JP4116361B2 - Intermediate material for FRP molding and manufacturing method thereof - Google Patents

Intermediate material for FRP molding and manufacturing method thereof Download PDF

Info

Publication number
JP4116361B2
JP4116361B2 JP2002234861A JP2002234861A JP4116361B2 JP 4116361 B2 JP4116361 B2 JP 4116361B2 JP 2002234861 A JP2002234861 A JP 2002234861A JP 2002234861 A JP2002234861 A JP 2002234861A JP 4116361 B2 JP4116361 B2 JP 4116361B2
Authority
JP
Japan
Prior art keywords
prepreg
frp
molding
intermediate material
thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002234861A
Other languages
Japanese (ja)
Other versions
JP2004074471A5 (en
JP2004074471A (en
Inventor
和也 後藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Mitsubishi Rayon Co Ltd
Original Assignee
Mitsubishi Chemical Corp
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2002234861A priority Critical patent/JP4116361B2/en
Application filed by Mitsubishi Chemical Corp, Mitsubishi Rayon Co Ltd filed Critical Mitsubishi Chemical Corp
Priority to EP20100177311 priority patent/EP2298522B1/en
Priority to CNB038165473A priority patent/CN100431815C/en
Priority to EP20130150362 priority patent/EP2578388A3/en
Priority to EP20100177310 priority patent/EP2314434A3/en
Priority to ES10177311.7T priority patent/ES2527168T3/en
Priority to US10/521,433 priority patent/US20060035548A1/en
Priority to EP20030765331 priority patent/EP1541312B1/en
Priority to PCT/JP2003/009176 priority patent/WO2004009314A1/en
Priority to CN2007101809719A priority patent/CN101181828B/en
Priority to ES03765331T priority patent/ES2387333T3/en
Priority to EP20100177309 priority patent/EP2311618A3/en
Priority to CN 200710180970 priority patent/CN101181827B/en
Priority to CN200710180972.3A priority patent/CN101181833B/en
Publication of JP2004074471A publication Critical patent/JP2004074471A/en
Publication of JP2004074471A5 publication Critical patent/JP2004074471A5/ja
Application granted granted Critical
Publication of JP4116361B2 publication Critical patent/JP4116361B2/en
Priority to US12/244,676 priority patent/US20090123717A1/en
Priority to US13/037,696 priority patent/US20110151206A1/en
Priority to US13/446,722 priority patent/US8679991B2/en
Priority to US14/072,139 priority patent/US20140057514A1/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Reinforced Plastic Materials (AREA)
  • Laminated Bodies (AREA)
  • Processing And Handling Of Plastics And Other Materials For Molding In General (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、FRP(繊維強化複合材料)を成形するための中間材料及びその製造方法に関する。
【0002】
【従来の技術】
FRPは、軽量かつ高強度・高剛性の特徴を生かし、スポーツ・レジャー用途から自動車や航空機等の産業用途まで、幅広く用いられている。特に近年では、補強繊維として炭素繊維を用いた、より軽量でかつより高強度・高剛性のFRP(CFRP)が産業用途に用いられることが多くなってきた。
【0003】
産業用途の中でも列車や航空機の機体などの構造部材に用いられるCFRPは、プリプレグを中間材料として用い、オートクレーブ成形で製造されることが一般的である。これはオートクレーブを用いて高圧下で成形することにより、成形品中のボイドを低減し、成形品の強度を期待された通りに発現させ、又、表面のピンホールの発生を抑え、外観のきれいな成形品を得ることを目的としている。
【0004】
しかしながら、オートクレーブの設備は非常に高価なため、新規に導入することは困難であるばかりでなく、一旦導入するとそのオートクレーブの大きさにより成形品の大きさが制限され、それより大きな成形品の一体成形は事実上不可能である。
【0005】
このような問題に対し、オートクレーブを用いずに低コスト成形で成形する方法の開発が盛んに行われており、その代表的なものとしては、真空及び大気圧のみの低圧下で成形する、オーブン成形(又は真空バグ成形などとも呼ばれる。)がある。オーブン成形は真空又は大気圧以外に圧力を加えないので、オートクレーブのようなしっかりした耐圧力容器でなくても良く、温度さえ上げることができる炉(オーブン)があれば成形でき、断熱ボードと熱風ヒーターといった簡便な設備でも成形可能である。ただし圧力を加えないので、成形品中にボイドが残りやすく、成形品はオートクレーブでの成形品に比べて強度が低くなる、あるいは表面にピンホールが発生するという問題があった。
【0006】
このような問題に対しても近年解決策が講じられつつある。例えばWO 00/27632には樹脂層と補強繊維層からなる材料に関する技術について開示されており、オーブン成形でもボイドの生成が少なく、表面もピンホールが無い非常にきれいな成形品が得られることが記載されている。
ところで、プリプレグの製造方法には、マトリックス樹脂に溶剤を含ませず、加熱して粘度を下げることにより補強繊維に含浸させるホットメルト方式と、溶剤で希釈されたマトリックス樹脂を補強繊維に含浸後脱溶剤するラッカー方式に大別できる。この両製造方式は、使用するマトリックス樹脂の特性や設備的な対応などにより使い分けされているが、前記の技術は、ホットメルト方式にしか用いることができないという問題点を有する。ラッカー方式で製造されたプリプレグでは前記の技術のような構成をとることは不可能であり、ラッカー方式のプリプレグを用いたオーブン成形は非常に困難なものとなっていた。
【0007】
【発明が解決しようとする課題】
従って本発明の課題は、特にラッカー方式で製造されたプリプレグを用いた場合においても、オーブン成形で成形したFRPの表面にはピンホールがなく外観に優れ、内部ボイドもないようなFRPが成形できる、FRP成形用中間材料を提供することであり、そのようなFRP成形用中間材料を製造する方法を提供することである。
【0008】
【課題を解決するための手段及び作用効果】
本発明は以下の構成よりなる。すなわち本発明の第一の要旨は、熱硬化性樹脂及び補強繊維とからなる、ラッカー方式により製造されたプリプレグの少なくとも片面に、繊維状基材が貼り合わされ、前記プリプレグの厚み(A)と、基材の厚み(B)との比(B)/(A)が0.1以上2.5以下であるFRP成形用中間材料である。
【0009】
本発明の第二の要旨は、ラッカー方式によりプリプレグを調製し、次に、該プリプレグの少なくとも片面に、繊維状基材を貼り合せるFRP成形用中間材料の製造方法において、プリプレグの厚み(A)と、基材の厚み(B)との比(B)/(A)が0.1以上2.5以下とするFRP成形用中間材料の製造方法である。
【0010】
【発明の実施の形態】
以下、本発明について詳細に述べる。
(熱硬化性樹脂組成物)
本発明に用いられる熱硬化性樹脂組成物としては特に制限はなく、エポキシ樹脂、フェノール樹脂、ビスマレイミド樹脂、BT樹脂、シアネートエステル樹脂、ベンゾオキサジン樹脂などが例示できるが、中でもエポキシ樹脂は、補強繊維との接着性に優れるため、得られるFRPの機械特性に優れるために好ましい。又フェノール樹脂は難燃性に優れているばかりでなく、ラッカー方式のプリプレグ調製方法に特に適したマトリックス樹脂であるため、好適に用いることができる。
【0011】
(補強繊維)
本発明に用いられるプリプレグを構成する補強繊維としては特に制限はなく、その素材としてはガラス繊維、炭素繊維、アラミド繊維、ボロン繊維、PBO繊維など、高強度・高弾性である補強繊維すべてが使用可能であるが、中でもガラス繊維や炭素繊維が素材である補強繊維は、弾性率と強度のバランスに優れ、得られるFRPが機械的性能に優れるために好適に用いられる。
【0012】
(プリプレグの製造方法)
又本発明に用いられるプリプレグの製造方法としては、上述のホットメルト方式でも良いが、ラッカー方式で製造したプリプレグを用いた場合でも、オーブン成形で内部ボイドや表面のピンホールのない成形品が得られるので、特にラッカー方式で製造されたプリプレグを用いると本発明の効果が顕著に得られる。
【0013】
ラッカー方式とは、既に述べた様に、溶剤で希釈されたマトリックス樹脂溶液を補強繊維に含浸後脱溶剤するプリプレグの製造方法である。溶液を強化繊維に含浸する方法としては、強化繊維をマトリックス樹脂溶液中に浸漬させる、若しくは、ローラーに溶液を付着させてそれを強化繊維に転写させる、等が挙げられるが、強化繊維を溶液中に浸漬させて含浸する方法が、強化繊維へのマトリックス樹脂溶液の含浸性が優れる点で好ましい。又、脱溶剤するには、温風又は熱風乾燥、減圧乾燥する方法等が挙げられるが、温風乾燥を用いることが、生産性の点で好ましい。
【0014】
(プリプレグと基材)
本発明のFRP成形用中間材料は、上記プリプレグの少なくとも片面に樹脂を含浸していない基材を貼り合わせてなるものである。この基材が脱気回路としてはたらくことにより、成形中に内部の空気だまりを脱気することが容易となるので、成形品中のボイドや成形品表面のピンホールの発生を防ぐ役割を果たす。基材をプリプレグの両面に貼ると脱気回路が片面のみに貼るよりも大きくなるので好ましい場合もあるが、両面にタックがなくなってしまうので作業性に劣るケースがありうるため、基材は片面のみに貼り付け、もう一方の面はプリプレグのままとし、タックを維持した状態である方が好ましい場合が多い。
【0015】
本発明のFRP成形用中間材料は、上述のように基材が成形中に脱気回路として働き、成形物中のエアを成形物の外に導き出す経路となる。しかし一方で、成形後は補強繊維に含浸させた熱硬化性樹脂組成物が成形中に基材にも含浸して一体化し、ボイドやピンホールのない成形物が得られなければならない。よって、基材は脱気回路として十分な空隙量を有しつつその空隙を成形中に熱硬化性樹脂が完全に含浸し得る空隙量でなければならない。従って、本発明において用いるプリプレグに対応した基材の空隙量とすることがポイントとなるが、検討の結果、プリプレグと基材との厚みの比を制御することにより好ましい空隙量となることがわかった。具体的には、プリプレグの厚み(A)と基材の厚み(B)の比(B)/(A)が0.1以上、2.5以下である必要がある。上述のように、基材は脱気回路として十分な空隙を有し、かつその空隙は成形中に樹脂が完全に含浸し得る大きさでなければならない。従って本発明において下限値が0.15以上であるときは更に好ましく、0.2以上である場合には特に好ましい。しかし。0.1未満のときは脱気回路として十分な空隙が基材内に確保できずに成形後に空気が残ることがある。又、上限値が1.5以下の場合は更に好ましく、1.1以下の場合は特に好ましいが、2.5を大きく超えるときは成形中に完全に樹脂が含浸しきらずに成形後に空気が残る。
【0016】
(プリプレグ及び基材の厚みの測定)
ここで、プリプレグの厚み(A)、及び基材の厚み(B)はノギスで測定した値を用いる。ただし、測定時にノギスがプリプレグや基材を押さえつけて厚みが変化しないように注意しなければならない。特に基材について、測定時に押さえつけて厚みの測定誤差が大きくなる懸念のあるときは、基材の断面の写真をとり、拡大して誤差が無いことを確認しながら測定する方法が好ましい。さらに、基材をプリプレグの両面に貼り合わせる場合は、各面に貼り合わせる基材のそれぞれの厚みの和を(B)とする。
【0017】
(基材の構成)
基材を構成する素材としては、例えば繊維状熱可塑性樹脂組成物や補強繊維を挙げることができる。熱可塑性樹脂組成物を用いる場合には、本発明のFRP成形用中間材料を積層したときに層間補強の効果が得られるので好ましい。このような素材の例としては、ナイロン、ポリエステル、ポリエチレン、ポリプロピレン等が例示でき、又この場合素材の形状としては、脱気回路が確保できれば、ネットのようなものでも使用可能であり、ロッドや線材状の熱可塑性材料を一方向に引きそろえたものでもよく、さらにはこれらを角度を変えて積層したようなものでも良い。しかしながら、効率的な脱気回路を確保する上では熱可塑性樹脂組成物が繊維状物よりなるのが最も好ましく、特に繊維状物よりなる織物、一方向材又は不織布などが挙げられ、中でも不織布は脱気回路の形成が容易であるので特に好ましい。
【0018】
又、この基材の素材として、熱可塑性樹脂組成物でない繊維、特に補強繊維も好適に用いることができる。基材の素材として補強繊維を用いる場合には、上述のプリプレグを構成する補強繊維と同じものでも良いし、異なるものでも良い。
【0019】
基材の素材として、プリプレグを構成する補強繊維と同じものを用いる場合には、プリプレグを構成する補強繊維の配向角度に対し、基材を構成する補強繊維の配向角度が同じになるように貼り合わせても良いが、両者を異なる配向角度で貼り合わせた場合には、擬似等方積層などの際の積層工程での手間が省けるので好ましい。なお、擬似等方積層とは、[−45°/0°/45°/90°]と積層するように、FRPの物性に異方性が生じないようにするために各層の配向角度をFRP全体として等方的に積層することである。
【0020】
一方、基材を構成する補強繊維にプリプレグを構成する補強繊維とは異なる補強繊維を用いることもできる。この場合は、簡単にハイブリッドのFRPを製造することができるので好適である。例えばプリプレグを構成する補強繊維としてガラス繊維よりなる織物を用い、基材を構成する補強繊維として炭素繊維よりなる織物を用いたFRP成形用中間材料を用いて製造されたFRPは、ガラス/炭素繊維よりなるハイブリッドなFRPとなり、コストパフォーマンスを最良に設計することができる。尚、この場合も、基材を構成する補強繊維とプリプレグを構成する補強繊維との繊維の配向角度は、同じであっても異なっていても良い。
【0021】
(FRP成形用中間材料の製造方法)
本発明のFRP成形用中間材料を製造する方法は、前述のラッカー方式を用いてプリプレグを調製し、得られたプリプレグの少なくとも片面に樹脂を含浸していない基材を貼り合わせる製造方法である。
【0022】
本発明の製造方法において、溶剤としては、通常のラッカー方式のプリプレグを製造する際に用いられる溶剤をいずれも用いることができる。例えば、アセトンやメチルエチルケトン、塩化メチレン、アルコール類、などであるが、乾燥の速さや作業環境の安全性等の点からアセトンを用いることが好ましい。
【0023】
基材をプリプレグに貼り合わせるときは加熱する必要は特にないが、プリプレグのタックが不足しているような場合には加熱して貼り合わせても構わない。ただしその場合には、プリプレグの保存可能期間等の性能に影響を与えない程度の加熱にとどめるべきである。
【0024】
【実施例】
以下、実施例で本発明を詳細に説明するが、本発明は以下の実施例に限定されるものではない。尚、実施例1〜4及び6並びに比較例1〜4で用いた熱硬化性樹脂組成物のアセトン溶液は、下記成分からなるエポキシ樹脂組成物(室温で固体)をアセトンに均一に溶解して調製した、エポキシ樹脂組成物が60質量%のアセトン溶液を用いた(以下、単にエポキシ溶液と呼ぶ)。
【0025】
(エポキシ樹脂組成物)
エピコート828(ジャパンエポキシレジン(株)社製) 50質量部
エピコート1004(ジャパンエポキシレジン(株)社製)30質量部
エピクロンN740(大日本インキ化学工業(株)社製) 20質量部
DCMU99(保土ヶ谷化学社(株)製) 5質量部
【0026】
(実施例1)
炭素繊維を経糸及び緯糸に用いた三菱レイヨン社製、炭素繊維織物パイロフィルTRK510(2/2綾織、繊維目付け646g/m、厚み0.57mm)を、エポキシ溶液中に浸漬することにより含浸し、40℃の温風で乾燥、脱溶剤して、レジンコンテント46.7質量%(樹脂目付け564g/m)のプリプレグを得た。このプリプレグの厚みをノギスを用いて測定すると、厚み(A)=0.85mmであった。このプリプレグに基材として炭素繊維を経糸及び緯糸に用いた三菱レイヨン社製炭素繊維織物パイロフィルTR3110(平織、繊維目付け200g/m、厚み(B)=0.23mm)を用い、経糸及び緯糸の配向角度がプリプレグと同一方向となるように片面に貼り合わせて、FRP成形用中間材料を得た。この中間材料の(B)/(A)は0.27、中間材料全体の繊維目付けは846g/m、レジンコンテントは40質量%であった。
得られた中間材料のプリプレグ側の面を成形型に貼り付け、同一配向角度で同じ面を同じ向きにして3プライ積層し、500mm×500mmの平板をオーブン成形した。成形条件は次のとおりとした。すなわち、5Torr以下の該真空下で室温から50℃まで昇温速度3℃/分で昇温し、50℃×3時間保持、その後120℃まで0.5℃/分で昇温し、120℃×2時間で成形した。
得られたFRPパネルはオーブン成形であるにもかかわらず、表1に示したように、表面にはピンホールが見られず、又、FRPパネル中央部をカットして内部を観察したが、内部にもボイドは見られなかった。
【0027】
(実施例2)
レジンコンテントを57.1質量%(樹脂目付け861g/m)、厚み(A)=1.1mmとしたこと以外は、実施例1と同様にしてプリプレグを調製した。得られたプリプレグに、基材としてプリプレグに用いた補強繊維織物と同じ厚み(B)=0.57mmのTRK510を用い、プリプレグの補強繊維の配向方向から45°傾けて片面に貼り合わせてFRP成形用中間材料を得た。この中間材料の(B)/(A)は0.52、中間材料全体の繊維目付けは1292g/m、レジンコンテントは40質量%であった。
得られたFRP成形用中間材料を経糸の繊維配向角度が[−45°/0°/45°/90°/90°/45°/0°/−45°]となるように積層し、実施例1と同様にしてオーブン成形してFRPパネルを得た。ただし、本実施例における中間材料は0°/45°の二層構造なので、本中間材料単位では4プライ積層した。
得られたFRPパネルは、表1に示したように、表面にはピンホールが見られず、又FRPパネル中央部をカットして内部を観察したが、内部にもボイドは見られなかった。
【0028】
(実施例3)
TRK510に代えて日東紡社製ロービングガラスクロスWR800を用い、レジンコンテントを53.3質量%(樹脂目付けは450g/m)、厚み(A)=0.71mmとした以外は、実施例1と同様にしてのプリプレグを得た。さらに、このプリプレグにパイロフィルTR3110を、経糸及び緯糸の配向角度がプリプレグと同一方向となるように、片面に貼り合わせて、ガラス繊維/炭素繊維のハイブリッドFRP成形用中間材料を得た((B)/(A)=0.32)。
得られた本発明の中間材料を、同一配向角度で同じ面を同じ向きにして4プライ積層し、実施例1と同様にしてオーブン成形し、ガラス繊維/炭素繊維のハイブリッドFRPを得た。本発明の中間材料を用いればハイブリッドFRPが簡単に成形できた。
又得られたFRPパネルは、表1に示したように、表面にはピンホールが見られず、又FRPパネル中央部をカットして内部を観察したが、内部にもボイドは見られなかった。
【0029】
(実施例4)
レジンコンテントを51.9質量%(樹脂目付け、697.5g/m)、厚み(A)=0.96mmとした以外は、実施例1と同様にプリプレグを調製した。得られたプリプレグに基材としてパイロフィルTR3110を経糸及び緯糸の配向角度がプリプレグと同一方向となるように、プリプレグの表裏両面に貼り付け、本発明のFRP成形用中間材料を得た。この中間材料は、(B)/(A)=0.24、中間材料全体の炭素繊維目付けは1064g/m、レジンコンテントは40質量%であった。
得られた本発明の中間材料を、同一配向角度で同じ面を同じ向きに10プライ積層し、実施例1と同様にしてオーブン成形してFRPパネルを得た。
得られたFRPパネルは、表1に示したように、表面にはピンホールが見られず、又FRPパネル中央部をカットして内部を観察したが、内部にもボイドは見られなかった。
【0030】
(実施例5)
エポキシ樹脂に代えて、大日本インキ化学工業社製フェノール樹脂のメタノール溶液、フェノライト5900(約60質量%)を用い、レジンコンテントを57.1質量%(樹脂目付けは861g/m)、厚み(A)=1.1mmとした以外は実施例1と同様にしてのプリプレグを調整した。これにパイロフィルTR3110を炭素繊維の配向方向が同じ向きになるようにして、片面に貼り合わせてFRP成形用中間材料を得た。この中間材料の(B)/(A)は0.21、中間材料全体の繊維目付けは1292g/m、レジンコンテントは40質量%であった。
得られた本発明の中間材料3プライを同じ向きに積層し、1000mm×1000mmのFRPパネルをオーブン成形した。ただし成形条件は5Torr以下該真空下で、90℃まで0.5℃/分で昇温し、90℃×20時間とした。
得られたFRPパネルは、表1に示したように表面はピンホールが見られず、又FRPパネル中央部をカットして内部を観察したが、内部にもボイドは見られなかった。
【0031】
(比較例1)
プリプレグに基材を貼り付けない場合の例を示す。レジンコンテントを40.0%(樹脂目付け431g/m)、厚み(A)=0.73mmとした以外は、実施例1と同様にしてプリプレグを調製した。
得られたプリプレグのみを[−45°/0°/45°/90°/90°/45°/0°/−45°]に8プライ積層し、実施例1と同様にしてオーブン成形してFRPパネルを得た。
得られたFRPパネルは、表1に示したように表面にピンホールが多数見られ、又FRPパネル中央部をカットして内部を観察したところ、内部にもボイドが多数見られた。
【0032】
(比較例2)
レジンコンテントを40.5%(樹脂目付け430g/m)、厚み(A)=0.74mmとした以外は、実施例1と同様にしてプリプレグを調製した。このプリプレグに基材としてユニチカグラスファイバー(株)社製ガラスクロスH20F5 104(厚み(B)=0.04mm)を貼り合わせてFRP成形用中間材料を得た。この中間材料の(B)/(A)は0.05であった。
このFRP成形用中間材料を実施例1と同様にしてオーブン成形してFRPパネルを得た。得られたFRPパネルは、表1に示したように表面にピンホールが見られ、又FRPパネル中央部をカットして内部を観察したところ、内部にもボイドが見られた。
【0033】
(比較例3)
レジンコンテントを32.0%(樹脂目付け300g/m)、厚み(A)=0.62mmとした以外は、実施例1と同様にしてプリプレグを調製した。このプリプレグにポリエステル繊維不織布(繊維目付け132g/m、厚み(B)=1.7mm)を貼り合わせてFRP成形用中間材料を得た。このFRP成形用中間材料の(B)/(A)は2.74であった。
このFRP成形用中間材料を実施例1と同様にしてオーブン成形してFRPパネルを得た。得られたFRPパネルは、表1に示したように表面に樹脂未含浸部が多数見られ、又FRPパネル中央部をカットして内部を観察したところ、内部にもボイド多数が見られた。
【0034】
(実施例6)
三菱レイヨン製炭素繊維パイロフィルTR50S−12Lを繊維目付け190g/mで一方向に引き揃え、実施例1と同様にしてレジンコンテント30.2質量%(樹脂目付け、82.3g/m)、厚み(A)=0.18mmのプリプレグを調製した。このプリプレグに厚み(B)=0.32mmのナイロン12繊維からなる不織布(繊維目付け20g/m)を片面に貼り付けてFRP成形用中間材料を得た((B)/(A)=1.78)。
得られたFRP成形用中間材料を炭素繊維の配向角度が[−45°/0°/45°/90°]3sとなるようにに計24プライ積層した(3sとは積層の繰返し単位を3回繰り返したものを鏡面で対称になるように貼り合わせたことを示す。すなわち、最初の12プライは炭素繊維側を型側とし、その後の12プライは炭素繊維側を型と反対側に積層した)。このようにして積層し、実施例1と同様にしてオーブン成形してFRPパネルを得た。
得られたFRPパネルの表面及び層間にはピンホールはみられず、又FRPパネル中央部をカットして内部を観察したが、内部にもボイドは見られなかった。このパネルのCAI(衝撃後の残存圧縮強度)測定を行った。CAI測定はSACMAのSRM2−88法に準拠して実施した。加えた衝撃は1500インチ・ポンド/インチとした。その結果、得られたパネルのCAI測定の結果は350MPaとFRPとして高い値であった。
【0035】
(比較例4)
レジンコンテントは35.0%(樹脂目付け102.3g/m)、厚み(A)=0.19mmとした以外は、実施例6と同様にしてプリプレグを調製した。得られたプリプレグのみを[−45°/0°/45°/90°]3sとなるように計24プライ積層し、実施例1と同様にオーブン成形してFRPを成形した。
得られたFRPパネルは、表面、層間に若干のボイドがみられ、又FRPパネル中央部をカットして内部を観察したが、内部にもボイドが見られた。又、得られたパネルのCAI測定を行ったところ、210MPaと低かった。
【0036】
【表1】

Figure 0004116361
【0037】
【発明の効果】
以上説明したように、本発明のFRP成形用中間材料は、熱硬化性樹脂組成物及び補強繊維とからなるプリプレグの少なくとも片面に、熱硬化性樹脂組成物を実質的に含浸していない基材が貼り合わされ、前記プリプレグの厚み(A)と、基材の厚み(B)との比(B)/(A)が0.1以上2.5以下であるFRP成形用中間材料であるので、ラッカー方式で製造された場合でも、オーブン成形で成形したFRPの表面にはピンホールがなく外観に優れ、内部ボイドも見られ無いFRPが成形可能なFRP成形用中間材料を提供することができる。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an intermediate material for molding FRP (fiber reinforced composite material) and a method for producing the same.
[0002]
[Prior art]
FRP is widely used from sports / leisure applications to industrial applications such as automobiles and aircrafts, taking advantage of its light weight, high strength and high rigidity. In particular, in recent years, FRP (CFRP), which is lighter and has higher strength and higher rigidity using carbon fiber as a reinforcing fiber, has been increasingly used for industrial applications.
[0003]
Among industrial uses, CFRP used for structural members such as trains and aircraft bodies is generally manufactured by autoclave molding using prepreg as an intermediate material. This is achieved by molding under high pressure using an autoclave, reducing voids in the molded product, and expressing the strength of the molded product as expected, and suppressing the occurrence of pinholes on the surface, providing a clean appearance. The purpose is to obtain a molded product.
[0004]
However, since the equipment of the autoclave is very expensive, it is not only difficult to introduce a new one, but once it is introduced, the size of the molded product is limited by the size of the autoclave, so that larger molded products can be integrated. Molding is virtually impossible.
[0005]
In order to solve such problems, development of a method for molding at low cost without using an autoclave has been actively performed. As a typical example, an oven for molding at a low pressure of only vacuum and atmospheric pressure is used. There is molding (also called vacuum bug molding). Oven molding does not apply pressure other than vacuum or atmospheric pressure, so it does not have to be a solid pressure-resistant vessel like an autoclave, and can be molded if there is a furnace (oven) that can even raise the temperature, insulating board and hot air It can be molded with simple equipment such as a heater. However, since no pressure is applied, voids tend to remain in the molded product, and the molded product has a problem that the strength is lower than that of a molded product in an autoclave, or pinholes are generated on the surface.
[0006]
In recent years, solutions to these problems are being taken. For example, WO 00/27632 discloses a technique related to a material composed of a resin layer and a reinforcing fiber layer, and it is described that a very clean molded product having little voids and no pinholes on the surface can be obtained even in oven molding. Has been.
By the way, the prepreg manufacturing method includes a hot melt method in which a reinforcing fiber is impregnated by heating and lowering the viscosity without adding a solvent to the matrix resin, and a matrix resin diluted with the solvent is impregnated in the reinforcing fiber and then removed. It can be roughly divided into solvent-based lacquer systems. Both of these production methods are properly used depending on the characteristics of the matrix resin to be used and the corresponding equipment, but the above technique has a problem that it can be used only for the hot melt method. A prepreg manufactured by a lacquer method cannot take the configuration as described above, and oven molding using the lacquer prepreg has been very difficult.
[0007]
[Problems to be solved by the invention]
Therefore, the problem of the present invention is that even when a prepreg manufactured by a lacquer method is used, it is possible to form an FRP that does not have pinholes on the surface of the FRP formed by oven molding, has an excellent appearance, and has no internal voids. It is to provide an intermediate material for FRP molding, and to provide a method for producing such an intermediate material for FRP molding.
[0008]
[Means for solving the problems and effects]
The present invention has the following configuration. That is, the first gist of the present invention is that a fibrous base material is bonded to at least one surface of a prepreg manufactured by a lacquer method, which is composed of a thermosetting resin and a reinforcing fiber, and the thickness (A) of the prepreg, An intermediate material for FRP molding having a ratio (B) / (A) of 0.1 to 2.5 with respect to the thickness (B) of the substrate.
[0009]
The second gist of the present invention is a method for producing an intermediate material for FRP molding, in which a prepreg is prepared by a lacquer method, and then a fibrous base material is bonded to at least one surface of the prepreg. And the ratio (B) / (A) to the thickness (B) of the base material is a method for producing an intermediate material for FRP molding having a ratio of 0.1 to 2.5.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in detail.
(Thermosetting resin composition)
The thermosetting resin composition used in the present invention is not particularly limited, and examples thereof include epoxy resins, phenol resins, bismaleimide resins, BT resins, cyanate ester resins, and benzoxazine resins. Since it is excellent in adhesiveness with a fiber, it is preferable in order to be excellent in the mechanical property of FRP obtained. In addition, the phenol resin is not only excellent in flame retardancy, but also can be suitably used because it is a matrix resin particularly suitable for a lacquer type prepreg preparation method.
[0011]
(Reinforcing fiber)
There is no particular restriction on the reinforcing fiber constituting the prepreg used in the present invention, and all of the reinforcing fibers having high strength and high elasticity such as glass fiber, carbon fiber, aramid fiber, boron fiber, PBO fiber are used as the material. Although it is possible, among them, the reinforcing fiber made of glass fiber or carbon fiber is preferably used because it has an excellent balance between elastic modulus and strength, and the resulting FRP has excellent mechanical performance.
[0012]
(Manufacturing method of prepreg)
The prepreg used in the present invention may be produced by the hot melt method described above, but even when a prepreg produced by a lacquer method is used, a molded product without internal voids or surface pinholes is obtained by oven molding. Therefore, the effect of the present invention can be remarkably obtained particularly when a prepreg manufactured by a lacquer method is used.
[0013]
As described above, the lacquer method is a method for producing a prepreg in which a matrix resin solution diluted with a solvent is impregnated into a reinforcing fiber and then the solvent is removed. Examples of the method of impregnating the reinforcing fiber with the reinforcing fiber include immersing the reinforcing fiber in the matrix resin solution, or attaching the solution to a roller and transferring it to the reinforcing fiber. The method of impregnating by impregnating in a fiber is preferable in that the impregnation property of the matrix resin solution to the reinforcing fiber is excellent. Examples of solvent removal include hot air or hot air drying, reduced pressure drying, and the like, but it is preferable to use hot air drying from the viewpoint of productivity.
[0014]
(Prepreg and substrate)
The intermediate material for FRP molding of the present invention is obtained by bonding a base material not impregnated with resin on at least one side of the prepreg. Since the base material acts as a deaeration circuit, it is easy to deaerate the air pockets during molding, so that it serves to prevent voids in the molded product and pinholes on the surface of the molded product. It may be preferable to paste the base material on both sides of the prepreg because the deaeration circuit is larger than sticking to only one side, but there is a case where the workability is inferior because there is no tack on both sides. In many cases, it is preferable that the other surface is left as a prepreg and the tack is maintained.
[0015]
As described above, the intermediate material for FRP molding of the present invention functions as a deaeration circuit during molding, and serves as a route for leading the air in the molding out of the molding. However, on the other hand, after molding, the thermosetting resin composition impregnated in the reinforcing fiber is also impregnated into the base material during the molding, and a molded product free from voids and pinholes must be obtained. Therefore, the substrate must have a sufficient amount of voids as a degassing circuit, and the void amount must be such that the thermosetting resin can be completely impregnated during molding of the voids. Therefore, the point is to set the void amount of the base material corresponding to the prepreg used in the present invention, but as a result of investigation, it is found that the preferable void amount is obtained by controlling the ratio of the thickness of the prepreg to the base material. It was. Specifically, the ratio (B) / (A) of the thickness (A) of the prepreg and the thickness (B) of the base material needs to be 0.1 or more and 2.5 or less. As mentioned above, the substrate must have sufficient voids as a degassing circuit, and the voids must be large enough to be completely impregnated with resin during molding. Therefore, in the present invention, the lower limit is more preferably 0.15 or more, and particularly preferably 0.2 or more. However. When it is less than 0.1, there may be a case where air is left after molding because a sufficient gap as a deaeration circuit cannot be secured in the substrate. Further, when the upper limit is 1.5 or less, it is more preferable, and when it is 1.1 or less, it is particularly preferable, but when it greatly exceeds 2.5, the resin is not completely impregnated during molding and air remains after molding. .
[0016]
(Measurement of prepreg and substrate thickness)
Here, values measured with a caliper are used for the thickness (A) of the prepreg and the thickness (B) of the base material. However, care must be taken so that the caliper does not press the prepreg or the substrate during measurement and the thickness does not change. In particular, when there is a concern that the measurement error of the thickness may increase due to pressing on the substrate, a method of taking a photograph of a cross section of the substrate and enlarging and confirming that there is no error is preferable. Furthermore, when bonding a base material on both surfaces of a prepreg, the sum total of each thickness of the base material bonded on each surface is set to (B).
[0017]
(Structure of base material)
As a material which comprises a base material, a fibrous thermoplastic resin composition and a reinforcing fiber can be mentioned, for example. When a thermoplastic resin composition is used, an interlayer reinforcement effect is obtained when the FRP molding intermediate material of the present invention is laminated, which is preferable. Examples of such materials include nylon, polyester, polyethylene, polypropylene, etc. In this case, the shape of the material can also be used as a net if a deaeration circuit can be secured, such as a rod or A wire-like thermoplastic material may be arranged in one direction, or may be a laminate of these at different angles. However, in order to ensure an efficient deaeration circuit, it is most preferable that the thermoplastic resin composition is made of a fibrous material, and in particular, a woven fabric, a unidirectional material or a nonwoven fabric made of a fibrous material, etc. This is particularly preferable because it is easy to form a deaeration circuit.
[0018]
Further, as the material of the base material, fibers that are not thermoplastic resin compositions, particularly reinforcing fibers, can also be suitably used. When reinforcing fibers are used as the material for the base material, they may be the same as or different from the reinforcing fibers constituting the prepreg described above.
[0019]
When the same material as the reinforcing fiber constituting the prepreg is used as the material for the base material, it is pasted so that the orientation angle of the reinforcing fiber constituting the base material is the same as the orientation angle of the reinforcing fiber constituting the prepreg. Although they may be combined, it is preferable that the two are bonded at different orientation angles because the labor of the stacking process in the case of pseudo-isotropic stacking can be saved. In addition, the pseudo-isotropic lamination means that the orientation angle of each layer is FRP so as not to cause anisotropy in the physical properties of FRP so as to be laminated with [−45 ° / 0 ° / 45 ° / 90 °]. The isotropic lamination as a whole.
[0020]
On the other hand, a reinforcing fiber different from the reinforcing fiber constituting the prepreg can be used for the reinforcing fiber constituting the base material. This is preferable because a hybrid FRP can be easily manufactured. For example, FRP manufactured using an intermediate material for FRP molding using a woven fabric made of glass fiber as the reinforcing fiber constituting the prepreg and using a woven fabric made of carbon fiber as the reinforcing fiber constituting the substrate is glass / carbon fiber. As a result, the hybrid FRP can be designed with the best cost performance. In this case as well, the fiber orientation angles of the reinforcing fiber constituting the base material and the reinforcing fiber constituting the prepreg may be the same or different.
[0021]
(Method for producing intermediate material for FRP molding)
The method for producing the intermediate material for FRP molding of the present invention is a production method in which a prepreg is prepared by using the lacquer method described above, and a base material not impregnated with resin is bonded to at least one side of the obtained prepreg.
[0022]
In the production method of the present invention, as the solvent, any of the solvents used in producing a normal lacquer prepreg can be used. For example, acetone, methyl ethyl ketone, methylene chloride, alcohols, and the like are used, but acetone is preferably used from the viewpoint of the speed of drying and the safety of the working environment.
[0023]
When the substrate is bonded to the prepreg, it is not particularly necessary to heat, but when the prepreg tack is insufficient, the substrate may be heated and bonded. However, in that case, the heating should be limited to a level that does not affect the performance of the prepreg storage period.
[0024]
【Example】
EXAMPLES Hereinafter, although an Example demonstrates this invention in detail, this invention is not limited to a following example. In addition, the acetone solution of the thermosetting resin composition used in Examples 1 to 4 and 6 and Comparative Examples 1 to 4 was obtained by uniformly dissolving an epoxy resin composition (solid at room temperature) composed of the following components in acetone. A prepared acetone solution containing 60% by mass of an epoxy resin composition was used (hereinafter simply referred to as an epoxy solution).
[0025]
(Epoxy resin composition)
Epicoat 828 (manufactured by Japan Epoxy Resin Co., Ltd.) 50 parts by mass Epicoat 1004 (manufactured by Japan Epoxy Resin Co., Ltd.) 30 parts by mass Epicron N740 (manufactured by Dainippon Ink & Chemicals, Inc.) 20 parts by mass DCMU99 (Hodogaya) Chemical Co., Ltd.) 5 parts by mass
(Example 1)
Carbon fiber fabric Pyrofil TRK510 (2/2 twill weave, fiber basis weight 646 g / m 2 , thickness 0.57 mm) manufactured by Mitsubishi Rayon Co., Ltd. using carbon fiber for warp and weft is impregnated by immersing in an epoxy solution, Drying and solvent removal with warm air at 40 ° C. yielded a prepreg with a resin content of 46.7% by mass (resin weight 564 g / m 2 ). When the thickness of the prepreg was measured using calipers, the thickness (A) was 0.85 mm. Using carbon fiber woven pyrofil TR3110 (plain weave, fiber basis weight 200 g / m 2 , thickness (B) = 0.23 mm) manufactured by Mitsubishi Rayon Co., Ltd. using carbon fiber as a warp and weft as a base material for this prepreg, warp and weft It was bonded to one side so that the orientation angle was in the same direction as the prepreg to obtain an intermediate material for FRP molding. (B) / (A) of this intermediate material was 0.27, the fiber basis weight of the whole intermediate material was 846 g / m 2 , and the resin content was 40% by mass.
The surface of the obtained intermediate material on the prepreg side was affixed to a mold, and three plies were laminated with the same orientation angle and the same surface in the same direction, and a 500 mm × 500 mm flat plate was oven-molded. The molding conditions were as follows. That is, the temperature was raised from room temperature to 50 ° C. at a heating rate of 3 ° C./min under the vacuum of 5 Torr or less, held at 50 ° C. × 3 hours, and then raised to 120 ° C. at 0.5 ° C./min. X Molded in 2 hours.
Although the obtained FRP panel was oven-molded, as shown in Table 1, no pinhole was seen on the surface, and the center of the FRP panel was cut and the inside was observed. There were no voids.
[0027]
(Example 2)
A prepreg was prepared in the same manner as in Example 1 except that the resin content was 57.1% by mass (resin weight 861 g / m 2 ) and the thickness (A) was 1.1 mm. Using the TRK510 with the same thickness (B) = 0.57 mm as the reinforcing fiber fabric used for the prepreg as the base material, the resulting prepreg was bonded to one side by tilting 45 ° from the orientation direction of the reinforcing fiber of the prepreg and FRP molded Intermediate material was obtained. (B) / (A) of this intermediate material was 0.52, the fiber basis weight of the entire intermediate material was 1292 g / m 2 , and the resin content was 40% by mass.
The obtained intermediate material for FRP molding was laminated so that the fiber orientation angle of the warp was [−45 ° / 0 ° / 45 ° / 90 ° / 90 ° / 45 ° / 0 ° / −45 °]. FRP panels were obtained by oven molding in the same manner as in Example 1. However, since the intermediate material in this example has a double-layer structure of 0 ° / 45 °, four plies were laminated in this intermediate material unit.
As shown in Table 1, the obtained FRP panel showed no pinholes on the surface, and the inside of the FRP panel was cut to observe the inside, but no void was found inside.
[0028]
(Example 3)
Example 1 except that a roving glass cloth WR800 manufactured by Nittobo Co., Ltd. was used instead of TRK510, the resin content was 53.3% by mass (resin weight was 450 g / m 2 ), and the thickness (A) was 0.71 mm. A similar prepreg was obtained. Further, Pyrofil TR3110 was bonded to one side of the prepreg so that the orientation angles of the warp and the weft were in the same direction as the prepreg, thereby obtaining an intermediate material for glass fiber / carbon fiber hybrid FRP molding ((B) /(A)=0.32).
The obtained intermediate material of the present invention was laminated in four plies with the same orientation angle and the same surface in the same direction, and oven-molded in the same manner as in Example 1 to obtain a glass fiber / carbon fiber hybrid FRP. By using the intermediate material of the present invention, a hybrid FRP could be easily formed.
In addition, as shown in Table 1, the obtained FRP panel showed no pinholes on the surface, and the center of the FRP panel was cut and the inside was observed, but no void was found inside. .
[0029]
Example 4
A prepreg was prepared in the same manner as in Example 1 except that the resin content was 51.9% by mass (resin weight, 697.5 g / m 2 ) and the thickness (A) was 0.96 mm. Pyrofil TR3110 was attached to the obtained prepreg as a base material on both the front and back surfaces of the prepreg so that the orientation angles of the warp and the weft were in the same direction as the prepreg, and the FRP molding intermediate material of the present invention was obtained. This intermediate material had (B) / (A) = 0.24, the carbon fiber basis weight of the entire intermediate material was 1064 g / m 2 , and the resin content was 40% by mass.
The obtained intermediate material of the present invention was laminated with 10 plies in the same direction at the same orientation angle, and oven-molded in the same manner as in Example 1 to obtain an FRP panel.
As shown in Table 1, the obtained FRP panel had no pinholes on the surface, and the inside of the FRP panel was cut to observe the inside, but no void was found inside.
[0030]
(Example 5)
Instead of the epoxy resin, a methanol solution of phenol resin manufactured by Dainippon Ink and Chemicals, Phenolite 5900 (about 60% by mass), resin content of 57.1% by mass (resin weight is 861 g / m 2 ), thickness A prepreg was prepared in the same manner as in Example 1 except that (A) = 1.1 mm. Pyrofil TR3110 was bonded to one side so that the orientation directions of the carbon fibers were the same, and an FRP molding intermediate material was obtained. (B) / (A) of this intermediate material was 0.21, the fiber basis weight of the entire intermediate material was 1292 g / m 2 , and the resin content was 40% by mass.
The obtained 3 plies of the intermediate material of the present invention were laminated in the same direction, and a 1000 mm × 1000 mm FRP panel was oven-molded. However, the molding conditions were 5 Torr or less, and the temperature was raised to 90 ° C. at 0.5 ° C./min, and 90 ° C. × 20 hours.
As shown in Table 1, the obtained FRP panel had no pinholes on the surface, and the center of the FRP panel was cut and the inside was observed, but no void was found inside.
[0031]
(Comparative Example 1)
The example in the case of not sticking a base material to a prepreg is shown. A prepreg was prepared in the same manner as in Example 1 except that the resin content was 40.0% (resin weight 431 g / m 2 ) and the thickness (A) was 0.73 mm.
Only the obtained prepreg was laminated on [-45 ° / 0 ° / 45 ° / 90 ° / 90 ° / 45 ° / 0 ° / −45 °], and then oven-molded in the same manner as in Example 1. An FRP panel was obtained.
As shown in Table 1, the obtained FRP panel had many pinholes on the surface, and the inside of the FRP panel was cut and observed to find many voids inside.
[0032]
(Comparative Example 2)
A prepreg was prepared in the same manner as in Example 1 except that the resin content was 40.5% (resin weight 430 g / m 2 ) and the thickness (A) was 0.74 mm. A glass cloth H20F5 104 (thickness (B) = 0.04 mm) manufactured by Unitika Glass Fiber Co., Ltd. was bonded to this prepreg as a base material to obtain an intermediate material for FRP molding. This intermediate material had (B) / (A) of 0.05.
This FRP molding intermediate material was oven-molded in the same manner as in Example 1 to obtain an FRP panel. As shown in Table 1, the obtained FRP panel had pinholes on the surface, and when the inside of the FRP panel was cut and the inside was observed, voids were also found inside.
[0033]
(Comparative Example 3)
A prepreg was prepared in the same manner as in Example 1 except that the resin content was 32.0% (resin weight 300 g / m 2 ) and the thickness (A) was 0.62 mm. A polyester fiber nonwoven fabric (fiber basis weight 132 g / m 2 , thickness (B) = 1.7 mm) was bonded to this prepreg to obtain an intermediate material for FRP molding. (B) / (A) of this FRP molding intermediate material was 2.74.
This FRP molding intermediate material was oven-molded in the same manner as in Example 1 to obtain an FRP panel. As shown in Table 1, the obtained FRP panel had many resin non-impregnated portions on the surface, and when the inside of the FRP panel was cut and the inside was observed, many voids were also found inside.
[0034]
(Example 6)
Mitsubishi Rayon carbon fiber Pyrofil TR50S-12L is aligned in one direction with a fiber basis weight of 190 g / m 2 , and the resin content is 30.2 mass% (resin basis weight, 82.3 g / m 2 ) and thickness in the same manner as in Example 1. (A) = 0.18 mm prepreg was prepared. A non-woven fabric (fiber basis weight 20 g / m 2 ) made of nylon 12 fibers having a thickness (B) = 0.32 mm was attached to this prepreg to obtain an intermediate material for FRP molding ((B) / (A) = 1. .78).
The obtained FRP molding intermediate material was laminated in a total of 24 ply such that the orientation angle of the carbon fiber was [−45 ° / 0 ° / 45 ° / 90 °] 3 s (3 s is the repeating unit of the lamination 3 It shows that the repetitive ones are laminated so as to be symmetrical on the mirror surface, that is, the first 12 plies have the carbon fiber side as the mold side, and the subsequent 12 plies have the carbon fiber side laminated on the opposite side of the mold ). Thus, it laminated | stacked and carried out oven shaping | molding like Example 1, and obtained the FRP panel.
No pinholes were observed between the surface and the interlayer of the obtained FRP panel, and the inside of the FRP panel was cut to observe the inside, but no void was found inside. The panel was measured for CAI (residual compressive strength after impact). CAI measurements were performed in accordance with SACMA's SRM2-88 method. The applied impact was 1500 inch-pound / inch. As a result, the result of CAI measurement of the obtained panel was 350 MPa and a high value as FRP.
[0035]
(Comparative Example 4)
A prepreg was prepared in the same manner as in Example 6 except that the resin content was 35.0% (resin weight 102.3 g / m 2 ) and the thickness (A) was 0.19 mm. Only the obtained prepreg was [-45 ° / 0 ° / 45 ° / 90 °] laminated in a total of 24 ply so as to be 3 s, and oven-molded to form FRP in the same manner as in Example 1.
In the obtained FRP panel, some voids were observed between the surface and the interlayer, and the inside of the FRP panel was cut and observed, but voids were also observed inside. Moreover, when CAI measurement of the obtained panel was performed, it was as low as 210 MPa.
[0036]
[Table 1]
Figure 0004116361
[0037]
【The invention's effect】
As described above, the FRP molding intermediate material of the present invention is a base material that is substantially not impregnated with the thermosetting resin composition on at least one side of the prepreg composed of the thermosetting resin composition and the reinforcing fibers. Is an intermediate material for FRP molding in which the ratio (B) / (A) of the thickness (A) of the prepreg and the thickness (B) of the base material is 0.1 or more and 2.5 or less, Even when manufactured by the lacquer method, it is possible to provide an intermediate material for FRP molding that can mold FRP that has no pinhole on the surface of the FRP molded by oven molding, has an excellent appearance, and does not have any internal voids.

Claims (2)

熱硬化性樹脂及び補強繊維とからなる、ラッカー方式により製造されたプリプレグの少なくとも片面に、繊維状基材が貼り合わされ、前記プリプレグの厚み(A)と、基材の厚み(B)との比(B)/(A)が0.1以上2.5以下であるFRP成形用中間材料。  A fibrous base material is bonded to at least one surface of a prepreg manufactured by a lacquer method, which is composed of a thermosetting resin and a reinforcing fiber, and the ratio between the thickness (A) of the prepreg and the thickness (B) of the base material. An intermediate material for FRP molding in which (B) / (A) is 0.1 or more and 2.5 or less. ラッカー方式によりプリプレグを調製し、次に、該プリプレグの少なくとも片面に、繊維状基材を貼り合せるFRP成形用中間材料の製造方法において、プリプレグの厚み(A)と、基材の厚み(B)との比(B)/(A)が0.1以上2.5以下とするFRP成形用中間材料の製造方法。  In the method for producing an intermediate material for FRP molding in which a prepreg is prepared by a lacquer method and then a fibrous base material is bonded to at least one surface of the prepreg, the thickness of the prepreg (A) and the thickness of the base material (B) A method for producing an intermediate material for FRP molding in which the ratio (B) / (A) is 0.1 to 2.5.
JP2002234861A 2002-07-18 2002-08-12 Intermediate material for FRP molding and manufacturing method thereof Expired - Fee Related JP4116361B2 (en)

