JP2007261212A - Manufacturing process of sandwich laminate - Google Patents

Manufacturing process of sandwich laminate Download PDF

Info

Publication number
JP2007261212A
JP2007261212A JP2006092522A JP2006092522A JP2007261212A JP 2007261212 A JP2007261212 A JP 2007261212A JP 2006092522 A JP2006092522 A JP 2006092522A JP 2006092522 A JP2006092522 A JP 2006092522A JP 2007261212 A JP2007261212 A JP 2007261212A
Authority
JP
Japan
Prior art keywords
resin
foam core
fiber
mold
sandwich
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2006092522A
Other languages
Japanese (ja)
Inventor
Toru Kaneko
徹 金子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Ltd
Original Assignee
Toho Tenax Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toho Tenax Co Ltd filed Critical Toho Tenax Co Ltd
Priority to JP2006092522A priority Critical patent/JP2007261212A/en
Publication of JP2007261212A publication Critical patent/JP2007261212A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Casting Or Compression Moulding Of Plastics Or The Like (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for producing a sandwich laminate by a method of producing a sandwich laminate using a resin transfer molding manner, wherein impregnation of a fiber reinforcing material into a resin is excellent and a small amount of void is generated. <P>SOLUTION: In a method for producing a sandwich laminate board wherein a fiber reinforcing material, foamed cores and a fiber reinforcing material are laminated in this order, foamed cores equipped with resin inlets and resin outlets alternatively and substantially in parallel on the both surfaces are used as the foamed cores, and a thermosetting resin is introduced from the resin inlets and discharged from the resin outlets, whereby the fiber reinforced material is impregnated. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、樹脂トランスファー成形法を用いたサンドイッチ積層板の製造方法に関する。更に詳細には、発泡コア材として、その表面に樹脂注入路と樹脂排出路を形成したものを用いることによって、樹脂の含浸性を改良したサンドイッチ積層板の製造方法に関する。 The present invention relates to a method for manufacturing a sandwich laminate using a resin transfer molding method. More specifically, the present invention relates to a method for manufacturing a sandwich laminate in which the resin impregnation property is improved by using a foam core material having a resin injection path and a resin discharge path formed on the surface thereof.

サンドイッチ積層板は、2枚の表面板で軽量の芯材を挟んで樹脂で一体構造化した複合材である。そして、繊維強化樹脂(FRP)を表面板とするサンドイッチ積層板は、軽量で大きな曲げ剛性が得られることから、航空機、船舶、建材などの多くの用途に用いられている。繊維強化樹脂を表面板とするサンドイッチ積層板は、通常、樹脂トランスファー成形法により製造される。サンドイッチ積層板は、コア材や繊維強化材を型に敷設した後、型のキャビティーに樹脂を注入して繊維強化材に樹脂を含浸させ硬化させることにより得ることができる。型のキャビティーに注入する樹脂は、一般的に粘度が高く、樹脂の繊維強化材中への拡散速度が遅い。このため、樹脂の注入には長時間を要しており、これは目的とする成形品が大型になるほど顕著となる。 The sandwich laminate plate is a composite material in which a lightweight core material is sandwiched between two surface plates and integrated with resin. And the sandwich laminated board which uses a fiber reinforced resin (FRP) as a surface board is used for many uses, such as an aircraft, a ship, and a building material, since a big bending rigidity is obtained with light weight. A sandwich laminate having a fiber reinforced resin as a surface plate is usually produced by a resin transfer molding method. The sandwich laminate can be obtained by laying a core material or a fiber reinforcing material in a mold, and then injecting a resin into a cavity of the mold, impregnating the fiber reinforcing material with the resin, and curing the resin. The resin injected into the mold cavity generally has a high viscosity, and the diffusion rate of the resin into the fiber reinforcement is slow. For this reason, it takes a long time to inject the resin, and this becomes more prominent as the target molded product becomes larger.

従来、樹脂の拡散速度を高めて注入時間を短縮する方法として、型に溝を形成する方法、樹脂流動基材(メディア)を用いる方法、溝加工や貫通穴加工をしたコア材を用いる方法がある。これらの方法はいずれも樹脂の流路を確保することにより樹脂の拡散速度を向上させ、樹脂の注入に要する時間を短縮するものである。例えば、特開2001−62932号公報には、溝を形成した型と樹脂流動基材を用いる方法が記載されている。溝を形成した型上に繊維強化材、コア材、繊維強化材を順に積層し、更に樹脂流動基材を重ね、積層した材料と樹脂流動基材とをバギングフィルムで覆って内部を減圧した後、溝と樹脂流動基材とから樹脂を注入することによりサンドイッチ積層板を製造する。 Conventionally, as a method of increasing the resin diffusion rate and shortening the injection time, there are a method of forming a groove in a mold, a method of using a resin fluidized substrate (media), and a method of using a core material subjected to groove processing or through-hole processing. is there. All of these methods improve the resin diffusion rate by securing a resin flow path and shorten the time required for resin injection. For example, Japanese Patent Application Laid-Open No. 2001-62932 describes a method using a mold having a groove and a resin fluidized substrate. After laminating a fiber reinforcing material, a core material, and a fiber reinforcing material in this order on a grooved mold, and further stacking a resin fluid base material, covering the laminated material and the resin fluid base material with a bagging film and reducing the pressure inside The sandwich laminate is manufactured by injecting resin from the groove and the resin flow base material.

この方法のように、溝を形成した型を用いる方法は、型を製造するコストが非常に高いものとなる。また、樹脂流動基材を用いる方法は、次のような問題がある。樹脂流動基材は網状のシートで、型に敷設した積層板材料に重ねて配置して使用されるが、製造後に軽量化のため取り除かれ廃棄される。樹脂流動基材を用いる方法は、製造後に樹脂流動基材を取り除く必要があり樹脂流動基材を再利用できないことから積層板の製造コストが高く、またそれ自体が廃棄物となる問題がある。更に、これらの方法により得られた積層板の表面には、型に形成した溝や樹脂流動基材の凹凸を転写した樹脂の突起物が形成される。ピールクロスを用いることにより、樹脂の突起物をある程度除去することは可能であるが、より製造コストの高いものとなるうえ、意匠性の高い平滑な表面とすることは困難である。
特開2001−62932号公報
As in this method, a method using a mold having grooves is very expensive to manufacture the mold. Moreover, the method using a resin fluidized substrate has the following problems. The resin fluidized base material is a net-like sheet, which is used by being placed on a laminated board material laid on a mold, but is removed and discarded for weight reduction after manufacturing. The method using a resin fluidized substrate requires the resin fluidized substrate to be removed after production, and the resin fluidized substrate cannot be reused. Therefore, there is a problem that the manufacturing cost of the laminate is high and the product itself becomes waste. Furthermore, the protrusion of the resin which transferred the groove | channel formed in the type | mold and the unevenness | corrugation of the resin fluid base material is formed in the surface of the laminated board obtained by these methods. By using peel cloth, it is possible to remove resin protrusions to some extent, but it is more expensive to manufacture and it is difficult to obtain a smooth surface with high design.
JP 2001-62932 A

溝や貫通孔を形成したコア材を用いる方法は、樹脂流動基材や溝を形成した型等を必要とせず、比較的低コストでサンドイッチ積層板を製造することができる。しかしながら、樹脂の繊維強化材に対する均一な含浸性や、樹脂の流動性は必ずしも十分ではなく、一段の改良が望まれていた。
特表2000−501659号公報 特開2002−86579号公報
The method using the core material in which the groove or the through hole is formed does not require a resin flow base material, a mold in which the groove is formed, or the like, and can produce a sandwich laminate at a relatively low cost. However, the uniform impregnation property of the resin to the fiber reinforcing material and the fluidity of the resin are not always sufficient, and further improvement has been desired.
JP 2000-501659 A JP 2002-86579 A

本発明は、樹脂トランスファー成形法を用いたサンドイッチ積層板の製造方法において、繊維強化材に対する樹脂の含浸性を良くし、ボイドの少ないサンドイッチ積層板を製造する方法を提供することにある。 An object of the present invention is to provide a method for producing a sandwich laminate having improved void impregnation with a fiber reinforcing material and having less voids in a method for producing a sandwich laminate using a resin transfer molding method.

本発明の課題は、繊維強化材、発泡コア、繊維強化材を下型の一面上に順次積重し、これらの上にバギングフィルム又は上型を重ねると共に気密にシール又は型締めし、下型とバギングフィルム又は上型との間を排気して、樹脂トランスファー成形法により熱硬化性樹脂を注入して硬化させるサンドイッチ積層板の製造方法において、発泡コアとして、その両面に樹脂注入路と樹脂排出路を交互に且つ互いに実質的に平行に設けたものを用い、熱硬化性樹脂を樹脂注入路から注入し樹脂排出路から排出することにより、繊維強化材に含浸せしめることを特徴とするサンドイッチ積層板の製造方法によって達成される。 An object of the present invention is to sequentially stack a fiber reinforcing material, a foam core, and a fiber reinforcing material on one surface of a lower mold, overlap a bagging film or an upper mold on these, and seal or clamp the airtightly. In a sandwich laminate manufacturing method in which a thermosetting resin is injected and cured by a resin transfer molding method, a resin injection path and a resin discharge are formed on both sides of the foam core. Sandwich lamination characterized in that fiber reinforcement is impregnated by injecting thermosetting resin from the resin injection path and discharging from the resin discharge path, using paths provided alternately and substantially parallel to each other This is achieved by the manufacturing method of the board.

本発明によれば、工業的に有利な樹脂トランスファー成形法によって、繊維強化材に対する樹脂の含浸性が良く、従って、ボイドの少ないサンドイッチ積層板が得られる。また、本発明においては、樹脂流動基材等を用いる必要がないので、廃棄物が生じない。 According to the present invention, an industrially advantageous resin transfer molding method can provide a sandwich laminate having good resin impregnation with respect to the fiber reinforcing material and thus having less voids. Further, in the present invention, since there is no need to use a resin fluid base material or the like, no waste is generated.

本発明は、繊維強化材、発泡コア、繊維強化材を下型の一面上に順次積重し、これらの上にバギングフィルム又は上型を重ねると共に気密にシール又は型締めし、下型とバギングフィルム又は上型との間を排気して、樹脂トランスファー成形法により熱硬化性樹脂を注入して硬化させるサンドイッチ積層板の製造方法において、発泡コアとして、その両面に樹脂注入路と樹脂排出路を交互に且つ互いに実質的に平行に設けたものを用い、熱硬化性樹脂を樹脂注入路から注入し樹脂排出路から排出することにより、繊維強化材に含浸せしめることを特徴とするものである。樹脂注入路と樹脂排出路は、それぞれ樹脂注入側と樹脂排出側に開口している必要がある。特に、樹脂注入路と樹脂排出路が、それぞれ樹脂注入口と樹脂排出口につながっているものが好ましい(図2参照)。 In the present invention, a fiber reinforcing material, a foam core, and a fiber reinforcing material are sequentially stacked on one surface of a lower mold, a bagging film or an upper mold is overlaid on the lower mold, and hermetically sealed or clamped. In a method for manufacturing a sandwich laminate in which a film or an upper mold is evacuated and a thermosetting resin is injected and cured by a resin transfer molding method, as a foam core, a resin injection path and a resin discharge path are provided on both sides thereof. The fiber reinforcing material is impregnated by alternately and substantially in parallel with each other and injecting a thermosetting resin from the resin injection path and discharging from the resin discharge path. The resin injection path and the resin discharge path need to be opened on the resin injection side and the resin discharge side, respectively. In particular, the resin injection path and the resin discharge path are preferably connected to the resin injection port and the resin discharge port, respectively (see FIG. 2).

