JP2006274110A - Prepreg and fiber-reinforced composite material - Google Patents

Prepreg and fiber-reinforced composite material Download PDF

Info

Publication number
JP2006274110A
JP2006274110A JP2005097275A JP2005097275A JP2006274110A JP 2006274110 A JP2006274110 A JP 2006274110A JP 2005097275 A JP2005097275 A JP 2005097275A JP 2005097275 A JP2005097275 A JP 2005097275A JP 2006274110 A JP2006274110 A JP 2006274110A
Authority
JP
Japan
Prior art keywords
fiber
resin composition
composite material
reinforced composite
thermosetting resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005097275A
Other languages
Japanese (ja)
Other versions
JP2006274110A5 (en
Inventor
Toshiya Kamae
俊也 釜江
Ryuji Sawaoka
竜治 澤岡
Hideto Komurasaki
秀人 小紫
Shiro Honda
史郎 本田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP2005097275A priority Critical patent/JP2006274110A/en
Publication of JP2006274110A publication Critical patent/JP2006274110A/en
Publication of JP2006274110A5 publication Critical patent/JP2006274110A5/ja
Pending legal-status Critical Current

Links

Landscapes

  • Reinforced Plastic Materials (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To obtain a fiber-reinforced composite material that is lightweight, has excellent mechanical properties such as strength, modulus of elasticity, etc., and impact resistance and a prepreg for producing a fiber-reinforced composite material that is lightweight and has excellent mechanical properties such as strength, modulus of elasticity, etc., and impact resistance. <P>SOLUTION: The fiber-reinforced composite material is a cured product of a thermosetting resin composition that comprises a reinforcing fiber and a matrix resin, in which a part or the whole of the matrix resin has 0.001-1GPa tensile modulus measured at 23°C and ≥30% tensile elongation at break measured at 23°C. The prepreg is obtained by impregnating a reinforcing fiber with a thermosetting resin composition having 0.001-1GPa tensile modulus measured at 23°C and ≥30% tensile modulus measured at 23°C. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、軽量であり、強度や弾性率などの機械特性が優れ、なおかつ、耐衝撃性が優れる繊維強化複合材料に関するものである。また、軽量であり、強度や弾性率などの機械特性が優れ、なおかつ、耐衝撃性が優れる繊維強化複合材料を得ることができるプリプレグに関するものである。   The present invention relates to a fiber-reinforced composite material that is lightweight, excellent in mechanical properties such as strength and elastic modulus, and excellent in impact resistance. Further, the present invention relates to a prepreg that can obtain a fiber-reinforced composite material that is lightweight, excellent in mechanical properties such as strength and elastic modulus, and excellent in impact resistance.

ガラス繊維、炭素繊維、アラミド繊維、アルミナ繊維、ボロン繊維などの強化繊維と、マトリックス樹脂とからなる繊維強化複合材料は、軽量であり、強度や弾性率などの機械特性が優れるため、航空宇宙用途、スポーツ用品用途、自動車用途などに広く用いられている。   Fiber reinforced composite materials consisting of glass fibers, carbon fibers, aramid fibers, alumina fibers, boron fibers, etc. and matrix resins are lightweight and have excellent mechanical properties such as strength and elastic modulus. It is widely used for sports goods and automobiles.

マトリックス樹脂としては、熱硬化性樹脂、熱可塑性樹脂のいずれも用いることができるが、比較的低温での成形が可能であるという利点を有することから、熱硬化性樹脂が用いられることが多い。熱硬化性樹脂の具体例としては、不飽和ポリエステル樹脂、ビニルエステル樹脂、エポキシ樹脂、フェノール樹脂などが挙げられる。   As the matrix resin, either a thermosetting resin or a thermoplastic resin can be used, but a thermosetting resin is often used because it has an advantage that it can be molded at a relatively low temperature. Specific examples of the thermosetting resin include unsaturated polyester resin, vinyl ester resin, epoxy resin, phenol resin and the like.

ところが、熱硬化性樹脂をマトリックス樹脂として用いる場合、熱硬化性樹脂の靭性が不十分であることを反映して、繊維強化複合材料の耐衝撃性が不十分であるという問題がある。例えば、熱硬化性樹脂をマトリックス樹脂とする繊維強化複合材料に小石等がぶつかった場合に、繊維強化複合材料の耐衝撃性が不十分であるために、小石等が比較的容易に貫通してしまうという問題があった。   However, when a thermosetting resin is used as the matrix resin, there is a problem that the impact resistance of the fiber-reinforced composite material is insufficient, reflecting that the toughness of the thermosetting resin is insufficient. For example, when pebbles collide with a fiber reinforced composite material using a thermosetting resin as a matrix resin, the impact strength of the fiber reinforced composite material is insufficient. There was a problem that.

かかる問題に対し、従来から、繊維強化複合材料の強化繊維層と強化繊維層との間、すなわち、層間に熱可塑性樹脂からなる繊維、フィルムを配置し、繊維強化複合材料の耐衝撃性の向上が図られてきた。   Conventionally, fiber and film made of thermoplastic resin are placed between the reinforcing fiber layers of the fiber reinforced composite material, that is, between the layers, to improve the impact resistance of the fiber reinforced composite material. Has been planned.

繊維を配置する方法としては、ポリアミド等からなる繊維を、炭素繊維を強化繊維として用いた繊維強化複合材料の層間に配置することにより、繊維強化複合材料の耐衝撃性が向上することが提案されている(例えば、特許文献1〜6)。   As a method of arranging the fibers, it is proposed that the impact resistance of the fiber reinforced composite material is improved by arranging the fiber made of polyamide or the like between the layers of the fiber reinforced composite material using the carbon fiber as the reinforcing fiber. (For example, Patent Documents 1 to 6).

また、フィルムを配置する方法としては、ポリアミド等からなるフィルムを、炭素繊維を強化繊維として用いた繊維強化複合材料の層間に配置することにより、繊維強化複合材料の耐衝撃性が向上することが提案されている(例えば、特許文献7、8)。   In addition, as a method of arranging the film, the impact resistance of the fiber-reinforced composite material can be improved by arranging a film made of polyamide or the like between the layers of the fiber-reinforced composite material using carbon fibers as reinforcing fibers. It has been proposed (for example, Patent Documents 7 and 8).

しかしながら、これらの方法では、繊維体積含有率などの指標で示される、繊維強化複合材料における強化繊維の含有率が低下する。ガラス繊維、炭素繊維、アルミナ繊維、ボロン繊維などの、マトリックス樹脂と比較して弾性率が十分に大きな強化繊維を用いる場合、繊維強化複合材料の繊維方向の弾性率は、強化繊維の弾性率と、強化繊維の含有率との積に、概ね比例することが知られている。したがって、強化繊維の含有率が低下するこれらの方法では、繊維強化複合材料の大きな利点である、高弾性率であるという特徴が損なわれてしまう。   However, in these methods, the content of reinforcing fibers in the fiber-reinforced composite material, which is indicated by an index such as the fiber volume content, is reduced. When using a reinforcing fiber having a sufficiently large elastic modulus compared to the matrix resin such as glass fiber, carbon fiber, alumina fiber, boron fiber, etc., the elastic modulus in the fiber direction of the fiber reinforced composite material is the elastic modulus of the reinforcing fiber. It is known that it is generally proportional to the product of the reinforcing fiber content. Therefore, in these methods in which the content of reinforcing fibers is reduced, the characteristic of high elastic modulus, which is a great advantage of the fiber-reinforced composite material, is impaired.

