JP2018016030A - Carbon fiber-reinforced plastic and method for producing the same - Google Patents

Carbon fiber-reinforced plastic and method for producing the same Download PDF

Info

Publication number
JP2018016030A
JP2018016030A JP2016150071A JP2016150071A JP2018016030A JP 2018016030 A JP2018016030 A JP 2018016030A JP 2016150071 A JP2016150071 A JP 2016150071A JP 2016150071 A JP2016150071 A JP 2016150071A JP 2018016030 A JP2018016030 A JP 2018016030A
Authority
JP
Japan
Prior art keywords
carbon fiber
resin
reinforced plastic
prepreg
thin film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016150071A
Other languages
Japanese (ja)
Inventor
陽典 永尾
Yoten Nagao
陽典 永尾
正 十二所
Tadashi Junisho
正 十二所
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
N A C T Co Ltd
NACT
Ikutoku Gakuen School Corp
Original Assignee
N A C T Co Ltd
NACT
Ikutoku Gakuen School Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by N A C T Co Ltd, NACT, Ikutoku Gakuen School Corp filed Critical N A C T Co Ltd
Priority to JP2016150071A priority Critical patent/JP2018016030A/en
Publication of JP2018016030A publication Critical patent/JP2018016030A/en
Pending legal-status Critical Current

Links

Landscapes

  • Reinforced Plastic Materials (AREA)
  • Laminated Bodies (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for producing a carbon fiber-reinforced plastic having a reinforced interlayer.SOLUTION: There is provided a method for producing a carbon fiber-reinforced plastic by laminating a prepreg, wherein in the step of laminating a prepreg, a resin thin film containing carbon nanotubes is inserted between the layers of the prepreg. Further, there is provided a carbon fiber-reinforced plastic in which a resin interposed between carbon fibers contains carbon nanotubes.SELECTED DRAWING: Figure 1

Description

本発明は、炭素繊維強化プラスチックおよびその製造方法に関する。   The present invention relates to a carbon fiber reinforced plastic and a method for producing the same.

炭素繊維強化プラスチック(CFRP)は、優れた比強度、比剛性を有していることから、航空機等の一次構造材料として広く用いられている(例えば、特許文献1)。   Since carbon fiber reinforced plastic (CFRP) has excellent specific strength and specific rigidity, it is widely used as a primary structural material for aircraft and the like (for example, Patent Document 1).

図3は、従来のCFRPの製造方法を示す。図3に示すように、従来のCFRPは、強化材としての炭素繊維12に樹脂14を含浸して半硬化させたプリプレグ10を積層した後、これを加熱・加圧することによって成形される。   FIG. 3 shows a conventional CFRP manufacturing method. As shown in FIG. 3, a conventional CFRP is formed by laminating a carbon fiber 12 as a reinforcing material, which is semi-cured by impregnating a resin 14, and then heating and pressing the laminate.

一方、従来のCFRPは、外部からの衝撃によって炭素繊維12と樹脂14が剥離する層間剥離が生じやすく、衝撃後圧縮強度(CAI強度)が低いという問題があり、このことがCFRPを用いる構造体の大幅な軽量化を妨げている。   On the other hand, conventional CFRP has a problem that delamination in which the carbon fiber 12 and the resin 14 are peeled off due to an external impact, and there is a problem that the compressive strength after impact (CAI strength) is low. Is preventing a significant weight reduction.

特開2015−57340号公報JP2015-57340A

本発明は、上記従来技術における課題に鑑みてなされたものであり、層間が強化された炭素繊維強化プラスチックを製造する方法を提供することを目的とする。   This invention is made | formed in view of the subject in the said prior art, and it aims at providing the method of manufacturing the carbon fiber reinforced plastic with which the interlayer was reinforced.

本発明者は、層間が強化された炭素繊維強化プラスチックを製造する方法につき鋭意検討した結果、以下の構成に想至し、本発明に至ったのである。   As a result of intensive studies on a method for producing a carbon fiber reinforced plastic with reinforced layers, the present inventor has conceived the following configuration and has reached the present invention.

すなわち、本発明によれば、プリプレグを積層して炭素繊維強化プラスチックを製造する方法であって、プリプレグを積層する工程において、カーボンナノチューブを含有する樹脂薄膜をプリプレグの層間に挿入することを特徴とする、製造方法が提供される。   That is, according to the present invention, a method for producing a carbon fiber reinforced plastic by laminating prepregs, characterized in that, in the step of laminating prepregs, a resin thin film containing carbon nanotubes is inserted between prepreg layers. A manufacturing method is provided.

また、本発明によれば、炭素繊維と炭素繊維の間に介在する樹脂がカーボンナノチューブを含有することを特徴とする炭素繊維強化プラスチックが提供される。   In addition, according to the present invention, there is provided a carbon fiber reinforced plastic characterized in that a resin interposed between carbon fibers contains carbon nanotubes.

上述したように、本発明によれば、層間が強化された炭素繊維強化プラスチックを製造する方法が提供される。   As described above, according to the present invention, a method for producing a carbon fiber reinforced plastic having a reinforced interlayer is provided.

本実施形態の層間強化CFRPの製造方法を示す図。The figure which shows the manufacturing method of the interlayer reinforcement | strengthening CFRP of this embodiment. 層間強化CFRPの破断面のSEM画像を示す図。The figure which shows the SEM image of the torn surface of interlayer reinforcement | strengthening CFRP. 従来のCFRPの製造方法を示す図。The figure which shows the manufacturing method of the conventional CFRP.

以下、本発明を図面に示した実施の形態をもって説明するが、本発明は、図面に示した実施の形態に限定されるものではない。なお、以下に参照する各図においては、共通する要素について同じ符号を用い、適宜、その説明を省略するものとする。   Hereinafter, the present invention will be described with reference to embodiments shown in the drawings, but the present invention is not limited to the embodiments shown in the drawings. In the drawings referred to below, the same reference numerals are used for common elements, and the description thereof is omitted as appropriate.

図1は、本発明の実施形態である層間を強化した炭素繊維強化プラスチック(以下、層間強化CFRPという)の製造方法を示す。   FIG. 1 shows a method for producing a carbon fiber reinforced plastic (hereinafter, referred to as an interlayer reinforced CFRP) reinforced with interlayers, which is an embodiment of the present invention.

本実施形態の製造方法は、強化材としての炭素繊維12に母材(マトリクス)となる樹脂14を含浸して半硬化させたプリプレグ10を中間基材として用いる点は、従来のCFRPの製法と同じであるが、本実施形態では、図1に示すように、プリプレグ10を積層する工程において、カーボンナノチューブを含有する樹脂薄膜16(以下、CNT樹脂薄膜16という)をプリプレグ10の層間に挿入する点で、従来製法と異なる。   The manufacturing method of this embodiment uses a prepreg 10 that is semi-cured by impregnating a carbon fiber 12 as a reinforcing material with a resin 14 as a base material (matrix) as an intermediate base material. Although the same, in this embodiment, as shown in FIG. 1, in the step of laminating the prepreg 10, a resin thin film 16 containing carbon nanotubes (hereinafter referred to as a CNT resin thin film 16) is inserted between the layers of the prepreg 10. This is different from the conventional manufacturing method.

本実施形態では、プリプレグ10の層間に、少なくとも1のCNT樹脂薄膜16を挿入し、好ましくは、プリプレグ10とCNT樹脂薄膜16を交互に積層する。   In the present embodiment, at least one CNT resin thin film 16 is inserted between layers of the prepreg 10, and preferably, the prepreg 10 and the CNT resin thin film 16 are alternately laminated.

本実施形態において、CNT樹脂薄膜16は、カップスタック型またはマルチウォール型のカーボンナノチューブ(以下、CNTという)と樹脂を混練したものをシート状に薄膜化してなる基材であり、CNTは、薄膜中に分散した状態で含有される。なお、本実施形態では、CNT樹脂薄膜16の膜厚を、数μm〜50μm程度とすることができ、CNTの目付量を40〜80g/m程度とすることができる。 In this embodiment, the CNT resin thin film 16 is a base material formed by thinning a cup-stacked or multi-walled carbon nanotube (hereinafter referred to as CNT) and a resin into a sheet shape. It is contained in a dispersed state. In the present embodiment, the thickness of the CNT resin thin film 16 can be about several μm to 50 μm, and the basis weight of CNT can be about 40 to 80 g / m 2 .

ここで、CNT樹脂薄膜16を構成する樹脂は、プリプレグ10を構成する樹脂14(母材)と同じ材料であることが好ましい。プリプレグ10の母材(マトリクス)として、成形性、力学特性、安定性に優れるエポキシ樹脂などの熱硬化性樹脂が用いられている場合には、CNT樹脂薄膜16を同じ熱硬化性樹脂で構成することが好ましい。   Here, the resin constituting the CNT resin thin film 16 is preferably the same material as the resin 14 (base material) constituting the prepreg 10. When a thermosetting resin such as an epoxy resin having excellent moldability, mechanical properties, and stability is used as the base material (matrix) of the prepreg 10, the CNT resin thin film 16 is composed of the same thermosetting resin. It is preferable.

本実施形態では、プリプレグ10の層間にCNT樹脂薄膜16を介在させる形で積層した後に、これを、例えば、オートクレーブを用いて、加熱・加圧する。この過程で、炭素繊維12と炭素繊維12の間に介在する樹脂14とCNT樹脂薄膜16は、溶融状態を経て硬化して樹脂層18となり、本実施形態の層間強化CFRPを得る。   In this embodiment, after laminating the CNT resin thin film 16 between the prepregs 10, this is heated and pressurized using, for example, an autoclave. In this process, the carbon fiber 12 and the resin 14 and the CNT resin thin film 16 interposed between the carbon fibers 12 are cured through a molten state to become the resin layer 18 to obtain the interlayer reinforced CFRP of the present embodiment.

本実施形態の層間強化CFRPでは、炭素繊維12と炭素繊維12の間に介在する樹脂層18中にCNTが分散して存在することによって、樹脂層18が傾斜機能化すると考えられる。本実施形態では、樹脂層18の傾斜機能化に伴って生じる、炭素繊維12と樹脂層18の間の荷重伝達経路や荷重分担比の変化や、樹脂層18の剛性・許容歪の変化といった複合的な要因により、層間強度および靭性が向上するものと考えられる。   In the interlayer reinforced CFRP of the present embodiment, it is considered that the resin layer 18 is functionally graded when CNTs are dispersed and exist in the resin layer 18 interposed between the carbon fibers 12. In the present embodiment, a composite such as a change in the load transmission path and load sharing ratio between the carbon fiber 12 and the resin layer 18 and a change in the rigidity and allowable strain of the resin layer 18 caused by the functionalization of the resin layer 18 are provided. It is considered that the interlaminar strength and toughness are improved due to various factors.

以上、本発明について実施形態をもって説明してきたが、本発明は上述した実施形態に限定されるものではなく、当業者が推考しうるその他の実施態様の範囲内において、本発明の作用・効果を奏する限り、本発明の範囲に含まれるものである。   As described above, the present invention has been described with the embodiment. However, the present invention is not limited to the above-described embodiment, and the functions and effects of the present invention are within the scope of other embodiments that can be considered by those skilled in the art. As long as it plays, it is included in the scope of the present invention.

以下、本発明の層間強化CFRPについて、実施例を用いてより具体的に説明を行なうが、本発明は、後述する実施例に限定されるものではない。   Hereinafter, although the interlayer reinforcement | strengthening CFRP of this invention is demonstrated more concretely using an Example, this invention is not limited to the Example mentioned later.

(層間強化CFRPの作製)
エポキシ樹脂を母材とするプリプレグ(TR 350R 150S:三菱レイヨン製)とCNTを分散したエポキシ樹脂フィルム(CSCNT充填樹脂フィルム,目付量80g/m2:GSIクレオス製)を交互に積層(積層構成:[+45°/‐45°]2S/8ply)したものをオートクレーブで加熱・加圧して層間強化CFRP(以下、実施例1という)を得た。併せて、プリプレグ(TR 350R 150S:三菱レイヨン製)のみを積層(積層構成:[+45°/‐45°]2S/8ply)したものをオートクレーブで加熱・加圧して比較例のCFRP(以下、比較例1という)を得た。
(Preparation of interlayer reinforced CFRP)
Alternating layers of prepreg (TR 350R 150S: Mitsubishi Rayon) and epoxy resin film (CSCNT-filled resin film, basis weight 80g / m 2 : GSI Creos) dispersed with CNTs based on epoxy resin as the base material (lamination configuration: [+ 45 ° / −45 °] 2S / 8ply) was heated and pressurized in an autoclave to obtain interlayer-reinforced CFRP (hereinafter referred to as Example 1). In addition, CFRP of a comparative example (hereinafter referred to as comparison) is obtained by laminating only prepreg (TR 350R 150S: manufactured by Mitsubishi Rayon) (laminated configuration: [+ 45 ° / -45 °] 2S / 8ply) and heating and pressurizing with an autoclave. Example 1) was obtained.

(繊維堆積含有率の測定)
実施例1および比較例1のそれぞれにつき、JIS K 7075に則って、繊維体積含有率(Vf)、樹脂体積含有率(Vr)および空洞率(Vv)を測定した。下記表1に、実施例1および比較例1の測定結果をそれぞれの板厚(mm)とともに示す。
(Measurement of fiber accumulation content)
For each of Example 1 and Comparative Example 1, fiber volume content (Vf), resin volume content (Vr), and void ratio (Vv) were measured in accordance with JIS K 7075. Table 1 below shows the measurement results of Example 1 and Comparative Example 1 together with the respective plate thicknesses (mm).

(引張試験)
本発明の層間強化CFRPの引張強度(面内せん断強さ)を評価すべく、実施例1および比較例1のそれぞれから6本の試験片(長さ130mm×幅5mm)を切り出して、ASTM D 3039規格に準拠した引張試験を行った。なお、本試験では、精密万能試験機AG-X plus(島津製作所製)を用いて試験速度:1.0 mm/minで荷重負荷を行い、EDX-100A(共和電業製)を用いてデータを検出した。下記表2に実施例1および比較例1の試験結果(6本の試験片の平均値)を示す。
(Tensile test)
In order to evaluate the tensile strength (in-plane shear strength) of the interlayer reinforced CFRP of the present invention, six test pieces (length 130 mm × width 5 mm) were cut out from each of Example 1 and Comparative Example 1, and ASTM D A tensile test based on the 3039 standard was performed. In this test, a load is applied at a test speed of 1.0 mm / min using a precision universal testing machine AG-X plus (manufactured by Shimadzu Corporation), and data is detected using EDX-100A (manufactured by Kyowa Dengyo). did. Table 2 below shows the test results of Example 1 and Comparative Example 1 (average values of six test pieces).

上記表2に示すように、実施例1の引張強度は、比較例1よりも5%高い値を示した。実施例1と比較例1の繊維体積含有率(Vf)の違いを勘案して、両者の結果をVf補正して比較すると、実施例1の引張強度が比較例に対して45%向上していることがわかった。   As shown in Table 2 above, the tensile strength of Example 1 was 5% higher than that of Comparative Example 1. Considering the difference in the fiber volume content (Vf) between Example 1 and Comparative Example 1, comparing the results of both results with Vf correction, the tensile strength of Example 1 is improved by 45% compared to the comparative example. I found out.

(層間破壊靱性値の測定)
エポキシ樹脂を母材とするプリプレグ(TR 350R 150S:三菱レイヨン製)とCNTを分散したエポキシ樹脂フィルム(CSCNT充填樹脂フィルム,目付量65g/m2:GSIクレオス製)を交互に積層(積層構成:[0°]24ply)したものをオートクレーブで加熱・加圧して層間強化CFRP(以下、実施例2という)を得た。併せて、プリプレグ(TR 350R 150S:三菱レイヨン製)のみを積層(積層構成:[0°]24ply)したものをオートクレーブで加熱・加圧して比較例のCFRP(以下、比較例2という)を得た。
(Measurement of interlaminar fracture toughness value)
Alternating layers of prepreg (TR 350R 150S: manufactured by Mitsubishi Rayon) and epoxy resin film (CSCNT-filled resin film, basis weight 65 g / m 2 : GSI Creos) dispersed with CNTs based on epoxy resin [0 °] 24 ply) was heated and pressurized in an autoclave to obtain interlayer-reinforced CFRP (hereinafter referred to as Example 2). In addition, a laminate of only prepreg (TR 350R 150S: manufactured by Mitsubishi Rayon) (laminated configuration: [0 °] 24ply) is heated and pressurized in an autoclave to obtain a comparative CFRP (hereinafter referred to as Comparative Example 2). It was.

本発明の層間強化CFRPの層間破壊靱性値を測定すべく、実施例2および比較例2のそれぞれから5本の試験片(長さ130mm×幅5mm)を切り出して、JIS K 7086規格に準拠したENF強度試験を行った。なお、本試験では、精密万能試験機AG-X plus(島津製作所製)を用いて試験速度:1.0 mm/minで荷重負荷を行い、EDX-100A(共和電業製)を用いてデータを検出した。下記表3に実施例2および比較例2の試験結果(5本の試験片の平均値)を示す。   In order to measure the interlaminar fracture toughness value of the interlayer reinforced CFRP of the present invention, five test pieces (length 130 mm × width 5 mm) were cut out from each of Example 2 and Comparative Example 2, and conformed to the JIS K 7086 standard. An ENF strength test was performed. In this test, a load is applied at a test speed of 1.0 mm / min using a precision universal testing machine AG-X plus (manufactured by Shimadzu Corporation), and data is detected using EDX-100A (manufactured by Kyowa Dengyo). did. Table 3 below shows the test results of Example 2 and Comparative Example 2 (average values of five test pieces).

上記表3に示すように、実施例2の層間破壊靱性値は、比較例2の約2倍の値を示した。   As shown in Table 3 above, the interlaminar fracture toughness value of Example 2 was about twice that of Comparative Example 2.

実施例と比較例の破壊面をSEMによって観察した。図2(a)は、比較例の破断面のSEM画像を示し、図2(b)は、実施例の破断面のSEM画像を示す。比較例2の場合、図2(a)に示すように、破断面の炭素繊維の表面に樹脂がほとんど残存していないことから、炭素繊維とエポキシ樹脂の界面で破断が生じたことが推認される。これに対して、実施例の場合は、図2(b)に示すように、破断面の炭素繊維の表面にCNTを含有するエポキシ樹脂が残存していることが認められ、このことから、炭素繊維を支持する樹脂層の内部で破断が生じたことが推認される。   The fracture surfaces of the examples and comparative examples were observed by SEM. FIG. 2A shows an SEM image of the fracture surface of the comparative example, and FIG. 2B shows an SEM image of the fracture surface of the example. In the case of Comparative Example 2, as shown in FIG. 2 (a), since almost no resin remains on the surface of the carbon fiber of the fracture surface, it is presumed that the fracture occurred at the interface between the carbon fiber and the epoxy resin. The On the other hand, in the case of the example, as shown in FIG. 2 (b), it was recognized that the epoxy resin containing CNT remained on the surface of the carbon fiber of the fractured surface. It is presumed that the fracture occurred inside the resin layer supporting the fiber.

10…プリプレグ、12…炭素繊維、14…樹脂、16…CNT樹脂薄膜、18…樹脂層 DESCRIPTION OF SYMBOLS 10 ... Prepreg, 12 ... Carbon fiber, 14 ... Resin, 16 ... CNT resin thin film, 18 ... Resin layer

Claims (5)

プリプレグを積層して炭素繊維強化プラスチックを製造する方法であって、
プリプレグを積層する工程において、カーボンナノチューブを含有する樹脂薄膜をプリプレグの層間に挿入することを特徴とする、
製造方法。
A method for producing a carbon fiber reinforced plastic by laminating prepregs,
In the step of laminating the prepreg, a resin thin film containing carbon nanotubes is inserted between layers of the prepreg,
Production method.
前記カーボンナノチューブが前記樹脂薄膜中に分散した状態で含有されることを特徴とする、
請求項1に記載の製造方法。
The carbon nanotubes are contained in a state dispersed in the resin thin film,
The manufacturing method according to claim 1.
前記プリプレグと前記樹脂薄膜を交互に積層することを特徴とする、
請求項1または2に記載の製造方法。
The prepreg and the resin thin film are alternately laminated,
The manufacturing method of Claim 1 or 2.
炭素繊維と炭素繊維の間に介在する樹脂がカーボンナノチューブを含有することを特徴とする炭素繊維強化プラスチック。   A carbon fiber reinforced plastic characterized in that a resin interposed between carbon fibers contains carbon nanotubes. 前記カーボンナノチューブが前記樹脂中に分散して存在することを特徴とする、
請求項4に記載の炭素繊維強化プラスチック。
The carbon nanotubes are present dispersed in the resin,
The carbon fiber reinforced plastic according to claim 4.
JP2016150071A 2016-07-29 2016-07-29 Carbon fiber-reinforced plastic and method for producing the same Pending JP2018016030A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016150071A JP2018016030A (en) 2016-07-29 2016-07-29 Carbon fiber-reinforced plastic and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016150071A JP2018016030A (en) 2016-07-29 2016-07-29 Carbon fiber-reinforced plastic and method for producing the same

Publications (1)

Publication Number Publication Date
JP2018016030A true JP2018016030A (en) 2018-02-01

Family

ID=61081088

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016150071A Pending JP2018016030A (en) 2016-07-29 2016-07-29 Carbon fiber-reinforced plastic and method for producing the same

Country Status (1)

Country Link
JP (1) JP2018016030A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2019230729A1 (en) * 2018-05-31 2021-08-19 リンテック株式会社 Method for manufacturing carbon resin composite material, and composite structure for manufacturing carbon resin composite material
CN115195215A (en) * 2022-06-23 2022-10-18 中国商用飞机有限责任公司北京民用飞机技术研究中心 Interlaminar toughening method for composite material laminated plate

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005022141A (en) * 2003-06-30 2005-01-27 Shinshu Univ Composite material and its manufacturing method
JP2007070593A (en) * 2005-08-12 2007-03-22 Gsi Creos Corp Prepreg, method for producing the same, carbon fiber and fiber body
JP2009013327A (en) * 2007-07-06 2009-01-22 Gsi Creos Corp Composite material
US20150166743A1 (en) * 2013-12-13 2015-06-18 Cytec Industries Inc. Composite materials with electrically conductive and delamination resistant properties
US20160082691A1 (en) * 2014-09-22 2016-03-24 Cytec Industries Inc. Composite materials with high z-direction electrical conductivity
WO2016159072A1 (en) * 2015-03-31 2016-10-06 国立研究開発法人産業技術総合研究所 Method for producing carbon fiber composite material

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005022141A (en) * 2003-06-30 2005-01-27 Shinshu Univ Composite material and its manufacturing method
JP2007070593A (en) * 2005-08-12 2007-03-22 Gsi Creos Corp Prepreg, method for producing the same, carbon fiber and fiber body
JP2009013327A (en) * 2007-07-06 2009-01-22 Gsi Creos Corp Composite material
US20150166743A1 (en) * 2013-12-13 2015-06-18 Cytec Industries Inc. Composite materials with electrically conductive and delamination resistant properties
US20160082691A1 (en) * 2014-09-22 2016-03-24 Cytec Industries Inc. Composite materials with high z-direction electrical conductivity
WO2016159072A1 (en) * 2015-03-31 2016-10-06 国立研究開発法人産業技術総合研究所 Method for producing carbon fiber composite material

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2019230729A1 (en) * 2018-05-31 2021-08-19 リンテック株式会社 Method for manufacturing carbon resin composite material, and composite structure for manufacturing carbon resin composite material
CN115195215A (en) * 2022-06-23 2022-10-18 中国商用飞机有限责任公司北京民用飞机技术研究中心 Interlaminar toughening method for composite material laminated plate

Similar Documents

Publication Publication Date Title
JP6044436B2 (en) Carbon fiber reinforced carbon composite and method for producing the same
CN105563970A (en) Composite structure with PMI sandwich as well as preparation method and application of composite structure
US20180066797A1 (en) Fiber reinforced polymer matrix composite structure and high pressure container, and method of manufacturing the same
TW201422862A (en) Carbon fiber composite and manufacturing method thereof
US20150240396A1 (en) Fiber-reinforced composite material and method for manufacturing the same
Saghafi et al. The effect of nanofibrous membrane thickness on fracture behaviour of modified composite laminates–A numerical and experimental study
Drakonakis et al. Matrix hybridization in the interlayer for carbon fiber reinforced composites
JP6389654B2 (en) Method for producing carbon fiber composite material
Rahmani et al. Elastic properties of carbon fibre-reinforced epoxy composites
KR20160079326A (en) Method for manufacturing hybrid composite material comprising glass fiber reinforced plastic and aluminum and hybrid composite material
JP2018016030A (en) Carbon fiber-reinforced plastic and method for producing the same
Ning et al. Investigation on mode-II interface fracture toughness of CFRP/Al laminates toughened by VGCF interleaves
JPWO2018147331A1 (en) Fiber reinforced resin sheet
JP4164572B2 (en) Composite material and manufacturing method thereof
JP4716550B2 (en) Paper-free prepreg and method for producing the same
JP2007099966A (en) Prepreg
JP5966969B2 (en) Manufacturing method of prepreg
WO2018150978A1 (en) Resin-attached reinforced fiber woven fabric, and method for producing fiber-reinforced resin molded article
JP2005161852A (en) Metal/fiber-reinforced plastic composite material, and its production method
JP2008174610A (en) Impact-resistant prepreg and method for producing the same
Khan et al. Interlaminar shear properties of CFRP composites with CNF-bucky paper interleaves
Quadrini et al. Autoclave molding of carbon fiber laminates with interlaminar carbon nanotubes
JP5239350B2 (en) Prepreg and fiber reinforced composite materials
JP7473416B2 (en) Method for producing fiber-reinforced composite material
JP3109928B2 (en) Method for producing carbon fiber reinforced carbon composite material

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160929

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190624

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20190624

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20190625

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190711

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200316

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200324

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200515

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20200908

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201207

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20201207

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20201224

C21 Notice of transfer of a case for reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C21

Effective date: 20210105

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20210205

C211 Notice of termination of reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C211

Effective date: 20210209

C22 Notice of designation (change) of administrative judge

Free format text: JAPANESE INTERMEDIATE CODE: C22

Effective date: 20220104

C13 Notice of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: C13

Effective date: 20220208

C23 Notice of termination of proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C23

Effective date: 20220517

C03 Trial/appeal decision taken

Free format text: JAPANESE INTERMEDIATE CODE: C03

Effective date: 20220614

C30A Notification sent

Free format text: JAPANESE INTERMEDIATE CODE: C3012

Effective date: 20220614