本発明のごとく樹脂注入路と樹脂排出路を交互に設けると、樹脂の拡散速度が速くなるだけでなく、樹脂注入路と樹脂排出路の間隔を調節することによって、繊維強化材への樹脂の含浸速度を調節することも可能である。また、樹脂注入路と樹脂排出路は交互に設けられており、注入側の溝は排出口まで直接にはつながっていないので、樹脂は必ず繊維強化材を通過してから排出溝に移動することになり、樹脂の未含浸が生じることもない。 When the resin injection path and the resin discharge path are alternately provided as in the present invention, not only the resin diffusion speed is increased, but also by adjusting the interval between the resin injection path and the resin discharge path, It is also possible to adjust the impregnation rate. In addition, the resin injection path and the resin discharge path are provided alternately, and the groove on the injection side is not directly connected to the discharge port. Therefore, the resin must pass through the fiber reinforcement before moving to the discharge groove. And no unimpregnation of the resin occurs.

発泡コアとしては、その材質や大きさに特に限定はない。例えば、ウレタンフォーム、塩化ビニルフォーム、ポリメタアクリルイミドフォーム、アクリルフォーム、フェノールフォーム、ポリスチレンフォームが例示できる。コア材の厚さは、サンドイッチパネルの用途等により適宜選択されるが、通常、5〜200mm程度のものが好ましい。なお、本発明において発泡コアの両面とは、繊維強化材に接している二つの表面を意味する。 The material and size of the foam core are not particularly limited. For example, urethane foam, vinyl chloride foam, polymethacrylimide foam, acrylic foam, phenol foam, and polystyrene foam can be exemplified. The thickness of the core material is appropriately selected depending on the use of the sandwich panel and the like, but generally about 5 to 200 mm is preferable. In addition, in this invention, both surfaces of a foam core mean two surfaces which are in contact with the fiber reinforcement.

本発明においては、発泡コアの両面に樹脂注入路と樹脂排出路が交互に且つ互いに実質的に平行に設けられる。樹脂注入路と樹脂排出路としては、樹脂が流入・排出できる溝である限り特に限定はないが、溝としては、樹脂注入路と樹脂排出路として交互に且つ互いに実質的に平行に設けられた、それぞれの幅が0.5〜5mm、好ましくは1〜3mm、深さが1〜5mm、好ましくは1〜3mm、ピッチ(溝の間隔)が20〜100mm、好ましくは20〜50mmのものが適当である。発泡コアに形成される溝の、長さ方向に直角断面の形状は特に制限されず、U字状、V字状等であっても良く、また、かかる溝は任意の方法・手段で形成することができる。例えば、発泡コアの両面に、樹脂注入路と樹脂排出路を機械加工によって形成しても良い。あるいは、型内発泡で発泡コアを作製する際、コア作製型に設けた凸形状を転写して形成らせても良い。 In the present invention, resin injection paths and resin discharge paths are alternately provided on both surfaces of the foam core and substantially parallel to each other. The resin injection path and the resin discharge path are not particularly limited as long as the resin can flow in and out, but the grooves are alternately provided as the resin injection path and the resin discharge path and substantially parallel to each other. The width is 0.5 to 5 mm, preferably 1 to 3 mm, the depth is 1 to 5 mm, preferably 1 to 3 mm, and the pitch (groove interval) is 20 to 100 mm, preferably 20 to 50 mm. It is. The shape of the groove formed in the foam core in a cross section perpendicular to the length direction is not particularly limited, and may be U-shaped, V-shaped, or the like, and the groove is formed by any method or means. be able to. For example, a resin injection path and a resin discharge path may be formed on both surfaces of the foam core by machining. Alternatively, when the foam core is produced by in-mold foaming, the convex shape provided in the core production mold may be transferred and formed.

本発明において、「樹脂注入路と樹脂排出路を交互に且つ互いに実質的に平行に設ける」とは、発泡コア上に形成された溝が、発泡コア上でお互いに交差あるいは接触しないことを意味する。目的とする成形品の形状によっては、平行に形成された溝の部分にボルト、ナット等が位置し、その部分を避けて溝を形成する必要がある場合がある。かかる場合にはボルト、ナット等の位置で溝が蛇行することになるが、このようなものも、本発明においては、実質的に平行であると定義する。また、成形品の形状の関係上、厳密な意味では一部が平行な溝になっていないが、但し、コア上では溝が交差することはないような状態のものも、本発明の実質的な平行に含まれる。 In the present invention, “providing the resin injection path and the resin discharge path alternately and substantially parallel to each other” means that the grooves formed on the foam core do not cross or contact each other on the foam core. To do. Depending on the shape of the target molded product, bolts, nuts, etc. may be located in the groove portions formed in parallel, and it may be necessary to form the grooves avoiding the portions. In such a case, the groove meanders at the position of the bolt, nut, etc., but such a thing is also defined as being substantially parallel in the present invention. In addition, in terms of the shape of the molded product, in a strict sense, a part of the groove is not a parallel groove, but the groove in the state where the groove does not intersect on the core is substantially equivalent to the present invention. Included in parallel.

本発明においては、発泡コアの両面の樹脂注入路と樹脂排出路が、それぞれ注入路同士、排出路同士で直径1.0〜5.0mmの孔で貫通されていても良い。かかる場合には、樹脂の流動性が、発泡コアの両面でより均一化される。発泡コアに貫通孔を形成する場合、貫通孔は発泡コアに対して厚さ方向に貫通していればよいが、概ね垂直であることが好ましい。貫通孔は1mあたり600〜1600個程度形成することが好ましい。また、発泡コアの両面に形成する溝の幅、深さ、ピッチは前記の範囲内であれば必ずしも同じ形状、本数である必要はないが、樹脂の拡散速度を、発泡コアの両面で同程度とするためには、同等のものを形成することが好ましい。 In the present invention, the resin injection path and the resin discharge path on both surfaces of the foam core may be penetrated by holes having a diameter of 1.0 to 5.0 mm between the injection paths and the discharge paths, respectively. In such a case, the fluidity of the resin is made more uniform on both sides of the foam core. When forming a through-hole in a foam core, the through-hole should just penetrate the thickness direction with respect to the foam core, but it is preferable that it is substantially perpendicular | vertical. About 600 to 1600 through holes are preferably formed per 1 m 2 . In addition, the width, depth, and pitch of the grooves formed on both surfaces of the foam core are not necessarily the same shape and number as long as they are within the above ranges, but the resin diffusion rate is about the same on both surfaces of the foam core. Therefore, it is preferable to form an equivalent.

本発明においては、発泡コアの少なくとも一つの面に、基材を積層したものを用いるのも好ましい。基材としては、繊維強化材が発泡コアの溝に落ち込まないような剛軟度を有するものであれば、どのような材質のものであってもよいが、発泡コアや繊維強化材と一体化させるため、使用する樹脂や発泡コア、繊維強化材との密着性が高い材質が好ましい。具体的には、熱可塑性樹脂やガラス繊維、炭素繊維、アラミド繊維、ボロン繊維等の強化繊維からなる不織布又は網状シートなどが例示できる。かかる基材を挿入しておくと、繊維強化材の平滑性に対するコア材の溝の影響を減少することができ、表面平滑性に優れたサンドイッチパネルを得ることができる。 In the present invention, it is also preferable to use a laminate in which a base material is laminated on at least one surface of the foam core. As the base material, any material may be used as long as the fiber reinforcement has a bending resistance so that it does not fall into the groove of the foam core, but it is integrated with the foam core and the fiber reinforcement. Therefore, a material having high adhesion to the resin, the foam core, and the fiber reinforcement used is preferable. Specifically, a nonwoven fabric or a net-like sheet made of a reinforcing fiber such as a thermoplastic resin, glass fiber, carbon fiber, aramid fiber, or boron fiber can be exemplified. When such a base material is inserted, the influence of the groove of the core material on the smoothness of the fiber reinforcement can be reduced, and a sandwich panel excellent in surface smoothness can be obtained.

本発明において用いられる繊維強化材としては、炭素繊維、ガラス繊維、アラミド繊維、ボロン繊維、金属繊維等の、通常の繊維強化材に用いる材料が使用できる。中でも、炭素繊維、ガラス繊維、アラミド繊維が好ましい。繊維強化材の形態としては特に制限されず、織物又は不織布等が利用できる。織物としては、強化繊維フィラメントの束(強化繊維ストランド)を使用した織物を挙げることができ、例えば、経糸と緯糸に強化繊維ストランドを使用した平織物、綾織物、繻子織物等、あるいは一軸織物、多軸織物等を挙げることができる。織物を形成する強化繊維ストランドは、繊維径4〜8μmのモノフィラメントを一束あたり500〜24,000本とすることが好ましい。なお、一軸織物とは、互いに平行に並んだ強化繊維ストランドをナイロン糸、ポリエステル糸、ガラス繊維糸等で編んだ織物をいう。多軸織物とは、互いに平行に並んだ強化繊維ストランドを角度を変えて積層してナイロン糸、ポリエステル糸、ガラス繊維糸等で編んだ織物をいう。 As the fiber reinforcing material used in the present invention, materials used for ordinary fiber reinforcing materials such as carbon fiber, glass fiber, aramid fiber, boron fiber, metal fiber and the like can be used. Among these, carbon fiber, glass fiber, and aramid fiber are preferable. The form of the fiber reinforcement is not particularly limited, and a woven fabric or a nonwoven fabric can be used. Examples of the woven fabric include woven fabrics using bundles of reinforcing fiber filaments (reinforced fiber strands), such as plain fabrics, twill fabrics, cocoon fabrics, or uniaxial fabrics using reinforcing fiber strands for warp and weft, A multiaxial woven fabric etc. can be mentioned. The reinforcing fiber strands forming the woven fabric are preferably 500 to 24,000 monofilaments having a fiber diameter of 4 to 8 μm per bundle. The uniaxial woven fabric refers to a woven fabric in which reinforcing fiber strands arranged in parallel to each other are knitted with nylon yarn, polyester yarn, glass fiber yarn or the like. The multiaxial woven fabric refers to a woven fabric in which reinforcing fiber strands arranged in parallel to each other are laminated at different angles and knitted with nylon yarn, polyester yarn, glass fiber yarn or the like.

繊維強化材として織物を使用する場合には、複数の織物を互いに角度を変えて積層してもよい。繊維強化材はそれ自体が強化繊維の配向が面対称のものを用いるか、あるいは複数の繊維強化材を強化繊維の配向が面対称となるように組み合わせて積層し使用することが好ましい。面対称の繊維強化材あるいは積層して面対称とした繊維強化材を用いることにより、積層板とした際に表面板の反りを防止できる。織物の厚さは積層板の用途により適宜選択するものであり特に制限はないが、通常0.2〜5.0mm程度とすることが好ましい。繊維強化材の目付は、使用する繊維強化材により異なるが、炭素繊維の場合には発泡コア片面当り300〜5,000g/m程度が好ましく、300〜2,000g/m程度がより好ましい。 When a woven fabric is used as the fiber reinforcement, a plurality of woven fabrics may be laminated at different angles. It is preferable that the fiber reinforcing material itself has a plane-symmetrical orientation of the reinforcing fibers, or a plurality of fiber reinforcing materials are combined and laminated so that the orientations of the reinforcing fibers are plane-symmetrical. By using a plane symmetric fiber reinforcing material or a laminated and plane symmetric fiber reinforcing material, warpage of the surface plate can be prevented when a laminated plate is formed. The thickness of the woven fabric is appropriately selected depending on the use of the laminated board and is not particularly limited, but is usually preferably about 0.2 to 5.0 mm. The basis weight of the fiber reinforcement varies depending on the fiber reinforcement used, but in the case of carbon fiber, it is preferably about 300 to 5,000 g / m 2 , more preferably about 300 to 2,000 g / m 2 per one side of the foam core. .

本発明において用いられる熱硬化性樹脂としては、エポキシ樹脂、不飽和ポリエステル樹脂、フェノール樹脂、メラミン樹脂、ポリウレタン樹脂、シリコン樹脂、マレイミド樹脂、ビニルエステル樹脂、シアン酸エステル樹脂、マレイミド樹脂とシアン酸エステル樹脂を予備重合した樹脂等があり、これらの熱硬化性樹脂を適宜量配合したものでも良い。これらの樹脂のうち、耐熱性、弾性率、耐薬品性に優れたエポキシ樹脂組成物、ビニルエステル樹脂組成物が好ましい。これらの熱硬化性樹脂には、硬化剤、硬化促進剤等が含まれていてもよい。 Examples of the thermosetting resin used in the present invention include epoxy resins, unsaturated polyester resins, phenol resins, melamine resins, polyurethane resins, silicone resins, maleimide resins, vinyl ester resins, cyanate ester resins, maleimide resins and cyanate esters. There are resins obtained by prepolymerizing resins, and these thermosetting resins may be blended in appropriate amounts. Of these resins, epoxy resin compositions and vinyl ester resin compositions excellent in heat resistance, elastic modulus, and chemical resistance are preferable. These thermosetting resins may contain a curing agent, a curing accelerator and the like.

以下、図を参照して、本発明のサンドイッチ積層板の製造方法の一例について説明する。
図1は、下型とバギングフィルムを用いた、樹脂トランスファー成形法を示している。シリコーンワックス等の公知の離型剤を用いて離型処理した下型1上に、繊維強化材2、発泡コア3、繊維強化材2からなる積層材料を順次積重する。発泡コアには両面に所定の幅、深さを有する樹脂注入路4と樹脂排出路5が所定のピッチで形成してある。
Hereinafter, an example of the manufacturing method of the sandwich laminate of the present invention will be described with reference to the drawings.
FIG. 1 shows a resin transfer molding method using a lower mold and a bagging film. A laminated material composed of the fiber reinforcement 2, the foam core 3, and the fiber reinforcement 2 is sequentially stacked on the lower mold 1 that has been subjected to a release treatment using a known release agent such as silicone wax. In the foam core, a resin injection path 4 and a resin discharge path 5 having a predetermined width and depth are formed on both surfaces at a predetermined pitch.

その後、バギングフィルム6を重ねて配置し、バギングフィルム6の周縁をシーラント7を用いて下型1と気密にシールし、積層材料を密封する。シーラント7及びこれを用いるシール方法自体は公知のものである。バギングフィルム6の材質は特に制限されず、通常用いられる公知のものを使用することができる。更に、バギングフィルム6の形状も特に制限されず、型や目的とする成形品の形状により適宜選択して用いることができる。 Thereafter, the bagging film 6 is placed in an overlapping manner, and the periphery of the bagging film 6 is hermetically sealed with the lower mold 1 using the sealant 7 to seal the laminated material. The sealant 7 and the sealing method using the sealant 7 are known. The material of the bagging film 6 is not particularly limited, and a commonly used known material can be used. Further, the shape of the bagging film 6 is not particularly limited, and can be appropriately selected and used depending on the shape of the mold and the target molded product.

図2は、発泡コア3の表面に交互に且つ互いに平行に設けられた、樹脂注入路4と樹脂排出路5の状態を示している。バギングフィルム6を用いて積層材料を密封した後、下型1とバギングフィルム6間の気体を排気して減圧にし(図1参照)、型の一端に設けた樹脂注入口(図2のA)から樹脂を注入する。注入した樹脂は、発泡コア両表面に形成した樹脂注入路4と樹脂排出路5を通って繊維強化材2全体に拡散し、過剰なものは樹脂排出口(図2のB)から排出される。 FIG. 2 shows a state of the resin injection path 4 and the resin discharge path 5 provided alternately and parallel to the surface of the foam core 3. After sealing the laminated material with the bagging film 6, the gas between the lower mold 1 and the bagging film 6 is exhausted to reduce the pressure (see FIG. 1), and the resin injection port provided at one end of the mold (A in FIG. 2) Inject resin. The injected resin diffuses throughout the fiber reinforcement 2 through the resin injection path 4 and the resin discharge path 5 formed on both surfaces of the foam core, and the excess is discharged from the resin discharge port (B in FIG. 2). .

注入する樹脂は加熱等により注入時の粘度を0.01〜1Pa・sとすることが好ましい。また、樹脂の注入は、樹脂の注入時間を短縮し、低い射出圧力で樹脂を注入することができるため下型1とバギングフィルム6間の気体を排気しながら行うことが好ましい。あるいは、効率よく樹脂を繊維強化材2に含浸させるため、下型1とバギングフィルム6間の気体を排気するとともに、バギングフィルム6の外部側から繊維強化材側に向かって加圧しても良い。この場合、加圧圧力は0.01〜0.5MPaとすることが好ましい。その後、オーブン等を用いて型とバギングフィルムごと全体を加熱することにより、繊維強化材2に含浸した樹脂を硬化させる。加熱温度は60〜200℃が好ましい。加熱時においても、下型1とバギングフィルム6間の気体を排気しながら行うことが好ましい。 The resin to be injected preferably has a viscosity at the time of injection of 0.01 to 1 Pa · s by heating or the like. The resin injection is preferably performed while exhausting the gas between the lower mold 1 and the bagging film 6 because the resin injection time can be shortened and the resin can be injected at a low injection pressure. Alternatively, in order to efficiently impregnate the fiber reinforcement 2 with resin, the gas between the lower mold 1 and the bagging film 6 may be exhausted and pressurized from the outside of the bagging film 6 toward the fiber reinforcement. In this case, the pressurizing pressure is preferably 0.01 to 0.5 MPa. Then, the resin impregnated in the fiber reinforcement 2 is cured by heating the entire mold and bagging film using an oven or the like. The heating temperature is preferably 60 to 200 ° C. Even during heating, it is preferable that the gas between the lower mold 1 and the bagging film 6 is exhausted.

図1において、発泡コアの少なくとも一つの面に、基材を積層したものを用いるのも好ましい。基材としては、繊維強化材が発泡コアの溝に落ち込まないような剛軟度を有するものであれば、どのような材質のものであってもよい。かかる基材を挿入しておくと、繊維強化材の平滑性に対するコア材の溝の影響を減少することができ、表面平滑性に優れたサンドイッチパネルを得ることができる。あるいはまた、成形品を取出す際の離型性を高める目的で、繊維強化材2上にはピールクロス等を重ねてもよい。 In FIG. 1, it is also preferable to use a laminate in which a base material is laminated on at least one surface of a foam core. As the base material, any material may be used as long as the fiber reinforcing material has a bending resistance so that it does not fall into the groove of the foam core. When such a base material is inserted, the influence of the groove of the core material on the smoothness of the fiber reinforcement can be reduced, and a sandwich panel excellent in surface smoothness can be obtained. Alternatively, a peel cloth or the like may be stacked on the fiber reinforcement 2 for the purpose of improving the releasability when taking out the molded product.

図1においては、下型1とバギングフィルム6を用いる例を示したが、本発明においては金型、FRP型等の剛性を有する分割型を用いてもよい。剛性を有する分割型を用いた場合も、上記と同様の操作を行うことによりサンドイッチ積層板を製造することができる。 In FIG. 1, an example using the lower mold 1 and the bagging film 6 is shown. However, in the present invention, a split mold having rigidity such as a mold, an FRP mold or the like may be used. Even when a split mold having rigidity is used, a sandwich laminate can be manufactured by performing the same operation as described above.

炭素繊維UT500−12K(東邦テナックス社製)を使用した平織物I(CF目付380g/m、ストランド幅4.5mm)を幅1,000mm、長さ1,000mmにカットした。断面が正方形の溝(幅2.0mm、深さ2.0mm、ピッチ40mm)を両面に、図2に示した様な状態に彫ったアクリル発泡コア(幅1,000mm、長さ1,000mm、厚さ10mm)を用意し、離型処理を施したアルミ板上に織物Iを2plyを積層し、次に、交互溝付きコアを積層し、その上に、織物Iを2plyを積層した。次いで、このアルミ板に、シーラントテープと樹脂注入用及び排出用のホースを配置し、積層した材料全体をバギングフィルム(エアテック社製)で覆い密封した。 A plain woven fabric I (CF basis weight 380 g / m 2 , strand width 4.5 mm) using carbon fiber UT500-12K (manufactured by Toho Tenax Co., Ltd.) was cut into a width of 1,000 mm and a length of 1,000 mm. Acrylic foam core (width: 1,000 mm, length: 1,000 mm, carved in a state as shown in FIG. 2 on both sides of a groove having a square cross section (width 2.0 mm, depth 2.0 mm, pitch 40 mm) 10 mm in thickness) was prepared, and 2 ply of woven fabric I was laminated on an aluminum plate subjected to a release treatment, and then a core with alternating grooves was laminated, and 2 ply of woven fabric I was laminated thereon. Next, a sealant tape and a resin injection / discharge hose were disposed on the aluminum plate, and the entire laminated material was covered with a bagging film (manufactured by Airtech) and sealed.

樹脂注入用ホースの口を閉じた後、樹脂排出用ホースから真空ポンプでバギングフィルム内を真空にした。続いてアルミ板を80℃に加温し、キャビティー内を5torr以下に減圧した後、樹脂注入口を通して、真空系内へ混合樹脂(EP-807:100質量部とジェファーミンT-403:45質量部の混合物で、60℃に加温し樹脂注入前に混合を行ったもの)の注入を行った。注入した混合樹脂が基材に含浸した状態で、80℃で2時間保持し、樹脂を硬化させ、サンドイッチ積層板を得た。得られた積層板は樹脂の未含浸部分がなく、また、表面ボイドも無く品位の高いものであった。 After closing the mouth of the resin injection hose, the bagging film was evacuated with a vacuum pump from the resin discharge hose. Subsequently, the aluminum plate was heated to 80 ° C., the inside of the cavity was reduced to 5 torr or less, and then mixed resin (EP-807: 100 parts by mass and Jeffermin T-403: 45 through the resin inlet into the vacuum system). A mixture of parts by mass, which was heated to 60 ° C. and mixed before resin injection, was injected. In a state where the injected mixed resin was impregnated into the base material, the resin was cured at 80 ° C. for 2 hours to obtain a sandwich laminate. The obtained laminated board had no resin non-impregnated portion and had no surface voids and was of high quality.

図3に示した様な離型処理を施した金型の下型8に、幅1,000mm、長さ1,000mmにカットした平織物Iを2ply積層し、次に、実施例1の交互溝付きコアを積層し、その上に、幅1,000mm、長さ1,000mmにカットした織物Iを2plyを積層した。次いで、上型9を型締めし、樹脂注入口10に注入用ホースを設置し、樹脂排出口11に排出用ホースを設置した。図4は、下型8に敷設された織物I(基材)2とコア3
の状態を示す断面図である。12はOリングである。
3 ply of plain fabric I cut to a width of 1,000 mm and a length of 1,000 mm is laminated on the lower mold 8 of the mold subjected to the mold release treatment as shown in FIG. The grooved core was laminated, and 2 ply of the fabric I cut to a width of 1,000 mm and a length of 1,000 mm was laminated thereon. Next, the upper mold 9 was clamped, an injection hose was installed at the resin injection port 10, and a discharge hose was installed at the resin discharge port 11. FIG. 4 shows the fabric I (base material) 2 and the core 3 laid on the lower mold 8.
It is sectional drawing which shows this state. Reference numeral 12 denotes an O-ring.

樹脂注入用ホースの口を閉じた後、樹脂排出用ホースから真空ポンプで金型内を真空にした。続いて金型を80℃に加温し、キャビティー内を5torr以下に減圧した後、樹脂注入口10を通して、真空系内へ混合樹脂(EP807:100質量部とジェファーミンT-403:45質量部の混合物で、60℃に加温し樹脂注入前に混合を行ったもの)の注入を行った。注入した混合樹脂が基材に含浸した状態で、80℃で2時間保持した。樹脂を硬化させた後、脱型し、サンドイッチ積層板を得た。得られた積層板は樹脂の未含浸部分がなく、また、表面ボイドも無く品位の高いものであった。 After closing the mouth of the resin injection hose, the inside of the mold was evacuated with a vacuum pump from the resin discharge hose. Subsequently, the mold was heated to 80 ° C., the pressure in the cavity was reduced to 5 torr or less, and then mixed resin (EP807: 100 parts by mass and Jeffamine T-403: 45 parts by mass through the resin inlet 10 into the vacuum system). Part of the mixture, which was heated to 60 ° C. and mixed before resin injection) was injected. The substrate was held at 80 ° C. for 2 hours in a state where the injected mixed resin was impregnated into the base material. After the resin was cured, it was demolded to obtain a sandwich laminate. The obtained laminated board had no resin non-impregnated portion and had no surface voids and was of high quality.

[比較例1]
断面が正方形の溝(幅2.0mm、深さ2.0mm、ピッチ40mm)をアクリル発泡コア3(幅1,000mm、長さ1,000mm、厚み10mm)の両面に、図5に示した様な連続状態に彫ったコアを準備した以外は、実施例1と同様にしてサンドイッチ積層板を得た。得られた積層板は樹脂の未含浸部分が数箇所発生し、品位は悪い結果であった。
[Comparative Example 1]
As shown in FIG. 5, grooves having a square cross section (width 2.0 mm, depth 2.0 mm, pitch 40 mm) are formed on both sides of the acrylic foam core 3 (width 1,000 mm, length 1,000 mm, thickness 10 mm). A sandwich laminate was obtained in the same manner as in Example 1 except that a core carved into a continuous state was prepared. The obtained laminate had several unimpregnated portions of resin, and the quality was poor.

[比較例2]
断面が正方形の溝(幅2.0mm、深さ2.0mm、ピッチ40mm)をアクリル発泡コア3(幅1,000mm、長さ1,000mm、厚み10mm)両面に、図5に示した様な連続状態に彫ったコアを準備した以外は、実施例2と同様にしてサンドイッチ積層板を得た。得られた積層板は樹脂の未含浸部分が数箇所発生し、品位は悪い結果であった。


[Comparative Example 2]
As shown in FIG. 5, grooves having a square cross section (width 2.0 mm, depth 2.0 mm, pitch 40 mm) are formed on both sides of the acrylic foam core 3 (width 1,000 mm, length 1,000 mm, thickness 10 mm). A sandwich laminate was obtained in the same manner as in Example 2 except that a core carved in a continuous state was prepared. The resulting laminate had several unimpregnated portions of resin, and the quality was poor.


本発明のサンドイッチ積層板の製造方法の一例を説明する図である。It is a figure explaining an example of the manufacturing method of the sandwich laminated board of this invention. 本発明に用いられる発泡コア表面の、樹脂注入路と樹脂排出路の状態を説明する図である。It is a figure explaining the state of the resin injection path and the resin discharge path of the foam core surface used for this invention. 本発明のサンドイッチ積層板の金型による製造方法の一例を説明する図である。It is a figure explaining an example of the manufacturing method by the metal mold | die of the sandwich laminated sheet of this invention. 図3の金型の下型の断面の状態を示す図である。It is a figure which shows the state of the cross section of the lower mold | type of the metal mold | die of FIG. 比較例として用いた発泡コア表面の、樹脂注入路と樹脂排出路の状態を示す図である。It is a figure which shows the state of the resin injection path and resin discharge path of the foam core surface used as a comparative example.

符号の説明Explanation of symbols

1 下型
2 繊維強化材
3 発泡コア
4 樹脂注入路
5 樹脂排出路
6 バギングフィルム
7 シーラント
8 金型の下型
9 金型の上型
10
金型の樹脂注入口
11
金型の樹脂排出口
12
Oリング

1 Lower mold 2 Fiber reinforcement 3 Foam core 4 Resin injection path 5 Resin discharge path 6 Bagging film
7 Sealant 8 Lower mold 9 Mold upper 10
Mold resin inlet 11
Mold resin outlet 12
O-ring

Claims (4)

繊維強化材、発泡コア、繊維強化材を下型の一面上に順次積重し、これらの上にバギングフィルム又は上型を重ねると共に気密にシール又は型締めし、下型とバギングフィルム又は上型との間を排気して、樹脂トランスファー成形法により熱硬化性樹脂を注入して硬化させるサンドイッチ積層板の製造方法において、発泡コアとして、その両面に樹脂注入路と樹脂排出路を交互に且つ互いに実質的に平行に設けたものを用い、熱硬化性樹脂を樹脂注入路から注入し樹脂排出路から排出することにより、繊維強化材に含浸せしめることを特徴とするサンドイッチ積層板の製造方法。 A fiber reinforcement, a foam core, and a fiber reinforcement are sequentially stacked on one side of the lower mold, and a bagging film or upper mold is stacked on top of them, and hermetically sealed or clamped, and the lower mold and the bagging film or upper mold. In a method for manufacturing a sandwich laminate in which a thermosetting resin is injected and cured by a resin transfer molding method, the resin injection path and the resin discharge path are alternately arranged on both sides of the foam core. A method for producing a sandwich laminate comprising impregnating a fiber reinforcement by using a material provided substantially in parallel and injecting a thermosetting resin from a resin injection path and discharging the resin from the resin discharge path. 発泡コアの両面に設けた樹脂注入路と樹脂排出路が、それぞれ幅が0.5〜5mm、深さが1〜5mm、ピッチ(溝の間隔)が20〜100mmの溝である請求項1記載のサンドイッチ積層板の製造方法。 The resin injection path and the resin discharge path provided on both surfaces of the foam core are grooves each having a width of 0.5 to 5 mm, a depth of 1 to 5 mm, and a pitch (groove interval) of 20 to 100 mm. Method for manufacturing sandwich laminates. 樹脂注入路と樹脂排出路は、それぞれ樹脂注入口と樹脂排出口につながっていることを特徴とする請求項1又は2記載のサンドイッチ積層板の製造方法。 3. The method for manufacturing a sandwich laminate according to claim 1, wherein the resin injection path and the resin discharge path are connected to a resin injection port and a resin discharge port, respectively. 発泡コアの少なくとも一つの面に、基材を積層したものを用いる請求項1〜3のいずれか1項記載のサンドイッチ積層板の製造方法。



The manufacturing method of the sandwich laminated board of any one of Claims 1-3 using what laminated | stacked the base material on the at least one surface of the foam core.



JP2006092522A 2006-03-29 2006-03-29 Manufacturing process of sandwich laminate Withdrawn JP2007261212A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006092522A JP2007261212A (en) 2006-03-29 2006-03-29 Manufacturing process of sandwich laminate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006092522A JP2007261212A (en) 2006-03-29 2006-03-29 Manufacturing process of sandwich laminate

Publications (1)

Publication Number Publication Date
JP2007261212A true JP2007261212A (en) 2007-10-11

Family

ID=38634664

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006092522A Withdrawn JP2007261212A (en) 2006-03-29 2006-03-29 Manufacturing process of sandwich laminate

Country Status (1)

Country Link
JP (1) JP2007261212A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009012359A (en) * 2007-07-06 2009-01-22 Toho Tenax Co Ltd Molding method of frp molded item with foam core

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009012359A (en) * 2007-07-06 2009-01-22 Toho Tenax Co Ltd Molding method of frp molded item with foam core

Similar Documents

Publication Publication Date Title
US10329696B2 (en) Curable prepregs with surface openings
JP4803028B2 (en) Preform, FRP, and production method thereof
JP4515526B2 (en) Resin transfer molding method
EP2495099B1 (en) Fiber-reinforced molded product and method for producing same
US20060125155A1 (en) Method of rtm molding
EP2682247B1 (en) Rtm molding device, rtm molding method, and semi-molded body
US20100248573A1 (en) Flexible 3-d textile structure and method of producing thereof
JP2001062932A (en) Fiber-reinforced resin structural body and manufacture of the same
JP2008246690A (en) Resin transfer molding method
JP4839523B2 (en) Manufacturing method of fiber reinforced resin
JP2004188965A (en) Manufacturing process and device for fiber reinforced resin structure
JP4471672B2 (en) Resin transfer molding method and sandwich laminate manufacturing method
JP2007261212A (en) Manufacturing process of sandwich laminate
WO2013025115A1 (en) Three- dimensional (3d) knitted reinforced composite structure production method thereof
JP2006015611A (en) Method for producing sandwich laminate
JP4371671B2 (en) Resin transfer molding method and sandwich laminate manufacturing method
JP4764121B2 (en) Resin transfer molding method.
JP4330364B2 (en) Resin transfer molding method
JP2018192717A (en) Reinforcing fiber base material and preform
JP2008302498A (en) Resin transfer molding method and composite material
JP4824462B2 (en) Manufacturing method of fiber reinforced composite material
JP2005335242A (en) Method for producing sandwich laminate
JP2004262084A (en) Resin transfer molding method and method for manufacturing sandwiched laminated sheet
JP5638492B2 (en) Fiber-reinforced plastic structure and method for manufacturing the same
JP2004122527A (en) Method for producing frp molded product

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090206

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20100917

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20101201