Priority Applications (18)

Application Number Priority Date Filing Date Title
JP2002234861A JP4116361B2 (en) 2002-08-12 2002-08-12 Intermediate material for FRP molding and manufacturing method thereof
EP20130150362 EP2578388A3 (en) 2002-07-18 2003-07-18 Method for the fabrication of prepregs
EP20100177309 EP2311618A3 (en) 2002-07-18 2003-07-18 Prepreg and method for production thereof
EP20100177310 EP2314434A3 (en) 2002-07-18 2003-07-18 Intermediate material for FRP molding and fabrication process therefor
ES10177311.7T ES2527168T3 (en) 2002-07-18 2003-07-18 Prepreg and procedures for the production of fiber reinforced composite materials
US10/521,433 US20060035548A1 (en) 2002-07-18 2003-07-18 Prepreg, intermediate material for forming frp, and method for production thereof and method for production of fiber-reinforced composite material
EP20030765331 EP1541312B1 (en) 2002-07-18 2003-07-18 Prepreg and method for production
PCT/JP2003/009176 WO2004009314A1 (en) 2002-07-18 2003-07-18 Prepreg, intermediate material for forming frp, and method for production thereof and method for production of fiber-reinforced composite material
CN2007101809719A CN101181828B (en) 2002-07-18 2003-07-18 Intermediate material for forming FRP, and method for production thereof
CN200710180972.3A CN101181833B (en) 2002-07-18 2003-07-18 Method for production of intermediate material for forming FRP
EP20100177311 EP2298522B1 (en) 2002-07-18 2003-07-18 Prepreg and methods for the production of fiber-reinforced composite materials
CN 200710180970 CN101181827B (en) 2002-07-18 2003-07-18 Method for production of fiber-reinforced composite material
CNB038165473A CN100431815C (en) 2002-07-18 2003-07-18 Prepreg, intermediate material for forming FRP, and method for production thereof and method for production of fiber-reinforced composite material
ES03765331T ES2387333T3 (en) 2002-07-18 2003-07-18 Prepreg, intermediate material for FRP molding, and production procedures for it, and production procedures for fiber reinforced composite
US12/244,676 US20090123717A1 (en) 2002-07-18 2008-10-02 Prepreg, intermediate material for forming frp, and method for production thereof and method for production of fiber-reinforced composite material
US13/037,696 US20110151206A1 (en) 2002-07-18 2011-03-01 Prepreg, intermediate material for forming frp, and method for production thereof and method for production of fiber-reinforced composite material
US13/446,722 US8679991B2 (en) 2002-07-18 2012-04-13 Prepreg, intermediate material for forming FRP, and method for production thereof and method for production of fiber-reinforced composite material
US14/072,139 US20140057514A1 (en) 2002-07-18 2013-11-05 Prepreg, intermediate material for forming frp, and method for production thereof and method for production of fiber-reinforced composite material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002234861A JP4116361B2 (en) 2002-08-12 2002-08-12 Intermediate material for FRP molding and manufacturing method thereof

Publications (3)

Publication Number Publication Date
JP2004074471A JP2004074471A (en) 2004-03-11
JP2004074471A5 JP2004074471A5 (en) 2005-11-04
JP4116361B2 true JP4116361B2 (en) 2008-07-09

Family

ID=32019543

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002234861A Expired - Fee Related JP4116361B2 (en) 2002-07-18 2002-08-12 Intermediate material for FRP molding and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4116361B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4917593B2 (en) * 2005-03-07 2012-04-18 スパンファブ・リミテッド Thermoplastic nylon adhesive matrix with uniform thickness and composite laminate formed therefrom
EP2596947B1 (en) * 2010-07-21 2019-02-06 Toray Industries, Inc. Prepreg, fiber-reinforced composite material, and process for producing prepreg
JP2012106451A (en) * 2010-11-18 2012-06-07 Fujifilm Corp Carbon fiber reinforced resin composite and production method for the same
WO2018181279A1 (en) * 2017-03-29 2018-10-04 三菱ケミカル株式会社 Prepreg, method for producing resin impregnated article and apparatus for producing resin impregnated article

Also Published As

Publication number Publication date
JP2004074471A (en) 2004-03-11

Similar Documents

Publication Publication Date Title
JP4177041B2 (en) Manufacturing method of fiber reinforced composite material
US9957387B2 (en) Epoxy resin composition for fiber reinforced composite material, prepreg, and fiber reinforced composite material
EP1485251B1 (en) Silicone resin based composites interleaved for improved toughness
EP0963286B1 (en) Improvements in or relating to moulding methods
CN108137839B (en) Prepreg, laminate, fiber-reinforced composite material, and method for producing fiber-reinforced composite material
JP5090701B2 (en) Partially impregnated prepreg and method for producing fiber reinforced composite material using the same
JP5068944B2 (en) Method for manufacturing sandwich structure and adhesive film used therefor
EP3808521B1 (en) Fiber-reinforced resin composite body, production method therefor, and non-woven fabric for use in fiber-reinforced resin composite body
EP3647025B1 (en) Aramid fabric having excellent adhesion to polyurethane matrix resin and excellent tensile strength, method for producing same, aramid fabric prepreg comprising same, and aramid fabric/thermoplastic polyurethane matrix resin composite comprising same
JP5112732B2 (en) Prepreg
JP4116361B2 (en) Intermediate material for FRP molding and manufacturing method thereof
EP4112794B1 (en) Stitched reinforcing fiber base material, preform material, fiber reinforced composite material, and manufacturing methods for same
JPH0575575B2 (en)
JP5138506B2 (en) Epoxy resin composition and prepreg
JP5966969B2 (en) Manufacturing method of prepreg
JP2007099966A (en) Prepreg
CN111989359B (en) Prepreg, laminate, fiber-reinforced composite material, and method for producing fiber-reinforced composite material
JP2004035604A (en) Semi-impregnated prepreg
EP0487868A2 (en) Composite tooling
JP2004182923A (en) Prepreg and method for manufacturing fiber-reinforced composite material using the same
JP5144010B2 (en) Manufacturing method of fiber reinforced plastic panel
JP2021055202A (en) Reinforcement-fiber stitch base material, preform member, and fiber-reinforced composite material, and method of fabricating them
JP2004346190A (en) Prepreg and fiber reinforced resin composite
JP5417461B2 (en) Manufacturing method of laminate
JP2008045010A (en) Impact-resistant prepreg and method for producing the same

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050810

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050810

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070814

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070925

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071225

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080214

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080415

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080417

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110425

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4116361

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110425

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110425

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120425

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120425

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120425

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130425

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130425

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130425

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140425

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees