JP5112732B2 - Prepreg - Google Patents

Prepreg Download PDF

Info

Publication number
JP5112732B2
JP5112732B2 JP2007099296A JP2007099296A JP5112732B2 JP 5112732 B2 JP5112732 B2 JP 5112732B2 JP 2007099296 A JP2007099296 A JP 2007099296A JP 2007099296 A JP2007099296 A JP 2007099296A JP 5112732 B2 JP5112732 B2 JP 5112732B2
Authority
JP
Japan
Prior art keywords
epoxy resin
prepreg
resin composition
mass
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007099296A
Other languages
Japanese (ja)
Other versions
JP2008255234A (en
Inventor
靖 鈴村
久雄 木場
佳秀 柿本
忠義 齋藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Mitsubishi Rayon Co Ltd
Original Assignee
Mitsubishi Chemical Corp
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp, Mitsubishi Rayon Co Ltd filed Critical Mitsubishi Chemical Corp
Priority to JP2007099296A priority Critical patent/JP5112732B2/en
Publication of JP2008255234A publication Critical patent/JP2008255234A/en
Application granted granted Critical
Publication of JP5112732B2 publication Critical patent/JP5112732B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Reinforced Plastic Materials (AREA)

Description

本発明は、オーブン成形において優れた耐熱性、機械特性有し、かつ、外観性に優れる成形品が得られるプリプレグに関する。   The present invention relates to a prepreg from which a molded product having excellent heat resistance, mechanical properties and excellent appearance can be obtained in oven molding.

繊維強化複合材料は、軽量かつ高強度で高剛性の特徴を生かし、スポーツ・レジャー用途から自動車や航空機等の産業用途まで、幅広く用いられている。特に近年では、より軽量でかつより高強度・高剛性の炭素繊維強化複合材料が産業用途に用いられることが多くなってきた。
産業用途の中でも列車や航空機の機体などの構造部材に用いられる炭素繊維強化複合材料は、プリプレグを中間材料として用い、オートクレーブ成形で製造されることが一般的である。これはオートクレーブを用いて高圧下で成形することにより、成形体中のボイドを低減し、成形体の強度を期待された通りに発現させ、また表面のピンホールの発生を抑制し、外観良好な成形体を得ることを目的としている。
しかしながら、オートクレーブの設備は非常に高価なため、新規に導入することは困難であるばかりでなく、一旦導入するとそのオートクレーブの大きさにより成形体の大きさが制限され、それより大きな成形体の製造が事実上不可能となる。このような問題に対し、脱オートクレーブ、低コスト成形の開発が盛んに行われており、その代表的なものとしては、真空、大気圧のみの低圧下で成形する、オーブン成形(または真空バッグ成形などとも呼ばれる)がある。オーブン成形は大気圧以外に圧力を加えないので、オートクレーブのようなしっかりした耐圧力容器でなくても良く、温度さえ上げることができる炉(オーブン)があれば成形でき、断熱ボードと熱風ヒーターといった簡便な設備でも成形可能である。ただし圧力を加えないので、成形体中にボイドが残りやすく、成形体はオートクレーブでの成形体に比べて強度が低い、あるいは表面にピンホールが発生するという問題があった。
そこで、オーブン成形で成形した複合材料に関する、特許文献1には、補強繊維からなるシート状補強基材の両表面に熱硬化性樹脂フィルムを貼り合わせて、部分含浸させたプリプレグを使用した成形法が記載されている。
Fiber reinforced composite materials are widely used from sports / leisure applications to industrial applications such as automobiles and aircrafts, taking advantage of their light weight, high strength and high rigidity. Particularly in recent years, carbon fiber reinforced composite materials that are lighter and have higher strength and rigidity have been increasingly used for industrial applications.
Among industrial uses, carbon fiber reinforced composite materials used for structural members such as trains and aircraft bodies are generally manufactured by autoclave molding using prepreg as an intermediate material. This is achieved by molding under high pressure using an autoclave, thereby reducing voids in the molded body, expressing the strength of the molded body as expected, and suppressing the occurrence of pinholes on the surface, resulting in a good appearance. The object is to obtain a molded body.
However, since the equipment of the autoclave is very expensive, it is not only difficult to introduce a new one, but once introduced, the size of the molded body is limited by the size of the autoclave, and the production of a larger molded body Is virtually impossible. In order to deal with such problems, development of autoclaving and low-cost molding has been actively conducted, and typical examples include oven molding (or vacuum bag molding) in which molding is performed under a low pressure of only vacuum and atmospheric pressure. Etc.). Oven molding does not apply pressure other than atmospheric pressure, so it does not have to be a solid pressure-resistant container like an autoclave, it can be molded if there is a furnace (oven) that can even raise the temperature, such as an insulation board and hot air heater It can be molded with simple equipment. However, since no pressure was applied, voids were likely to remain in the molded body, and the molded body had a problem that the strength was lower than that of the molded body in the autoclave, or pinholes were generated on the surface.
Therefore, in Patent Document 1 relating to a composite material formed by oven molding, a molding method using a prepreg in which a thermosetting resin film is bonded to both surfaces of a sheet-like reinforcing substrate made of reinforcing fibers and partially impregnated is used. Is described.

特開2004−106347公報JP 2004-106347 A

この成形方法で得られた成形体の表面には、ピンホールが発生しないという特徴があるが、そのためには、バッグ終了時から硬化開始時までに予備脱気が少なくとも15時間以上は必要であり、効率的な生産には向かないという問題点がある。また、低コスト化への要求から補強繊維からなるシート状補強基材の強化繊維の目付が高いプリプレグが求められているが、これらの部分含浸されたプリプレグでは強化繊維の目付が400g/m以上では、硬化中に樹脂が強化繊維に含浸されにくいため、強化繊維内に未含浸部分が存在することで、繊維強化複合材料の優れた機械特性を損なう問題点も存在する。また、120〜150℃硬化で使用される硬化剤としてジシアンジアミドと尿素化合物を併用させることが多く知られているが強化繊維の目付が400g/m以上で強化繊維に部分含浸されたプリプレグをオーブン成形で使用するとエポキシ樹脂に不溶であるジシアンジアミドが含浸の際に補強繊維のフィラメント間に目詰まりを起こし、局在化することによりコンポジットの厚み方向でジシアンジアミドの濃度が異なり、硬化樹脂の架橋構造が厚み方向で変動することにより、コンポジットでの耐熱性の発現性が十分でないといった問題点もあった。本発明の課題は、オートクレーブを用いずに、特にオーブン成形による真空圧のみの低圧下での成形においても、優れた機械特性及び耐熱性を有し、かつ、外観に優れる繊維強化複合材料を与えるプリプレグを提供するものである。 The surface of the molded body obtained by this molding method is characterized in that pinholes do not occur. For this purpose, preliminary deaeration is required for at least 15 hours from the end of the bag to the start of curing. There is a problem that it is not suitable for efficient production. In addition, a prepreg having a high basis weight of reinforcing fibers of a sheet-like reinforcing base material made of reinforcing fibers is required due to a demand for cost reduction. In these partially impregnated prepregs, the basis weight of reinforcing fibers is 400 g / m 2. In the above, since the resin is not easily impregnated into the reinforcing fiber during curing, there is a problem that the excellent mechanical properties of the fiber-reinforced composite material are impaired due to the presence of the unimpregnated portion in the reinforcing fiber. Also, 120 to 150 ° C. oven prepreg basis weight of many known but reinforcing fibers be combined dicyandiamide and urea compound as a curing agent is partially impregnated in the reinforcing fibers 400 g / m 2 or more to be used in curing When used in molding, dicyandiamide, which is insoluble in epoxy resin, clogs between the filaments of the reinforcing fiber during impregnation, and the localization causes the dicyandiamide concentration to vary in the thickness direction of the composite, resulting in a crosslinked structure of the cured resin. Due to the variation in the thickness direction, there is a problem that the heat resistance of the composite is not sufficiently developed. An object of the present invention is to provide a fiber-reinforced composite material having excellent mechanical properties and heat resistance and excellent appearance even in molding under low pressure only by vacuum pressure by oven molding without using an autoclave. A prepreg is provided.

本願発明の要旨は、補強繊維からなるシート状補強基材の両表面に、それぞれエポキシ樹脂組成物のフィルム状物を貼り合わせて、補強基材中のエポキシ樹脂組成物の含浸率が10〜60%となるように部分含浸させたプリプレグであって、エポキシ樹脂組成物が、
(1)の構造を有する2官能エポキシ樹脂(a)、ビスフェノールS型エポキシ樹脂(b)、(2)の構造を有するノボラック型エポキシ樹脂(c)の合計100質量部中に
(1)の構造を有する2官能エポキシ樹脂(a) 15〜45質量部
ビスフェノールS型エポキシ樹脂(b) 7〜45質量部
(2)の構造を有するノボラック型エポキシ樹脂(c) 15〜60質量部である、
プリプレグにある。
The gist of the present invention is that a film-like product of an epoxy resin composition is bonded to both surfaces of a sheet-like reinforcing substrate made of reinforcing fibers, and the impregnation rate of the epoxy resin composition in the reinforcing substrate is 10 to 60. % Prepreg partially impregnated so that the epoxy resin composition is
The structure of (1) in a total of 100 parts by mass of the bifunctional epoxy resin (a) having the structure of (1), the bisphenol S type epoxy resin (b), and the novolac type epoxy resin (c) having the structure of (2) Bifunctional epoxy resin (a) having 15 to 45 parts by mass Bisphenol S type epoxy resin (b) 7 to 45 parts by mass (2) novolac type epoxy resin (c) 15 to 60 parts by mass,
Located in the prepreg.

にある。 It is in.

本発明によれば、オーブン成形によっても、優れた耐熱性、機械特性有し、かつ、外観性に優れる成形体を得られる。   According to the present invention, a molded article having excellent heat resistance, mechanical properties, and excellent appearance can be obtained by oven molding.

「補強繊維からなるシート状補強基材」
補強繊維からなるシート状補強基材の形状は、強度、剛性の観点から連続繊維状の補強基材であることが好ましい。更に本発明の補強繊維からなるシート状補強基材のシートの形態は特に制限なく、一方向に引き揃えられた一方向材、織物、編物、一方向若しくは多方向に積層されたマルチファブリックをステッチングしたようなステッチングシートような形態のいずれでもよい。特に、成形型の形状に容易に積層できるドレープ性に優れた織物が好ましい。補強繊維からなるシート状補強基材に使用できる織物として、平織、綾織、朱子織等が挙げられる。
補強繊維は、特に限定されるものではなく、炭素繊維、アラミド繊維、ガラス繊維等が挙げられる。特に比強度、比剛性に優れた炭素繊維が好ましい。
また、補強繊維からなるシート状補強基材の目付としては、400g/m以上であることが繊維強化複合材料の積層工程が短縮でき好ましい。
本発明のプリプレグは、補強繊維からなるシート状補強基材の両表面に、それぞれエポキシ樹脂組成物のフィルム状物を貼り合わせて、部分含浸させたものである。エポキシ樹脂組成物のフィルム状物の樹脂目付比を調整して、シート状補強基材の目付が高いときでも、成形体表面にピンホールの発生を抑制でき、含浸性に優れた成形体が得られる。
シート状補強基材の目付が高くても可能であり、逆に、高い方が本発明の効果が顕著に発揮される。シート状補強基材の目付が600g/m以上である場合は更に顕著に発揮される。
補強繊維からなるシート状補強基材の両表面に貼り合わせる2枚のエポキシ樹脂組成物のフィルム状物の樹脂目付比が下式を満たすことが好ましい。オーブン成形でも予備脱気が6時間以内で成形された成形品のツール面側のピンホールの数が0.1m当たり10個以下にピンホールの発生を抑制することができる。
0.3≦X/Y≦0.7 (X<Y)
X:一方の樹脂フィルムの樹脂目付(g/m
Y:他方の樹脂フィルムの樹脂目付(g/m
X/Yが0.3未満の場合、オーブン成形で得た成形品のツール面に接した表面に樹脂枯れが発生する場合がある。これは、樹脂目付比が低い為、成形体内部に樹脂が吸われて、表面の樹脂が不足した箇所が樹脂枯れとなるためである。また、X/Yが0.7を超えると、プリプレグとツールの間に噛みこんだ空気が十分に脱気出来ないことにより、オーブン成形で得た成形品のツール面に接した表面にピンホールが発生する場合がある。
オーブン成形においては、目付の低い樹脂フィルムを貼り合わせた面をツール面に接して成形することが好ましい。逆にすると、成形品の外観が損なわれる場合がある。
"Sheet-like reinforcing substrate made of reinforcing fibers"
The shape of the sheet-like reinforcing substrate made of reinforcing fibers is preferably a continuous fibrous reinforcing substrate from the viewpoint of strength and rigidity. Furthermore, the form of the sheet of the sheet-like reinforcing base material comprising the reinforcing fiber of the present invention is not particularly limited, and unidirectional materials, woven fabrics, knitted fabrics, and multi-fabrics laminated in one direction or multiple directions are stitched in one direction. It may be in the form of a stitched sheet such as a bent stitch. In particular, a woven fabric excellent in drapeability that can be easily laminated in the shape of a mold. Examples of the woven fabric that can be used for the sheet-like reinforcing substrate made of reinforcing fibers include plain weave, twill weave, satin weave and the like.
The reinforcing fiber is not particularly limited, and examples thereof include carbon fiber, aramid fiber, and glass fiber. In particular, carbon fibers excellent in specific strength and specific rigidity are preferred.
Further, the basis weight of the sheet-like reinforcing substrate made of reinforcing fibers is preferably 400 g / m 2 or more because the lamination step of the fiber-reinforced composite material can be shortened.
The prepreg of the present invention is obtained by partially impregnating a film-like product of an epoxy resin composition on both surfaces of a sheet-like reinforcing substrate made of reinforcing fibers. By adjusting the resin basis weight ratio of the film-like material of the epoxy resin composition, even when the basis weight of the sheet-like reinforcing base material is high, generation of pinholes on the surface of the molded body can be suppressed, and a molded body having excellent impregnation properties can be obtained. It is done.
Even if the basis weight of the sheet-like reinforcing base material is high, it is possible to conversely. In the case where the basis weight of the sheet-like reinforcing base is 600 g / m 2 or more, it is more remarkably exhibited.
It is preferable that the resin basis weight ratio of the film-like material of the two epoxy resin compositions to be bonded to both surfaces of the sheet-like reinforcing substrate made of reinforcing fibers satisfies the following formula. Even in the case of oven molding, the number of pinholes on the tool surface side of a molded product molded within 6 hours of preliminary degassing can be suppressed to 10 or less per 0.1 m 2 , and the occurrence of pinholes can be suppressed.
0.3 ≦ X / Y ≦ 0.7 (X <Y)
X: Resin basis weight of one resin film (g / m 2 )
Y: Resin basis weight of the other resin film (g / m 2 )
When X / Y is less than 0.3, resin withering may occur on the surface in contact with the tool surface of a molded product obtained by oven molding. This is because the resin basis weight ratio is low, the resin is sucked into the molded body, and the portion where the surface resin is insufficient becomes withered. Also, if X / Y exceeds 0.7, the air caught between the prepreg and the tool cannot be sufficiently degassed, so that a pinhole is formed on the surface in contact with the tool surface of the molded product obtained by oven molding. May occur.
In the oven molding, it is preferable that the surface on which the resin film having a low basis weight is bonded is formed in contact with the tool surface. Conversely, the appearance of the molded product may be impaired.

「エポキシ樹脂組成物のフィルム状物」
本発明に用いるエポキシ樹脂組成物のフィルム状物を構成するエポキシ樹脂組成物について説明する。
エポキシ樹脂組成物は、以下の3成分が必須成分である。
(1)の構造を有する2官能エポキシ樹脂(a) 15〜45質量部
ビスフェノールS型エポキシ樹脂(b) 7〜45質量部
(2)の構造を有するノボラック型エポキシ樹脂(c) 15〜60質量部
“Film of epoxy resin composition”
The epoxy resin composition which comprises the film-form material of the epoxy resin composition used for this invention is demonstrated.
In the epoxy resin composition, the following three components are essential components.
Bifunctional epoxy resin (a) having a structure of (1) 15 to 45 parts by mass Bisphenol S type epoxy resin (b) Novolac type epoxy resin (c) having a structure of 7 to 45 parts by mass (2) 15 to 60 parts by mass Part

(a)が15質量部以上をすれば、成形品の機械特性が十分となり、45質量部以下に抑えることにより耐熱性の低下を防ぐことができる。(b)が7質量部以上とすることにより、(b)が有する凝集効果が発揮され成形品中の架橋構造が適度に制御される。45質量部以下としておけば、架橋密度の低下による耐熱性の低下はない。(b)の好ましい添加量は、15〜30質量部である。
(c)は、15質量部以上とすることにより、成形品中の架橋密度が適度となり、十分な耐熱性が得られる。60質量部以下としておけば成形品中の架橋構造が適度となるので、耐熱性の発現性が良好である。また、硬化樹脂が脆くならないので機械特性は良好である。(c)の好ましい添加量は、30〜45質量部である。
(a)、(b)、(c)はそれぞれ市販されているものを使用できる。
(a)としては、旭化成ケミカルズ株式会社製のAER4151、同4152が使用できる。(b)としては、大日本インキ化学工業株式会社製のEXA1514、日本化薬株式会社製のEBPS−300、同−400が使用できる。(c)としては、ジャパンエポキシレジン株式会社製のエピコート1032H60、日本化薬株式会社製のEPPN−501H、EPPN−501Y、EPPN−502Hが使用できる。
本発明には必要に応じその他のエポキシ樹脂を添加することができる。特に制限は無いが粘度調整剤としては幅広い粘度領域で調達できるビスフェノールタイプのエポキシ樹脂が好ましい。好ましくはビスフェノールAやビスフェノールFタイプのエポキシ樹脂が挙げられる、更に好ましくはビスフェノールAタイプである。液状タイプが取り扱い性上好ましい。
本発明に使用されるエポキシ樹脂組成物に熱可塑性樹脂を添加することができる。熱可塑性樹脂として、ボリビニールホルマール、ポリエーテルサルホン、ナイロン、フェノキシ樹脂等が挙げられる。好ましくはフェノキシ樹脂である。
If (a) is 15 parts by mass or more, the mechanical properties of the molded product will be sufficient, and a decrease in heat resistance can be prevented by suppressing it to 45 parts by mass or less. By setting (b) to 7 parts by mass or more, the aggregation effect of (b) is exhibited and the cross-linked structure in the molded product is appropriately controlled. If it is 45 parts by mass or less, there is no decrease in heat resistance due to a decrease in crosslink density. A preferable addition amount of (b) is 15 to 30 parts by mass.
By setting (c) to 15 parts by mass or more, the crosslinking density in the molded product becomes appropriate, and sufficient heat resistance is obtained. If the amount is 60 parts by mass or less, the cross-linked structure in the molded product becomes appropriate, and thus the heat resistance develops well. Further, since the cured resin does not become brittle, the mechanical properties are good. The preferable addition amount of (c) is 30 to 45 parts by mass.
(A), (b), (c) can use what is marketed, respectively.
As (a), AER4151 and 4152 manufactured by Asahi Kasei Chemicals Corporation can be used. As (b), Dainippon Ink & Chemicals, Inc. EXA1514, Nippon Kayaku Co., Ltd. EBPS-300, and the same -400 can be used. As (c), Epicoat 1032H60 manufactured by Japan Epoxy Resin Co., Ltd., EPPN-501H, EPPN-501Y, EPPN-502H manufactured by Nippon Kayaku Co., Ltd. can be used.
If necessary, other epoxy resins can be added to the present invention. Although there is no particular limitation, the viscosity modifier is preferably a bisphenol type epoxy resin that can be procured in a wide viscosity range. Bisphenol A and bisphenol F type epoxy resins are preferred, and bisphenol A type is more preferred. A liquid type is preferable in terms of handleability.
A thermoplastic resin can be added to the epoxy resin composition used in the present invention. Examples of the thermoplastic resin include poly vinyl formal, polyether sulfone, nylon, and phenoxy resin. A phenoxy resin is preferable.

「硬化剤」
本発明に使用される硬化剤としては、ジシアンジアミドが好ましい。硬化促進剤として尿素化合物の併用が好ましい。硬化促進剤としてジクロジメチルウレア(DCMU)、フェニルジメチルウレア(PDMU)が使用できる。好ましくはDCMUである。
ジシアンジアミドとしては、体積基準粒度分布での積算分布98%以上の粒子の粒径が7μm以下であることが好ましい。7μmを超えるとエポキシ樹脂に不溶なジシアンジアミドの粒子が補強繊維に含浸させる際に補強繊維のフィラメント間に目詰まりが顕著化になり、部分含浸されたプリプレグ内でのジシアンジアミドの濃度が局在化されることにより、コンポジットの厚み方向でジシアンジアミドの濃度が異なり、硬化樹脂の架橋構造が厚み方向で変動することにより、コンポジットでの耐熱性の発現性に劣る。
"Curing agent"
As the curing agent used in the present invention, dicyandiamide is preferable. A urea compound is preferably used in combination as a curing accelerator. Dichlorodimethylurea (DCMU) and phenyldimethylurea (PDMU) can be used as a curing accelerator. DCMU is preferred.
As dicyandiamide, it is preferable that the particle size of particles having a cumulative distribution of 98% or more in the volume-based particle size distribution is 7 μm or less. If the particle size exceeds 7 μm, clogging between the filaments of the reinforcing fiber becomes prominent when the reinforcing fiber is impregnated with dicyandiamide particles insoluble in the epoxy resin, and the concentration of dicyandiamide in the partially impregnated prepreg is localized. As a result, the concentration of dicyandiamide varies in the thickness direction of the composite, and the cross-linked structure of the cured resin varies in the thickness direction, resulting in poor heat resistance in the composite.

「樹脂含有率」
本発明のプリプレグは、補強基材中のエポキシ樹脂組成物の含浸率が10〜60%となるように部分含浸させたプリプレグである。
10%以上とすることにより、オーブン成形して得られる成形品の含浸が十分となる。樹脂含浸率が60%以下としておけば、オーブン成形中に補強基材にエポキシ樹脂組成物が含浸していく際に、補強基材中の空気が抜けていく脱気回路となる未含浸部分が十分で、プリプレグとツールの間に噛みこんだ空気やプリプレグ内部に噛み込んだ空気も脱気することができる。好ましい樹脂含有率は、20〜50%で、更に好ましくは、30〜40%である。本発明の樹脂含有率は、エポキシ樹脂組成物の硬化反応中に実質的に流動しない条件でプリブレグを硬化した後に、硬化したプリプレグの研磨断面を顕微鏡観察し、含浸部分の占める面積の割合を算出すことにより求められる。プリプレグの断面を観察して含浸部分と未含浸部分とを明確に区別するには、その断面を研磨処理しなければならない。このためにはプリプレグを加熱して硬化させてやる必要があるが、熱硬化性マトリックス樹脂を加熱していくとその粘度は温度上昇につれて一旦低下し、樹脂の流動が見られるようになる。硬化過程で樹脂が流動すると、プリプレグ内に当初から存在していた未含浸部分に樹脂が入り込みことになり得られたプリプレグの樹脂含浸率は製造時のものと異なったものとなってしまう。従って、プリプレグの硬化においては、樹脂の反応による粘度上昇分が温度上昇による樹脂の粘度低下分を上回る必要がある。それには、徐々に温度を上昇することによって硬化させればよく、例えば、好ましい昇温速度は1℃/時間以下である。この様にして硬化させたプリプレグの研磨断面を光学顕微鏡によって観察すると、プリプレグ中の未含浸部分はマトリックス樹脂が欠落した空隙として観察される。写真撮影した顕微鏡像中の硬化プリプレグ研磨断面の面積をa、この部分の中に存在する空隙部分が占める面積をbとすれば、樹脂含浸率は、次式によって算出される。
樹脂含浸率(%)=(a−b)/a×100
"Resin content"
The prepreg of the present invention is a prepreg partially impregnated so that the impregnation ratio of the epoxy resin composition in the reinforcing base material is 10 to 60%.
By setting it to 10% or more, the impregnation of a molded product obtained by oven molding is sufficient. If the resin impregnation rate is 60% or less, when the epoxy resin composition is impregnated into the reinforcing base material during oven molding, an unimpregnated portion that becomes a deaeration circuit through which air in the reinforcing base material escapes is present. It is sufficient, and the air caught between the prepreg and the tool and the air caught inside the prepreg can be deaerated. A preferable resin content is 20 to 50%, and more preferably 30 to 40%. The resin content of the present invention is the ratio of the area occupied by the impregnated portion by microscopic observation of the polished cross section of the cured prepreg after curing the prepreg under conditions that do not substantially flow during the curing reaction of the epoxy resin composition. It is calculated by doing. In order to clearly distinguish the impregnated portion from the unimpregnated portion by observing the cross section of the prepreg, the cross section must be polished. For this purpose, it is necessary to cure the prepreg by heating, but when the thermosetting matrix resin is heated, its viscosity once decreases as the temperature rises, and the resin flows. When the resin flows during the curing process, the resin impregnation rate of the prepreg obtained by the resin entering the unimpregnated portion that originally existed in the prepreg is different from that at the time of manufacture. Accordingly, in curing the prepreg, the increase in viscosity due to the reaction of the resin needs to exceed the decrease in viscosity of the resin due to the temperature increase. For this purpose, curing may be performed by gradually increasing the temperature. For example, a preferable temperature increase rate is 1 ° C./hour or less. When the polished cross section of the prepreg cured in this manner is observed with an optical microscope, the unimpregnated portion in the prepreg is observed as a void lacking the matrix resin. When the area of the cured prepreg polished cross section in the photographed microscopic image is a and the area occupied by the void portion existing in this part is b, the resin impregnation rate is calculated by the following equation.
Resin impregnation rate (%) = (ab) / a × 100

実施例により本発明をさらに具体的に説明する。実施例及び比較例のエポキシ樹脂組成物に使用した各成分は、表1の通りである。   The present invention will be described more specifically with reference to examples. Each component used for the epoxy resin composition of an Example and a comparative example is as Table 1.



(エポキシ樹脂組成物の調製)
本発明のプリプレグに用いるエポキシ樹脂組成物の調製は、以下の方法で行った。
すなわち、ジャパンエポキシレジン株式会社製jER828を15質量部とジャパンエポキシレジン株式会社製エピキュアDYHARD100SFを4.5質量部と保土谷化学株式会社製DCMU99を7質量部を配合し、三本ロールミルを用いて均一に分散させて、触媒樹脂を得た。次にジャパンエポキシレジン株式会社製jER828を34質量部と東都化成製フェノトートYP−70を6質量部を配合し、160℃で均一に溶解させて室温付近まで冷却した後に更に旭化成ケミカルズ株式会社製アラルダイトAER4152、大日本インキ株式会社製EPCLON EXA1514、日本化薬株式会社製EPPN−502H、大日本インキ株式会社製EPCLON N665、ジャパンエポキシレジン株式会社製jER1001、ジャパンエポキシレジン株式会社製jER604を表2、3に記載の質量部にて配合し、80℃で均一に溶解させてベース樹脂を得た。室温付近まで冷却したベース樹脂を140質量部、触媒樹脂26.5質量部を配合し、60℃で均一に分散させてエポキシ樹脂組成物を得た。
(Preparation of epoxy resin composition)
The epoxy resin composition used for the prepreg of the present invention was prepared by the following method.
That is, 15 parts by mass of jER828 manufactured by Japan Epoxy Resin Co., Ltd., 4.5 parts by mass of Epicure DYHARD100SF manufactured by Japan Epoxy Resin Co., Ltd., and 7 parts by mass of DCMU99 manufactured by Hodogaya Chemical Co., Ltd. were blended, and a three-roll mill was used. The catalyst resin was obtained by uniformly dispersing. Next, 34 parts by mass of jER828 manufactured by Japan Epoxy Resin Co., Ltd. and 6 parts by mass of phenototo YP-70 manufactured by Toto Kasei Co., Ltd. were mixed, uniformly dissolved at 160 ° C., cooled to near room temperature, and further manufactured by Asahi Kasei Chemicals Corporation. Table 2. 3 and blended uniformly at 80 ° C. to obtain a base resin. 140 parts by mass of the base resin cooled to near room temperature and 26.5 parts by mass of the catalyst resin were blended and uniformly dispersed at 60 ° C. to obtain an epoxy resin composition.

(樹脂フィルム作製)
得られたエポキシ樹脂組成物をフィルムコーターを用いて表2、3に記載した樹脂目付で60℃にて離型紙に塗布させて、樹脂フィルム(B)、(C)を得た。
(Production of resin film)
The obtained epoxy resin composition was applied to release paper at 60 ° C. with a resin basis weight described in Tables 2 and 3 using a film coater to obtain resin films (B) and (C).

(プリプレグ作製)
補強繊維からなるシート状補強基材の両表面に得られた樹脂フィルム(B)、(C)を貼り合わせて、ヒュージングプレスを用いてプリプレグを得た。ヒュージングプレスによるプリプレグ製造条件は、実施例1〜4、実施例8〜13と比較例1〜8は、温度が50℃、圧力が0.2MPa、送り速度が1m/分で行った。
実施例5では、温度が40℃、圧力が0.3MPa、送り速度が2m/分で行った。
実施例6では、温度が60℃、圧力が0.15MPa、送り速度が0.7m/分で行った。
実施例7では、温度が50℃、圧力が0.2MPa、送り速度が0.7m/分で行った。
比較例9では、温度が100℃、圧力が0.4MPa、送り速度が1m/分で行った。
比較例10は、温度が30℃、圧力が0.02MPa、送り速度が4m/分で行った。
ここで使用した補強繊維からなるシート状補強基材は、三菱レイヨン株式会社製炭素繊維織布TRK510M(パイロフィルTR50S12L使い、2/2綾織織布、648g/m目付)を使用した。プリプレグの樹脂含有率は、何れも45質量%である。
(Prepreg production)
The resin films (B) and (C) obtained on both surfaces of the sheet-like reinforcing substrate made of reinforcing fibers were bonded together to obtain a prepreg using a fusing press. The prepreg production conditions by the fusing press were as follows: Examples 1 to 4, Examples 8 to 13 and Comparative Examples 1 to 8 were performed at a temperature of 50 ° C., a pressure of 0.2 MPa, and a feed rate of 1 m / min.
In Example 5, the temperature was 40 ° C., the pressure was 0.3 MPa, and the feed rate was 2 m / min.
In Example 6, the temperature was 60 ° C., the pressure was 0.15 MPa, and the feed rate was 0.7 m / min.
In Example 7, the temperature was 50 ° C., the pressure was 0.2 MPa, and the feed rate was 0.7 m / min.
In Comparative Example 9, the temperature was 100 ° C., the pressure was 0.4 MPa, and the feed rate was 1 m / min.
In Comparative Example 10, the temperature was 30 ° C., the pressure was 0.02 MPa, and the feed rate was 4 m / min.
The carbon fiber woven fabric TRK510M manufactured by Mitsubishi Rayon Co., Ltd. (using Pyrofil TR50S12L, 2/2 twill woven fabric, 648 g / m 2 basis weight) was used as the sheet-like reinforcing base material made of reinforcing fibers used here. The resin content of the prepreg is 45% by mass.

(パネル成形)
320×320mmにカットしたプリプレグを3枚、積層して成形体を得た。なお積層させるプリプレグの面方向は、ツールに接する面が目付けが低い樹脂フィルムを重ねた方とした。得られた成形体を図2に示した構成でバギングを行った。更に引き口に真空ポンプを接続させて室温にて6時間、予備脱気させた。後に、オーブン内にバギングした成形体を入れて引き口に真空ポンプを接続させて脱気しながら加熱硬化させてパネルを得た。なお、加熱硬化の温度条件は、室温から1℃/分で、150℃に昇温した後に2時間保持した。
(Panel molding)
Three prepregs cut to 320 × 320 mm were laminated to obtain a molded body. In addition, the surface direction of the prepreg to be laminated was the direction in which the resin film having a low basis weight on the surface in contact with the tool was laminated. The obtained molded body was bagged with the configuration shown in FIG. Further, a vacuum pump was connected to the drawing port, and preliminary deaeration was performed at room temperature for 6 hours. After that, the molded body bagged in the oven was put, and a vacuum pump was connected to the drawing port, and it was heated and cured while deaeration to obtain a panel. The temperature condition for heat curing was 1 ° C./min from room temperature, and the temperature was raised to 150 ° C. and held for 2 hours.

(樹脂含浸率の測定)
プリプレグをオーブン内に入れ、25℃から昇温速度、0.7℃/時間で150℃まで昇温させた後、2時間保持した。加熱硬化したプリプレグの断面を研磨し、光学顕微鏡にて観察した。プリプレグ中の未含浸部分はマトリックス樹脂が欠落した空隙として観察される。写真撮影した顕微鏡像中のプリプレグの研磨断面の面積をa、この部分の中に存在する空隙部分が占める面積をbとし、樹脂含浸率は次の数式、以下の式によって算出した。
樹脂含浸率=(a−b)/a×100
(Measurement of resin impregnation rate)
The prepreg was placed in an oven, heated from 25 ° C. to 150 ° C. at a rate of temperature increase of 0.7 ° C./hour, and held for 2 hours. The cross section of the heat-cured prepreg was polished and observed with an optical microscope. Unimpregnated portions in the prepreg are observed as voids from which the matrix resin is missing. The area of the polished cross-section of the prepreg in the photographed microscopic image was a, the area occupied by the voids present in this part was b, and the resin impregnation rate was calculated by the following formula and the following formula.
Resin impregnation rate = (ab) / a × 100

(ピンホール、樹脂枯れ)
成形時にツールに接したパネルの面のピンホール個数と樹脂枯れの有無を目視にて観察した。
(Pinhole, resin dies)
The number of pinholes on the surface of the panel that was in contact with the tool during molding and the presence or absence of resin wiping were visually observed.

(層間剪断強度)
得られたパネルから湿式カッターにて試験片を作製し、ASTM D2344−84に準拠して層間剪断強度を測定した。
(ガラス転移温度)
成形品のガラス転移温度(Tg)は、レオメトリックス社製RDA700動的粘弾性測定装置を用いて、昇温速度 5℃/ステップ、周波数10ラジアン/秒の測定条件で行った。図3に示すように、温度に対して貯蔵弾性率(G´)の対数値をプロットし、得られたG´曲線のガラス弾性領域と転移領域の各接線の交点での温度をガラス転移温度とした。
(Interlaminar shear strength)
A test piece was prepared from the obtained panel with a wet cutter, and the interlaminar shear strength was measured in accordance with ASTM D2344-84.
(Glass-transition temperature)
The glass transition temperature (Tg) of the molded product was measured using a RDA700 dynamic viscoelasticity measuring device manufactured by Rheometrics under the measurement conditions of a temperature rising rate of 5 ° C./step and a frequency of 10 radians / second. As shown in FIG. 3, the logarithmic value of the storage elastic modulus (G ′) is plotted against the temperature, and the temperature at the intersection of the glass elastic region and the transition region of the obtained G ′ curve is the glass transition temperature. It was.

本発明のプリプレグを硬化して得られる成形品は、軽量かつ高強度で高剛性であり、この特徴を生かし、スポーツ・レジャー用途から自動車や航空機等の産業用途まで、幅広く用いられる。特に、産業用途の中でも列車や航空機の機体などの構造部材に好適である。
The molded product obtained by curing the prepreg of the present invention is lightweight, high in strength and high in rigidity, and is widely used from sports / leisure uses to industrial uses such as automobiles and aircrafts, taking advantage of this feature. In particular, it is suitable for structural members such as trains and aircraft bodies among industrial applications.

シート状補強基材として、織物を用いたプリプレグをカットした断面の模式図である。It is the schematic diagram of the cross section which cut the prepreg using a textile fabric as a sheet-like reinforcement base material. 本発明の繊維強化複合材料のパネルの製造方法を示す図でバギングの構成を示した断面図である。It is a figure which shows the manufacturing method of the panel of the fiber reinforced composite material of this invention, and is sectional drawing which showed the structure of bagging. 硬化物のガラス状態でのグラフの接線と転移領域での接線の交点から該硬化物の ガラス転移温度を求めるときに使用するグラフである。It is a graph used when calculating | requiring the glass transition temperature of this hardened | cured material from the intersection of the tangent of the graph in the glass state of hardened | cured material, and the tangent in a transition area | region.

符号の説明Explanation of symbols

1 シート状補強基材
2 樹脂が含浸されていないシート状補強基材
3 樹脂が含浸されたシート状補強基材
4 エポキシ樹脂組成物のフィルム状物
5 エポキシ樹脂組成物のフィルム状物
6 アフロンフィルム
7 不織布
8 真空引き口
9 シーラント
10 ツール
11 成形品
12 ナイロンバッグフィルム
13 プレッシャープレート
DESCRIPTION OF SYMBOLS 1 Sheet-like reinforcement base material 2 Sheet-like reinforcement base material which is not impregnated with resin 3 Sheet-like reinforcement base material which is impregnated with resin 4 Film-like material of epoxy resin composition 5 Film-like material of epoxy resin composition 6 Aflon film 7 Nonwoven fabric 8 Vacuum suction port 9 Sealant 10 Tool 11 Molded product 12 Nylon bag film 13 Pressure plate

Claims (1)

補強繊維からなるシート状補強基材の両表面に、それぞれエポキシ樹脂組成物のフィルム状物を貼り合わせて、補強基材中のエポキシ樹脂組成物の含有率が10〜60%となるように部分含侵させたプリプレグであって、
エポキシ樹脂組成物が、
(1)の構造を有する2官能エポキシ樹脂(a)、
ビスフェノールS型エポキシ樹脂(b)、
(2)の構造を有するノボラック型エポキシ樹脂(c)、
エポキシ当量が184〜194g/eqのビスフェノールA型エポキシ樹脂(d)
および、
体積基準粒度分布での積算分布98%以上の粒子の粒径が7μm以下であるジシアンジアミド(e)
を含むエポキシ樹脂組成物であって、
2官能エポキシ樹脂(a)、ビスフェノールS型エポキシ樹脂(b)、ノボラック型エポキシ樹脂(c)の合計100質量部に対して、
2官能エポキシ樹脂(a) 15〜45質量部
ビスフェノールS型エポキシ樹脂(b) 7〜45質量部
ノボラック型エポキシ樹脂(c) 15〜60質量部
ビスフェノールA型エポキシ樹脂(d) 49質量部
を部含み、
さらに、エポキシ樹脂組成物に含まれるエポキシ基のモル数と、エポキシ樹脂組成物に含まれるジシアンジアミド(e)の活性水素のモル数との比が、1/0.30〜1/0.32であるエポキシ樹脂組成物であって、
さらに、硬化促進剤およびフェノキシ樹脂を含むエポキシ樹脂組成物である、プリプレグ。




A film-like product of an epoxy resin composition is bonded to both surfaces of a sheet-like reinforcing substrate made of reinforcing fibers, respectively, so that the content of the epoxy resin composition in the reinforcing substrate is 10 to 60%. An impregnated prepreg,
The epoxy resin composition
A bifunctional epoxy resin (a) having the structure of (1),
Bisphenol S type epoxy resin (b),
A novolak-type epoxy resin (c) having the structure of (2),
Bisphenol A type epoxy resin (d) having an epoxy equivalent of 184 to 194 g / eq
and,
Dicyandiamide (e) in which the particle size of particles with a cumulative distribution of 98% or more in the volume-based particle size distribution is 7 μm or less
An epoxy resin composition comprising:
For a total of 100 parts by mass of bifunctional epoxy resin (a), bisphenol S type epoxy resin (b), and novolac type epoxy resin (c) ,
Bifunctional epoxy resin (a) 15 to 45 parts by mass Bisphenol S type epoxy resin (b) 7 to 45 parts by mass Novolak type epoxy resin (c) 15 to 60 parts by mass Bisphenol A type epoxy resin (d) 49 parts by mass
Including
Furthermore, the ratio between the number of moles of epoxy groups contained in the epoxy resin composition and the number of moles of active hydrogen of dicyandiamide (e) contained in the epoxy resin composition is 1 / 0.30 to 1 / 0.32. An epoxy resin composition,
Furthermore, the prepreg which is an epoxy resin composition containing a hardening accelerator and a phenoxy resin .




JP2007099296A 2007-04-05 2007-04-05 Prepreg Active JP5112732B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007099296A JP5112732B2 (en) 2007-04-05 2007-04-05 Prepreg

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007099296A JP5112732B2 (en) 2007-04-05 2007-04-05 Prepreg

Publications (2)

Publication Number Publication Date
JP2008255234A JP2008255234A (en) 2008-10-23
JP5112732B2 true JP5112732B2 (en) 2013-01-09

Family

ID=39979137

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007099296A Active JP5112732B2 (en) 2007-04-05 2007-04-05 Prepreg

Country Status (1)

Country Link
JP (1) JP5112732B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5601487B2 (en) * 2008-03-31 2014-10-08 三菱レイヨン株式会社 Prepreg and fiber-reinforced composite material cured from the same
WO2010046770A1 (en) * 2008-10-24 2010-04-29 Iq Tec Switzerland Gmbh Apparatus and method for making reactive polymer pre-pregs
CN102666683B (en) * 2009-09-28 2015-12-16 三菱丽阳株式会社 Fiber reinforced composite
JP5590371B2 (en) * 2009-09-28 2014-09-17 三菱レイヨン株式会社 Sandwich structure molding
JP5590372B2 (en) * 2009-09-30 2014-09-17 三菱レイヨン株式会社 Manufacturing method of fiber reinforced resin composite material
RU2019130624A (en) * 2017-03-29 2021-04-29 Торэй Индастриз, Инк. PREPREG AND FIBER-REINFORCED COMPOSITE MATERIAL

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006131920A (en) * 2000-04-21 2006-05-25 Mitsubishi Rayon Co Ltd Epoxy resin composition and prepreg made with the epoxy resin composition
JP2002145986A (en) * 2000-11-10 2002-05-22 Mitsubishi Rayon Co Ltd Epoxy resin composition and prepreg using the epoxy resin composition
JP4941798B2 (en) * 2001-02-26 2012-05-30 東レ株式会社 Partially impregnated prepreg
JP2004106347A (en) * 2002-09-18 2004-04-08 Mitsubishi Rayon Co Ltd Intermediate material for fiber reinforced plastic (frp) molding and manufacturing method therefor
JP4314845B2 (en) * 2003-03-06 2009-08-19 東レ株式会社 Epoxy resin composition, prepreg and fiber reinforced composite material
JP2005298713A (en) * 2004-04-14 2005-10-27 Toray Ind Inc Epoxy resin composition for fiber-reinforced composite material, prepreg and fiber-reinforced composite material

Also Published As

Publication number Publication date
JP2008255234A (en) 2008-10-23

Similar Documents

Publication Publication Date Title
KR101951058B1 (en) Prepreg, fiber reinforced composite material, and manufacturing method for fiber reinforced composite material
JP6007914B2 (en) Pre-preg for vacuum forming, fiber reinforced composite material and method for producing the same
CN108137839B (en) Prepreg, laminate, fiber-reinforced composite material, and method for producing fiber-reinforced composite material
JP5090701B2 (en) Partially impregnated prepreg and method for producing fiber reinforced composite material using the same
EP2794735B1 (en) Improvements in or relating to fibre reinforced composites
JP5112732B2 (en) Prepreg
JP5589265B2 (en) Pre-preg for press molding and method for producing molded product
JP7003662B2 (en) Prepreg and its manufacturing method
JP2004050574A (en) Prepreg and method for producing fiber-reinforced composite material using prepreg
US11820858B2 (en) Prepreg, method for producing same, and method for producing fiber-reinforced composite material
JP6854880B2 (en) Self-adhesive prepreg and its manufacturing method
JP5173358B2 (en) Prepreg with protective film
JP7298610B2 (en) Prepreg sheets and prepreg stacks useful for making low void content fiber reinforced composites
JP5441437B2 (en) Partially impregnated prepreg, method for producing the same, and method for producing a fiber-reinforced composite material using the same
JPWO2018181254A1 (en) Prepreg and fiber reinforced composite materials
KR20210138541A (en) Epoxy resin composition and prepreg by using the same for fiber reinforcement plastics
JP2007099966A (en) Prepreg
CN111989359B (en) Prepreg, laminate, fiber-reinforced composite material, and method for producing fiber-reinforced composite material
JP5966969B2 (en) Manufacturing method of prepreg
JP2019156982A (en) Prepreg and carbon fiber-reinforced composite material
JPWO2019107276A1 (en) Carbon fiber bundle, prepreg, fiber reinforced composite material
JP2005194456A (en) Preform forming binder composition, reinforcing fiber base material, method for producing preform and fiber reinforced composite material
JP2010059300A (en) Carbon fiber reinforced composite material and method for producing the same
JP2006274110A (en) Prepreg and fiber-reinforced composite material
JP5417461B2 (en) Manufacturing method of laminate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100308

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110202

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111201

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120123

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120628

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120820

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120906

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120914

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121004

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121011

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151019

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 5112732

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151019

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151019

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250