JP4371671B2 - Resin transfer molding method and sandwich laminate manufacturing method - Google Patents

Resin transfer molding method and sandwich laminate manufacturing method Download PDF

Info

Publication number
JP4371671B2
JP4371671B2 JP2003040896A JP2003040896A JP4371671B2 JP 4371671 B2 JP4371671 B2 JP 4371671B2 JP 2003040896 A JP2003040896 A JP 2003040896A JP 2003040896 A JP2003040896 A JP 2003040896A JP 4371671 B2 JP4371671 B2 JP 4371671B2
Authority
JP
Japan
Prior art keywords
resin
mold
bagging film
lower mold
fiber reinforcement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003040896A
Other languages
Japanese (ja)
Other versions
JP2004249527A (en
Inventor
清人 佐々木
徹 金子
禎孝 梅元
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toho Rayon Co Ltd
Original Assignee
Toho Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toho Rayon Co Ltd filed Critical Toho Rayon Co Ltd
Priority to JP2003040896A priority Critical patent/JP4371671B2/en
Publication of JP2004249527A publication Critical patent/JP2004249527A/en
Application granted granted Critical
Publication of JP4371671B2 publication Critical patent/JP4371671B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、網状立体構造を有する樹脂流動基材を用いた樹脂トランスファー成形法及びサンドイッチ積層板の製造方法に関する。
【0002】
【従来の技術及び発明が解決しようとする課題】
樹脂トランスファー成形法は、熱硬化性樹脂を用いた成形法の一種で、型のキャビティーに樹脂を注入して硬化させることにより成形品を得る方法である。樹脂トランスファー成形法は、繊維強化プラスチック、サンドイッチ積層板等の製造に用いられている。
【0003】
樹脂を注入する型としては一般的に剛性の高い金型が用いられるが、大型の成形品の製造を目的とする場合には型の一部を柔軟性を有するバギングフィルムに置き換えて成形が行われている。
【0004】
樹脂トランスファー成形法を用いた繊維強化プラスチックの成形は、繊維強化材を型に敷設した後、型のキャビティーに樹脂を注入して繊維強化材に樹脂を含浸させ硬化させることにより行う。注入する樹脂は粘度が高く、樹脂の拡散速度が遅いため、樹脂の注入に長時間を要している。このため、樹脂トランスファー成形においては従来より樹脂の流動速度を向上させるべく樹脂流動基材が用いられている(特許文献1)。
【0005】
樹脂流動基材は、厚さ0.2〜5.0mm程度の網状の編物又は織物で、繊維強化材に重ねて配置される。成形時には樹脂流動基材が樹脂の流路となって、樹脂を繊維強化材全体に短時間で行き渡らせることができる。
【0006】
【特許文献1】
特開2002−192535号公報(第3頁、段落番号(0020))
【0007】
【課題を解決するための手段】
本発明者は鋭意研究を重ねた結果、樹脂流動基材を用いた樹脂トランスファー成形法において、従来の平面網状の樹脂流動基材に代えて網状立体構造を有する編織物を用いれば、より樹脂を流動させやすく、品位の高い成形品が歩留まり良く得られ、更に成形に際して種々の製造条件の制御が簡単にできることを見出し本発明を完成するに到った。
【0008】
上記課題を解決する本発明は、以下に記載するものである。
【0009】
〔1〕 下型に繊維強化材を敷設し、バギングフィルム又は上型を重ねてバギングフィルム周縁を下型に気密にシールし又は上型と下型とを型締めした後、バギングフィルム又は上型と下型との間を排気し樹脂を繊維強化材に注入する樹脂トランスファー成形法において、
(1)バギングフィルムと繊維強化材との間及び/若しくは下型と繊維強化材の間、又は
(2)上型と繊維強化材との間及び/若しくは下型と繊維強化材との間
に網状立体構造を有する樹脂流動基材を配置することを特徴とする樹脂トランスファー成形法。
【0010】
〔2〕 下型の一面上に繊維強化材、コア材、繊維強化材を順次積重し、これらの上にバギングフィルム又は上型を重ねてバギングフィルム周縁を下型に気密にシールし又は上型と下型とを型締めし、バギングフィルム又は上型と下型との間を排気した後、樹脂トランスファー成形法により樹脂を注入し硬化するサンドイッチ積層板の製造方法において、
(1)バギングフィルムと繊維強化材との間及び/若しくは下型と繊維強化材の間、又は
(2)上型と繊維強化材との間及び/若しくは下型と繊維強化材との間
に網状立体構造を有する樹脂流動基材を配置することを特徴とするサンドイッチ積層板の製造方法。
【0011】
【発明の実施の形態】
本発明で用いる樹脂流動基材は網状立体構造を有する編織物であって、編織物に対して垂直方向に立ち上がった編目を有している点で従来の平面網状の樹脂流動基材と相違する。かかる編織物としては、例えば特開2002−146657号公報記載の六角形状の開口部を有する立体構造編地を挙げることができる。
【0012】
樹脂流動基材の厚さは注入する樹脂の粘度や成形品の用途等により適宜決定されるが、通常0.2〜5.0mmが好ましく、0.5〜2.0mmがより好ましい。樹脂流動基材の厚さは、樹脂流動基材に使用する糸の太さ、材質等を変えることにより所望のものとすることができる。
【0013】
また、樹脂流動基材の開口幅は0.2〜5.0mmとすることが好ましく、0.5〜2.0mmとすることがより好ましい。
【0014】
樹脂流動基材に用いる糸の材質としては、通常用いられるナイロン、ポリエステル等のほか、炭素繊維、アラミド繊維等の強化繊維を用いることもできる。強化繊維を用いた樹脂流動基材は、成形後樹脂流動基材を除去することなく成形品の一部とする場合に成形品の強度を高めることができ極めて有用である。
【0015】
樹脂流動基材に用いる糸の太さは、1〜200dtexとすることが好ましい。
【0016】
通常の平面網状の樹脂流動基材を用いた樹脂トランスファー成形法は、比較的簡単な形状の構造物を製造することはできたが、複雑な形状を有する構造物を作ることは難しかった。網状立体構造を有する樹脂流動基材を用いることにより樹脂流動基材の曲面への追従性が増し、平面網状織物では成形しにくかった複雑な形状を持つ構造物の成形も容易になる。
【0017】
また、従来の平面網状の樹脂流動基材を用いた樹脂トランスファー成型法では、平面の編織物で樹脂の流路を確保しなくてはならないため、200〜1000dtex程度の太い糸を用いて厚い編織物とする必要があった。この場合、成形物の大きさに合わせて切断した樹脂流動基材の端部が鋭利になり、バギングフィルムを傷つけ、成形品にボイドが浸入することもあった。本発明で用いる網状立体構造を有する樹脂流動基材は、その構造自体が十分な厚みを有しており太い糸を用いる必要がない。そのため、たとえ切断により樹脂流動基材の端部が鋭利になったとしてもバギングフィルムを傷つけることなく、結果として成形物品位の向上や製品の歩留まり向上に寄与する。
【0018】
以下、図1を参照して本発明の樹脂トランスファー成形法について説明する。
【0019】
まずシリコーン油等の公知の離型剤を用いて離型処理した型3上に、繊維強化材1、樹脂流動基材2を順に敷設する(図1(a))。
【0020】
敷設した繊維強化材1及び樹脂流動基材2上にバギングフィルム7を重ねて配置し、バギングフィルム7の周縁をシーラント5を用いて型3と気密にシールし、繊維強化材1及び樹脂流動基材2を密封する。シーラント及びこれを用いるシール方法自体は公知のものである。
【0021】
バギングフィルム7の材質は特に制限されず、通常用いられるもの、例えばシリコン、ナイロン、ポリプロピレン、ポリイミド等を使用することができる。更に、バギングフィルム7の形状としては特に制限されず、型や目的とする成形品の形状により適宜選択して用いることができる。なお、本発明においてバギングフィルムは、バッグフィルム、ゴムシート、ゴムバッグ等を包含する。
【0022】
バギングフィルム7を用いて繊維強化材1と樹脂流動基材2を密封した後、型3とバギングフィルム7間の気体を排気して減圧にし(図1(b))、型の一端側に形成した樹脂注入口から樹脂を注入する。注入した樹脂は樹脂流動基材2を通って型の他端側に形成した樹脂排出口に向かって移動するとともに繊維強化材1全体に含浸する。
【0023】
樹脂の注入は、樹脂の注入時間を短縮し低い射出圧力で樹脂を注入することができることから、樹脂排出口から型3とバギングフィルム7間を排気しながら行うことが好ましい。
【0024】
更に効率よく樹脂を行き渡らせ繊維強化材に含浸させるため、型3とバギングフィルム7間の気体を樹脂排出口から排気すると共にバギングフィルム7の外部側から繊維強化材1側に向かって加圧しても良い。この場合、加圧圧力は0.01〜0.5MPaとすることが好ましい。
【0025】
その後、オーブン等を用いて樹脂を注入した繊維強化材1を樹脂流動基材2、型3及びバギングフィルム7ごと加熱することにより、繊維強化材に注入した樹脂を硬化させる(図1(c))。得られた成形品は繊維強化材1に樹脂が含浸して硬化した樹脂含浸層9、樹脂流動基材に存在する樹脂が樹脂流動基材と共に硬化した樹脂層10、その表面を覆う樹脂が硬化した表面樹脂層11とからなる。
【0026】
注入した樹脂を硬化させる際においても、型3とバギングフィルム7間の気体を排気しながら行うことが好ましい。
【0027】
なお、図1においては樹脂流動基材2を繊維強化材1とバギングフィルム7との間に配置したが、樹脂流動基材2に代えて、あるいは樹脂流動基材2と共に繊維強化材1と型3との間に他の樹脂流動基材を配置してもよい。
【0028】
また、成形品の軽量化のため樹脂層10を除去する場合、樹脂層10の離型性を高める目的で、繊維強化材1と樹脂流動基材2の間にピールクロス等を挿入して用いてもよい。
【0029】
本発明の樹脂トランスファー成形法に用いる繊維強化材としては、炭素繊維、ガラス繊維、アラミド繊維、ボロン繊維、金属繊維等の通常の繊維強化材に用いる材料が使用できる。中でも、炭素繊維、ガラス繊維、アラミド繊維が好ましい。
【0030】
これらの繊維強化材の形態は特に制限されず、織物、不織布等が利用できる。
【0031】
繊維強化材として織物を用いる場合にはいずれの織形式のものを用いても良いが、それ自体が面対称のものを用いるか、複数の繊維強化材を面対称となるように組み合わせて積重し使用することが好ましい。面対称の繊維強化材あるいは積重して面対称とした繊維強化材を用いることにより、成形品とした際に成形品の反りを防止できる。
【0032】
面対称の織物又は積重して面対称とすることができる織物としては、一方向織物、多軸織物を挙げることができる。
【0033】
なお、一方向織物とは、平行に並んだ繊維強化材の束(ストランド)をナイロン糸、ポリエステル糸、ガラス繊維糸等で編んだ織物をいう。多軸織物とは、一方向に引き揃えた繊維強化材の束(ストランド)をシート状にして角度を変えて積層し、ナイロン糸、ポリエステル糸、ガラス繊維糸等で編んだ織物をいう。
【0034】
面対称の多軸織物の一例の概略図を図3に示す。この例では多軸織物100は、ストランドの方向、即ち繊維の引き揃えた方向が多軸織物の長さ方向に対して順に0°、+45°、−45°、+45°、0°と面対称になっている。多軸織物100は、このように積層した5層の繊維強化材を厚さ方向にパンチングしてなる。
【0035】
他の好ましい多軸織物の例としては、〔0/−45/−45/0〕、〔0/+45/−45/−45/+45/0〕、〔0/+45/90/−45/−45/90/+45/0〕等を挙げることができる。積重して面対称となる多軸織物の組合わせとしては、例えば〔0/−45〕及び〔−45/0〕、〔0/+45/−45〕及び〔−45/+45/0〕、〔0/+45/−45/90〕及び〔90/−45/+45/0〕等を挙げることができる。一方向に引き揃えた繊維強化材を積層する角度は0°、±45°、90°に限定されず、任意の角度とすることができる。
【0036】
多軸織物の厚さは、成形品の用途により適宜選択するものであるが、通常0.2〜3mmが好ましい。
【0037】
繊維強化材の目付は1枚当り200〜4000g/m2が好ましく、400〜2000g/m2がより好ましい。
【0038】
本発明の樹脂トランスファー成形法で用いる樹脂としては、通常成形品の製造に用いる熱硬化性樹脂が使用できる。具体的には、エポキシ樹脂、不飽和ポリエステル樹脂、フェノール樹脂、メラミン樹脂、ポリウレタン樹脂、シリコン樹脂、マレイミド樹脂、ビニルエステル樹脂、シアン酸エステル樹脂、マレイミド樹脂とシアン酸エステル樹脂を予備重合した樹脂等が挙げられ、本発明においてはこれらの樹脂の混合物を使用することもできる。繊維強化複合材料を用途とする場合には、耐熱性、弾性率、耐薬品性に優れたエポキシ樹脂組成物、ビニルエステル組成物が好ましい。これらの熱硬化性樹脂には、硬化剤、硬化促進剤等が含まれていてもよい。
【0039】
熱硬化性樹脂は加熱等により樹脂注入時の粘度が0.01〜1Pa・sとなるものが好ましい。
【0040】
次に、本発明のサンドイッチ積層板の製造方法について図2を参照して説明する。
【0041】
離型処理した型3上に、網状立体構造を有する樹脂流動基材12、繊維強化材13、コア材14、繊維強化材15、網状立体構造を有する樹脂流動基材16を順次積重する。その後、バギングフィルムで積層材料を密封し上記の樹脂トランスファー成形法と同様の操作を行ってサンドイッチ積層板を製造する。
【0042】
なお、樹脂流動基材を除去することなくサンドイッチ積層板の一部とする場合には、積層材料を積重する順序は図2に示す限りではなく、繊維強化材に樹脂を供給することができるように積重を行えばいかなる順序であってもよい。
【0043】
コア材としては、ウレタンフォーム、塩化ビニルフォーム、ポリメタアクリルイミドフォーム、アクリルフォーム、フェノールフォーム、ポリスチレンフォーム等が例示できる。また、バルサ材も使用できる。
【0044】
コア材の厚さはサンドイッチ積層板の用途により適宜選択するものであるが、通常1〜200mmが好ましい。
【0045】
図1及び2においては型とバギングフィルムを用いる場合を示したが、本発明においては金型、FRP型等の剛性を有する分割型を用いてもよい。分割型を用いて樹脂トランスファー成形を行った場合の断面図の一例を図4に示す。
【0046】
【実施例】
以下、実施例により本発明を更に詳細に説明する。
【0047】
実施例1
炭素繊維HTA−12K(東邦テナックス社製)を使用した多軸織物▲1▼([0/+45/90/−45]):CF目付600g/m2)を幅1000mm、長さ1000mmにカットした。断面が長方形の溝(幅20mm、深さ30mm、R2mm)が複数繰り返されるアルミ板を離型処理し、多軸織物▲1▼を0°層を下側にして溝の形成方向が織物の0°方向と一致するようにアルミ板上に配置した。多軸織物▲1▼と同様にして得た多軸織物▲2▼([−45/90/+45/0]:CF目付600g/m2)を幅1000mm、長さ1000mmにカットし、積層した多軸織物▲1▼、▲2▼全体が面対称となるように0°層を上側に向けて多軸織物▲1▼上に積層した。更に多軸織物▲2▼上に網状立体構造を有する樹脂流動基材(太さ150dtexのポリエステル糸を用いて特開2002−146657号公報図2に記載の六角形状の開口部を有する立体構造編地に編んだもの、開口幅2mm、厚さ3mm)を積層した。次いで、アルミ板にシーラントテープと樹脂注入用及び排出用のホースを配置し、積層した材料全体をバギングフィルム(エアテック社製)で覆い密封した。樹脂注入用ホースの口を閉じた後、樹脂排出用ホースから真空ポンプでバギングフィルム内を真空にした。その後、リポキシR−802を100質量部、パーメックN(日本油脂社製)を1.0質量部、6%ナフテン酸コバルト(関東化学社製)を0.5質量部混合した混合液を25℃雰囲気下で樹脂注入用ホースからバギングフィルム内に注入し、硬化させて成形品を得た。バギングフィルム内に注入した混合液は、アルミ板の形状に沿った樹脂流動基材を通って多軸織物全体に速やかに行き渡った。得られた成形品は樹脂欠けがほとんどなく、製品の厚さは均一であった。
【0048】
比較例1
網状立体構造の樹脂流動基材に代えて、平面網状の樹脂流動基材(エアテック社製、商品名:Resin Flow 60)を用いた以外は実施例1と同様にして成形品を得た。
平面網状の樹脂流動基材はアルミ板の形状に沿わず突っ張ってしまい、得られた成形品は溝の形状がR5mm程度の樹脂リッチとなり、部分的に樹脂欠けが生じた。
【0049】
【発明の効果】
本発明の樹脂トランスファー成形法は、網状立体構造を有する樹脂流動基材を用いているので、従来の平面網状の樹脂流動基材を用いる成形法と比較してより品位の高い成形品を製造することができる。従って、大型の成形品であっても容易に、歩留まり良く成形することができる。更に、網状立体構造を有する樹脂流動基材は平面網状の樹脂流動基材より形状追従性が良いので、複雑形状の構造物を製造することができる。
【0050】
また、本発明のサンドイッチ積層板の製造方法によれば、製造時間が短時間であることに加えてコア材に樹脂を流すための溝や貫通孔を加工する必要がないため低コストでサンドイッチ積層板を製造することができる。
【図面の簡単な説明】
【図1】本発明の成形法の一例を示すフロー図で、(a)は繊維強化材と樹脂流動基材とをバギングフィルムと型との間にシールした状態を示す断面図、(b)はバギングフィルムと型との間を減圧した状態を示す断面図、(c)は繊維強化材に樹脂を含浸させた状態を示す断面図である。
【図2】本発明のサンドイッチ積層板の製造方法の一例を示す説明図で、積層板材料を型の一面上に敷設した状態を示す断面図である。
【図3】本発明に用いる多軸織物の一例を示す概略斜視図である。
【図4】本発明の成形法の他の例であって、分割型を用いた例を示す断面図である。
【符号の説明】
1、13、15 繊維強化材
2、12、16 樹脂流動基材
3 型
3a 上型
3b 下型
5 シーラント
7 バギングフィルム
9 樹脂含浸層
10 樹脂層
11 表面樹脂層
14 コア材
100 多軸織物
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a resin transfer molding method using a resin fluid base material having a network three-dimensional structure and a method for producing a sandwich laminate.
[0002]
[Prior art and problems to be solved by the invention]
The resin transfer molding method is a kind of molding method using a thermosetting resin, and is a method of obtaining a molded product by injecting a resin into a mold cavity and curing it. The resin transfer molding method is used for manufacturing fiber reinforced plastics, sandwich laminates, and the like.
[0003]
A highly rigid mold is generally used as the mold for injecting the resin. However, for the purpose of manufacturing a large molded product, a part of the mold is replaced with a flexible bagging film. It has been broken.
[0004]
The fiber reinforced plastic molding using the resin transfer molding method is performed by laying a fiber reinforcing material on a mold, injecting resin into a cavity of the mold, and impregnating the resin into the fiber reinforcing material and curing it. Since the resin to be injected has high viscosity and the resin diffusion rate is slow, it takes a long time to inject the resin. For this reason, in resin transfer molding, a resin fluidized substrate has been used in order to improve the resin flow rate (Patent Document 1).
[0005]
The resin fluidized base material is a net-like knitted fabric or woven fabric having a thickness of about 0.2 to 5.0 mm, and is disposed so as to overlap the fiber reinforcement. At the time of molding, the resin flow base becomes a resin flow path, and the resin can be spread over the entire fiber reinforcing material in a short time.
[0006]
[Patent Document 1]
JP 2002-192535 A (page 3, paragraph number (0020))
[0007]
[Means for Solving the Problems]
As a result of intensive research, the present inventors have found that, in a resin transfer molding method using a resin fluidized base material, if a knitted fabric having a network three-dimensional structure is used instead of a conventional planar networked resin fluidized base material, more resin can be obtained. It has been found that a molded product that is easy to flow and has high quality can be obtained with a good yield, and that various manufacturing conditions can be easily controlled during molding, and the present invention has been completed.
[0008]
The present invention for solving the above problems is described below.
[0009]
[1] A fiber reinforcing material is laid on the lower mold, the bagging film or the upper mold is overlapped, and the periphery of the bagging film is hermetically sealed to the lower mold, or the upper mold and the lower mold are clamped, and then the bagging film or the upper mold In the resin transfer molding method in which the space between the mold and the lower mold is exhausted and the resin is injected into the fiber reinforcement.
(1) Between bagging film and fiber reinforcement and / or between lower mold and fiber reinforcement, or (2) Between upper mold and fiber reinforcement and / or between lower mold and fiber reinforcement. A resin transfer molding method comprising disposing a resin fluid base material having a net-like three-dimensional structure.
[0010]
[2] A fiber reinforcing material, a core material, and a fiber reinforcing material are sequentially stacked on one surface of the lower mold, and a bagging film or an upper mold is overlapped on these, and the periphery of the bagging film is hermetically sealed to the lower mold. In the method for producing a sandwich laminate, in which a mold and a lower mold are clamped, a bagging film or an upper mold and a lower mold are evacuated, and then a resin is injected and cured by a resin transfer molding method.
(1) Between bagging film and fiber reinforcement and / or between lower mold and fiber reinforcement, or (2) Between upper mold and fiber reinforcement and / or between lower mold and fiber reinforcement. A method for producing a sandwich laminate comprising disposing a resin fluid base material having a network three-dimensional structure.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
The resin fluidized substrate used in the present invention is a knitted fabric having a network three-dimensional structure, and is different from a conventional planar mesh-shaped resin fluidized substrate in that it has stitches rising in a direction perpendicular to the knitted fabric. . Examples of such a knitted fabric include a three-dimensional structure knitted fabric having a hexagonal opening described in JP-A-2002-146657.
[0012]
Although the thickness of the resin fluidized substrate is appropriately determined depending on the viscosity of the resin to be injected, the use of the molded product, and the like, it is usually preferably 0.2 to 5.0 mm, more preferably 0.5 to 2.0 mm. The thickness of the resin fluidized substrate can be set to a desired value by changing the thickness and material of the yarn used for the resin fluidized substrate.
[0013]
Moreover, the opening width of the resin fluidized substrate is preferably 0.2 to 5.0 mm, and more preferably 0.5 to 2.0 mm.
[0014]
As the material of the yarn used for the resin fluidized base material, reinforcing fibers such as carbon fiber and aramid fiber can be used in addition to nylon and polyester which are usually used. A resin fluidized substrate using reinforcing fibers is extremely useful because it can increase the strength of the molded product when it is used as a part of the molded product without removing the resin fluidized substrate after molding.
[0015]
The thickness of the thread used for the resin fluidized substrate is preferably 1 to 200 dtex.
[0016]
The resin transfer molding method using a normal planar net-like resin fluidized substrate can produce a structure having a relatively simple shape, but it is difficult to produce a structure having a complicated shape. By using a resin fluid base material having a network three-dimensional structure, the followability of the resin fluid base material to the curved surface is increased, and it becomes easy to form a structure having a complicated shape that is difficult to form with a planar mesh fabric.
[0017]
Further, in the conventional resin transfer molding method using a planar net-like resin fluidized base material, a flow path of the resin must be secured with a flat knitted fabric, so that thick knitting is performed using a thick yarn of about 200 to 1000 dtex. It was necessary to use a woven fabric. In this case, the edge part of the resin fluidized base material cut according to the size of the molded product becomes sharp, the bagging film is damaged, and a void may enter the molded product. The resin fluid base material having a network three-dimensional structure used in the present invention has a sufficient thickness, and it is not necessary to use a thick thread. Therefore, even if the end portion of the resin fluidized substrate becomes sharp due to cutting, the bagging film is not damaged, and as a result, it contributes to improvement of molded article quality and product yield.
[0018]
Hereinafter, the resin transfer molding method of the present invention will be described with reference to FIG.
[0019]
First, the fiber reinforcing material 1 and the resin fluidized base material 2 are laid in order on a mold 3 which has been subjected to a release treatment using a known release agent such as silicone oil (FIG. 1A).
[0020]
A bagging film 7 is placed on the laid fiber reinforcing material 1 and the resin fluidized base material 2 and the periphery of the bagging film 7 is hermetically sealed with the mold 3 using a sealant 5. The material 2 is sealed. The sealant and the sealing method using the sealant are known.
[0021]
The material of the bagging film 7 is not particularly limited, and commonly used materials such as silicon, nylon, polypropylene, and polyimide can be used. Further, the shape of the bagging film 7 is not particularly limited, and can be appropriately selected and used depending on the shape of the mold and the target molded product. In the present invention, the bagging film includes a bag film, a rubber sheet, a rubber bag, and the like.
[0022]
After sealing the fiber reinforcement 1 and the resin fluidized substrate 2 using the bagging film 7, the gas between the mold 3 and the bagging film 7 is exhausted to reduce the pressure (FIG. 1 (b)), and formed on one end side of the mold. The resin is injected from the resin injection port. The injected resin moves through the resin fluidized substrate 2 toward the resin outlet formed on the other end of the mold and impregnates the entire fiber reinforcement 1.
[0023]
The resin injection is preferably performed while exhausting between the mold 3 and the bagging film 7 from the resin discharge port because the resin injection time can be shortened and the resin can be injected at a low injection pressure.
[0024]
In order to spread the resin more efficiently and impregnate the fiber reinforcing material, the gas between the mold 3 and the bagging film 7 is exhausted from the resin outlet and pressurized from the outside of the bagging film 7 toward the fiber reinforcing material 1 side. Also good. In this case, the pressurizing pressure is preferably 0.01 to 0.5 MPa.
[0025]
Then, the resin injected into the fiber reinforcing material is cured by heating the fiber reinforcing material 1 into which the resin is injected using an oven or the like together with the resin fluidized base material 2, the mold 3 and the bagging film 7 (FIG. 1C). ). The obtained molded product is a resin-impregnated layer 9 obtained by impregnating and curing the fiber reinforcing material 1 with a resin, a resin layer 10 in which a resin existing in the resin fluidized substrate is cured together with the resin fluidized substrate, and a resin covering the surface is cured. The surface resin layer 11.
[0026]
Even when the injected resin is cured, it is preferable to exhaust the gas between the mold 3 and the bagging film 7.
[0027]
In FIG. 1, the resin fluid base material 2 is disposed between the fiber reinforcement 1 and the bagging film 7, but the fiber reinforcement 1 and the mold instead of the resin fluid base material 2 or together with the resin fluid base material 2. Another resin fluid base material may be arranged between the two.
[0028]
Further, when the resin layer 10 is removed to reduce the weight of the molded product, a peel cloth or the like is inserted between the fiber reinforcing material 1 and the resin fluidized base material 2 for the purpose of improving the releasability of the resin layer 10. May be.
[0029]
As the fiber reinforcing material used in the resin transfer molding method of the present invention, materials used for ordinary fiber reinforcing materials such as carbon fiber, glass fiber, aramid fiber, boron fiber, and metal fiber can be used. Among these, carbon fiber, glass fiber, and aramid fiber are preferable.
[0030]
The form in particular of these fiber reinforcement materials is not restrict | limited, A woven fabric, a nonwoven fabric, etc. can be utilized.
[0031]
When weaving is used as the fiber reinforcing material, any woven type may be used, but the material itself is plane symmetric, or a plurality of fiber reinforcing materials are combined in a plane symmetric manner and stacked. It is preferable to use it. By using a plane symmetric fiber reinforcement or a piled and plane symmetric fiber reinforcement, it is possible to prevent warping of the molded product when formed into a molded product.
[0032]
Examples of the plane-symmetric fabric or the fabric that can be stacked to be plane-symmetric include a unidirectional fabric and a multiaxial fabric.
[0033]
The unidirectional woven fabric refers to a woven fabric in which bundles of fiber reinforcing materials arranged in parallel are knitted with nylon yarn, polyester yarn, glass fiber yarn or the like. A multiaxial woven fabric refers to a woven fabric in which bundles of fiber reinforcements (strands) aligned in one direction are formed in a sheet shape and laminated at different angles and knitted with nylon yarn, polyester yarn, glass fiber yarn, or the like.
[0034]
A schematic diagram of an example of a plane-symmetric multiaxial fabric is shown in FIG. In this example, the multiaxial fabric 100 is symmetrical with respect to the strand direction, that is, the direction in which the fibers are aligned, in order of 0 °, + 45 °, −45 °, + 45 °, and 0 ° with respect to the length direction of the multiaxial fabric. It has become. The multiaxial woven fabric 100 is formed by punching the five layers of fiber reinforcement laminated in this way in the thickness direction.
[0035]
Examples of other preferable multiaxial fabrics include [0 / -45 / -45 / 0], [0 / + 45 / -45 / -45 / + 45/0], [0 / + 45/90 / -45 /-. 45/90 / + 45/0]. For example, [0 / −45] and [−45/0], [0 / + 45 / −45] and [−45 / + 45/0], [0 / + 45 / −45 / 90] and [90 / −45 / + 45/0] can be exemplified. The angle at which the fiber reinforcements aligned in one direction are laminated is not limited to 0 °, ± 45 °, and 90 °, and can be any angle.
[0036]
The thickness of the multiaxial woven fabric is appropriately selected depending on the application of the molded product, but is usually preferably 0.2 to 3 mm.
[0037]
Basis weight of the fibrous reinforcement is preferably one per 200~4000g / m 2, 400~2000g / m 2 is more preferable.
[0038]
As the resin used in the resin transfer molding method of the present invention, a thermosetting resin usually used for the production of a molded product can be used. Specifically, epoxy resin, unsaturated polyester resin, phenol resin, melamine resin, polyurethane resin, silicon resin, maleimide resin, vinyl ester resin, cyanate ester resin, resin obtained by prepolymerizing maleimide resin and cyanate ester resin, etc. In the present invention, a mixture of these resins can also be used. When using a fiber reinforced composite material, an epoxy resin composition and a vinyl ester composition excellent in heat resistance, elastic modulus, and chemical resistance are preferable. These thermosetting resins may contain a curing agent, a curing accelerator and the like.
[0039]
The thermosetting resin preferably has a viscosity at the time of resin injection of 0.01 to 1 Pa · s by heating or the like.
[0040]
Next, the manufacturing method of the sandwich laminate of the present invention will be described with reference to FIG.
[0041]
On the mold 3 subjected to the mold release treatment, a resin fluid base material 12 having a net-like three-dimensional structure, a fiber reinforcing material 13, a core material 14, a fiber reinforcing material 15, and a resin fluid base material 16 having a net-like three-dimensional structure are sequentially stacked. Thereafter, the laminated material is sealed with a bagging film, and a sandwich laminated board is manufactured by performing the same operation as the above-described resin transfer molding method.
[0042]
In addition, when making it a part of a sandwich laminated board without removing the resin fluid base material, the order of stacking the laminated materials is not limited to that shown in FIG. 2, and the resin can be supplied to the fiber reinforcing material. As long as stacking is performed, any order may be used.
[0043]
Examples of the core material include urethane foam, vinyl chloride foam, polymethacrylimide foam, acrylic foam, phenol foam, and polystyrene foam. Balsa wood can also be used.
[0044]
The thickness of the core material is appropriately selected depending on the use of the sandwich laminate, and is usually preferably 1 to 200 mm.
[0045]
Although FIGS. 1 and 2 show the case where a mold and a bagging film are used, in the present invention, a split mold having rigidity such as a metal mold and an FRP mold may be used. FIG. 4 shows an example of a cross-sectional view when resin transfer molding is performed using a split mold.
[0046]
【Example】
Hereinafter, the present invention will be described in more detail with reference to examples.
[0047]
Example 1
Multiaxial woven fabric (1) ([0 / + 45/90 / -45]) using carbon fiber HTA-12K (manufactured by Toho Tenax Co., Ltd.): CF basis weight 600 g / m 2 was cut into a width of 1000 mm and a length of 1000 mm. . An aluminum plate with a plurality of rectangular grooves (width 20 mm, depth 30 mm, R2 mm) is released from the mold, and the multiaxial fabric (1) is at 0 ° layer on the bottom and the groove formation direction is 0 for the fabric. It was arranged on an aluminum plate so as to coincide with the ° direction. Multiaxial woven fabric (2) obtained in the same manner as the multiaxial woven fabric (1) ([−45 / 90 / + 45/0]: CF basis weight 600 g / m 2 ) was cut into a width of 1000 mm and a length of 1000 mm and laminated. The multiaxial fabrics (1) and (2) were laminated on the multiaxial fabric (1) with the 0 ° layer facing upward so that the entire surface was symmetrical. Furthermore, a resin flowable substrate having a net-like three-dimensional structure on a multiaxial woven fabric (2) (three-dimensional structure having a hexagonal opening described in FIG. 2 of JP 2002-146657 A using a polyester thread having a thickness of 150 dtex) A knitted fabric with an opening width of 2 mm and a thickness of 3 mm) was laminated. Next, a sealant tape and a resin injection / discharge hose were placed on the aluminum plate, and the entire laminated material was covered with a bagging film (manufactured by Airtech) and sealed. After closing the mouth of the resin injection hose, the bagging film was evacuated with a vacuum pump from the resin discharge hose. Thereafter, 100 parts by mass of Lipoxy R-802, 1.0 part by mass of Permec N (manufactured by NOF Corporation), and 0.5 parts by mass of 6% cobalt naphthenate (manufactured by Kanto Chemical Co., Ltd.) were mixed at 25 ° C. It was poured into a bagging film from a resin injection hose under an atmosphere and cured to obtain a molded product. The mixed solution injected into the bagging film quickly spread over the entire multiaxial fabric through the resin flow base along the shape of the aluminum plate. The obtained molded product had almost no resin chipping, and the thickness of the product was uniform.
[0048]
Comparative Example 1
A molded product was obtained in the same manner as in Example 1 except that a planar net-like resin fluid base material (manufactured by Airtech Co., Ltd., trade name: Resin Flow 60) was used in place of the resin three-dimensional resin fluid base material.
The planar net-like resin fluidized base material stretched without following the shape of the aluminum plate, and the obtained molded product was resin-rich with a groove shape of about R5 mm, resulting in partial resin chipping.
[0049]
【The invention's effect】
Since the resin transfer molding method of the present invention uses a resin fluid base material having a network three-dimensional structure, a molded product with higher quality is produced as compared with a conventional molding method using a planar network resin fluid base material. be able to. Therefore, even a large molded product can be easily molded with a high yield. Furthermore, since the resin fluidized base material having a network three-dimensional structure has better shape followability than the planar networked resin fluidized base material, it is possible to manufacture a structure having a complicated shape.
[0050]
In addition, according to the method for manufacturing a sandwich laminate of the present invention, since the manufacturing time is short, it is not necessary to process a groove or a through-hole for flowing resin into the core material, so that sandwich lamination is performed at a low cost. A board can be manufactured.
[Brief description of the drawings]
FIG. 1 is a flowchart showing an example of the molding method of the present invention, in which (a) is a cross-sectional view showing a state where a fiber reinforcing material and a resin fluidized base material are sealed between a bagging film and a mold; Is a cross-sectional view showing a state where the pressure between the bagging film and the mold is reduced, and (c) is a cross-sectional view showing a state in which a fiber reinforcing material is impregnated with a resin.
FIG. 2 is an explanatory view showing an example of a method for manufacturing a sandwich laminate of the present invention, and is a sectional view showing a state in which a laminate material is laid on one surface of a mold.
FIG. 3 is a schematic perspective view showing an example of a multiaxial fabric used in the present invention.
FIG. 4 is a cross-sectional view showing another example of the molding method of the present invention, using a split mold.
[Explanation of symbols]
1, 13, 15 Fiber reinforcing material 2, 12, 16 Resin fluid base material 3 Mold 3a Upper mold 3b Lower mold 5 Sealant 7 Bagging film 9 Resin impregnated layer 10 Resin layer 11 Surface resin layer 14 Core material 100 Multiaxial fabric

Claims (2)

下型に繊維強化材を敷設し、バギングフィルム又は上型を重ねてバギングフィルム周縁を下型に気密にシールし又は上型と下型とを型締めした後、バギングフィルム又は上型と下型との間を排気し樹脂を繊維強化材に注入する樹脂トランスファー成形法において、
(1)バギングフィルムと繊維強化材との間及び/若しくは下型と繊維強化材の間、又は
(2)上型と繊維強化材との間及び/若しくは下型と繊維強化材との間
に、1〜200dtexの糸で形成された編織物平面に対して垂直に立ち上がった編目を有する厚さ0.2〜5.0mmの編織物からなり、編織物の平面に対して垂直方向の開口幅0.2〜.0mmの開口部を有し、編織物の平面に六角形状の開口部を有する網状立体構造の樹脂流動基材を配置することを特徴とする樹脂トランスファー成形法。
After laying the fiber reinforcement on the lower mold, overlapping the bagging film or upper mold and sealing the periphery of the bagging film in an airtight manner or clamping the upper mold and lower mold, the bagging film or upper mold and lower mold In the resin transfer molding method in which the space between the two and the resin is injected into the fiber reinforcement,
(1) Between bagging film and fiber reinforcement and / or between lower mold and fiber reinforcement, or (2) Between upper mold and fiber reinforcement and / or between lower mold and fiber reinforcement. , A knitted fabric having a thickness of 0.2 to 5.0 mm having a stitch rising up perpendicularly to the plane of the knitted fabric formed of 1 to 200 dtex yarn, and the opening width in the direction perpendicular to the plane of the knitted fabric 0.2 to 2. Have a 0mm opening, resin transfer molding, characterized by placing the resin flow substrate reticulated three-dimensional structure having a hexagonal shaped opening in the plane of the knitted fabric.
下型の一面上に繊維強化材、コア材、繊維強化材を順次積重し、これらの上にバギングフィルム又は上型を重ねてバギングフィルム周縁を下型に気密にシールし又は上型と下型とを型締めし、バギングフィルム又は上型と下型との間を排気した後、樹脂トランスファー成形法により樹脂を注入し硬化するサンドイッチ積層板の製造方法において、
(1)バギングフィルムと繊維強化材との間及び/若しくは下型と繊維強化材の間、又は
(2)上型と繊維強化材との間及び/若しくは下型と繊維強化材との間
に、1〜200dtexの糸で形成された編織物平面に対して垂直に立ち上がった編目を有する厚さ0.2〜5.0mmの編織物からなり、編織物の平面に対して垂直方向の開口幅0.2〜.0mmの開口部を有し、編織物の平面に六角形状の開口部を有する網状立体構造の樹脂流動基材を配置することを特徴とするサンドイッチ積層板の製造方法。
A fiber reinforcing material, a core material, and a fiber reinforcing material are sequentially stacked on one surface of the lower mold, and a bagging film or an upper mold is overlaid on these, and the periphery of the bagging film is hermetically sealed to the lower mold, or the upper mold and the lower mold. In the sandwich laminate manufacturing method in which the mold is clamped and the bagging film or between the upper mold and the lower mold is exhausted, and then the resin is injected and cured by a resin transfer molding method.
(1) Between bagging film and fiber reinforcement and / or between lower mold and fiber reinforcement, or (2) Between upper mold and fiber reinforcement and / or between lower mold and fiber reinforcement. , A knitted fabric having a thickness of 0.2 to 5.0 mm having a stitch rising up perpendicularly to the plane of the knitted fabric formed of 1 to 200 dtex yarn, and the opening width in the direction perpendicular to the plane of the knitted fabric 0.2 to 2. It has a 0mm openings method for manufacturing a sandwich laminate, which comprises placing the resin flow substrate reticulated three-dimensional structure having a hexagonal shaped opening in the plane of the knitted fabric.
JP2003040896A 2003-02-19 2003-02-19 Resin transfer molding method and sandwich laminate manufacturing method Expired - Fee Related JP4371671B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003040896A JP4371671B2 (en) 2003-02-19 2003-02-19 Resin transfer molding method and sandwich laminate manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003040896A JP4371671B2 (en) 2003-02-19 2003-02-19 Resin transfer molding method and sandwich laminate manufacturing method

Publications (2)

Publication Number Publication Date
JP2004249527A JP2004249527A (en) 2004-09-09
JP4371671B2 true JP4371671B2 (en) 2009-11-25

Family

ID=33024622

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003040896A Expired - Fee Related JP4371671B2 (en) 2003-02-19 2003-02-19 Resin transfer molding method and sandwich laminate manufacturing method

Country Status (1)

Country Link
JP (1) JP4371671B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4586500B2 (en) * 2004-11-04 2010-11-24 横浜ゴム株式会社 Manufacturing method of fiber reinforced resin molding
JP2006130733A (en) * 2004-11-04 2006-05-25 Yokohama Rubber Co Ltd:The Manufacturing method of fiber reinforced resin molded product
JP5156176B2 (en) * 2004-11-04 2013-03-06 横浜ゴム株式会社 Manufacturing method of fiber reinforced resin molding
EP2149441B1 (en) 2007-03-20 2017-01-18 Mitsubishi Heavy Industries, Ltd. Method of vacuum-assisted rtm
JP2014163016A (en) * 2013-02-26 2014-09-08 Mitsubishi Rayon Co Ltd Multi-axis stitched substrate for reinforcement, woven fabric for reinforcement and carbon fiber reinforcement composite material, and method for producing them

Also Published As

Publication number Publication date
JP2004249527A (en) 2004-09-09

Similar Documents

Publication Publication Date Title
JP4515526B2 (en) Resin transfer molding method
JP4803028B2 (en) Preform, FRP, and production method thereof
JP4106826B2 (en) Fiber-reinforced resin structure and method for producing the same
CN108712951B (en) Method for producing composite material
JP4839523B2 (en) Manufacturing method of fiber reinforced resin
JP2008246690A (en) Resin transfer molding method
JP2007126793A (en) Cutting method and preform substrate for laminate, and preform production method using the same
JP4371671B2 (en) Resin transfer molding method and sandwich laminate manufacturing method
JP4471672B2 (en) Resin transfer molding method and sandwich laminate manufacturing method
JP4670313B2 (en) Method for shaping reinforcing fiber base material for FRP molding
JP6652523B2 (en) Reinforcing fiber substrate and preform.
JP4330364B2 (en) Resin transfer molding method
JP2004059872A (en) Film for semi-impregnated prepreg, semi-impregnated prepreg, and method for preparing molded article
WO2013025115A1 (en) Three- dimensional (3d) knitted reinforced composite structure production method thereof
JP7467840B2 (en) Reinforced fiber substrate, reinforced fiber laminate, and fiber reinforced resin
JP2004276355A (en) Preform and method for manufacturing fiber reinforced resin composite using the preform
JP2006015611A (en) Method for producing sandwich laminate
JP2004262084A (en) Resin transfer molding method and method for manufacturing sandwiched laminated sheet
JP2004058608A (en) Method for manufacturing hollow molded article
JP4764121B2 (en) Resin transfer molding method.
JP4824462B2 (en) Manufacturing method of fiber reinforced composite material
JP2007261212A (en) Manufacturing process of sandwich laminate
KR20120064779A (en) Reinforcement having fluidic network and method for fabricating plastic product using the same
JP2005335242A (en) Method for producing sandwich laminate
JP2004122527A (en) Method for producing frp molded product

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051110

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071101

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071211

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080207

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090526

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090724

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090901

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090901

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120911

Year of fee payment: 3

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120911

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130911

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees