-05 2009-03-05 Planar composite

Publications (2)

Publication Number Publication Date
JP2010202824A JP2010202824A (en) 2010-09-16
JP5547412B2 true JP5547412B2 (en) 2014-07-16

Family

ID=42964623

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009051916A Expired - Fee Related JP5547412B2 (en) 2009-03-05 2009-03-05 Planar composite

Country Status (1)

Country Link
JP (1) JP5547412B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3357681A4 (en) * 2015-09-30 2019-06-12 Sekisui Chemical Co., Ltd. Fiber-reinforced sheet and structure
US20190092984A1 (en) * 2016-03-25 2019-03-28 Kurashiki Boseki Kabushiki Kaisha Carbon fiber sheet for reinforcement
WO2018150978A1 (en) * 2017-02-17 2018-08-23 日東紡績株式会社 Resin-attached reinforced fiber woven fabric, and method for producing fiber-reinforced resin molded article
AU2019326170A1 (en) * 2018-08-22 2021-02-25 Toray Industries, Inc. Fiber-reinforced thermoplastic resin substrate and laminate using same

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2514412B2 (en) * 1987-10-20 1996-07-10 三菱レイヨン株式会社 Resin impregnation method
US5061545A (en) * 1988-11-28 1991-10-29 Allied-Signal Inc. Fiber/polymer composite with nonuniformly distributed polymer matrix
JPH0489209A (en) * 1990-07-31 1992-03-23 Tonen Corp Manufacture of prepreg
JP2000061938A (en) * 1998-08-19 2000-02-29 Asahi Fiber Glass Co Ltd Thermoplastic resin composite material and manufacture thereof
JP4941798B2 (en) * 2001-02-26 2012-05-30 東レ株式会社 Partially impregnated prepreg

Also Published As

Publication number Publication date
JP2010202824A (en) 2010-09-16

Similar Documents

Publication Publication Date Title
JP5658176B2 (en) Fiber-reinforced resin sheet and fiber-reinforced resin molded body using the same
JP5497786B2 (en) Composite material
JP2018080442A (en) Plane composite material
JP4988229B2 (en) A hybrid composite material excellent in surface smoothness and a molding method thereof.
WO2013089235A1 (en) Fibre-reinforced resin moulding, and vehicle interior material using same
KR20130121858A (en) Uni-directional fibre preform having slivers and consisting of reinforcing fibre bundles, and a composite material component
JP5547412B2 (en) Planar composite
JP2018094746A (en) Method for producing fiber-reinforced plastic molded article, nozzle used for the same, and 3d printer
JP4517483B2 (en) Composite reinforcing fiber substrate and preform
JP4544266B2 (en) Fiber reinforced composite
WO2007057430A1 (en) Knitted infusion fabric
JP2005313455A (en) Multi-axis fabric, its production method, preform material, and fiber-reinfoced plastic molding
JP5877431B2 (en) Method for producing carbon fiber reinforced composite material
JP6131779B2 (en) Thermoplastic prepreg and method for producing thermoplastic prepreg
JP2012241183A (en) Fiber composite material and sandwich material using the same
JP4558398B2 (en) Composite material with smooth surface
JP6703349B2 (en) Preform, method for producing the preform, and fiber reinforced plastic using the preform.
JP3915614B2 (en) Fiber structure and composite material having deformed portion
JP6746973B2 (en) Base material for preform, reinforced fiber preform, fiber reinforced resin molding and method for manufacturing fiber reinforced resin molding
US20200291557A1 (en) Unidirectional laid nonwoven and use thereof
JP6762503B2 (en) One-way reinforced fiber sheet
JP4376118B2 (en) Multi-axis fabric, preform material, and fiber reinforced plastic molding
JP7387963B2 (en) Prepreg, prepreg manufacturing method, molded body, and molded body manufacturing method
JP6783882B2 (en) Manufacturing method of fiber reinforced resin molded body
KR102531610B1 (en) Manufacturing method of fiber reinforced composite using powder of thermoplastic resin and fiber reinforced composite therefrom

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20110705

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20110705

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111220

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130312

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130910

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140422

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140515

R150 Certificate of patent or registration of utility model

Ref document number: 5547412

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees