JP2006131920A - Epoxy resin composition and prepreg made with the epoxy resin composition - Google Patents

Epoxy resin composition and prepreg made with the epoxy resin composition Download PDF

Info

Publication number
JP2006131920A
JP2006131920A JP2006041342A JP2006041342A JP2006131920A JP 2006131920 A JP2006131920 A JP 2006131920A JP 2006041342 A JP2006041342 A JP 2006041342A JP 2006041342 A JP2006041342 A JP 2006041342A JP 2006131920 A JP2006131920 A JP 2006131920A
Authority
JP
Japan
Prior art keywords
epoxy resin
component
resin composition
curing
curing agent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006041342A
Other languages
Japanese (ja)
Inventor
Kazuya Goto
和也 後藤
Shigeji Hayashi
繁次 林
Tadayoshi Saito
忠義 齊藤
Takashi Kaneko
崇 金子
Kazutami Mitani
和民 三谷
Katsumi Wakabayashi
巧己 若林
Yasuo Takagi
康雄 高木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Rayon Co Ltd
Original Assignee
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Rayon Co Ltd filed Critical Mitsubishi Rayon Co Ltd
Priority to JP2006041342A priority Critical patent/JP2006131920A/en
Publication of JP2006131920A publication Critical patent/JP2006131920A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide epoxy resin compositions which are stable at a room temperature, give releasable cured products by primary curing at a low temperature, and give cured products with high heat resistance by secondary curing, as well as to provide prepregs comprising reinforcing fiber materials impregnated with the epoxy resin compositions. <P>SOLUTION: The epoxy resin compositions comprise (a): a certain epoxy resin, (b): a latent curing agent with curing power at 100°C or below, and (c): an aromatic amine-based curing agent and/or an alicyclic amine-based curing agent, which are curable in two stages. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、特に繊維強化複合材料のマトリックス樹脂として適用するのに好適な、エポキシ樹脂組成物及び該エポキシ樹脂組成物を使用したプリプレグに関する。   The present invention relates to an epoxy resin composition and a prepreg using the epoxy resin composition, particularly suitable for application as a matrix resin for fiber-reinforced composite materials.

繊維強化複合材料は、スポーツ、レジャー関係の用途から航空機等の輸送用途や産業用途に至るまで広範囲に亙って利用されている。この繊維強化複合材料の一般的な成形法として成形型を使用する成形方法がある。   Fiber reinforced composite materials are used in a wide range from sports and leisure related applications to transportation applications such as aircraft and industrial applications. As a general molding method of this fiber-reinforced composite material, there is a molding method using a mold.

例えば、クロス等の強化繊維材料を成形型に添って樹脂を含浸しながら貼り付けるか、或いは強化繊維材料に予め樹脂を含浸させた所謂プリプレグを成形型に添って貼り付けるかし、これを繰り返して行なった後に硬化させ、次いで成形型から脱型して成形物を得るハンドレイアップ法、成形型にクロス等の強化繊維材料をセットした後、これに樹脂を注入して硬化させ、次いで脱型して成形物を得るレジントランスファーモールディング法、短繊維にカットした強化繊維材料を樹脂と混ぜ合わせた成形原料を成形型に注入した後に、これを硬化させ、次いで脱型して成形物を得るモールディングコンパウンド法等がある。   For example, a reinforcing fiber material such as cloth is attached to the mold while impregnating the resin, or a so-called prepreg in which the reinforcing fiber material is pre-impregnated with the resin is attached to the mold, and this is repeated. And then cured, and then removed from the mold, a hand lay-up method in which a molded product is obtained. After setting a reinforcing fiber material such as a cloth on the mold, a resin is injected into the mold and cured, and then removed. Resin transfer molding method to obtain a molded product by molding, after injecting a molding raw material mixed with a resin of reinforcing fiber material cut into short fibers into a molding die, this is cured and then demolded to obtain a molded product There are molding compound methods.

このような成形方法に使用される成形型には、例えば、金属製、樹脂製或いは木製等のさまざまな材質のものがあり、金属製の成形型は耐熱性及び耐久性に優れるものの、作製に手間と労力を要するために高価になり、又樹脂製の成形型や木製の成形型は、耐熱性及び耐久性に劣るものの、安価に入手できるメリットがある。   Molds used in such a molding method include, for example, various materials such as metal, resin, and wood, and metal molds are excellent in heat resistance and durability. It requires labor and labor, and is expensive. Resin molds and wooden molds are inferior in heat resistance and durability, but have the advantage of being available at low cost.

近年の多様なニーズに対応するために、少量多品種の成形物の製造が増えてきている関係から、安価に入手できる樹脂製の成形型を使用するケースが多くなっており、また船舶のような大型の繊維強化複合材料の成形には、木製の成形型が用いられることがある。   In order to respond to the various needs in recent years, there are many cases where resin molds that can be obtained at low cost are used because of the increasing production of small-quantity and various types of molded products. A wooden mold may be used to form a large fiber-reinforced composite material.

これらの樹脂製の成形型や木製の成形型を使用する成形方法は、上記の通り樹脂製や木製の成形型自体の耐熱性が十分でないために、高温での成形が出来ず、耐熱性の高い成形物の成形には適用できないという問題がある。   Molding methods using these resin molds and wooden molds cannot be molded at high temperatures because the resin and wooden molds themselves are not sufficiently heat resistant. There is a problem that it cannot be applied to the molding of high moldings.

そこで、樹脂製や木製等の耐熱性の低い成形型を使用して耐熱性の高い繊維強化複合材料からなる成形物を得る方法として、耐熱性の低い成形型を利用して、100℃以下の比較的低温での一次硬化を行なうことにより、脱型可能な一次硬化成形物にした後、この耐熱性の低い成形型から一次硬化成形物を脱型し、続いて高温雰囲気中にこの一次硬化成形物を放置して二次硬化させることにより、耐熱性の高い繊維強化複合材料からなる成形物を得る方法が提案されており、例えば、航空、宇宙用途等の耐熱性が要求される大型の成形物の成形に試みられている。   Therefore, as a method of obtaining a molded product made of a fiber-reinforced composite material having high heat resistance using a low heat resistant mold such as resin or wood, using a mold having low heat resistance, After performing primary curing at a relatively low temperature, a demoldable primary cured molded product is obtained, and then the primary cured molded product is demolded from the mold having low heat resistance, followed by the primary curing in a high temperature atmosphere. There has been proposed a method for obtaining a molded product made of a fiber-reinforced composite material having high heat resistance by allowing the molded product to stand for secondary curing, for example, a large-scale product that requires heat resistance for aviation, space use, etc. Attempts have been made to form molded articles.

ところで、プリプレグを使用して前記した一次硬化と二次硬化とからなる硬化手段を適用する成形方法を実施する場合には、該プリプレグが100℃以下の比較的低温での短時間の硬化によって脱型可能に硬化し得ること、その後の高温での二次硬化によって高耐熱性の硬化物になること、プリプレグ自体の室温での安定性が優れておりかつ取り扱い性も良好であること等が必要である。   By the way, when the molding method using the prepreg and applying the curing means including the primary curing and the secondary curing described above is performed, the prepreg is removed by a short-time curing at a relatively low temperature of 100 ° C. or less. It is necessary to be moldable, to be a highly heat-resistant cured product by subsequent secondary curing at a high temperature, and to have excellent stability at room temperature and good handleability of the prepreg itself. It is.

かかる実情の下に、室温で比較的安定であって、かつ、70〜100℃の比較的低温で硬化する樹脂組成物が、例えば、特開平11−302412号公報等をはじめ多くの技術文献に開示されており、これらの樹脂組成物はいずれも低温で硬化し、かつ、優れた機械物性を有する一次硬化物になるものの、その後の高温での二次硬化によっても、十分な耐熱性を具備するようにはならない。   Under such circumstances, a resin composition that is relatively stable at room temperature and is cured at a relatively low temperature of 70 to 100 ° C. has been disclosed in many technical literatures including, for example, JP-A No. 11-302212. All of these resin compositions are cured at a low temperature and become a primary cured product having excellent mechanical properties, but have sufficient heat resistance even by subsequent secondary curing at a high temperature. I don't want to.

一方、耐熱性が良好な硬化物になる従来の樹脂組成物は、100℃以下の比較的低温での一次硬化によって脱型可能に硬化させるのに長時間を要するという問題がある。   On the other hand, a conventional resin composition that becomes a cured product having good heat resistance has a problem that it takes a long time to be cured so as to be demoldable by primary curing at a relatively low temperature of 100 ° C. or lower.

特開平11−302412号公報Japanese Patent Application Laid-Open No. 11-302412

従って、本発明が解決しようとする課題は、100℃以下の比較的低温での一次硬化によって脱型可能な硬化物にするのに長時間を要することがなく、又二次硬化によって高耐熱性の硬化物になるエポキシ樹脂組成物であって、しかも室温での安定性が良好であり、かつ、これを強化繊維材料に含浸させたプリプレグの取扱い性が良好である等の特性を具備するエポキシ樹脂組成物、及び該エポキシ樹脂組成物を強化繊維材料に含浸させたプリプリグを提供することにある。   Therefore, the problem to be solved by the present invention is that it does not take a long time to obtain a cured product that can be removed by primary curing at a relatively low temperature of 100 ° C. or lower, and high heat resistance is achieved by secondary curing. Epoxy resin composition that becomes a cured product of the epoxy resin, and has excellent properties such as good stability at room temperature and good handleability of a prepreg impregnated with a reinforcing fiber material. The object is to provide a resin composition and a prepreg obtained by impregnating a reinforcing fiber material with the epoxy resin composition.

上記課題は、以下に記載する構成を有する本発明のエポキシ樹脂組成物によって解決することができる。   The said subject can be solved by the epoxy resin composition of this invention which has the structure described below.

すなわち、本発明のエポキシ樹脂組成物は、下記の成分(a)、(b)及び(c)を含有し、2段硬化可能であるエポキシ樹脂組成物からなる。   That is, the epoxy resin composition of the present invention comprises the following components (a), (b) and (c), and consists of an epoxy resin composition which can be cured in two stages.

(a):下記式(1)のノボラック型エポキシ樹脂、同じく下記式(2)のノボラック型エポキシ樹脂、及びテトラグリシジルジアミノジフェニルメタンのうちの少なくとも1つを含有するエポキシ樹脂   (A): Epoxy resin containing at least one of the novolak-type epoxy resin of the following formula (1), the novolak-type epoxy resin of the following formula (2), and tetraglycidyldiaminodiphenylmethane

Figure 2006131920
[式中、nは0以上の数を表す]
Figure 2006131920
[Wherein n represents a number of 0 or more]

Figure 2006131920
[式中、nは0以上の数を表す]
Figure 2006131920
[Wherein n represents a number of 0 or more]

(b):100℃以下での硬化能を有する潜在性硬化剤
(c):芳香族アミン系硬化剤及び/又は脂環族アミン系硬化剤
(B): Latent curing agent having curing ability at 100 ° C. or less (c): Aromatic amine-based curing agent and / or alicyclic amine-based curing agent

前記の構成を有する本発明のエポキシ樹脂組成物においては、成分(a)と成分(b)と成分(c)との配合割合が、成分(a)を100質量部としたときに、成分(b)が3〜40質量部であり、成分(c)が10〜40質量部であることが好ましい。   In the epoxy resin composition of the present invention having the above-described configuration, when the mixing ratio of the component (a), the component (b), and the component (c) is 100 parts by mass of the component (a), the component ( It is preferable that b) is 3-40 mass parts and a component (c) is 10-40 mass parts.

成分(a)としてのエポキシ樹脂は、3官能以上のエポキシ樹脂を主成分とするエポキシ樹脂であることが好ましい。   The epoxy resin as the component (a) is preferably an epoxy resin mainly composed of a trifunctional or higher functional epoxy resin.

成分(b)としての潜在性硬化剤は、アミンアダクト型の硬化剤であることが好ましく、又成分(b)をなす潜在性硬化剤は、マイクロカプセル型の硬化剤であることが好ましい。   The latent curing agent as component (b) is preferably an amine adduct type curing agent, and the latent curing agent constituting component (b) is preferably a microcapsule type curing agent.

成分(c)としての芳香族アミン系硬化剤及び/又は脂環族アミン系硬化剤の芳香族アミン系硬化剤は、ジアミノジフェニルスルホン及び/又はジアミノジフェニルメタンであることが好ましい。   The aromatic amine curing agent and / or the alicyclic amine curing agent as the component (c) is preferably diaminodiphenyl sulfone and / or diaminodiphenylmethane.

又、本発明のエポキシ樹脂組成物は、更に成分(d)としての硬化促進剤が含有されていることが好ましい。   Moreover, it is preferable that the epoxy resin composition of this invention contains the hardening accelerator as a component (d) further.

更に、本発明のエポキシ樹脂組成物は、該エポキシ樹脂組成物を調製し、これを25℃、3週間放置したときの粘度が、樹脂組成物の調製直後の粘度の2倍以下であることが好ましい。   Furthermore, the epoxy resin composition of the present invention is such that when the epoxy resin composition is prepared and left to stand at 25 ° C. for 3 weeks, the viscosity is not more than twice the viscosity immediately after preparation of the resin composition. preferable.

更に又、本発明のエポキシ樹脂組成物は、100℃以下の温度での10時間以内の一次硬化によって得られる硬化物の硬化度が70%以上になるか、又は該硬化物のJIS−K−6848、JIS−K−6850による引張せん断強度(接着強さ)が10MPa以上になるかするものであることが好ましい。   Furthermore, in the epoxy resin composition of the present invention, the degree of cure of a cured product obtained by primary curing within 10 hours at a temperature of 100 ° C. or less is 70% or more, or the JIS-K- of the cured product. It is preferable that the tensile shear strength (adhesive strength) according to 6848 and JIS-K-6850 is 10 MPa or more.

本発明のプリプレグは、前記構成によるエポキシ樹脂組成物を強化繊維材料に含浸してなるものである。   The prepreg of the present invention is formed by impregnating a reinforcing fiber material with the epoxy resin composition having the above-described configuration.

本発明のエポキシ樹脂組成物は、100℃以下の低温での硬化性に優れ、しかも室温での安定性に優れており、又低温で一次硬化させた硬化物を高温で二次硬化させることによって優れた耐熱性を具備する硬化物になる。又、本発明のプリプレグは、前記特性を有するエポキシ樹脂組成物を強化繊維材料に含浸させたものであるので、長いワーキングライフと良好な取り扱い性とを有しており、100℃以下の低温での一次硬化によって脱型可能な硬度に短時間で硬化し、かつその後の高温での二次硬化により優れた耐熱性を具備する硬化成形物になる。   The epoxy resin composition of the present invention is excellent in curability at a low temperature of 100 ° C. or lower, and also excellent in stability at room temperature, and by secondarily curing a cured product that has been primarily cured at a low temperature at a high temperature. The cured product has excellent heat resistance. Moreover, since the prepreg of the present invention is obtained by impregnating a reinforcing fiber material with the epoxy resin composition having the above-mentioned characteristics, it has a long working life and good handleability, and at a low temperature of 100 ° C. or less. The cured product is cured in a short time to a demoldable hardness by primary curing, and has excellent heat resistance by subsequent secondary curing at high temperature.

本発明のエポキシ樹脂組成物における成分(a)をなすエポキシ樹脂として、3官能以上のエポキシ樹脂を主成分とするものを使用することにより、二次硬化によって得られる硬化物の耐熱性がより優れたものになる。   As the epoxy resin constituting the component (a) in the epoxy resin composition of the present invention, the heat resistance of a cured product obtained by secondary curing is superior by using a resin mainly composed of a tri- or higher functional epoxy resin. It becomes a thing.

成分(a)をなすエポキシ樹脂中の3官能以上のエポキシ樹脂の含有量が40質量%よりも少なくなると、二次硬化によって得られる硬化物に十分な耐熱性が具備されなくなる場合がある。このために、3官能以上のエポキシ樹脂を主成分とするエポキシ樹脂としては、成分(a)をなすエポキシ樹脂中の40質量%以上が3官能以上のエポキシ樹脂であることが好ましく、成分(a)をなすエポキシ樹脂中の60質量%以上が3官能以上のエポキシ樹脂であることがより好ましい。   If the content of the tri- or higher functional epoxy resin in the epoxy resin constituting the component (a) is less than 40% by mass, the cured product obtained by secondary curing may not have sufficient heat resistance. For this reason, as an epoxy resin which has a trifunctional or higher functional epoxy resin as a main component, it is preferable that 40 mass% or more in the epoxy resin constituting the component (a) is a trifunctional or higher functional epoxy resin. It is more preferable that 60% by mass or more in the epoxy resin forming the above is a trifunctional or higher functional epoxy resin.

3官能以上のエポキシ樹脂としては、テトラグリシジルジアミノジフェニルメタン、アミノフェノール型エポキシ樹脂、アミノクレゾール型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、更には下記式(3)や(4)で表されるエポキシ樹脂等が挙げられる。   Examples of the tri- or higher functional epoxy resin include tetraglycidyl diaminodiphenylmethane, aminophenol type epoxy resin, aminocresol type epoxy resin, phenol novolac type epoxy resin, cresol novolac type epoxy resin, and the following formulas (3) and (4) The epoxy resin etc. which are represented are mentioned.

Figure 2006131920
[式中、nは0以上の数を表す]
Figure 2006131920
[Wherein n represents a number of 0 or more]

Figure 2006131920
[式中、nは0以上の数を表す]
Figure 2006131920
[Wherein n represents a number of 0 or more]

前記3官能以上のエポキシ樹脂としては、特に前記式(3)で表されるノボラック型エポキシ樹脂及び/又はテトラグリシジルジアミノジフェニルメタンを含むエポキシ樹脂が好適である。   As the trifunctional or higher functional epoxy resin, a novolac type epoxy resin represented by the formula (3) and / or an epoxy resin containing tetraglycidyldiaminodiphenylmethane is particularly suitable.

成分(a)をなすエポキシ樹脂中の3官能以上のエポキシ樹脂以外のその他のエポキシ樹脂としては、例えば、ビスフェノール型エポキシ樹脂、水添ビスフェノール型エポキシ樹脂、ビフェノール型エポキシ樹脂、ナフタレンジオール型エポキシ樹脂等が挙げられるが、二次硬化によって得られる硬化物により高度の耐熱性を具備させるためには、ビフェノール型エポキシ樹脂やナフタレンジオール型エポキシ樹脂等の比較的剛直な骨格構造を有するエポキシ樹脂を利用するのが好ましい。   Examples of other epoxy resins other than the tri- or higher functional epoxy resin in the epoxy resin constituting the component (a) include, for example, bisphenol type epoxy resins, hydrogenated bisphenol type epoxy resins, biphenol type epoxy resins, naphthalenediol type epoxy resins, etc. In order to provide a high degree of heat resistance to the cured product obtained by secondary curing, an epoxy resin having a relatively rigid skeleton structure such as a biphenol type epoxy resin or a naphthalene diol type epoxy resin is used. Is preferred.

又、SO構造を有する例えばビスフェノールS型エポキシ樹脂や芳香族ジアミンとビスフェノール型エポキシ樹脂との予備反応物を用いると、二次硬化によって比較的高い耐熱性を具備し、かつ、靱性にも優れた硬化物になる。 In addition, when a pre-reacted product of, for example, bisphenol S-type epoxy resin or aromatic diamine and bisphenol-type epoxy resin having an SO 2 structure is used, it has relatively high heat resistance due to secondary curing and is excellent in toughness. It becomes a hardened product.

更に、下記式(5)で表されるオキサゾリドン環を有するエポキシ樹脂を利用すると、強化繊維材料との接着性が良好なエポキシ樹脂組成物になるために、機械物性に優れた繊維強化複合材料になる。   Furthermore, when an epoxy resin having an oxazolidone ring represented by the following formula (5) is used, an epoxy resin composition having good adhesion to the reinforcing fiber material is obtained, so that the fiber-reinforced composite material having excellent mechanical properties is obtained. Become.

Figure 2006131920
[式中、Rは水素原子又はアルキル基を表す]
Figure 2006131920
[Wherein R represents a hydrogen atom or an alkyl group]

また、オキサゾリドン環を有するエポキシ樹脂が下記式(6)で表される単位で構成されるエポキシ樹脂であるときには、強化繊維材料との接着性が更に良好なエポキシ樹脂組成物になるために、より優れた機械物性を有する繊維強化複合材料になる。   In addition, when the epoxy resin having an oxazolidone ring is an epoxy resin composed of a unit represented by the following formula (6), an adhesive resin with a reinforcing fiber material has an even better epoxy resin composition. It becomes a fiber reinforced composite material having excellent mechanical properties.

Figure 2006131920
[式中、Rはそれぞれ独立して水素原子又はアルキル基を表し、R〜Rはそれぞれ独立してハロゲン原子、水素原子、または炭素数1〜4のアルキル基を表し、Rは下記式(7)又は(8)の基を表す]
Figure 2006131920
[Wherein, R independently represents a hydrogen atom or an alkyl group, R 1 to R 8 each independently represents a halogen atom, a hydrogen atom, or an alkyl group having 1 to 4 carbon atoms, and R 9 represents Represents a group of formula (7) or (8)]

Figure 2006131920
[式中、R’〜R’は、それぞれ独立して水素原子又は炭素数1〜4のアルキル基を表す]
Figure 2006131920
[Wherein, R ′ 1 to R ′ 4 each independently represents a hydrogen atom or an alkyl group having 1 to 4 carbon atoms]

Figure 2006131920
[式中、R’〜R’は、それぞれ独立して水素原子又は炭素数1〜4のアルキル基を表し、R’は単結合、−CH−、−C(CH−,−SO−、−SO−、−S−又は−O−を表す]
Figure 2006131920
[Wherein, R ′ 1 to R ′ 8 each independently represents a hydrogen atom or an alkyl group having 1 to 4 carbon atoms, and R ′ 9 represents a single bond, —CH 2 —, —C (CH 3 ) 2. -, - SO 2 -, - SO -, - representing the S- or -O-]

前記式(5)で表されるオキサゾリドン環を有するエポキシ樹脂としては、旭チバ社製のアラルダイトXAC4151やXAC4152等が挙げられる。   Examples of the epoxy resin having an oxazolidone ring represented by the formula (5) include Araldite XAC4151 and XAC4152 manufactured by Asahi Ciba.

次に、成分(b)をなす硬化剤は、100℃以下での硬化能を有する潜在性硬化剤である。つまり、成分(b)をなす硬化剤は、100℃以下での硬化能を有すると共に、加熱潜在反応性、すなわち潜在性を具備するものである。   Next, the curing agent constituting the component (b) is a latent curing agent having a curing ability at 100 ° C. or less. That is, the curing agent constituting the component (b) has a curing ability at 100 ° C. or less and has a latent heat reactivity, that is, a latent property.

硬化剤が100℃以下での硬化能を有しているか否かは、下記のようにして判断する。すなわち、エポキシ当量184〜194の液状ビスフェノールA型エポキシ樹脂(例えば、ジャパンエポキシレジン社製エピコート828等)100質量部と硬化剤20質量部とを均一に混合したエポキシ樹脂組成物を、DSCで10℃/分の昇温速度条件によって硬化させるときの発熱を測定し、DSCチャート上でベースラインから離れ、硬化発熱が始まる温度が100℃以下であるときに、この硬化剤は100℃以下での硬化能を有するものとして判断する。硬化発熱が始まる温度が90℃以下の硬化剤を使用すると、90℃以下での反応性の良好なエポキシ樹脂組成物になるので好ましい。   Whether or not the curing agent has a curing ability at 100 ° C. or less is determined as follows. That is, an epoxy resin composition in which 100 parts by mass of a liquid bisphenol A type epoxy resin having an epoxy equivalent of 184 to 194 (for example, Epicoat 828 manufactured by Japan Epoxy Resin Co., Ltd.) and 20 parts by mass of a curing agent are uniformly mixed is 10 by DSC. The curing agent is measured at a temperature increase rate of ℃ / min. When the temperature at which the curing exotherm starts is 100 ° C. or less, the curing agent is less than 100 ° C. Judged as having curing ability. Use of a curing agent having a temperature at which curing exotherm begins at 90 ° C. or lower is preferable because an epoxy resin composition having good reactivity at 90 ° C. or lower is obtained.

次に、硬化剤が加熱潜在反応性、つまり潜在性であるということは、室温付近ではほとんど反応しないということである。室温付近でほとんど反応しないという硬化剤の潜在性の確認は、下記のようにして行なう。すなわち、エポキシ当量184〜194の液状ビスフェノールA型エポキシ樹脂(例えば、ジャパンエポキシレジン社製エピコート828等)100質量部と硬化剤20質量部とを均一に混合したエポキシ樹脂組成物を30℃にて3週間放置したときの粘度が、放置前の粘度に比較して2倍以内であるときに、該硬化剤は潜在性であるということができる。前記エポキシ樹脂組成物を30℃にて3週間放置したときの粘度が放置前の粘度の1.5倍以内になるような硬化剤は、優れた潜在反応性を具備するものであって、より好ましい。   Secondly, the fact that the curing agent is heat latent reactivity, that is, latent, means that it hardly reacts near room temperature. Confirmation of the potential of the curing agent that hardly reacts near room temperature is performed as follows. That is, an epoxy resin composition in which 100 parts by mass of a liquid bisphenol A type epoxy resin having an epoxy equivalent of 184 to 194 (for example, Epicoat 828 manufactured by Japan Epoxy Resin Co., Ltd.) and 20 parts by mass of a curing agent were uniformly mixed at 30 ° C. It can be said that the curing agent is latent when the viscosity when left for 3 weeks is within 2 times the viscosity before standing. The curing agent such that the viscosity when the epoxy resin composition is allowed to stand at 30 ° C. for 3 weeks is within 1.5 times the viscosity before being left has excellent latent reactivity, preferable.

なお、前記硬化剤を含有するエポキシ樹脂組成物の粘度は、下記のようにして測定する。すなわち、レオメトリックス社製DSR−200又は同等の性能を有する測定機器により、シェア速度10ラジアン/秒の条件下に、25mm直径の2枚のディスクプレートを用い、ディスクプレート間隔0.5mmにて、30℃の等温粘度を測定し、測定開始から10分後のデータを取り込む。測定用のエポキシ樹脂組成物の粘度を、30℃にて3週間放置する前後で、この方法によって測定し、潜在反応性の有無の判断を行なう。   In addition, the viscosity of the epoxy resin composition containing the said hardening | curing agent is measured as follows. That is, using a DRM-200 manufactured by Rheometrics Co., Ltd. or a measuring instrument having equivalent performance, using two disk plates with a diameter of 25 mm under a condition of a shear rate of 10 radians / second, with a disk plate interval of 0.5 mm Measure the isothermal viscosity at 30 ° C. and capture the data 10 minutes after the start of measurement. The viscosity of the epoxy resin composition for measurement is measured by this method before and after being left to stand at 30 ° C. for 3 weeks, and the presence or absence of latent reactivity is determined.

成分(b)としての硬化剤は、上記の通り100℃以下での硬化能を有し、かつ、加熱潜在反応性を有していれば、それ以外の限定は特にないが、マイクロカプセル型の硬化剤にすることにより、本発明のエポキシ樹脂組成物を、90℃以下での硬化性と室温付近での安定性とのバランスが優れたものとすることができる。100℃以下での硬化能と室温での潜在性とを具備し、かつ、マイクロカプセル型をなす成分(b)としての硬化剤としては、旭チバ社製のノバキュアHX3721やHX3722等が挙げられる。   The curing agent as the component (b) is not particularly limited as long as it has a curing ability at 100 ° C. or less as described above, and has heat latent reactivity. By using a curing agent, the epoxy resin composition of the present invention can be excellent in the balance between curability at 90 ° C. or lower and stability near room temperature. Examples of the curing agent as the component (b) having a curing ability at 100 ° C. or less and a latent property at room temperature include NovaCure HX3721 and HX3722 manufactured by Asahi Ciba.

更に、成分(b)をなす硬化剤としてアミンアダクト型の硬化剤を使用したエポキシ樹脂組成物は、90℃以下での硬化能を有し、かつ、室温付近での安定性が良好であるために、更に好適である。このアミンアダクト型の硬化剤としては、富士化成社製のフジキュアFXE1000やFXE1030、味の素社製のPN−23、エー・シー・アール社製のACRハードナーH−3615、H−4070、H−3293、H−3366、H−3849、H−3670、四国化成工業社製のキュアダクトP−0505等が挙げられる。   Furthermore, an epoxy resin composition using an amine adduct type curing agent as the curing agent constituting the component (b) has a curing ability at 90 ° C. or less and has a good stability near room temperature. Furthermore, it is more preferable. As this amine adduct type curing agent, Fuji Chemical FXE1000 FXE1030, Ajinomoto PN-23, ACR Hardener H-3615, H-4070, H-3293, H-3366, H-3849, H-3670, cure duct P-0505 manufactured by Shikoku Kasei Kogyo Co., Ltd. and the like.

成分(b)をなす潜在性硬化剤の配合量は、成分(a)をなすエポキシ樹脂を100質量部としたときに、成分(b)をなす潜在性硬化剤の配合量が3質量部よりも少なくなると、100℃以下の低温での一次硬化が不十分となる場合が多くなり、又40質量部を超えると、室温での樹脂組成物の安定性が低下することがあるので、3〜40質量部の範囲が好ましい。なお、硬化剤を低粘度エポキシ樹脂等と予め混合してあるペースト状の硬化剤を用いる場合には、有効成分のみの硬化剤の質量であることは、勿論である。   The blending amount of the latent curing agent constituting the component (b) is such that the blending amount of the latent curing agent constituting the component (b) is 3 parts by mass when the epoxy resin constituting the component (a) is 100 parts by mass. If the amount is too small, primary curing at a low temperature of 100 ° C. or less often becomes insufficient, and if it exceeds 40 parts by mass, the stability of the resin composition at room temperature may be reduced. A range of 40 parts by weight is preferred. In addition, when using the paste-form hardening | curing agent which mixed the hardening | curing agent with low-viscosity epoxy resin etc. beforehand, it is needless to say that it is the mass of the hardening | curing agent only of an active ingredient.

本発明のエポキシ樹脂組成物は、比較的低温で、しかも比較的短時間での一次硬化工程において、成分(b)をなす硬化剤の働きによって脱型可能に硬化し、又この脱型可能に硬化した硬化物は、その後の高温の二次硬化によって、成分(c)をなす芳香族アミン系硬化剤及び/又は脂環族アミン系硬化剤の働きにより、架橋構造が完成した高度の耐熱性を具備する硬化物、すなわち高いガラス転移温度を有し、かつ、高温での剛性に優れた硬化物になる。   The epoxy resin composition of the present invention is cured in a primary curing step at a relatively low temperature and in a relatively short time, so that it can be removed by the action of the curing agent constituting the component (b). The cured product has a high degree of heat resistance in which a crosslinked structure is completed by the action of the aromatic amine-based curing agent and / or the alicyclic amine-based curing agent forming the component (c) by subsequent high-temperature secondary curing. That is, a cured product having a high glass transition temperature and excellent rigidity at high temperatures.

成分(c)をなす芳香族アミン系硬化剤及び/又は脂環族アミン系硬化剤のうちの芳香族アミン系硬化剤としては、芳香族ポリアミンが好ましく、例えば、キシレンジアミン、ジアミノジフェニルメタン、ジアミノジフェニルスルホン、フェニレンジアミン、ジメチルチオトルエンジアミン等が挙げられるが、ジアミノジフェニルメタンやジアミノジフェニルスルホンが好適であり、ジアミノジフェニルスルホンとしては、3,3' −ジアミノジフェニルスルホンや4,4' −ジアミノジフェニルスルホンが挙げられる。   Of the aromatic amine-based curing agents and / or alicyclic amine-based curing agents that constitute component (c), aromatic polyamines are preferred, such as xylenediamine, diaminodiphenylmethane, and diaminodiphenyl. Examples include sulfone, phenylenediamine, and dimethylthiotoluenediamine. Diaminodiphenylmethane and diaminodiphenylsulfone are preferable, and 3,3′-diaminodiphenylsulfone and 4,4′-diaminodiphenylsulfone are preferable as diaminodiphenylsulfone. Can be mentioned.

又、脂環族アミン系硬化剤としては、脂環族ポリアミンが好ましく、例えば、メンセンジアミン、イソホロンジアミン、ビス(4−アミノ−3−メチルシクロヘキシル)メタン、ビス(4−アミノシクロヘキシル)メタン、ビス(アミノメチル)シクロヘキサンが挙げられる。   The alicyclic amine-based curing agent is preferably an alicyclic polyamine, such as mensendiamine, isophoronediamine, bis (4-amino-3-methylcyclohexyl) methane, bis (4-aminocyclohexyl) methane, Bis (aminomethyl) cyclohexane is mentioned.

成分(c)をなす芳香族アミン系硬化剤及び/又は脂環族アミン系硬化剤の配合量は、成分(a)をなすエポキシ樹脂を100質量部としたときに、成分(c)をなす硬化剤が10質量部より少なくなると、二次硬化によって得られる硬化物のガラス転移温度及び/又は高温での剛性が低くなり易く、又40質量部を超えると、二次硬化によって得られる硬化物の未反応のアミン残基が多くなって吸湿性が増したり、或いは脆くなったりするので、10〜40質量部の範囲内にするのが好ましい。   The compounding amount of the aromatic amine-based curing agent and / or the alicyclic amine-based curing agent forming the component (c) is the component (c) when the epoxy resin forming the component (a) is 100 parts by mass. If the curing agent is less than 10 parts by mass, the glass transition temperature and / or high-temperature rigidity of the cured product obtained by secondary curing tends to be low, and if it exceeds 40 parts by mass, the cured product obtained by secondary curing. Since the amount of unreacted amine residues increases and the hygroscopicity increases or becomes brittle, the amount is preferably in the range of 10 to 40 parts by mass.

本発明のエポキシ樹脂組成物は、一次硬化物を得るときの硬化促進を図るための成分(d)としての硬化促進剤を更に含有していてもよく、例えば、ウレア化合物、シアノ化合物、ジヒドラジド化合物、酸無水物等からなる硬化促進剤を成分(d)として配合することができる。   The epoxy resin composition of the present invention may further contain a curing accelerator as a component (d) for accelerating curing when obtaining a primary cured product, for example, a urea compound, a cyano compound, a dihydrazide compound. A curing accelerator composed of an acid anhydride or the like can be blended as the component (d).

成分(d)となる硬化促進剤として特にウレア化合物を使用することにより、樹脂組成物の室温での安定性を損なうことがなく、比較的低温での一次硬化の硬化性に優れたエポキシ樹脂組成物とすることができる。成分(d)をなす硬化促進剤として配合するウレア化合物としては、特に芳香族系ウレア化合物が好ましく、下記式(9)で表される化合物がより好ましい。   Epoxy resin composition excellent in curability of primary curing at a relatively low temperature without impairing the stability at room temperature of the resin composition by using a urea compound as a curing accelerator to be component (d). It can be a thing. As a urea compound mix | blended as a hardening accelerator which makes a component (d), an aromatic urea compound is especially preferable, and the compound represented by following formula (9) is more preferable.

Figure 2006131920
[式中、X、Xは水素又は塩素を表し、XとXは同一であっても相異なっていてもよい]
Figure 2006131920
Wherein, X 1, X 2 represents hydrogen or chlorine, X 1 and X 2 may be different from each be the same]

本発明のエポキシ樹脂組成物は、該エポキシ樹脂組成物を調製し、これを25℃で3週間放置したときの粘度が、樹脂組成物の調製直後の粘度の2倍以下であり、つまり室温での安定性に優れており、かつ、100℃以下、10時間以内の一次硬化によって脱型可能に硬化することが好ましく、100℃以下、5時間以内の一次硬化によって脱型可能に硬化するものであるときには、成形サイクルの点で更に好ましく、90℃以下、5時間以内での一次硬化によって脱型可能に硬化するものであれば尚一層好ましい。   In the epoxy resin composition of the present invention, the viscosity when the epoxy resin composition is prepared and left at 25 ° C. for 3 weeks is not more than twice the viscosity immediately after preparation of the resin composition, that is, at room temperature. It is preferable to be cured so as to be demoldable by primary curing within 100 hours or less and within 10 hours, and to be demoldable by primary curing within 100 hours or less within 5 hours. In some cases, it is more preferable in terms of a molding cycle, and it is even more preferable if it is cured so as to be demoldable by primary curing at 90 ° C. or less within 5 hours.

又、エポキシ樹脂組成物を調製し、これを25℃で3週間放置したときの粘度が、樹脂組成物の調製直後の粘度の1.5倍以下のものは、エポキシ樹脂組成物のワーキングライフが更に長くなり、より好ましい。   In addition, when the epoxy resin composition is prepared and left to stand at 25 ° C. for 3 weeks, the viscosity of the epoxy resin composition is not more than 1.5 times the viscosity immediately after the preparation of the resin composition, the working life of the epoxy resin composition is It becomes longer and more preferable.

なお、エポキシ樹脂組成物の粘度は、下記の方法によって測定する。すなわち、調製直後のエポキシ樹脂組成物の40℃での粘度ηiをレオメトリック社製DSR−200又は同等の性能を有する装置により、周波数10ラジアン/秒、パラレルプレートにて測定し、続いて該エポキシ樹脂組成物を25℃の恒温器中に3週間放置した後に、前記と同様にして、40℃での粘度ηを測定し、粘度上昇倍率を、η/ηiによって求める。   The viscosity of the epoxy resin composition is measured by the following method. That is, the viscosity ηi at 40 ° C. of the epoxy resin composition immediately after preparation was measured on a parallel plate at a frequency of 10 radians / second using a DSR-200 manufactured by Rheometric Co., Ltd. or an apparatus having equivalent performance, and then the epoxy resin composition was measured. After leaving the resin composition in a 25 ° C. incubator for 3 weeks, the viscosity η at 40 ° C. is measured in the same manner as described above, and the viscosity increase ratio is determined by η / ηi.

又、エポキシ樹脂組成物が一次硬化によって脱型可能に硬化するか否かは、下記の方法によって判断する。すなわち、調製したエポキシ樹脂組成物の硬化発熱量(Ei)、及び該エポキシ樹脂組成物の一次硬化発熱量(E1)を、それぞれ示差走査熱量計(DSC)を利用して測定し、硬化度(%)={(Ei)−(E1)}×100/Eiによって求めた硬化度が70%以上になるか、或いは該エポキシ樹脂組成物の一次硬化物のJIS−K−6848、JIS−K−6850による引張せん断強度(接着強さ)が10MPa以上になるときに、脱型可能に硬化するということができる。   Whether or not the epoxy resin composition is cured so as to be demoldable by primary curing is determined by the following method. That is, the curing heat value (Ei) of the prepared epoxy resin composition and the primary curing heat value (E1) of the epoxy resin composition were measured using a differential scanning calorimeter (DSC), respectively, and the degree of cure ( %) = {(Ei)-(E1)} × 100 / Ei, the degree of cure is 70% or more, or the primary cured product of the epoxy resin composition is JIS-K-6848, JIS-K- It can be said that when the tensile shear strength (adhesive strength) according to 6850 is 10 MPa or more, it is cured so as to be demoldable.

エポキシ樹脂組成物の一次硬化物のJIS−K−6848、JIS−K−6850による引張せん断強度(接着強さ)の測定は、25×100×1.5mmのアルミニウム板(JIS−H−4000に規定するA2024P)の12.5mmラップ部分をサンドペーパー(#240)によって研磨し、更にアセトンで脱脂してから、このラップ部分に測定用のエポキシ樹脂組成物を均一に塗布し、次いで同様に研磨及び脱脂処理してある別のアルミニウム板のラップ部分を重ね合わせた後、1kgf/cmの圧力で固定して一次硬化させた後、室温まで徐冷して作製したサンプルによって行なう。 Measurement of the tensile shear strength (adhesion strength) of the primary cured product of the epoxy resin composition according to JIS-K-6848 and JIS-K-6850 was performed on an aluminum plate of 25 × 100 × 1.5 mm (JIS-H-4000). 12.5mm lapping part of A2024P) is polished with sandpaper (# 240), degreased with acetone, and then the epoxy resin composition for measurement is uniformly applied to this lapping part, and then polished in the same manner The sample is prepared by superposing the lap portions of another aluminum plate that has been degreased, fixing it at a pressure of 1 kgf / cm 2 , first hardening it, and then gradually cooling it to room temperature.

更に、本発明のエポキシ樹脂組成物は、100℃以下の低温で硬化させた一次硬化物を、更に130℃以上の温度での二次硬化に付して得られる硬化物のガラス転移温度が150℃以上になるものが好ましい。特に、150℃以上(例えば180℃)での二次硬化によって得られる硬化物のガラス転移温度が、180℃以上になるようなエポキシ樹脂組成物は、より耐熱性に優れた硬化物になる。二次硬化の硬化時間は特に制限されるものではないが、10時間以内が好ましく、5時間以内がより好ましい。   Furthermore, the epoxy resin composition of the present invention has a glass transition temperature of 150, which is obtained by subjecting a primary cured product cured at a low temperature of 100 ° C. or lower to a secondary curing at a temperature of 130 ° C. or higher. Those that are at or above ° C are preferred. In particular, an epoxy resin composition in which the glass transition temperature of a cured product obtained by secondary curing at 150 ° C. or higher (for example, 180 ° C.) is 180 ° C. or higher becomes a cured product with more excellent heat resistance. The curing time for secondary curing is not particularly limited, but is preferably within 10 hours, and more preferably within 5 hours.

なお、硬化物のガラス転移温度は、下記の方法によって測定する。すなわち、レオメトリック社製RDA−700又は同等の性能を有する粘弾性測定装置により、測定用の硬化物の温度を段階的に昇温させながら、温度を段階的にステップ状で上げていったときの貯蔵弾性率(G' )を各温度において測定する。昇温は5℃/ステップで行ない、各ステップでは温度安定後1分間その温度で保持してから、周波数10ラジアン/秒で測定する。図1に示すように、温度に対して貯蔵弾性率(G' )の対数値をプロットし、得られたG' 曲線の各接線の交点での温度をガラス転移温度とする。   The glass transition temperature of the cured product is measured by the following method. That is, when the temperature of the cured product for measurement is raised stepwise by the rheometric RDA-700 or a viscoelasticity measuring device having equivalent performance, the temperature is raised stepwise. Is measured at each temperature. The temperature is raised at 5 ° C./step. In each step, the temperature is maintained for 1 minute after the temperature is stabilized, and then measured at a frequency of 10 radians / second. As shown in FIG. 1, the logarithmic value of the storage elastic modulus (G ′) is plotted against the temperature, and the temperature at the intersection of each tangent of the obtained G ′ curve is defined as the glass transition temperature.

本発明のエポキシ樹脂組成物には、本発明の目的を逸脱することのない範囲内で、添加剤を添加することができる。例えば、熱可塑性樹脂を溶解して添加することによって、樹脂組成物のべたつきを抑えて、プリプレグのタックを適正レベルに調整したり、或いはタックの経時変化を抑制したりすることができる。このような熱可塑性樹脂としては、例えば、フェノキシ樹脂、ポリビニルフォルマール、ポリエーテルスルホン等が挙げられる。   Additives can be added to the epoxy resin composition of the present invention within a range not departing from the object of the present invention. For example, by dissolving and adding a thermoplastic resin, the tackiness of the resin composition can be suppressed, and the tackiness of the prepreg can be adjusted to an appropriate level, or the change with time of tack can be suppressed. Examples of such thermoplastic resins include phenoxy resin, polyvinyl formal, polyethersulfone, and the like.

又、本発明のエポキシ樹脂組成物には、得られる硬化物の靱性を向上させる目的で、微粒子状や短繊維状の熱可塑性樹脂やゴム成分を添加してもよく、添加剤としてポリアミド、ポリイミド、ポリウレタン、ポリエーテルスルホン等の熱可塑性樹脂や、アクリルゴム、ブタジエンゴム、ブチルゴム等のゴム成分、その分子末端変性品等が挙げられる。   In addition, for the purpose of improving the toughness of the resulting cured product, a fine particle or short fiber thermoplastic resin or rubber component may be added to the epoxy resin composition of the present invention. And thermoplastic resins such as polyurethane and polyethersulfone; rubber components such as acrylic rubber, butadiene rubber and butyl rubber; and molecular end-modified products thereof.

更に、本発明のエポキシ樹脂組成物には、得られる硬化物の剛性を向上させることを目的として、タルクやシリカ、スチール等の金属等の無機成分の微粒子を添加することもできる。   Furthermore, fine particles of inorganic components such as metals such as talc, silica, and steel can be added to the epoxy resin composition of the present invention for the purpose of improving the rigidity of the resulting cured product.

本発明のエポキシ樹脂組成物の用途は特に制限されるものではなく、例えば、繊維強化複合材料用のマトリックス樹脂や、構造材料用の接着剤等として適用することができ、繊維強化複合材料用のマトリックス樹脂として特に好適に用いることができる。   The use of the epoxy resin composition of the present invention is not particularly limited. For example, it can be applied as a matrix resin for a fiber reinforced composite material, an adhesive for a structural material, etc. It can be particularly suitably used as a matrix resin.

この繊維強化複合材料を成形するときの強化繊維材料としては、特に制限されるものではなく、例えば、炭素繊維、ガラス繊維、高強度有機繊維、金属繊維、無機繊維等の一般の繊維強化複合材料の強化繊維材料として用いられるものの全てが使用可能である。又、強化繊維材料の形態としても特に制限はなく、例えば、一方向材、クロス、マット、或いは数千本以上のフィラメントよりなるトウ等を使用し得る。   The fiber reinforced composite material for molding the fiber reinforced composite material is not particularly limited. For example, carbon fiber, glass fiber, high strength organic fiber, metal fiber, inorganic fiber, etc. Any of those used as the reinforcing fiber material can be used. The form of the reinforcing fiber material is not particularly limited, and for example, a unidirectional material, a cloth, a mat, or a tow composed of thousands or more filaments can be used.

本発明のエポキシ樹脂組成物において、特に60℃での粘度が10Pa・sec以上、好ましくは30Pa・sec以上であり、かつ、700Pa・sec以下、好ましくは500Pa・sec以下のものは、強化繊維材料にマトリックス樹脂を含浸してシート状にしたいわゆるプリプレグにするときのマトリックス樹脂として、好適である。   In the epoxy resin composition of the present invention, those having a viscosity at 60 ° C. of 10 Pa · sec or more, preferably 30 Pa · sec or more and 700 Pa · sec or less, preferably 500 Pa · sec or less are reinforced fiber materials. It is suitable as a matrix resin when making a so-called prepreg impregnated with a matrix resin.

つまり、エポキシ樹脂組成物の60℃の粘度が10Pa・secよりも低いと、プリプレグのタックやべたつきが強くなりすぎて好ましくなく、又700Pa・secを超えると、プリプレグのドレープ性が乏しく、堅くなり過ぎる。なお、エポキシ樹脂組成物の60℃での粘度の測定方法は、測定温度を60℃にする以外は、先に説明したエポキシ樹脂組成物の粘度の測定方法と同じである。   In other words, when the viscosity of the epoxy resin composition at 60 ° C. is lower than 10 Pa · sec, the tack and stickiness of the prepreg becomes too strong, which is not preferable, and when it exceeds 700 Pa · sec, the drapability of the prepreg is poor and stiff. Pass. The method for measuring the viscosity of the epoxy resin composition at 60 ° C. is the same as the method for measuring the viscosity of the epoxy resin composition described above, except that the measurement temperature is 60 ° C.

又、本発明のエポキシ樹脂組成物は、これをフィルム状にして樹脂フローを抑えたり、或いはガラスクロス等に含浸させる等により、シート状の接着剤として使用することが可能である。更に、本発明のエポキシ樹脂組成物は、これに添加剤としてマイクロバルーンや発泡剤を配合することにより、軽量化副資材として使用することもできる。   Moreover, the epoxy resin composition of the present invention can be used as a sheet-like adhesive by making it into a film to suppress the resin flow or impregnating it with a glass cloth or the like. Furthermore, the epoxy resin composition of the present invention can be used as a light weight auxiliary material by adding a microballoon or a foaming agent as an additive thereto.

更に又、本発明エポキシ樹脂組成物を含浸させたプリプレグの表面付近に、選択的に熱可塑性樹脂やゴム成分等の高靱性材料を配置し、得られる積層硬化物の層間の靱性を高める場合には、100℃以下の低温で硬化させることができるので、特に低融点の熱可塑性樹脂を配置しても、その形態を保持した状態で成形できる。このために、モルフォロジー制御が容易であり、層間に設計通りの量の熱可塑性樹脂やゴム成分等の高靱性材料を配置することができ、設計通りの層間靱性が得られる。なお、このときの層間に配置させる熱可塑性樹脂やゴム成分等の高靱性材料の形態は特に制限されるものではないが、粒子状、長繊維や単繊維の繊維状をなすものが層間に選択的に高靱性材料を配置させ得るので好ましい。   Furthermore, when a high toughness material such as a thermoplastic resin or a rubber component is selectively disposed near the surface of the prepreg impregnated with the epoxy resin composition of the present invention, the toughness between the layers of the resulting laminated cured product is increased. Can be cured at a low temperature of 100 ° C. or lower, so that even when a low-melting thermoplastic resin is disposed, it can be molded while maintaining its form. For this reason, morphological control is easy, and a high-toughness material such as a thermoplastic resin or a rubber component in a designed amount can be arranged between layers, and a designed interlayer toughness can be obtained. The form of the high toughness material such as the thermoplastic resin or rubber component to be disposed between the layers is not particularly limited, but the ones in the form of particles, long fibers or single fibers are selected between the layers. In particular, a highly tough material can be arranged, which is preferable.

本発明のエポキシ樹脂組成物の調製方法にも特に制限はないが、固形状のエポキシ樹脂や熱可塑性樹脂等を溶解して配合するときには、まずこれらの固形成分を溶解可能なエポキシ樹脂に均一に溶解して用いることが好ましい。   The method for preparing the epoxy resin composition of the present invention is not particularly limited, but when a solid epoxy resin, a thermoplastic resin, or the like is dissolved and blended, the solid component is first uniformly formed into a soluble epoxy resin. It is preferable to use after dissolving.

成分(b)をなす100℃以下での硬化能を有する潜在性硬化剤の添加は、成分(b)が粉末状の場合には、成分(a)をなすエポキシ樹脂成分中の比較的低粘度のエポキシ樹脂等を使用してペースト状にしてから添加するようにすれば、粉末状をなす成分(b)の二次凝集を防ぐことができ、均一に分散させることができる。又、成分(b)が固形状の場合には、これを粉砕をして粉末状にした上で、低粘度のエポキシ樹脂等によってペースト状にして添加することが好ましい。なお、成分(b)がマイクロカプセル型の潜在性硬化剤の場合には、強いせん断応力で攪拌するとカプセルに悪影響が及び、室温での安定性が損なわれる。従って、マイクロカプセル型の潜在性硬化剤としては、予め低粘度のエポキシ樹脂と均一に混合してあるマスターバッチ型のものを使用するのが好ましい。   The addition of a latent curing agent having a curing ability at 100 ° C. or less forming component (b) is relatively low in the epoxy resin component forming component (a) when component (b) is in powder form. If the epoxy resin or the like is used to make a paste and then added, secondary agglomeration of the powdery component (b) can be prevented and the powder can be uniformly dispersed. When the component (b) is solid, it is preferably pulverized into a powder and then added as a paste with a low viscosity epoxy resin or the like. In the case where the component (b) is a microcapsule type latent curing agent, stirring with a strong shear stress adversely affects the capsule and impairs stability at room temperature. Therefore, as the microcapsule-type latent curing agent, it is preferable to use a masterbatch type that is uniformly mixed with a low-viscosity epoxy resin in advance.

成分(c)をなす芳香族アミン系硬化剤及び/又は脂環族アミン系硬化剤は、一次硬化によって成分(c)が溶解しない場合、つまり成分(c)の融点が一次硬化温度より高いか、或いは成分(c)のエポキシ樹脂への溶解温度が一次硬化温度より高いときには、成分(a)のエポキシ樹脂に予め溶解して添加するのが好ましい。又、一次硬化で成分(c)が溶解するような粉末状の場合には、成分(a)中の比較的低粘度のエポキシ樹脂等によってペースト状にしてから添加することにより、粉末状をなす成分(c)の二次凝集を防ぐことができ、均一に分散させることができる。更に、成分(c)が一次硬化で溶解する固形状の場合には、これを粉砕して粉末状にした上で、低粘度のエポキシ樹脂等によってペースト状にして添加することが好ましい。成分(c)が液状の場合には、いつの段階で添加しても均一に混合する。   The aromatic amine-based curing agent and / or the alicyclic amine-based curing agent constituting the component (c) is, when the component (c) is not dissolved by the primary curing, that is, whether the melting point of the component (c) is higher than the primary curing temperature. Alternatively, when the melting temperature of the component (c) in the epoxy resin is higher than the primary curing temperature, it is preferably dissolved in the epoxy resin of the component (a) in advance. In the case of powder form in which component (c) is dissolved by primary curing, it is made into a powder form by adding it after making it into a paste form with a relatively low viscosity epoxy resin or the like in component (a). Secondary aggregation of the component (c) can be prevented and it can be uniformly dispersed. Furthermore, when the component (c) is in a solid form that dissolves by primary curing, it is preferably pulverized into a powder and then added in a paste form with a low viscosity epoxy resin or the like. When the component (c) is in a liquid state, it is mixed evenly at any stage.

本発明のエポキシ樹脂組成物は、低温で反応を開始する特性を有しているので、成分(b)をなす潜在性硬化剤の添加後は、エポキシ樹脂組成物の室温での安定のために、70℃以下で調製することが好ましい。なお、60℃以下で調製するようにすれば、エポキシ樹脂組成物の室温での安定性は更に向上する。   Since the epoxy resin composition of the present invention has the property of initiating the reaction at a low temperature, after the addition of the latent curing agent constituting the component (b), the epoxy resin composition is stable at room temperature. It is preferable to prepare at 70 ° C. or lower. In addition, if it prepares at 60 degrees C or less, the stability at room temperature of an epoxy resin composition will further improve.

又、本発明のエポキシ樹脂組成物を用いたプリプレグを調製する方法としては、ホットメルト方式が好ましい。ホットメルト方式によるプリプレグの調製に使用するフィルム化エポキシ樹脂組成物を得る際の剥離工程紙にエポキシ樹脂組成物を塗工するときには、調製するプリプレグのライフを安定させるために、70℃以下で塗工することが好ましく、60℃以下で塗工することがより一層好ましい。   Moreover, as a method for preparing a prepreg using the epoxy resin composition of the present invention, a hot melt system is preferable. Release process when obtaining a film-formed epoxy resin composition used for preparing a prepreg by a hot melt method When applying an epoxy resin composition to paper, it is applied at 70 ° C. or lower in order to stabilize the life of the prepared prepreg. It is preferable to apply, and it is more preferable to apply at 60 ° C. or less.

以下、本発明のエポキシ樹脂組成物及び該エポキシ樹脂組成物を使用したプリプレグの具体的な構成を実施例に基づき、比較例と比較しながら説明する。なお、実施例及び比較例のエポキシ樹脂組成物に使用した各成分は、下記の略字で示す通りである。   Hereinafter, specific configurations of the epoxy resin composition of the present invention and a prepreg using the epoxy resin composition will be described based on examples and compared with comparative examples. In addition, each component used for the epoxy resin composition of an Example and a comparative example is as showing with the following abbreviation.

(1)3官能以上のエポキシ樹脂
Ep604:ジャパンエポキシレジン社製、テトラグリシジルジアミノジフェニルメタン「エピコート604」
TACTIX742:ダウケミカル社製、式(1)においてn=0に該当する固形状の3官能エポキシ樹脂「TACTIX742」
Ep1032:ジャパンエポキシレジン社製、式(1)においてn>0に該当する特殊ノボラック型エポキシ樹脂「エピコート1032S50」
Ep157:EP157S65:ジャパンエポキシレジン社製、式(2)においてn>0に該当する特殊ノボラック型エポキシ樹脂「エピコート157S65」
ELM−100:住友化学社製、アミノフェノール型エポキシ樹脂「スミ−エポキシELM−100」
N−740:大日本インキ化学社製、フェノールノボラック型エポキシ樹脂「エピクロンN−740」
N−670:大日本インキ化学社製、クレゾールノボラック型エポキシ樹脂「エピクロンN−670」
(1) Trifunctional or higher functional epoxy resin Ep604: Tetraglycidyldiaminodiphenylmethane “Epicoat 604” manufactured by Japan Epoxy Resin Co., Ltd.
TACTIX 742: manufactured by Dow Chemical Co., Ltd., solid trifunctional epoxy resin “TACTIX 742” corresponding to n = 0 in the formula (1)
Ep1032: manufactured by Japan Epoxy Resin Co., Ltd., special novolac type epoxy resin “Epicoat 1032S50” corresponding to n> 0 in formula (1)
Ep157: EP157S65: manufactured by Japan Epoxy Resin Co., Ltd., special novolac epoxy resin “Epicoat 157S65” corresponding to n> 0 in formula (2)
ELM-100: Aminophenol type epoxy resin “Sumi-Epoxy ELM-100” manufactured by Sumitomo Chemical Co., Ltd.
N-740: Dainippon Ink Chemical Co., Ltd., phenol novolac type epoxy resin “Epicron N-740”
N-670: Dainippon Ink Chemical Co., Ltd., cresol novolac type epoxy resin “Epicron N-670”

(2)3官能以上のエポキシ樹脂以外のエポキシ樹脂
Ep828:ジャパンエポキシレジン社製、液状をなすビスフェノールA型エポキシ樹脂「エピコート828」
Ep1001:ジャパンエポキシレジン社製、半固形状をなすビスフェノールA型エポキシ樹脂「エピコート1001」
Ep5050:ジャパンエポキシレジン社製、難燃性エポキシ樹脂「エピコート5050」
XAC4152:旭チバ社製、変性エポキシ樹脂「アラルダイトXAC4152」
(2) Epoxy resins other than tri- or higher functional epoxy resins Ep828: Japan Epoxy Resin Co., Ltd., liquid bisphenol A type epoxy resin “Epicoat 828”
Ep1001: Semi-solid bisphenol A type epoxy resin “Epicoat 1001” manufactured by Japan Epoxy Resin Co., Ltd.
Ep5050: Made by Japan Epoxy Resin, Flame Retardant Epoxy Resin “Epicoat 5050”
XAC4152: Asahi Ciba, modified epoxy resin "Araldite XAC4152"

(3)100℃以下での硬化能を有する潜在性硬化剤
HX3722:旭チバ社製、「ノバキュアHX3722」
FXE1000:富士化成社製、「フジキュアーFXE−1000」
PN23:味の素社製、「アミキュアPN−23」
(3) Latent curing agent having curing ability at 100 ° C. or lower HX3722: “Novacure HX3722” manufactured by Asahi Ciba
FXE1000: manufactured by Fuji Kasei Co., Ltd., “Fujicure FXE-1000”
PN23: “Amicure PN-23” manufactured by Ajinomoto Co., Inc.

(4)芳香族アミン系又は脂環族アミン系硬化剤
DDS:和歌山精化社製、ジアミノジフェニルスルホン「セイカキュアS」
DDM:保土ヶ谷化学社製、ジアミノジフェニルメタン
BACHM:新日本理化社製、ビス(4−アミノシクロヘキシル)メタン「ワンダミンHM」
ET300:エチルコーポレーション社製、ジメチルチオトルエンジアミン「エタキュア300」
(4) Aromatic amine-based or alicyclic amine-based curing agent DDS: manufactured by Wakayama Seika Co., Ltd., diaminodiphenyl sulfone “Seika Cure S”
DDM: manufactured by Hodogaya Chemical Co., Ltd., diaminodiphenylmethane BACHM: manufactured by Shin Nippon Rika Co., Ltd., bis (4-aminocyclohexyl) methane “Wandamine HM”
ET300: manufactured by Ethyl Corporation, dimethylthiotoluenediamine "Etacure 300"

(5)硬化促進剤
PDMU:ビー・ティー・アールジャパン社製、フェニルジメチルウレア「オミキュア94」
DCMU:保土ヶ谷化学社製、ジクロロフェニルジメチルウレア「DCMU99」
(5) Curing accelerator PDMU: manufactured by BTR Japan, Phenyldimethylurea "Omicure 94"
DCMU: Hodogaya Chemical Co., Ltd., dichlorophenyldimethylurea “DCMU99”

(6)その他の成分
PES:住友化学社製、ポリエーテルスルホン「スミカエクセルPES 3600P」
アエロジル300:日本アエロジル社製、「アエロジル300」
BF3MEA:三フッ化ホウ素モノメチルアミン錯体
Dicy:ジャパンエポキシレジン社製、ジシアンジアミド「Dicy7」
T#241:富士化成社製、トーマイド#241
(6) Other components PES: manufactured by Sumitomo Chemical Co., Ltd., polyethersulfone "Sumika Excel PES 3600P"
Aerosil 300: “Aerosil 300” manufactured by Nippon Aerosil Co., Ltd.
BF3MEA: Boron trifluoride monomethylamine complex Dicy: Japan Epoxy Resin, Dicyandiamide “Dicy7”
T # 241: manufactured by Fuji Kasei Co., Ltd., tomide # 241

実施例1〜11
下記の表1及び表2のそれぞれの所定欄に記載した組成成分によるエポキシ樹脂組成物を得た。なお表中の数字は、配合した成分の質量部を示す。
Examples 1-11
The epoxy resin composition by the composition component described in each predetermined column of the following Table 1 and Table 2 was obtained. In addition, the number in a table | surface shows the mass part of the mix | blended component.

各成分の配合手順は以下の通りである。先ず成分(a)をなすエポキシ樹脂を150℃に加熱して均一に混合した。なお、配合成分中に熱可塑性樹脂や無機物等のその他の成分があるときには、この成分(a)の加熱混合時にその他の成分を添加して、溶解或いは分散させた。   The blending procedure of each component is as follows. First, the epoxy resin constituting component (a) was heated to 150 ° C. and uniformly mixed. In addition, when there existed other components, such as a thermoplastic resin and an inorganic substance, in a compounding component, the other component was added at the time of heat mixing of this component (a), and it dissolved or disperse | distributed.

次いで、前記の成分(a)或いは成分(a)とその他の成分との混合物を130℃に下げた後、成分(c)をなす芳香族アミン系硬化剤及び/又は脂環族アミン系硬化剤を添加して均一に溶解した。続いてすぐに、50〜60℃までに冷却し、更に成分(b)と、成分(d)としての硬化促進剤があるときにはこの成分(d)とを添加し、均一に混合することにより各エポキシ樹脂組成物を調製した。   Next, after the component (a) or a mixture of the component (a) and other components is lowered to 130 ° C., an aromatic amine-based curing agent and / or an alicyclic amine-based curing agent forming the component (c) Was added and dissolved uniformly. Immediately after that, it is cooled to 50 to 60 ° C., and when there is a component (b) and a curing accelerator as component (d), this component (d) is added and mixed uniformly. An epoxy resin composition was prepared.

得られた各エポキシ樹脂組成物の安定性を、25℃で3週間放置したときの増粘の割合(粘度上昇倍率)によって評価した。結果を、表1及び表2に併記する。   The stability of each of the obtained epoxy resin compositions was evaluated by the ratio of increase in viscosity (viscosity increase ratio) when left at 25 ° C. for 3 weeks. The results are shown in Table 1 and Table 2.

又、得られたエポキシ樹脂組成物を60℃に加熱して脱泡した後、離型処理を施してあるガラス板上に2mm厚にてキャスティングし、更に同様の処理を施してあるガラス板で挟んでから1時間かけて100℃に昇温し、続いて100℃、4時間の一次硬化に付した。この一次硬化における硬化度を上述したDSCによる硬化度測定方法により求めた。得られた結果を表1及び表2に併記する。一方、前記得られた各エポキシ樹脂組成物を、1時間かけて100℃に昇温し、続いて100℃、4時間の一次硬化に付したときの一次硬化物のJIS−K−6848、JIS−K−6850による引張せん断強度(接着強さ)の測定を行なった。得られた結果を表1及び表2に併記する。   Moreover, after heating the obtained epoxy resin composition to 60 degreeC and defoaming, it casts by 2 mm thickness on the glass plate which has performed the mold release process, and also with the glass plate which has performed the same process After sandwiching, the temperature was raised to 100 ° C. over 1 hour, followed by primary curing at 100 ° C. for 4 hours. The degree of cure in this primary curing was determined by the above-described method for measuring the degree of cure using DSC. The obtained results are also shown in Tables 1 and 2. On the other hand, each of the obtained epoxy resin compositions was heated to 100 ° C. over 1 hour, and then subjected to primary curing at 100 ° C. for 4 hours, JIS-K-6848, JIS-K of the primary cured product. The tensile shear strength (adhesion strength) was measured by -K-6850. The obtained results are also shown in Tables 1 and 2.

続いて、前記一次硬化による硬化物の硬化度を求めるときに得た一次硬化物を脱型し、熱風炉中にフリースタンド状態にして静置し、2時間かけて180℃に昇温した後、180℃、4時間の二次硬化に付した。得られた二次硬化物のガラス転移温度(℃)を、150℃及び180℃でのG’の値と共に、表1及び表2に併記する。なお、150℃及び180℃でのG’の値は、このエポキシ樹脂組成物を利用した複合材料の高温での物性の目安になるものである。   Subsequently, after removing the primary cured product obtained when determining the degree of cure of the cured product by the primary curing, leaving it in a free stand state in a hot air oven, and raising the temperature to 180 ° C. over 2 hours , 180 ° C., 4 hours secondary curing. The glass transition temperature (° C.) of the obtained secondary cured product is shown in Table 1 and Table 2 together with the values of G ′ at 150 ° C. and 180 ° C. In addition, the value of G ′ at 150 ° C. and 180 ° C. is a measure of the physical properties at high temperature of the composite material using this epoxy resin composition.

Figure 2006131920
Figure 2006131920

Figure 2006131920
Figure 2006131920

比較例1
下記の表3の所定欄に記載した組成成分によるエポキシ樹脂組成物を、130℃のEp604にDDSを溶解、混合した後すぐに70℃に下げ、続いてBF3MEAを溶解混合することによって得た。
Comparative Example 1
An epoxy resin composition having the composition components described in the predetermined column of Table 3 below was obtained by dissolving and mixing DDS in Ep604 at 130 ° C. and immediately lowering to 70 ° C., followed by dissolving and mixing BF3MEA.

得られたエポキシ樹脂組成物は、室温で安定であり、しかも180℃で2時間の硬化によってガラス転移温度(℃)205℃の硬化物になったが、100℃で10時間の一次硬化を行なっても、硬化不良であった。   The obtained epoxy resin composition was stable at room temperature and cured at 180 ° C. for 2 hours to become a cured product having a glass transition temperature (° C.) of 205 ° C., but was subjected to primary curing at 100 ° C. for 10 hours. However, it was poorly cured.

比較例2
下記の表3の所定欄に記載した組成成分によるエポキシ樹脂組成物を、Ep828とEp1001とを120℃で均一に混合した後、60℃に下げてからHX3722とPDMUとを添加、混合することによって得た。
Comparative Example 2
By mixing Ep828 and Ep1001 uniformly at 120 ° C. at a temperature of 120 ° C. and then adding HX3722 and PDMU after mixing the epoxy resin composition having the composition components described in the predetermined column of Table 3 below at 120 ° C. Obtained.

得られたエポキシ樹脂組成物について、実施例1にて説明したのと同様にして、エポキシ樹脂組成物の安定性、100℃で4時間の一次硬化に付した一次硬化物の硬化度、一次硬化物の引張せん断強度(接着強さ)、180℃で4時間の二次硬化に付した二次硬化物のガラス転移温度(℃)、150℃及び180℃でのG' の値を測定した。結果を表3に併記する。なお、このエポキシ樹脂組成物は、二次硬化後の硬化物に十分な耐熱性が具備されなかった。   About the obtained epoxy resin composition, it carried out similarly to having demonstrated in Example 1, the stability of an epoxy resin composition, the hardening degree of the primary hardened | cured material which carried out the primary hardening for 4 hours at 100 degreeC, and primary hardening. The tensile shear strength (adhesive strength) of the product, the glass transition temperature (° C.) of the secondary cured product subjected to secondary curing at 180 ° C. for 4 hours, and the values of G ′ at 150 ° C. and 180 ° C. were measured. The results are also shown in Table 3. In addition, this epoxy resin composition did not have sufficient heat resistance in the cured product after the secondary curing.

比較例3
下記の表3の所定欄に記載した組成成分によるエポキシ樹脂組成物を、Ep1032、Ep828及びEp1001を120℃で均一に混合した後、70℃に下げてから、PDMU及びDicyを添加し、分散させて混合することによって得た。
Comparative Example 3
The epoxy resin composition having the composition components described in the prescribed column of Table 3 below is mixed with Ep1032, Ep828 and Ep1001 uniformly at 120 ° C, then lowered to 70 ° C, and then PDMU and Dicy are added and dispersed. Obtained by mixing.

得られたエポキシ樹脂組成物について、比較例2と同様にして、エポキシ樹脂組成物の安定性、一次硬化物の硬化度、一次硬化物の引張せん断強度(接着強さ)、二次硬化物のガラス転移温度(℃)、150℃及び180℃でのG’の値を測定した。結果を表3に併記する。なお、このエポキシ樹脂組成物は、二次硬化後の硬化物に十分な耐熱性が具備されなかった。   About the obtained epoxy resin composition, it carried out similarly to the comparative example 2, stability of an epoxy resin composition, the hardening degree of a primary cured material, the tensile shear strength (adhesion strength) of a primary cured material, The values of G ′ at glass transition temperature (° C.), 150 ° C. and 180 ° C. were measured. The results are also shown in Table 3. In addition, this epoxy resin composition did not have sufficient heat resistance in the cured product after the secondary curing.

Figure 2006131920
Figure 2006131920

実施例12
実施例2と同じエポキシ樹脂組成物を調製した。なお、このエポキシ樹脂組成物の60℃での粘度は、100Pa・secである。60℃に加熱したこのエポキシ樹脂組成物を離型工程紙上に均一に塗工し、目付80g/mの樹脂フィルムを作製した。
Example 12
The same epoxy resin composition as in Example 2 was prepared. The epoxy resin composition has a viscosity at 60 ° C. of 100 Pa · sec. This epoxy resin composition heated to 60 ° C. was uniformly coated on the release process paper to prepare a resin film having a basis weight of 80 g / m 2 .

次いで、前記樹脂フィルム上に、三菱レイヨン株式会社製炭素繊維「TR50S−12L」を、炭素繊維目付が150g/mになるように一方向に引き揃えて並べた後、加熱、圧力することにより、エポキシ樹脂組成物を炭素繊維に含浸させてなる一方向プリプレグを得た。このプリプレグは良好なタックとドレープ性を有していた。 Next, on the resin film, carbon fibers “TR50S-12L” manufactured by Mitsubishi Rayon Co., Ltd. are aligned in one direction so that the carbon fiber basis weight is 150 g / m 2 , and then heated and pressed. A unidirectional prepreg obtained by impregnating carbon fiber with an epoxy resin composition was obtained. This prepreg had good tack and drape.

更に、前記プリプレグを25℃で3週間放置した後、プリプレグのタック、及びドレープ性の経時変化を触感で評価したところ、3週間放置後においてもタック及びドレープ性の変化が少なく、良好なライフを有していた。   Furthermore, after the prepreg was allowed to stand at 25 ° C. for 3 weeks, the prepreg tack and draping property were evaluated by tactile sensation. Had.

続いて、前記プリプレグを一方向に揃えて14プライ積層し、真空バッグ成形で一次硬化させた。このときの一次硬化は、室温から100℃まで1時間で昇温し、100℃で4時間することによって行なった。一次硬化によって得られた成形物は、脱型が十分に可能であって、かつ、ダイヤモンド湿式カッターで切断しても割れを生じることのないものであった。該一次硬化による成形物のG' は、120℃であった。   Subsequently, the prepreg was aligned in one direction and 14 ply laminated, and was primarily cured by vacuum bag molding. The primary curing at this time was performed by raising the temperature from room temperature to 100 ° C. over 1 hour and then at 100 ° C. for 4 hours. The molded product obtained by the primary curing was sufficiently demoldable and did not cause cracking even when cut with a diamond wet cutter. G ′ of the molded product by the primary curing was 120 ° C.

更に、前記一次硬化による成形物を、熱風炉中に放置(フリースタンド)して、二次硬化に付した。なお、二次硬化は、室温から180℃まで3時間で昇温し、180℃で4時間維持し、更に室温まで3時間かけて冷却する条件に従って行なった。   Further, the molded product by the primary curing was left in a hot air oven (free stand) and subjected to secondary curing. The secondary curing was performed according to conditions in which the temperature was raised from room temperature to 180 ° C. over 3 hours, maintained at 180 ° C. for 4 hours, and further cooled to room temperature over 3 hours.

得られた約2mm厚の硬化物について超音波探傷を実施したところ、ボイドの発生がほとんどないことが分かった。更にこの硬化物から試験体を切り出し、G’を測定することによってガラス転移温度(℃)を求めたところ、199℃であった。又、この硬化物について、ASTM D 2344に準拠し、室温(23℃)、100℃、160℃、180℃での層間せん断強度を測定した。結果を表4に示す。   When ultrasonic inspection was performed on the obtained cured product having a thickness of about 2 mm, it was found that almost no voids were generated. Further, a specimen was cut out from the cured product and the glass transition temperature (° C.) was determined by measuring G ′, which was 199 ° C. Further, the cured product was measured for interlaminar shear strength at room temperature (23 ° C.), 100 ° C., 160 ° C., and 180 ° C. in accordance with ASTM D 2344. The results are shown in Table 4.

実施例13
実施例9と同じエポキシ樹脂組成物を調製した。なお、このエポキシ樹脂組成物の60℃での粘度は、50Pa・secである。このエポキシ樹脂組成物を使用して前記実施例12と同様にして、一方向プリプレグを得た。このプリプレグは良好なタックとドレープ性を有しており、25℃で3週間放置した後にも、タック及びドレープ性の変化は少なく、良好なライフを有していた。
Example 13
The same epoxy resin composition as in Example 9 was prepared. The epoxy resin composition has a viscosity at 60 ° C. of 50 Pa · sec. Using this epoxy resin composition, a unidirectional prepreg was obtained in the same manner as in Example 12. This prepreg had good tack and drape properties, and even after being left at 25 ° C. for 3 weeks, there was little change in tack and drape properties, and it had a good life.

更に、前記実施例12と同様にして、前記一方向プリプレグによる一次硬化成形板を成形したところ、一次硬化によって得られた成形物は、脱型が十分に可能であって、且つダイヤモンド湿式カッターで切断しても割れを生じることのないものであった。該一次硬化による成形物のG' は、115℃であった。   Further, in the same manner as in Example 12, when the primary cured molded plate by the unidirectional prepreg was molded, the molded product obtained by the primary curing was sufficiently demoldable, and a diamond wet cutter was used. Even if it cut | disconnects, it was a thing which does not produce a crack. G ′ of the molded product by the primary curing was 115 ° C.

続いて、前記一次硬化による成形物を、熱風炉中に放置(フリースタンド)して、二次硬化に付した。なお、二次硬化は、前記実施例12と同様にして行なった。   Subsequently, the molded product by the primary curing was left in a hot air oven (free stand) and subjected to secondary curing. The secondary curing was performed in the same manner as in Example 12.

得られた約2mm厚の硬化物について超音波探傷を実施したところ、多少のボイドの発生があることが分かったが、問題のないものであった。更に、この硬化物から試験体を切り出し、G’を測定することによってガラス転移温度(℃)を求めたところ、189℃であった。又、この硬化物について、ASTM D 2344に準拠して室温(23℃)、100℃、160℃、180℃での層間せん断強度を測定した。結果を表4に併記する。   When ultrasonic flaw detection was performed on the obtained cured product having a thickness of about 2 mm, it was found that some voids were generated, but there was no problem. Furthermore, when a glass transition temperature (° C.) was determined by cutting a test body from this cured product and measuring G ′, it was 189 ° C. Moreover, about this hardened | cured material, the interlayer shear strength in room temperature (23 degreeC), 100 degreeC, 160 degreeC, and 180 degreeC was measured based on ASTMD2344. The results are also shown in Table 4.

Figure 2006131920
Figure 2006131920

実施例14
下記の表5の所定欄に記載した組成成分によるエポキシ樹脂組成物を得た。成分(b)としてのHX3722の硬化能を調べたところ、硬化発熱が始まった温度が86℃であり、100℃以下での硬化能を有していた。又、室温での安定性、すなわち潜在反応性を調べたところ、増粘割合が1.1倍であり、室温付近で非常に安定であり、優れた潜在性を有していた。
Example 14
The epoxy resin composition by the composition component described in the predetermined column of the following Table 5 was obtained. When the curing ability of HX3722 as the component (b) was examined, the temperature at which curing exotherm began was 86 ° C., and the curing ability was 100 ° C. or lower. Further, when the stability at room temperature, that is, the latent reactivity, was examined, the thickening ratio was 1.1 times, it was very stable near room temperature, and it had excellent potential.

なお、エポキシ樹脂組成物の配合手順は、先ず成分(a)中のEp828以外の成分(a)に成分(c)を加えて100℃にて溶解した後、直ちに50℃に温度を下げ、Ep828と成分(b)とを加えて均一に混合した。このエポキシ樹脂組成物の安定性を、25℃、3週間放置したときの増粘の割合によって確認したところ1.5倍であり、25℃での優れた安定性を示した。   In addition, the compounding procedure of the epoxy resin composition is as follows. First, after adding the component (c) to the component (a) other than Ep828 in the component (a) and dissolving at 100 ° C., the temperature is immediately lowered to 50 ° C., Ep828 And component (b) were added and mixed uniformly. When the stability of this epoxy resin composition was confirmed by the ratio of thickening when left at 25 ° C. for 3 weeks, it was 1.5 times, indicating excellent stability at 25 ° C.

次いで、前記エポキシ樹脂組成物を、90℃で2時間の一次硬化に付し、2mm厚の成形板を成形した。   Next, the epoxy resin composition was subjected to primary curing at 90 ° C. for 2 hours to form a 2 mm thick molded plate.

この成形板を脱型したときの脱型性について、全く問題なく脱型できた・・・・◎、脱型可能であった・・・・○、曲がり或いは割れを生じてうまく脱型できなかった・・・・×により表5に示す。   The mold could be removed without any problem when it was removed from the mold .... ◎, it was possible to remove the mold ...., it was bent or cracked and could not be removed successfully. It is shown in Table 5 by X.

続いて、この一次硬化した成形板を200℃で4時間の二次硬化に付した。この二次硬化によって得られた硬化板のガラス転移温度(℃)Tgを、レオメトリックス社製RDS−700でのG' の温度分散による測定法によって求めたところ、185℃であった。以上の結果を、まとめて表5に示す。   Subsequently, the primary cured molded plate was subjected to secondary curing at 200 ° C. for 4 hours. The glass transition temperature (° C.) Tg of the cured plate obtained by the secondary curing was 185 ° C. as determined by a measurement method by G ′ temperature dispersion in RDS-700 manufactured by Rheometrics. The results are summarized in Table 5.

実施例15〜22
表5及び表6のそれぞれの所定欄に示す組成成分によるエポキシ樹脂組成物を得た。
Examples 15-22
The epoxy resin composition by the composition component shown in each predetermined column of Table 5 and Table 6 was obtained.

エポキシ樹脂組成物の配合手順は、成分(a)中にEp828があるもの、つまり実施例15、実施例16、実施例17、実施例20及び実施例22は、Ep828以外の成分(a)に成分(c)を加えて100℃にて溶解した後、直ちに50℃に温度を下げて、これにEp828と成分(d)としてのPDMUとを3本ロールで均一に混合した混合物と、成分(b)とを加えて、均一に混合した。又、成分(a)中にEp828がないものは、下記の通りである。先ず、実施例18は、成分(a)中のTACTIX742の全量と30質量部のN−740と成分(c)とを100℃で溶解した後、直ちに50℃に温度を下げて、これに20質量部のN−740と成分(d)とを3本ロールで均一に混合した混合物と、成分(b)とを添加し、均一に混合した。   The compounding procedure of the epoxy resin composition is that the component (a) has Ep828, that is, Example 15, Example 16, Example 17, Example 20 and Example 22 are the same as the component (a) other than Ep828. After the component (c) was added and dissolved at 100 ° C., the temperature was immediately lowered to 50 ° C., and a mixture in which Ep828 and PDMU as the component (d) were uniformly mixed with three rolls, b) was added and mixed uniformly. Moreover, what does not have Ep828 in a component (a) is as follows. First, Example 18 was prepared by dissolving the total amount of TACTIX 742 in component (a), 30 parts by mass of N-740 and component (c) at 100 ° C., then immediately lowering the temperature to 50 ° C. A mixture in which 3 parts by mass of N-740 and component (d) were uniformly mixed with three rolls and component (b) were added and mixed uniformly.

実施例19は、Ep1032の全量と30質量部のN−670と成分(c)とを100℃で溶解した後、直ちに50℃に温度を下げて、これに20質量部のN−740と成分(d)とを3本ロールで均一に混合した混合物と、成分(b)とを添加し、均一に混合した。   Example 19 was prepared by dissolving the total amount of Ep1032, 30 parts by mass of N-670 and component (c) at 100 ° C., and immediately lowering the temperature to 50 ° C., to which 20 parts by mass of N-740 and components A mixture obtained by uniformly mixing (d) with three rolls and component (b) were added and mixed uniformly.

実施例21は、Ep1032の全量とXAC4152の全量と20質量部のEp604と成分(c)とを100℃で溶解した後、直ちに50℃に温度を下げて、これに20質量部のEp604と成分(d)とを3本ロールで均一に混合した混合物と、成分(b)とを添加し、均一に混合した。   In Example 21, the total amount of Ep1032, the total amount of XAC4152, 20 parts by mass of Ep604 and component (c) were dissolved at 100 ° C, and the temperature was immediately lowered to 50 ° C, to which 20 parts by mass of Ep604 and components A mixture obtained by uniformly mixing (d) with three rolls and component (b) were added and mixed uniformly.

以上の実施例15〜22による各エポキシ樹脂組成物の安定性を、25℃、3週間放置したときの増粘の割合によって調べた。結果を表5及び表6に併記する。又、各エポキシ樹脂組成物の一次硬化物の脱型性、及び二次硬化物のTgを、前記実施例14と同様にして評価した。結果を表5及び表6に示す。   The stability of each epoxy resin composition according to the above Examples 15 to 22 was examined by the rate of thickening when left at 25 ° C. for 3 weeks. The results are shown in Tables 5 and 6. Further, the demoldability of the primary cured product of each epoxy resin composition and the Tg of the secondary cured product were evaluated in the same manner as in Example 14. The results are shown in Tables 5 and 6.

Figure 2006131920
Figure 2006131920

Figure 2006131920
Figure 2006131920

比較例4
表7の所定欄に示す組成成分によるエポキシ樹脂組成物を得た。なお、配合手順は、HX3722を加えない以外は実施例15と同様にして行なった。得られたエポキシ樹脂組成物の一次硬化物の脱型性を、実施例14と同様にして評価しようとしたが、90℃で2時間の一次硬化で硬化しなかった。
Comparative Example 4
The epoxy resin composition by the composition component shown in the predetermined column of Table 7 was obtained. The blending procedure was the same as Example 15 except that HX3722 was not added. An attempt was made to evaluate the demoldability of the primary cured product of the obtained epoxy resin composition in the same manner as in Example 14, but it was not cured by primary curing at 90 ° C. for 2 hours.

比較例5
表7の所定欄に示す組成成分によるエポキシ樹脂組成物を得た。なお、配合手順は、DDSを加えない以外は実施例15と同様にして行なった。得られたエポキシ樹脂組成物の一次硬化物の脱型性を、実施例14と同様にして評価したところ、一次硬化での脱型性は良好であった。更に、二次硬化後のTgを、実施例14と同様にして測定したところ134℃であり、低かった。
Comparative Example 5
The epoxy resin composition by the composition component shown in the predetermined column of Table 7 was obtained. The blending procedure was the same as in Example 15 except that DDS was not added. When the mold release property of the primary cured product of the obtained epoxy resin composition was evaluated in the same manner as in Example 14, the mold release property in the primary cure was good. Furthermore, Tg after secondary curing was measured in the same manner as in Example 14, and it was 134 ° C., which was low.

比較例6
表7の所定欄に示す組成成分によるエポキシ樹脂組成物を得た。なお、配合手順は、HX3722を加えない以外は実施例15と同様にして行なった。なお、DicyはPDMUと共に20質量部のEp828に加えて、3本ロールで均一に混合した。
Comparative Example 6
The epoxy resin composition by the composition component shown in the predetermined column of Table 7 was obtained. The blending procedure was the same as Example 15 except that HX3722 was not added. Dicy was mixed uniformly with three rolls in addition to 20 parts by mass of Ep828 together with PDMU.

得られたエポキシ樹脂組成物の一次硬化物の脱型性を、実施例14と同様にして評価しようとしたが、90℃、2時間の一次硬化では、硬化不足により脱型できなかった。   An attempt was made to evaluate the demoldability of the primary cured product of the obtained epoxy resin composition in the same manner as in Example 14. However, the primary curing at 90 ° C. for 2 hours could not be demolded due to insufficient curing.

なお、この比較例に使用したDicyは、優れた潜在性硬化剤であって、ウレア化合物と併用することによって活性温度を下げることができるので、プリプレグ用のエポキシ樹脂組成物の硬化剤として一般に用いられているものであるが、本比較例のようにDicy/PDMU系にしても、硬化開始温度が115℃であり、100℃以下での硬化能を有するものではない。   Dicy used in this comparative example is an excellent latent curing agent and can be used in general as a curing agent for epoxy resin compositions for prepregs because it can lower the activation temperature when used in combination with a urea compound. However, even if it is a Dicy / PDMU system as in this comparative example, the curing start temperature is 115 ° C., and it does not have curing ability at 100 ° C. or less.

Figure 2006131920
Figure 2006131920

実施例23〜26
表8の所定欄に示す組成成分によるエポキシ樹脂組成物を得た。なお、配合手順は、その他の成分の配合がないもの、つまり実施例23及び実施例24では、成分(a)中の50質量部のEp1032と30質量部のEp604と成分(c)とを100℃で溶解した後、直ちに温度を50℃に下げ、これに成分(b)と、成分(d)としての硬化促進剤がある場合にはこの成分(d)と成分(a)中の20質量部のEp604とを3本ロールで均一に混合した混合物を投入し、全組成を均一に混合した。
Examples 23-26
The epoxy resin composition by the composition component shown in the predetermined column of Table 8 was obtained. In addition, as for a mixing | blending procedure, what does not mix | blend other components, ie, in Example 23 and Example 24, 100 mass parts of Ep1032 and 30 mass parts Ep604 in a component (a), and a component (c) are set to 100. Immediately after dissolution at 0 ° C., the temperature is lowered to 50 ° C. If there is a component (b) and a curing accelerator as component (d), 20 mass in component (d) and component (a) A mixture obtained by uniformly mixing a part of Ep604 with three rolls was added, and the entire composition was uniformly mixed.

実施例25では、成分(a)中の50質量部のEp1032と30質量部のEp604とにPESを加え、150℃にてPESを溶解した後、これを100℃にしてから成分(c)を添加して溶解し、その後の手順は実施例23と同様にした。   In Example 25, PES was added to 50 parts by mass of Ep1032 and 30 parts by mass of Ep604 in the component (a), and PES was dissolved at 150 ° C. After addition and dissolution, the subsequent procedure was the same as in Example 23.

実施例26では、アエロジル300とPDMUと20質量部のEp604とを3本ロールで均一に混合した混合物なし、その他の手順は実施例23と同様にした。   In Example 26, there was no mixture obtained by uniformly mixing Aerosil 300, PDMU, and 20 parts by mass of Ep604 with three rolls, and the other procedures were the same as in Example 23.

前記エポキシ樹脂組成物の60℃での粘度と、25℃、3週間放置したときの増粘の割合と、90℃、2時間の一次硬化に付した一次硬化物の曲げ弾性率、更にこの一次硬化物を200℃、4時間の二次硬化に付した二次硬化物のTg、及び180℃の30℃に対する弾性率の保持率(%)を測定した。   The viscosity at 60 ° C. of the epoxy resin composition, the rate of thickening when left at 25 ° C. for 3 weeks, the flexural modulus of the primary cured product subjected to the primary curing at 90 ° C. for 2 hours, and this primary The cured product was subjected to secondary curing at 200 ° C. for 4 hours, and the Tg of the secondary cured product and the retention rate (%) of the elastic modulus with respect to 30 ° C. at 180 ° C. were measured.

なお、ガラス転移温度(℃)Tgは、G' の温度分散によって求めた。又、180℃の30℃に対する弾性率の保持率(%)は、30℃でのG’の値と180℃でのG’の値を測定し、「(180℃でのG’)×100/(30℃でのG’)」によって求めた。結果を併せて表8に示す。   The glass transition temperature (° C.) Tg was determined from the temperature dispersion of G ′. Further, the elastic modulus retention rate (%) of 180 ° C. with respect to 30 ° C. was determined by measuring the value of G ′ at 30 ° C. and the value of G ′ at 180 ° C., and “(G ′ at 180 ° C.) × 100 / (G ′ at 30 ° C.) ”. The results are also shown in Table 8.

更に、三菱レイヨン社製パイロフィル炭素繊維TR50S−12Lを一方向に引き揃えた強化繊維材料に、ホットメルト法によって、前記各エポキシ樹脂組成物を含浸させ、繊維目付125g/m、樹脂含有率30質量%のプリプレグを得た。 Furthermore, each epoxy resin composition was impregnated by a hot melt method into a reinforcing fiber material in which Mitsubishi Rayon Pyrofil carbon fiber TR50S-12L was aligned in one direction, and a fiber basis weight of 125 g / m 2 , a resin content of 30 A mass% prepreg was obtained.

このプリプレグのタックを触感により評価したところ、適度なタックを有しており、良好であった。また、このプリプレグを25℃で20日後放置した後にも、適度なタックを有しており、このプリプレグのライフは20日以上あることが確認できた。   When the tack of this prepreg was evaluated by tactile sensation, it had a suitable tack and was good. Further, even after this prepreg was left at 25 ° C. for 20 days, it had an appropriate tack, and it was confirmed that the prepreg had a life of 20 days or longer.

前記プリプレグを用いて、一方向2mm厚の成形板を、90℃、2時間の一次硬化によって成形した。この一次硬化物の脱型性は良好であった。又、脱型した一次硬化物を更に200℃で4時間での二次硬化に付し、二次硬化後のCFRPパネルについて、150℃でのILSSをASTMのD2344−84に準拠して測定したところ、高温での機械物性に優れていることが確認できた。結果を表8に併せて示す。   Using the prepreg, a molded plate having a thickness of 2 mm in one direction was molded by primary curing at 90 ° C. for 2 hours. The demoldability of this primary cured product was good. Further, the decured primary cured product was further subjected to secondary curing at 200 ° C. for 4 hours, and the ILRP at 150 ° C. was measured in accordance with ASTM D2344-84 for the CFRP panel after the secondary curing. However, it was confirmed that the mechanical properties at high temperatures were excellent. The results are also shown in Table 8.

Figure 2006131920
Figure 2006131920

比較例7
表9の所定欄に示す組成成分によるエポキシ樹脂組成物を得た後、該エポキシ樹脂組成物を使用して、実施例23と同様にしてプリプレグを調製し、更に該プリプレグによる一次硬化物を実施例23と同様にして成形しようとしたが、一次硬化で硬化しなかった。
Comparative Example 7
After obtaining an epoxy resin composition having the composition components shown in the predetermined column of Table 9, using the epoxy resin composition, a prepreg was prepared in the same manner as in Example 23, and a primary cured product was further obtained using the prepreg. Although it tried to shape | mold like Example 23, it did not harden | cure by primary curing.

比較例8
表9の所定欄に示す組成成分によるエポキシ樹脂組成物を得た後、該エポキシ樹脂組成物を使用して、実施例23と同様にしてプリプレグを調製し、更に該プリプレグによる一次硬化物及び二次硬化物を成形した。
Comparative Example 8
After obtaining an epoxy resin composition having the composition components shown in the predetermined column of Table 9, using the epoxy resin composition, a prepreg was prepared in the same manner as in Example 23. The next cured product was molded.

なお、この比較例のエポキシ樹脂組成物に使用したT#241は、100℃以下での硬化能を有する硬化剤であるが、潜在反応性を有しておらず、潜在反応性の評価を行なったところ、1日後には硬化してしまっていた。そのためにエポキシ樹脂組成物の増粘が早く、25℃、3週間後には完全に硬化した。従って、プリプレグのライフが短く、3日後にはタックが完全になくなっており、ライフ切れの状態になった。   In addition, T # 241 used for the epoxy resin composition of this comparative example is a curing agent having a curing ability at 100 ° C. or less, but has no latent reactivity, and the latent reactivity is evaluated. As a result, it was cured after one day. Therefore, the viscosity of the epoxy resin composition increased rapidly, and was completely cured after 3 weeks at 25 ° C. Therefore, the life of the prepreg was short, and the tack was completely lost after 3 days, and the life was expired.

比較例9
表9の所定欄に示す組成成分によるエポキシ樹脂組成物を得た後、該エポキシ樹脂組成物を使用して、実施例23と同様にしてプリプレグを調製し、更に該プリプレグによる一次硬化物及び二次硬化物を成形した。
Comparative Example 9
After obtaining an epoxy resin composition having the composition components shown in the predetermined column of Table 9, using the epoxy resin composition, a prepreg was prepared in the same manner as in Example 23. The next cured product was molded.

なお、この比較例のエポキシ樹脂組成物は、成分(c)を含んでいないために、二次硬化による成形物のTgが低く、又180℃の30℃に対する弾性率の保持率(%)も低い。更に、二次硬化によって得られたCFRPも150℃でのILSSは測定不可能であり、高温での機械物性が低い。   In addition, since the epoxy resin composition of this comparative example does not contain the component (c), the Tg of the molded product by secondary curing is low, and the elastic modulus retention (%) with respect to 30 ° C. at 180 ° C. Low. Furthermore, CFRP obtained by secondary curing cannot measure ILSS at 150 ° C. and has low mechanical properties at high temperatures.

Figure 2006131920
Figure 2006131920

実施例27〜32
表10の所定欄に示す組成成分によるエポキシ樹脂組成物を得た。なお、樹脂組成物の調製は、成分(a)の全部を100℃以下で均一に混合し、その後温度を60℃に下げて、成分(b)、成分(c)、及び成分(d)を加えて均一に混合して行なった。尚、FXE1000の硬化開始温度は69℃であり、PN23の硬化開始温度は62℃である。又、FXE1000及びPN23のそれぞれの増粘による安定性は、FXE1000が1.2倍、PN23が1.2倍であり、それぞれ優れた潜在反応性を有している。
Examples 27-32
The epoxy resin composition by the composition component shown in the predetermined column of Table 10 was obtained. In the preparation of the resin composition, all of the component (a) is uniformly mixed at 100 ° C. or lower, and then the temperature is lowered to 60 ° C., and the component (b), the component (c), and the component (d) In addition, mixing was performed uniformly. FXE1000 has a curing start temperature of 69 ° C., and PN23 has a curing start temperature of 62 ° C. Further, the stability of FXE1000 and PN23 by thickening is 1.2 times that of FXE1000 and 1.2 times that of PN23, respectively, and has excellent latent reactivity.

得られた各エポキシ樹脂組成物の安定性を、25℃、3週間放置したときの増粘の割合によって評価した。結果を表10に併記する。又、得られたエポキシ樹脂組成物を、90℃,2時間の一次硬化に付した後に脱型し、続いて200℃、4時間の二次硬化に付した。得られた二次硬化物のガラス転移温度(℃)を、一次硬化物の脱型性と共に表10に示す。   The stability of each obtained epoxy resin composition was evaluated by the rate of thickening when left at 25 ° C. for 3 weeks. The results are also shown in Table 10. Further, the obtained epoxy resin composition was subjected to primary curing at 90 ° C. for 2 hours and then demolded, and then subjected to secondary curing at 200 ° C. for 4 hours. Table 10 shows the glass transition temperature (° C.) of the obtained secondary cured product together with the demoldability of the primary cured product.

Figure 2006131920
Figure 2006131920

産業上の利用可能性
以上詳細に説明したように、本発明のエポキシ樹脂組成物は、100℃以下の低温での硬化性に優れ、しかも室温での安定性に優れており、又低温で一次硬化させた硬化物を高温で二次硬化させることによって優れた耐熱性を具備する硬化物になる。又、本発明のプリプレグは、前記特性を有するエポキシ樹脂組成物を強化繊維材料に含浸させたものであるので、長いワーキングライフと良好な取り扱い性とを有しており、100℃以下の低温での一次硬化によって脱型可能な硬度に短時間で硬化し、かつその後の高温での二次硬化により優れた耐熱性を具備する硬化成形物になる。よって、本発明は産業上極めて有用である。
INDUSTRIAL APPLICABILITY As described in detail above, the epoxy resin composition of the present invention is excellent in curability at a low temperature of 100 ° C. or lower, excellent in stability at room temperature, and primary at low temperature. A cured product having excellent heat resistance is obtained by secondarily curing the cured product at a high temperature. Moreover, since the prepreg of the present invention is obtained by impregnating a reinforcing fiber material with the epoxy resin composition having the above-mentioned characteristics, it has a long working life and good handleability, and at a low temperature of 100 ° C. or less. The cured product is cured in a short time to a demoldable hardness by primary curing, and has excellent heat resistance by subsequent secondary curing at high temperature. Therefore, the present invention is extremely useful industrially.

硬化物のガラス状態でのグラフの接線と転移領域での接線の交点から、該硬化物のTgを求めるときに使用するグラフである。It is a graph used when calculating | requiring Tg of this hardened | cured material from the intersection of the tangent of the graph in the glass state of hardened | cured material, and the tangent in a transition area | region.

Claims (10)

下記の成分(a)、(b)及び(c)を含有し、2段硬化可能であるエポキシ樹脂組成物。
(a):下記式(1)のノボラック型エポキシ樹脂、同じく下記式(2)のノボラック型エポキシ樹脂、及びテトラグリシジルジアミノジフェニルメタンのうちの少なくとも1つを含有するエポキシ樹脂
Figure 2006131920
[式中、nは0以上の数を表す]
Figure 2006131920
[式中、nは0以上の数を表す]
(b):100℃以下での硬化能を有する潜在性硬化剤
(c):芳香族アミン系硬化剤及び/又は脂環族アミン系硬化剤
An epoxy resin composition containing the following components (a), (b) and (c) and capable of two-stage curing.
(A): Epoxy resin containing at least one of the novolak-type epoxy resin of the following formula (1), the novolak-type epoxy resin of the following formula (2), and tetraglycidyldiaminodiphenylmethane
Figure 2006131920
[Wherein n represents a number of 0 or more]
Figure 2006131920
[Wherein n represents a number of 0 or more]
(B): Latent curing agent having curing ability at 100 ° C. or less (c): Aromatic amine-based curing agent and / or alicyclic amine-based curing agent
成分(a)と成分(b)と成分(c)との配合割合が、成分(a)を100質量部としたときに、成分(b)が3〜40質量部であり、成分(c)が10〜40質量部である、請求項1に記載の組成物。   The blending ratio of the component (a), the component (b), and the component (c) is 3 to 40 parts by mass when the component (a) is 100 parts by mass, and the component (c) The composition according to claim 1, wherein is 10 to 40 parts by mass. 成分(a)のエポキシ樹脂が、3官能以上のエポキシ樹脂を主成分とするエポキシ樹脂である、請求項1又は2に記載の組成物。   The composition of Claim 1 or 2 whose epoxy resin of a component (a) is an epoxy resin which has a trifunctional or more than trifunctional epoxy resin as a main component. 成分(b)をなす潜在性硬化剤がアミンアダクト型の硬化剤である、請求項1〜3のいずれかに記載の組成物。   The composition in any one of Claims 1-3 whose latent hardener which makes a component (b) is an amine adduct type hardener. 成分(b)をなす潜在性硬化剤が、マイクロカプセル型の硬化剤である、請求項1〜4のいずれかに記載の組成物。   The composition according to any one of claims 1 to 4, wherein the latent curing agent constituting the component (b) is a microcapsule type curing agent. 成分(c)としての芳香族アミン系硬化剤が、ジアミノジフェニルスルホン及び/又はジアミノジフェニルメタンである、請求項1〜5のいずれかに記載の組成物。   The composition in any one of Claims 1-5 whose aromatic amine type hardening | curing agent as a component (c) is diamino diphenyl sulfone and / or diamino diphenyl methane. 更に成分(d)として硬化促進剤を含む、請求項1〜6のいずれかに記載の組成物。   Furthermore, the composition in any one of Claims 1-6 containing a hardening accelerator as a component (d). エポキシ樹脂組成物を調製し、これを25℃で3週間放置したときの粘度が樹脂組成物の調製直後の粘度の2倍以下である、請求項1〜7のいずれかに記載の組成物。   The composition according to any one of claims 1 to 7, wherein an epoxy resin composition is prepared, and the viscosity when the epoxy resin composition is allowed to stand at 25 ° C for 3 weeks is not more than twice the viscosity immediately after preparation of the resin composition. 100℃以下の温度での10時間以内の一次硬化によって得られる硬化物の硬化度が70%以上になるか、又は該硬化物のJIS−K−6848、JIS−K−6850による引張せん断強度(接着強さ)が10MPa以上になるかする、請求項1〜8のいずれかに記載の組成物。   The degree of cure of the cured product obtained by primary curing within 10 hours at a temperature of 100 ° C. or less is 70% or more, or the tensile shear strength of the cured product according to JIS-K-6848 and JIS-K-6850 ( The composition according to any one of claims 1 to 8, wherein the adhesive strength is 10 MPa or more. 請求項1〜9のいずれかに記載のエポキシ樹脂組成物を強化繊維材料に含浸してなるプリプレグ。   A prepreg formed by impregnating a reinforcing fiber material with the epoxy resin composition according to claim 1.
JP2006041342A 2000-04-21 2006-02-17 Epoxy resin composition and prepreg made with the epoxy resin composition Pending JP2006131920A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006041342A JP2006131920A (en) 2000-04-21 2006-02-17 Epoxy resin composition and prepreg made with the epoxy resin composition

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2000121163 2000-04-21
JP2001009389 2001-01-17
JP2006041342A JP2006131920A (en) 2000-04-21 2006-02-17 Epoxy resin composition and prepreg made with the epoxy resin composition

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2001578528A Division JP3796176B2 (en) 2000-04-21 2001-04-20 Epoxy resin composition and prepreg using the epoxy resin composition

Publications (1)

Publication Number Publication Date
JP2006131920A true JP2006131920A (en) 2006-05-25

Family

ID=36725733

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006041342A Pending JP2006131920A (en) 2000-04-21 2006-02-17 Epoxy resin composition and prepreg made with the epoxy resin composition

Country Status (1)

Country Link
JP (1) JP2006131920A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008255234A (en) * 2007-04-05 2008-10-23 Mitsubishi Rayon Co Ltd Prepreg
JP2010241845A (en) * 2008-03-31 2010-10-28 Mitsubishi Rayon Co Ltd Prepreg and fiber-reinforced composite material obtained by curing the same
JP2011132332A (en) * 2009-12-24 2011-07-07 Mitsubishi Rayon Co Ltd Epoxy resin composition
JP2014521824A (en) * 2011-08-18 2014-08-28 ダウ グローバル テクノロジーズ エルエルシー Curable resin composition
JP2015507648A (en) * 2011-12-09 2015-03-12 サイテク・テクノロジー・コーポレーシヨン Surface film for composite structure and method for producing the same
JP2015515502A (en) * 2011-12-23 2015-05-28 東レ株式会社 Prepreg, fiber reinforced composite material and method for producing fiber reinforced composite material
JP2016148050A (en) * 2010-06-14 2016-08-18 ヘクセル コンポジッツ、リミテッド Improvements in composite materials
JP2016210860A (en) * 2015-05-01 2016-12-15 三菱レイヨン株式会社 Epoxy resin composition and prepreg for fiber-reinforced composite material
JP2019199511A (en) * 2018-05-15 2019-11-21 旭化成株式会社 Method for producing epoxy resin composition
JP2020524187A (en) * 2017-06-20 2020-08-13 ダウ グローバル テクノロジーズ エルエルシー Epoxy resin system for manufacturing fiber reinforced composites
JP2021001337A (en) * 2014-09-16 2021-01-07 イソラ・ユーエスエイ・コーポレイションIsola USA Corp. High Tg epoxy formulation with good thermal properties
CN115368708A (en) * 2022-09-19 2022-11-22 启东海大聚龙新材料科技有限公司 Preparation method of epoxy resin cushion block material for ultrahigh-load ship

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008255234A (en) * 2007-04-05 2008-10-23 Mitsubishi Rayon Co Ltd Prepreg
JP2010241845A (en) * 2008-03-31 2010-10-28 Mitsubishi Rayon Co Ltd Prepreg and fiber-reinforced composite material obtained by curing the same
JP2011132332A (en) * 2009-12-24 2011-07-07 Mitsubishi Rayon Co Ltd Epoxy resin composition
JP2016148050A (en) * 2010-06-14 2016-08-18 ヘクセル コンポジッツ、リミテッド Improvements in composite materials
JP2014521824A (en) * 2011-08-18 2014-08-28 ダウ グローバル テクノロジーズ エルエルシー Curable resin composition
JP2015507648A (en) * 2011-12-09 2015-03-12 サイテク・テクノロジー・コーポレーシヨン Surface film for composite structure and method for producing the same
JP2015515502A (en) * 2011-12-23 2015-05-28 東レ株式会社 Prepreg, fiber reinforced composite material and method for producing fiber reinforced composite material
JP2021001337A (en) * 2014-09-16 2021-01-07 イソラ・ユーエスエイ・コーポレイションIsola USA Corp. High Tg epoxy formulation with good thermal properties
JP7084966B2 (en) 2014-09-16 2022-06-15 イソラ・ユーエスエイ・コーポレイション High Tg epoxy formulation with good thermal properties
JP2016210860A (en) * 2015-05-01 2016-12-15 三菱レイヨン株式会社 Epoxy resin composition and prepreg for fiber-reinforced composite material
JP2020524187A (en) * 2017-06-20 2020-08-13 ダウ グローバル テクノロジーズ エルエルシー Epoxy resin system for manufacturing fiber reinforced composites
JP2019199511A (en) * 2018-05-15 2019-11-21 旭化成株式会社 Method for producing epoxy resin composition
CN115368708A (en) * 2022-09-19 2022-11-22 启东海大聚龙新材料科技有限公司 Preparation method of epoxy resin cushion block material for ultrahigh-load ship

Similar Documents

Publication Publication Date Title
JP3796176B2 (en) Epoxy resin composition and prepreg using the epoxy resin composition
JP2006131920A (en) Epoxy resin composition and prepreg made with the epoxy resin composition
US7005185B2 (en) Quick cure carbon fiber reinforced epoxy resin
AU2001266730B2 (en) Low moisture absorption epoxy resin systems
WO2019098028A1 (en) Thermosetting resin composition, prepreg, and fiber-reinforced composite material and production method therefor
JP4821163B2 (en) Epoxy resin composition for fiber reinforced composite materials
JP6710972B2 (en) Epoxy resin composition, prepreg, cured resin and fiber reinforced composite material
JP2003238657A (en) Epoxy resin composition, cured resin, prepreg and fiber reinforced composite material
JP4859081B2 (en) Manufacturing method of composite material
JP4428978B2 (en) Epoxy resin composition
JPH0639519B2 (en) Epoxy resin composition and prepreg
JP5842395B2 (en) Epoxy resin composition for fiber reinforced composite materials
JP2002145986A (en) Epoxy resin composition and prepreg using the epoxy resin composition
JP2016210860A (en) Epoxy resin composition and prepreg for fiber-reinforced composite material
JP2006219513A (en) Epoxy resin composition, prepreg and fiber-reinforced composite material
JP2018012797A (en) Epoxy resin composition, prepreg, resin cured product and fiber-reinforced composite material
JP2003073456A (en) Epoxy resin composition and prepreg using the same composition
JP5078208B2 (en) Epoxy resin composition and prepreg using the epoxy resin composition
JP2003055534A (en) Resin composition for composite material, intermediate material for composite material, and composite material
JPH0643508B2 (en) Prepreg and manufacturing method thereof
JPH072975A (en) Epoxy resin composition and prepreg
JP4480854B2 (en) Prepreg and manufacturing method thereof
JP2019116545A (en) Method for curing epoxy resin composition
JPH03243619A (en) Epoxy resin composition
JP2004307648A (en) Epoxy resin composition and prepreg

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060217

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090120

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090316

A02 Decision of refusal

Effective date: 20090414

Free format text: JAPANESE INTERMEDIATE CODE: A02