このように、高弾性率であるという特徴を損なうことなく、繊維強化複合材料の耐衝撃性を向上する技術は、これまで見出されていなかった。
特許第3137671号公報 特許第3137733号公報 特許第3238719号公報 特開平5−329838号公報 特開平6−25917号公報 特開平6−49709号公報 米国特許第4604319号公報 特許第1869504号公報
Thus, a technique for improving the impact resistance of a fiber-reinforced composite material without impairing the feature of high elastic modulus has not been found so far.
Japanese Patent No. 3137671 Japanese Patent No. 3137733 Japanese Patent No. 3238719 JP-A-5-329838 JP-A-6-25917 JP-A-6-49709 U.S. Pat. No. 4,604,319 Japanese Patent No. 1869504

本発明の目的は、かかる従来技術の背景に鑑み、弾性率を低下させることなく、繊維強化複合材料の耐衝撃性を向上する技術を提供せんとするものである。   The object of the present invention is to provide a technique for improving the impact resistance of a fiber-reinforced composite material without lowering the elastic modulus in view of the background of the prior art.

本発明者らは、マトリックス樹脂として用いる熱硬化性樹脂自身の耐衝撃性を大幅に向上させることにより、繊維強化複合材料の耐衝撃性を向上させることを考えた。この方法では、層間に熱可塑性樹脂からなる繊維、フィルムを配置する方法とは異なり、強化繊維の含有率の低下がないため、弾性率を低下させないと考えられる。そして、衝撃が加わった際に、マトリックス樹脂として用いる熱硬化性樹脂の硬化物が、容易に変形しつつ、衝撃エネルギーを吸収すれば良いと考え、種々の熱硬化性樹脂を鋭意検討した。この結果、引張弾性率が適度に小さく、かつ、引張破断伸度が十分に大きい特定の熱硬化性樹脂を用いることにより、繊維強化複合材料の耐衝撃性を飛躍的に向上できることを見出した。   The present inventors considered to improve the impact resistance of the fiber-reinforced composite material by greatly improving the impact resistance of the thermosetting resin itself used as the matrix resin. In this method, unlike the method in which fibers and films made of a thermoplastic resin are disposed between the layers, the elastic fiber content is not lowered, and therefore, it is considered that the elastic modulus is not lowered. And when the impact was added, the hardened | cured material of the thermosetting resin used as a matrix resin should just absorb a shock energy, deform | transforming easily, and various thermosetting resins were examined earnestly. As a result, it was found that the impact resistance of the fiber-reinforced composite material can be dramatically improved by using a specific thermosetting resin having a moderately low tensile elastic modulus and a sufficiently high tensile breaking elongation.

本発明は、上記課題を解決するため、次のような手段を採用するものである。すなわち、本発明の繊維強化複合材料は、強化繊維とマトリックス樹脂とからなり、マトリックス樹脂の一部、もしくは、全部が、23℃で測定される引張弾性率が0.001〜1GPaの範囲内であり、かつ、23℃で測定される引張破断伸度が30%以上である熱硬化性樹脂組成物の硬化物からなることを特徴とする。   In order to solve the above problems, the present invention employs the following means. That is, the fiber-reinforced composite material of the present invention comprises reinforcing fibers and a matrix resin, and a part or all of the matrix resin has a tensile elastic modulus measured at 23 ° C. within a range of 0.001 to 1 GPa. And a cured product of a thermosetting resin composition having a tensile elongation at break measured at 23 ° C. of 30% or more.

また、本発明のプリプレグは、23℃で測定される引張弾性率が0.001〜1GPaの範囲内であり、かつ、23℃で測定される引張破断伸度が30%以上である熱硬化性樹脂組成物を、強化繊維に含浸することを特徴とする。   The prepreg of the present invention has a thermosetting property in which the tensile modulus measured at 23 ° C. is in the range of 0.001 to 1 GPa and the tensile elongation at break measured at 23 ° C. is 30% or more. The resin composition is impregnated into a reinforcing fiber.

本発明の繊維強化複合材料は、軽量であり、強度や弾性率などの機械特性が優れ、なおかつ、耐衝撃性を有しており、航空宇宙用途、スポーツ用品用途、自動車用途などに有用に用いることができる。   The fiber-reinforced composite material of the present invention is lightweight, has excellent mechanical properties such as strength and elastic modulus, and has impact resistance, and is useful for aerospace use, sports equipment use, automobile use, etc. be able to.

本発明の繊維強化複合材料は、弾性率を低下させることなく、繊維強化複合材料の耐衝撃性を向上するために、強化繊維とマトリックス樹脂とを含み、マトリックス樹脂の一部、もしくは、全部が、23℃で測定される引張弾性率が0.001〜1GPaの範囲内であり、かつ、23℃で測定される引張破断伸度が30%以上である熱硬化性樹脂組成物の硬化物であることを特徴とする。なお、本発明において、特に記載がない限り、弾性率とは引張弾性率を表すものとする。   The fiber-reinforced composite material of the present invention includes reinforcing fibers and a matrix resin in order to improve the impact resistance of the fiber-reinforced composite material without lowering the elastic modulus, and part or all of the matrix resin A cured product of a thermosetting resin composition having a tensile modulus measured at 23 ° C. in the range of 0.001 to 1 GPa and a tensile elongation at break of 30% or more measured at 23 ° C. It is characterized by being. In the present invention, unless otherwise specified, the elastic modulus represents a tensile elastic modulus.

本発明における強化繊維としては、種々の繊維を用いることができるが、高強度の繊維強化複合材料が得られることから、強化繊維の引張強度が1500MPa以上であることが好ましく、3500MPa以上であることが好ましく、さらには4500MPa以上であることが好ましい。また、高弾性率の繊維強化複合材料が得られることから、強化繊維の引張弾性率が100GPa以上であることが好ましく、200GPa以上であることがより好ましく、さらには250GPa以上であることが好ましい。強化繊維の具体例としては、ガラス繊維、炭素繊維、アラミド繊維、アルミナ繊維、ボロン繊維などが挙げられる。なかでも、軽量でありながら、高強度、高弾性率であるという優れた特性を有するため、炭素繊維が好ましく用いられる。   Various fibers can be used as the reinforcing fiber in the present invention, but since a high-strength fiber-reinforced composite material is obtained, the tensile strength of the reinforcing fiber is preferably 1500 MPa or more, and is 3500 MPa or more. It is preferable that it is 4500 MPa or more. In addition, since a fiber-reinforced composite material having a high elastic modulus can be obtained, the tensile elastic modulus of the reinforcing fiber is preferably 100 GPa or more, more preferably 200 GPa or more, and further preferably 250 GPa or more. Specific examples of the reinforcing fiber include glass fiber, carbon fiber, aramid fiber, alumina fiber, and boron fiber. Among these, carbon fibers are preferably used because they have excellent characteristics of high strength and high elastic modulus while being lightweight.

本発明における強化繊維としては、短繊維、長繊維のいずれも用いることができる。機械特性を重視する場合には、強度、弾性率が優れた繊維強化複合材料が得られることから、10cm以上の長さの強化繊維を用いることが好ましい。一方、成形性を重視する場合には、10cm以下の長さの強化繊維を用いることが好ましい。   As the reinforcing fiber in the present invention, either a short fiber or a long fiber can be used. When emphasizing mechanical properties, it is preferable to use reinforcing fibers having a length of 10 cm or more because a fiber-reinforced composite material having excellent strength and elastic modulus can be obtained. On the other hand, when emphasizing formability, it is preferable to use reinforcing fibers having a length of 10 cm or less.

また、本発明における強化繊維の含有率は、繊維体積含有率が、30〜80%の範囲内であることが好ましく、40〜80%の範囲内であることがより好ましい。強化繊維として、ガラス繊維、炭素繊維、アラミド繊維、アルミナ繊維、ボロン繊維などの高弾性率繊維を用いる場合、繊維強化複合材料の繊維方向の弾性率は、強化繊維自体の弾性率と、強化繊維の含有率との積に概ね比例することが知られている。このため、繊維体積含有率が40%未満であると、得られる繊維強化複合材料の弾性率が不足する場合があり、好ましくない。一方、繊維体積含有率が80%より大きいと、強化繊維同士が接触、擦過することにより強度が低下する場合があり、好ましくない。なお、ここでの繊維体積含有率は、ASTM D 3171−99に準拠して求める。   Moreover, as for the content rate of the reinforced fiber in this invention, it is preferable that the fiber volume content rate is in the range of 30 to 80%, and it is more preferable that it is in the range of 40 to 80%. When high-modulus fiber such as glass fiber, carbon fiber, aramid fiber, alumina fiber, boron fiber is used as the reinforcing fiber, the elastic modulus in the fiber direction of the fiber-reinforced composite material is the elastic modulus of the reinforcing fiber itself and the reinforcing fiber. It is known that it is roughly proportional to the product of the content of. For this reason, when the fiber volume content is less than 40%, the elastic modulus of the obtained fiber-reinforced composite material may be insufficient, which is not preferable. On the other hand, if the fiber volume content is greater than 80%, the strength may decrease due to contact and abrasion between the reinforcing fibers, which is not preferable. Here, the fiber volume content is determined in accordance with ASTM D 3171-99.

本発明における熱硬化性樹脂とは、反応により架橋構造を形成し、硬化する樹脂のことを指す。熱硬化性樹脂としては、不飽和ポリエステル樹脂、ビニルエステル樹脂、エポキシ樹脂、フェノール樹脂などが挙げられる
本発明における熱硬化性樹脂組成物としては、繊維強化複合材料の耐衝撃性を飛躍的に向上できることから、23℃での引張弾性率が0.001〜1GPaの範囲内であり、かつ、23℃での引張破断伸度が30%以上である熱硬化性樹脂組成物の硬化物を用いることが必要である。また、23℃での引張弾性率が0.01〜0.8GPaの範囲内であり、かつ、23℃での引張破断伸度が40%以上である熱硬化性樹脂組成物の硬化物を用いることが好ましく、さらには、23℃での引張弾性率が0.02〜0.6GPaの範囲内であり、かつ、23℃での引張破断伸度が50%以上である熱硬化性樹脂組成物の硬化物を用いることが好ましい。引張弾性率が1GPaより大きいと、熱硬化性樹脂組成物の硬化物が変形しにくく、衝撃負荷速度が速い場合などに破損しやすく、耐衝撃性が不十分である場合があり、好ましくない。一方、引張弾性率が0.001GPaより小さいと、熱硬化性樹脂組成物の硬化物が変形することによる衝撃吸収エネルギーが小さく、耐衝撃性が不十分である場合があり、好ましくない。また、引張破断伸度が30%より小さいと、熱硬化性樹脂組成物の硬化物が衝撃負荷時に破損しやすく、耐衝撃性が不十分である場合があり、好ましくない。
The thermosetting resin in the present invention refers to a resin that forms a crosslinked structure by reaction and cures. Examples of thermosetting resins include unsaturated polyester resins, vinyl ester resins, epoxy resins, phenol resins, etc. The thermosetting resin composition in the present invention dramatically improves the impact resistance of fiber reinforced composite materials. Therefore, a cured product of a thermosetting resin composition having a tensile elastic modulus at 23 ° C. in the range of 0.001 to 1 GPa and a tensile elongation at break at 23 ° C. of 30% or more is used. is required. Further, a cured product of a thermosetting resin composition having a tensile elastic modulus at 23 ° C. in the range of 0.01 to 0.8 GPa and a tensile elongation at break at 23 ° C. of 40% or more is used. Preferably, the thermosetting resin composition has a tensile elastic modulus at 23 ° C. in the range of 0.02 to 0.6 GPa, and a tensile elongation at break at 23 ° C. of 50% or more. It is preferable to use a cured product. When the tensile modulus is higher than 1 GPa, the cured product of the thermosetting resin composition is not easily deformed, and is easily damaged when the impact load speed is high, and the impact resistance may be insufficient. On the other hand, if the tensile modulus is less than 0.001 GPa, the impact absorption energy due to deformation of the cured product of the thermosetting resin composition is small, and the impact resistance may be insufficient. On the other hand, if the tensile elongation at break is less than 30%, the cured product of the thermosetting resin composition is liable to be damaged at the time of impact load, and the impact resistance may be insufficient.

なお、引張弾性率、引張破断伸度を測定するための熱硬化性樹脂組成物の硬化板は、次のように作製する。厚み2mmのキャビティーを有するモールドに、熱硬化性樹脂組成物を流し込み、オーブン内で所定の硬化条件で硬化させ、樹脂板を作製する。ここで、所定の硬化条件とは、繊維強化複合材料を成形する際の硬化条件と同等のものを指す。なお、熱硬化性樹脂組成物の入手方法は、熱硬化性樹脂組成物の各成分を所定の配合量で混合して調整しても良いし、プリプレグが入手可能な場合は、プリプレグから熱硬化性樹脂組成物を取り出しても良い。   In addition, the cured board of the thermosetting resin composition for measuring a tensile elasticity modulus and a tensile breaking elongation is produced as follows. A thermosetting resin composition is poured into a mold having a cavity with a thickness of 2 mm, and is cured under a predetermined curing condition in an oven to produce a resin plate. Here, the predetermined curing conditions refer to those equivalent to the curing conditions when molding the fiber-reinforced composite material. The method for obtaining the thermosetting resin composition may be adjusted by mixing each component of the thermosetting resin composition at a predetermined blending amount. If a prepreg is available, the thermosetting resin composition is thermoset. The functional resin composition may be taken out.

次に、熱硬化性樹脂組成物の硬化板から、JIS K 7113−1995の小型1(1/2)号試験片を作製し、JIS K 7113−1995に準拠して引張弾性率、引張破断伸度を測定する。測定には、インストロン社製の4201号型テンシロン、または、同等の装置を用いる。クロスヘッドスピードは1.0mm/minとし、測定温度は23℃とする。歪み−応力曲線における歪みが0.1%から0.3%の間での傾きから引張弾性率を求める。また、破断した際の歪をゲージにより測定し、引張破断伸度を求める。   Next, a small 1 (1/2) test piece of JIS K 7113-1995 was prepared from the cured plate of the thermosetting resin composition, and the tensile modulus and tensile elongation at break were based on JIS K 7113-1995. Measure the degree. For the measurement, 4201 type Tensilon manufactured by Instron or an equivalent device is used. The crosshead speed is 1.0 mm / min, and the measurement temperature is 23 ° C. The tensile elastic modulus is determined from the slope when the strain in the strain-stress curve is between 0.1% and 0.3%. Moreover, the strain at the time of fracture is measured with a gauge to determine the tensile elongation at break.

熱硬化性樹脂組成物の硬化物の引張弾性率が適度に小さく、かつ、引張破断伸度が十分に大きいために、熱硬化性樹脂組成物の硬化物の理論架橋点間分子量αが、400〜1600g/molの範囲内であることが好ましく、500〜1600g/molの範囲内であることがより好ましく、さらには、600〜1600g/molの範囲内であることが好ましい。   Since the tensile modulus of the cured product of the thermosetting resin composition is moderately small and the tensile elongation at break is sufficiently large, the molecular weight α between the theoretical crosslinking points of the cured product of the thermosetting resin composition is 400. It is preferably within the range of ˜1600 g / mol, more preferably within the range of 500 to 1600 g / mol, and further preferably within the range of 600 to 1600 g / mol.

ここで、理論架橋点間分子量αとは、全樹脂硬化物の重量wを全樹脂硬化物が持つ架橋点の数cで除した値であり、樹脂硬化物の架橋密度と反比例の関係にある。また、理論架橋点間分子量αは、樹脂硬化物の伸度と概ね正の相関があり、樹脂弾性率と概ね負の相関がある。理論架橋点間分子量αが400g/molよりも小さいと、樹脂硬化物の架橋密度が大きくなりすぎるため、樹脂硬化物の引張破断伸度が小さくなり、得られる繊維強化複合材料の耐衝撃性が不十分である場合があり、好ましくない。理論架橋点間分子量αが1600g/molよりも大きいと、樹脂硬化物の弾性率が小さくなり、得られる繊維強化複合材料の耐衝撃性が不十分である場合があり、好ましくない。   Here, the molecular weight α between the theoretical cross-linking points is a value obtained by dividing the weight w of the entire resin cured product by the number c of the cross-linking points of the all resin cured product, and is inversely proportional to the crosslinking density of the resin cured product. . Further, the molecular weight α between the theoretical cross-linking points has a generally positive correlation with the elongation of the cured resin, and has a generally negative correlation with the resin elastic modulus. If the molecular weight α between the theoretical cross-linking points is less than 400 g / mol, the cross-linking density of the cured resin becomes too high, so that the tensile rupture elongation of the cured resin becomes small, and the resulting fiber-reinforced composite material has impact resistance. It may be insufficient and is not preferable. When the molecular weight α between the theoretical cross-linking points is larger than 1600 g / mol, the elastic modulus of the cured resin becomes small, and the resulting fiber-reinforced composite material may have insufficient impact resistance, which is not preferable.

かかる理論架橋点間分子量αの求め方を、エポキシ樹脂組成物を例として以下に述べる。   A method for obtaining the molecular weight α between the theoretical cross-linking points will be described below using an epoxy resin composition as an example.

まず、エポキシ樹脂組成物中に、k種(kは整数)のエポキシ樹脂成分が含まれる場合、このうちi番目(iは1〜kの整数)のエポキシ樹脂成分の配合量をa(単位:g)とする。また、エポキシ樹脂組成物中に、l種(lは整数)の硬化剤成分が含まれる場合、このうちj番目(jは1〜lの整数)の硬化剤の配合量をb(単位:g)とすると、全樹脂硬化物の重量W(単位:g)は式(1)で求められる。 First, in the case where k types (k is an integer) of epoxy resin components are included in the epoxy resin composition, the compounding amount of the i-th (i is an integer of 1 to k) epoxy resin component is selected as a i (unit). : G). In addition, when the epoxy resin composition contains l type (l is an integer) curing agent component, the j-th (j is an integer of 1 to 1) of the curing agent is included in b j (unit: Assuming g), the weight W (unit: g) of the entire resin cured product is obtained by the formula (1).

Figure 2006274110
Figure 2006274110

i番目のエポキシ樹脂成分のエポキシ当量をE(単位:g/mol)、i番目のエポキシ樹脂成分1分子が持つエポキシ基の数をxとする。また、j番目の硬化剤成分の活性水素当量をH(単位:g/mol)、j番目の硬化剤成分1分子が持つ活性水素の数をyとする。全樹脂硬化物に含まれる架橋点の数c(単位:mol)は、エポキシ樹脂と硬化剤との配合比が、化学量論量の場合、硬化剤が過剰の場合、および、エポキシ樹脂が過剰の場合で求め方が異なる。どの求め方を採用するかは、式(2)により求められる、エポキシ樹脂と硬化剤との配合比を表す配合比指数βにより決定する。 The epoxy equivalent of the i-th epoxy resin component is E i (unit: g / mol), and the number of epoxy groups in one molecule of the i-th epoxy resin component is x i . Further, the active hydrogen equivalent of the j-th curing agent component is H j (unit: g / mol), and the number of active hydrogens possessed by one molecule of the j-th curing agent component is y j . The number c (unit: mol) of crosslinking points contained in the cured resin is that the mixing ratio of the epoxy resin and the curing agent is stoichiometric, the curing agent is excessive, and the epoxy resin is excessive. The method of obtaining is different in the case of Which method is to be used is determined by the blending ratio index β, which represents the blending ratio of the epoxy resin and the curing agent, which is determined by the formula (2).

Figure 2006274110
Figure 2006274110

ここで、β=1である場合は、エポキシ樹脂と硬化剤との配合比が化学量論量であり、架橋点の数cは式(3)により求められる。この架橋点の数cは、反応し得る全てのエポキシ基と全ての硬化剤の活性水素とが反応することによって生じる架橋点の数を表す。   Here, when β = 1, the compounding ratio of the epoxy resin and the curing agent is a stoichiometric amount, and the number c of cross-linking points is obtained by the formula (3). This number c of cross-linking points represents the number of cross-linking points generated by the reaction of all reactive epoxy groups with the active hydrogen of all curing agents.

Figure 2006274110
Figure 2006274110

また、β>1の場合は、硬化剤が化学量論量よりも過剰であり、架橋点の数cは式(4)により求められる。   In the case of β> 1, the curing agent is in excess of the stoichiometric amount, and the number c of crosslinking points is obtained by the formula (4).

Figure 2006274110
Figure 2006274110

また、β<1の場合は、エポキシ樹脂が化学量論量よりも過剰であり、架橋点の数cは式(5)により求められる。   In the case of β <1, the epoxy resin is in excess of the stoichiometric amount, and the number c of cross-linking points is obtained by the formula (5).

Figure 2006274110
Figure 2006274110

ここで、E×x、およびH×yはそれぞれi番目のエポキシ樹脂成分の平均分子量、およびj番目の硬化剤成分の平均分子量を表す。また、(x−2)は、i番目のエポキシ樹脂成分1分子中の全てのエポキシ基が硬化剤の活性水素と反応し、架橋構造に取り込まれることによって生じる架橋点の数を表す。また、(y−2)はj番目の硬化剤1分子中の全ての活性水素がエポキシ基と反応し、架橋構造に取り込まれることによって生じる架橋点の数を表す。例えば、i番目のエポキシ樹脂成分が4官能エポキシ樹脂の場合、1分子は4個のエポキシ基を持ち、生じる架橋点の数は4−2の2個となる。また、j番目の硬化剤成分が1分子当たり2個の活性水素を持つ場合、生じる架橋点の数は2−2の0個となる。なお、ジシアンジアミドは7官能とし、生じる架橋点の数は7−2の5個であるとして扱う。 Here, E i × x i and H j × y j represent the average molecular weight of the i-th epoxy resin component and the average molecular weight of the j-th curing agent component, respectively. Further, (x i -2) represents the number of cross-linking points generated when all the epoxy groups in one molecule of the i-th epoxy resin component react with the active hydrogen of the curing agent and are taken into the cross-linked structure. Further, (y j -2) represents the number of crosslinking points generated by reacting all active hydrogens in one molecule of the j-th curing agent with an epoxy group and incorporating them into a crosslinked structure. For example, when the i-th epoxy resin component is a tetrafunctional epoxy resin, one molecule has four epoxy groups, and the number of cross-linking points generated is two, 4-2. In addition, when the j-th curing agent component has two active hydrogens per molecule, the number of cross-linking points generated is 0 (2-2). Dicyandiamide is assumed to be 7 functional and the number of cross-linking points generated is assumed to be 5 of 7-2.

上述した式により求められたW、cを用い、架橋点間分子量αは式(6)により求められる。   Using W and c obtained by the above-described formula, the molecular weight α between the crosslinking points is obtained by the formula (6).

Figure 2006274110
Figure 2006274110

ここで、例として、エポキシ樹脂1(エポキシ基:3個、エポキシ当量:98g/eq)90g、エポキシ樹脂2(エポキシ基:2個、エポキシ当量:135g/eq)10g、および硬化剤1(活性水素:4個、活性水素当量:45g/eq)44.7gからなるエポキシ樹脂組成物の樹脂硬化物について、理論架橋点間分子量αを求めてみる。まず、全樹脂硬化物の重量Wは式(1)より144.7gである。また、式(2)より求められるβは1であるので、全樹脂硬化物が有する架橋点の数cは式(3)により、0.803molと求められる。したがって、樹脂硬化物の理論架橋点間分子量αは式(6)により、180g/molと求められる。   Here, as an example, epoxy resin 1 (epoxy group: 3, epoxy equivalent: 98 g / eq) 90 g, epoxy resin 2 (epoxy group: 2, epoxy equivalent: 135 g / eq) 10 g, and curing agent 1 (active The theoretical molecular weight α between the theoretical cross-linking points of the resin cured product of the epoxy resin composition comprising 4 pieces of hydrogen and 44.7 g of active hydrogen equivalent: 45 g / eq) is determined. First, the weight W of all resin hardened | cured material is 144.7g from Formula (1). Moreover, since β obtained from the equation (2) is 1, the number c of crosslinking points of all the cured resin products is obtained as 0.803 mol according to the equation (3). Therefore, the molecular weight α between the theoretical cross-linking points of the cured resin is determined as 180 g / mol according to the equation (6).

熱硬化性樹脂組成物の硬化物の引張弾性率が適度に小さく、かつ、引張破断伸度が十分に大きいためには、熱硬化性樹脂組成物が、官能基当量300〜1000g/molの範囲内である熱硬化性樹脂を主成分とすることが好ましく、官能基当量400〜1000g/molの範囲内である熱硬化性樹脂を主成分とすることがより好ましい。官能基当量が300g/molより小さい熱硬化性樹脂が主成分であると、熱硬化性樹脂組成物の硬化物の架橋密度が大きくなりすぎるため、熱硬化性樹脂組成物の硬化物の引張破断伸度が小さくなり、得られる繊維強化複合材料の耐衝撃性が不十分である場合がある。官能基当量が1000g/molよりも大きい熱硬化性樹脂が主成分であると、熱硬化性樹脂組成物の硬化物の架橋密度が小さくなりすぎるため、熱硬化性樹脂組成物の硬化物の引張弾性率が小さくなり、得られる繊維強化複合材料の耐衝撃性が不十分である場合があり、好ましくない。ここで、主成分とは、熱硬化性樹脂組成物における全樹脂成分中の60wt%以上を占めることを指し、80wt%以上を占めることが好ましい。   In order for the tensile modulus of the cured product of the thermosetting resin composition to be moderately small and the tensile elongation at break to be sufficiently large, the thermosetting resin composition has a functional group equivalent in the range of 300 to 1000 g / mol. It is preferable to use the thermosetting resin as the main component, and more preferable to use the thermosetting resin as the main component in the range of functional group equivalent of 400 to 1000 g / mol. When the thermosetting resin having a functional group equivalent of less than 300 g / mol is the main component, the crosslink density of the cured product of the thermosetting resin composition becomes too large, and thus the tensile fracture of the cured product of the thermosetting resin composition. In some cases, the elongation decreases, and the resulting fiber-reinforced composite material has insufficient impact resistance. When the thermosetting resin having a functional group equivalent greater than 1000 g / mol is the main component, the crosslink density of the cured product of the thermosetting resin composition becomes too small, and hence the tensile strength of the cured product of the thermosetting resin composition The elastic modulus becomes small, and the resulting fiber-reinforced composite material may have insufficient impact resistance, which is not preferable. Here, the main component refers to occupying 60 wt% or more of all resin components in the thermosetting resin composition, and preferably occupying 80 wt% or more.

ここで、樹脂成分の官能基当量とは、硬化可能な官能基1molあたりの当量であり、樹脂成分の平均分子量を1分子中の硬化可能な官能基の数で除して求められる。エポキシ樹脂における官能基当量は、エポキシ当量に相当し、エポキシ樹脂の平均分子量を1分子中のエポキシ基の数で除して求められる。   Here, the functional group equivalent of the resin component is an equivalent per 1 mol of the curable functional group, and is obtained by dividing the average molecular weight of the resin component by the number of curable functional groups in one molecule. The functional group equivalent in the epoxy resin corresponds to the epoxy equivalent, and is obtained by dividing the average molecular weight of the epoxy resin by the number of epoxy groups in one molecule.

熱硬化性樹脂組成物の硬化物の引張弾性率が適度に小さいために、熱硬化性樹脂組成物が、1分子内に含まれる芳香環の数が2〜6の範囲内である熱硬化性樹脂を主成分とすることが好ましい。芳香環の数が2より少ない熱硬化性樹脂が主成分であると、熱硬化性樹脂組成物の硬化物の引張弾性率が小さくなりすぎ、得られる繊維強化複合材料の耐衝撃性が不十分である場合があり、好ましくない。また、芳香環の数が6より多い熱硬化性樹脂が主成分であると、熱硬化性樹脂組成物の硬化物の引張弾性率が大きくなりすぎ、得られる繊維強化複合材料の耐衝撃性が不十分である場合があり、好ましくない。ここで、主成分とは、熱硬化性樹脂組成物における全樹脂成分中の60wt%以上を占めることを指し、80wt%以上を占めることが好ましい。   Since the tensile modulus of the cured product of the thermosetting resin composition is moderately small, the thermosetting resin composition has a thermosetting property in which the number of aromatic rings contained in one molecule is in the range of 2 to 6. It is preferable to use a resin as a main component. If the thermosetting resin having less than 2 aromatic rings is the main component, the tensile modulus of the cured product of the thermosetting resin composition becomes too small, and the resulting fiber-reinforced composite material has insufficient impact resistance. This is not preferable. If the thermosetting resin having more than 6 aromatic rings is the main component, the tensile elastic modulus of the cured product of the thermosetting resin composition becomes too large, and the resulting fiber-reinforced composite material has impact resistance. It may be insufficient and is not preferable. Here, the main component refers to occupying 60 wt% or more of all resin components in the thermosetting resin composition, and preferably occupying 80 wt% or more.

本発明における熱硬化性樹脂としては、耐熱性、機械特性とのバランスが特に優れることから、エポキシ樹脂を用いることが好ましい。   As the thermosetting resin in the present invention, an epoxy resin is preferably used because the balance between heat resistance and mechanical properties is particularly excellent.

熱硬化性樹脂としてエポキシ樹脂を用いる場合、エポキシ樹脂を主成分として用いることが好ましい。ここで、主成分とは、熱硬化性樹脂組成物における全樹脂成分中の60wt%以上を占めることを指し、80wt%以上占めることが好ましい。   When using an epoxy resin as a thermosetting resin, it is preferable to use an epoxy resin as a main component. Here, the main component refers to occupying 60 wt% or more of all resin components in the thermosetting resin composition, and preferably occupying 80 wt% or more.

なかでも、熱硬化性樹脂組成物の硬化物の引張弾性率が適度に小さく、かつ、引張破断伸度が十分に大きいためには、下記式(I)で示すことができるエポキシ樹脂から選ばれる少なくとも1種のエポキシ樹脂を含むことが好ましい。   Especially, in order that the tensile elasticity modulus of the hardened | cured material of a thermosetting resin composition is moderately small, and tensile elongation at break is sufficiently large, it selects from the epoxy resin which can be shown by following formula (I). It is preferable to include at least one epoxy resin.

Figure 2006274110
Figure 2006274110

本発明のエポキシ樹脂において、化学式(I)で示されるエポキシ樹脂以外に、次のエポキシ樹脂を用いることもできる。   In the epoxy resin of the present invention, the following epoxy resins may be used in addition to the epoxy resin represented by the chemical formula (I).

まず、ポリオールより誘導されるグリシジルエーテル型エポキシ樹脂、複数活性水素を有するアミンより誘導されるグリシジルアミン型エポキシ樹脂、ポリカルボン酸より誘導されるグリシジルエステル型エポキシ樹脂、分子内に複数の2重結合を有する化合物を酸化して得られるエポキシ樹脂などが挙げられる。   First, glycidyl ether type epoxy resin derived from polyol, glycidyl amine type epoxy resin derived from amine having multiple active hydrogens, glycidyl ester type epoxy resin derived from polycarboxylic acid, multiple double bonds in the molecule Examples thereof include an epoxy resin obtained by oxidizing a compound having the following.

グリシジルエーテル型エポキシ樹脂としては、ビスフェノールA、ビスフェノールF、ビスフェノールS、テトラブロモビスフェノールA、ヘキサヒドロビスフェノールA、フェノールノボラック、クレゾールノボラック、レゾルシノール、ヒドロキノン、4,4’−ジヒドロキシ−3,3’,5,5’−テトラメチルビフェニル、1,6−ジヒドロキシナフタレン、9,9−ビス(4−ヒドロキシフェニル)フルオレン、トリス(p−ヒドロキシフェニル)メタン、テトラキス(p−ヒドロキシフェニル)エタン、1,6−ヘキサンジオール、ネオペンチレングリコール、プロピレングリコール、ポリプロピレングリコール、ソルビトール、トリメチロールプロパン、グリセリン、ジグリセリン、ポリグリセリン、ひまし油などのポリオールとエピクロルヒドリンの反応により得られるグリシジルエーテルが好適に用いられる。   Examples of glycidyl ether type epoxy resins include bisphenol A, bisphenol F, bisphenol S, tetrabromobisphenol A, hexahydrobisphenol A, phenol novolac, cresol novolac, resorcinol, hydroquinone, 4,4′-dihydroxy-3,3 ′, 5. , 5′-tetramethylbiphenyl, 1,6-dihydroxynaphthalene, 9,9-bis (4-hydroxyphenyl) fluorene, tris (p-hydroxyphenyl) methane, tetrakis (p-hydroxyphenyl) ethane, 1,6- Polyols such as hexanediol, neopentylene glycol, propylene glycol, polypropylene glycol, sorbitol, trimethylolpropane, glycerin, diglycerin, polyglycerin, castor oil A glycidyl ether obtained by reacting epichlorohydrin is preferably used.

グリシジルアミン型エポキシ樹脂としては、4,4’−ジアミノジフェニルメタン、m−キシリレンジアミン、1,3−ビス(アミノメチル)シクロヘキサン、アニリン、トルイジン、9,9−ビス(4−アミノフェニル)フルオレンなどをエピクロロヒドリンと反応させて得られるグリシジルアミンが好適に用いられる。   Examples of the glycidylamine type epoxy resin include 4,4′-diaminodiphenylmethane, m-xylylenediamine, 1,3-bis (aminomethyl) cyclohexane, aniline, toluidine, 9,9-bis (4-aminophenyl) fluorene, and the like. Glycidylamine obtained by reacting with chloroepiline is preferably used.

さらに、m−アミノフェノール、p−アミノフェノール、4−アミノ−3−メチルフェノールなどのアミノフェノール類の水酸基とアミノ基の両方をエピクロロヒドリンと反応させて得られるエポキシ樹脂も好適に用いられる。   Furthermore, epoxy resins obtained by reacting both hydroxyl groups and amino groups of aminophenols such as m-aminophenol, p-aminophenol and 4-amino-3-methylphenol with epichlorohydrin are also preferably used. .

グリシジルエステル型エポキシ樹脂としては、フタル酸、テレフタル酸、ヘキサヒドロフタル酸、ダイマー酸などをエピクロロヒドリンと反応させて得られるグリシジルエステルが好適に用いられる。   As the glycidyl ester type epoxy resin, a glycidyl ester obtained by reacting phthalic acid, terephthalic acid, hexahydrophthalic acid, dimer acid or the like with epichlorohydrin is preferably used.

分子内に複数の2重結合を有する化合物を酸化して得られるエポキシ樹脂としては、分子内にエポキシシクロヘキサン環を有するエポキシ樹脂が挙げられる。さらにこのエポキシ樹脂としては、エポキシ化大豆油等も挙げられる。   Examples of the epoxy resin obtained by oxidizing a compound having a plurality of double bonds in the molecule include an epoxy resin having an epoxycyclohexane ring in the molecule. Further, examples of the epoxy resin include epoxidized soybean oil.

これら以外にもトリグリシジルイソシアヌレートのようなエポキシ樹脂などが好適に用いられる。   Besides these, an epoxy resin such as triglycidyl isocyanurate is preferably used.

さらに上記に挙げたエポキシ樹脂を原料として合成されるエポキシ樹脂、たとえば、ビスフェノールAジグリシジルエーテルとトリレンジイソシアネートからオキサゾリドン環生成反応により合成されるエポキシ樹脂なども好適に用いられる。   Furthermore, an epoxy resin synthesized from the above-mentioned epoxy resin as a raw material, for example, an epoxy resin synthesized from a bisphenol A diglycidyl ether and tolylene diisocyanate by an oxazolidone ring formation reaction is also preferably used.

本発明で用いられるマトリックス樹脂としてエポキシ樹脂を用いる場合、硬化剤と組み合わせて用いられる。硬化剤としては、エポキシ樹脂のエポキシ基と反応する活性基を有する化合物であれば良く、具体的には、ポリアミン、酸無水物、フェノール類およびメルカプタンなどが挙げられる。また、エポキシ樹脂の単独重合の開始剤である、3級アミンやイミダゾール類などの塩基性化合物、あるいは3フッ化ホウ素のアミン錯体などの酸性化合物などを用いることもできる。   When an epoxy resin is used as the matrix resin used in the present invention, it is used in combination with a curing agent. The curing agent may be a compound having an active group that reacts with the epoxy group of the epoxy resin, and specific examples thereof include polyamines, acid anhydrides, phenols, and mercaptans. In addition, basic compounds such as tertiary amines and imidazoles, which are initiators for homopolymerization of epoxy resins, or acidic compounds such as amine complexes of boron trifluoride can also be used.

また、本発明で用いられるマトリックス樹脂は、その他の成分として、ポリアミド、ポリアミドイミド、ポリカーボネート、ポリスルホン、ポリアセタール、ポリフェニレンエーテル、ポリフェニレンスルフィド、ポリアリレート、ポリエーテルイミド、ポリエーテルスルホン、ポリエーテルケトンなどの熱可塑性樹脂、微粉末状のシリカなどの無機微粒子およびエラストマーなどを混合して改質することも可能である。   In addition, the matrix resin used in the present invention includes other components such as polyamide, polyamideimide, polycarbonate, polysulfone, polyacetal, polyphenylene ether, polyphenylene sulfide, polyarylate, polyetherimide, polyethersulfone, and polyetherketone. It is also possible to modify by mixing a plastic resin, inorganic fine particles such as fine powdered silica, and an elastomer.

また、本発明の熱硬化性樹脂組成物は、アセトン、メチルエチルケトン、メタノール、エタノール、トルエン、キシレン等の溶媒を実質的に含まないことが好ましい。これらの溶媒が熱硬化性樹脂組成物に含まれると、繊維強化複合材料にボイドが生じ、繊維強化複合材料の強度が大幅に低下する場合がある。ここで、溶媒を実質的に含まないとは、全熱硬化性樹脂組成物中における溶媒が占める割合が1wt%以下、好ましくは0.5wt%以下であることを指す。また、全熱硬化性樹脂組成物中における溶媒が占める割合は、次に示す方法で測定することができる。すなわち、直径が5cmのアルミ製カップに、厚みが1mmになるように熱硬化性樹脂組成物を流し込む。次に、100℃にセットしたオーブン中に30分間放置する。オーブンに放置前の熱硬化性樹脂組成物の重量に対する、オーブン中に放置したときの重量の減少量との比から、熱硬化性樹脂組成物中における溶媒が占める割合を算出する。   Moreover, it is preferable that the thermosetting resin composition of this invention does not contain substantially solvents, such as acetone, methyl ethyl ketone, methanol, ethanol, toluene, xylene. When these solvents are contained in the thermosetting resin composition, voids are generated in the fiber reinforced composite material, and the strength of the fiber reinforced composite material may be significantly reduced. Here, “substantially free of solvent” means that the proportion of the solvent in the total thermosetting resin composition is 1 wt% or less, preferably 0.5 wt% or less. The proportion of the solvent in the total thermosetting resin composition can be measured by the following method. That is, the thermosetting resin composition is poured into an aluminum cup having a diameter of 5 cm so as to have a thickness of 1 mm. Next, it is left in an oven set at 100 ° C. for 30 minutes. The ratio of the solvent in the thermosetting resin composition is calculated from the ratio between the weight of the thermosetting resin composition before being left in the oven and the decrease in weight when left in the oven.

次に、本発明のプリプレグについて説明する。   Next, the prepreg of the present invention will be described.

本発明におけるプリプレグとは、熱硬化性樹脂組成物を強化繊維に含浸した、シート状の中間基材のことを意味する。   The prepreg in the present invention means a sheet-like intermediate base material in which reinforcing fibers are impregnated with a thermosetting resin composition.

本発明のプリプレグに用いる強化繊維としては、種々の繊維を用いることができるが、高強度の繊維強化複合材料が得られることから、強化繊維の引張強度が1500MPa以上であることが好ましく、3500MPa以上であることがより好ましく、さらには4500MPa以上であることが好ましい。また、高弾性率の繊維強化複合材料が得られることから、強化繊維の引張弾性率が100GPa以上であることが好ましく、200GPa以上であることがより好ましく、さらには250GPa以上であることが好ましい。強化繊維の具体例としては、ガラス繊維、炭素繊維、アラミド繊維、アルミナ繊維、ボロン繊維などが挙げられる。なかでも、軽量でありながら、高強度、高弾性率であるという優れた特性を有するため、炭素繊維が好ましく用いられる。   As the reinforcing fiber used in the prepreg of the present invention, various fibers can be used, but since a high-strength fiber-reinforced composite material is obtained, the tensile strength of the reinforcing fiber is preferably 1500 MPa or more, and 3500 MPa or more. It is more preferable that it is 4500 MPa or more. In addition, since a fiber-reinforced composite material having a high elastic modulus can be obtained, the tensile elastic modulus of the reinforcing fiber is preferably 100 GPa or more, more preferably 200 GPa or more, and further preferably 250 GPa or more. Specific examples of the reinforcing fiber include glass fiber, carbon fiber, aramid fiber, alumina fiber, and boron fiber. Among these, carbon fibers are preferably used because they have excellent characteristics of high strength and high elastic modulus while being lightweight.

本発明のプリプレグに用いる強化繊維の形態としては、強化繊維を一方向に並べた形態、織物形態、編み物形態であっても良いし、不織布、マットなどの強化繊維がランダムに配置された形態でも良い。なかでも、高強度、高弾性率の繊維強化複合材料が得られることから、強化繊維を一方向に並べた形態を有することが好ましい。   The form of the reinforcing fiber used in the prepreg of the present invention may be a form in which reinforcing fibers are arranged in one direction, a woven form, a knitted form, or a form in which reinforcing fibers such as a nonwoven fabric and a mat are randomly arranged. good. Especially, since the fiber reinforced composite material of high intensity | strength and a high elastic modulus is obtained, it is preferable to have the form which arranged the reinforced fiber in one direction.

本発明のプリプレグにおける単位面積当たりの繊維重量は、40〜250g/mであることが好ましく、50〜200g/mであることがより好ましい。単位面積あたりの繊維重量が40g/mより小さいと、プリプレグの形状保持性が低下し取り扱いにくくなる場合がある。また、単位面積あたりの繊維重量が250g/mより大きいと、プリプレグ内部の繊維アライメントが乱れやすく、高性能な繊維強化複合材料が得られない場合がある。 Fiber weight per unit area of the prepreg of the present invention is preferably 40~250g / m 2, and more preferably 50 to 200 g / m 2. If the fiber weight per unit area is less than 40 g / m 2 , the shape retention of the prepreg may be reduced and it may be difficult to handle. If the fiber weight per unit area is larger than 250 g / m 2 , the fiber alignment inside the prepreg is likely to be disturbed, and a high-performance fiber-reinforced composite material may not be obtained.

本発明のプリプレグに用いるマトリックス樹脂としては、上記してきた繊維強化複合材料に用いるマトリックス樹脂をそのまま用いることができる。   As the matrix resin used in the prepreg of the present invention, the matrix resin used in the above-described fiber-reinforced composite material can be used as it is.

次に、本発明の繊維強化複合材料の製造法について説明する。   Next, the manufacturing method of the fiber reinforced composite material of this invention is demonstrated.

本発明のプリプレグを用いて繊維強化複合材料を製造する場合、例えば以下の要領で行われる。プリプレグを裁断して得たパターンを積層後、積層物に圧力を付与しながら、熱硬化性樹脂を加熱硬化することにより、繊維強化複合材料を得る。熱、圧力を付与する方法としては、プレス成形、オートクレーブ成形、真空圧成形、シートワインディング法、内圧成形法が好ましく用いられる。   When manufacturing a fiber reinforced composite material using the prepreg of this invention, it is performed in the following ways, for example. After laminating the pattern obtained by cutting the prepreg, the fiber reinforced composite material is obtained by heat curing the thermosetting resin while applying pressure to the laminate. As a method for applying heat and pressure, press molding, autoclave molding, vacuum pressure molding, sheet winding method, and internal pressure molding method are preferably used.

また、プリプレグを用いずに繊維強化複合材料を製造する場合、従来知られている繊維強化複合材料のいずれの製造法をも用いることができる。   Moreover, when manufacturing a fiber reinforced composite material without using a prepreg, any manufacturing method of the conventionally known fiber reinforced composite material can be used.

例えば、シート・モールディング・コンパウンド(SMC)を用いる場合、次のような手順で製造することができる。まず、プレス装置にSMCを積層する。次に、加熱、加圧しながら硬化させ、繊維強化複合材料を製造する。   For example, when using a sheet molding compound (SMC), it can be manufactured by the following procedure. First, SMC is laminated on the press device. Next, it is cured while being heated and pressurized to produce a fiber reinforced composite material.

例えば、レジン・トランスファー・モールディング(RTM)法を用いる場合、次のような手順で製造することができる。まず、型内に織物形態、編み物形態などの強化繊維を配置する。型を閉じ、液状の熱硬化性樹脂組成物を強化繊維に含浸させた後、硬化させ、繊維強化複合材料を製造する。   For example, when the resin transfer molding (RTM) method is used, it can be manufactured by the following procedure. First, reinforcing fibers such as a woven form and a knitted form are placed in a mold. The mold is closed, and a liquid thermosetting resin composition is impregnated into the reinforcing fiber and then cured to produce a fiber-reinforced composite material.

本発明の繊維強化複合材料は、マトリックス樹脂の一部、もしくは、全部が、23℃で測定される引張弾性率が0.001〜1GPaの範囲内であり、かつ、23℃で測定される引張破断伸度が30%以上である熱硬化性樹脂組成物の硬化物であることが必要である。ここで、一部、もしくは、全部とは、全マトリックス樹脂中の5wt%以上をかかる熱硬化性樹脂組成物が占めることを指す。ただし、全マトリックス樹脂中の15wt%以上をかかる熱硬化性樹脂組成物が占めることが好ましく、35wt%以上をかかる熱硬化性樹脂組成物が占めることがより好ましい。また、繊維強化複合材料において、かかる熱硬化性樹脂組成物の配置の仕方に特に制限はないが、繊維強複合材料の厚さ方向の特定箇所に集中して配置する、あるいは、面方向の特定箇所に集中して配置するといった方法が可能である。   In the fiber-reinforced composite material of the present invention, a part or all of the matrix resin has a tensile modulus measured at 23 ° C. within a range of 0.001 to 1 GPa and a tensile measured at 23 ° C. It is necessary to be a cured product of a thermosetting resin composition having a breaking elongation of 30% or more. Here, a part or the whole indicates that the thermosetting resin composition occupies 5 wt% or more of the entire matrix resin. However, it is preferable that the thermosetting resin composition occupies 15 wt% or more of the total matrix resin, and more preferable that the thermosetting resin composition occupies 35 wt% or more. Further, in the fiber reinforced composite material, there is no particular limitation on the arrangement of the thermosetting resin composition, but the fiber reinforced composite material is concentrated in a specific position in the thickness direction of the fiber strong composite material or specified in the plane direction. A method of concentrating and arranging in a place is possible.

本発明の繊維強化複合材料は、部材の軽量化が可能であるために、繊維方向の引張強度、すなわち、0°引張強度が600MPa以上であることが好ましく、1800MPa以上であることがより好ましく、さらには2400MPa以上であることが好ましい。
また、本発明の繊維強化複合材料は、部材の軽量化が可能であるために、繊維方向の引張弾性率、すなわち、0°引張弾性率が40GPa以上であることが好ましく、120GPa以上であることがより好ましく、さらには160GPa以上であることが好ましい。
Since the fiber-reinforced composite material of the present invention can reduce the weight of the member, the tensile strength in the fiber direction, that is, the 0 ° tensile strength is preferably 600 MPa or more, more preferably 1800 MPa or more, Furthermore, it is preferable that it is 2400 MPa or more.
Moreover, since the fiber-reinforced composite material of the present invention can reduce the weight of the member, the tensile elastic modulus in the fiber direction, that is, the 0 ° tensile elastic modulus is preferably 40 GPa or more, and 120 GPa or more. Is more preferable, and more preferably 160 GPa or more.

ここで、0°引張強度、0°引張弾性率は、ASTM D 3039−93に準拠して測定する。測定にはインストロン社製の4208型テンシロン、または、同等の装置を用いる。クロスヘッドスピードは1.27mm/minとし、測定温度を23℃とする。歪み−応力曲線における歪みが0.1%から0.6%の間での傾きから0°引張弾性率を求める。   Here, the 0 ° tensile strength and the 0 ° tensile elastic modulus are measured according to ASTM D 3039-93. For the measurement, 4208 type Tensilon manufactured by Instron or an equivalent apparatus is used. The crosshead speed is 1.27 mm / min and the measurement temperature is 23 ° C. The 0 ° tensile elastic modulus is determined from the slope when the strain in the strain-stress curve is between 0.1% and 0.6%.

本発明の繊維強化複合材料は、軽量であり、強度や弾性率などの機械特性が優れ、かつ、耐衝撃性が優れるため、航空機宇宙用途、スポーツ用品用途、自動車用途などに広く用いることができる。   The fiber-reinforced composite material of the present invention is lightweight, excellent in mechanical properties such as strength and elastic modulus, and excellent in impact resistance. Therefore, it can be widely used in aircraft space applications, sports equipment applications, automobile applications, and the like. .

以下、実施例によって本発明を具体的に説明する。実施例および比較例で用いた材料は以下のとおりである。
強化繊維、強化繊維織物
本発明の強化繊維には以下の2種類を、強化繊維織物には以下の1種類を用いた。
・炭素繊維 “トレカ”T800H:
登録商標、東レ(株)製、フィラメント数 12,000本、
引張強度 5490MPa、引張弾性率 294GPa
・アラミド繊維“ケブラー”49 :
登録商標、東レ・デュポン(株)製、フィラメント数 768本、
引張強度 3000MPa、引張弾性率 112GPa・炭素繊維織物CO6343B :
品番、東レ(株)製
“トレカ”T300使用、平織、198g/m目付け
熱硬化性樹脂組成物
本発明の熱硬化性樹脂組成物の成分として、以下の樹脂成分、硬化剤、硬化促進剤、熱可塑性樹脂を用いた。
(樹脂成分)
・EXA−4850−150 :
品番、大日本インキ(株)製
化学式(II)で表されるエポキシ樹脂
Hereinafter, the present invention will be described specifically by way of examples. The materials used in Examples and Comparative Examples are as follows.
Reinforcing fiber, reinforcing fiber fabric The following two types were used for the reinforcing fiber of the present invention, and the following one type was used for the reinforcing fiber fabric.
・ Carbon fiber “Torayca” T800H:
Registered trademark, manufactured by Toray Industries, Inc., 12,000 filaments,
Tensile strength 5490 MPa, tensile elastic modulus 294 GPa
・ Aramid fiber "Kevlar" 49:
Registered trademark, manufactured by Toray DuPont Co., Ltd., 768 filaments,
Tensile strength 3000 MPa, tensile modulus 112 GPa, carbon fiber fabric CO6343B:
No., “Torayca” T300 manufactured by Toray Industries, Inc., plain weave, 198 g / m 2
Thermosetting resin composition The following resin component, curing agent, curing accelerator, and thermoplastic resin were used as components of the thermosetting resin composition of the present invention.
(Resin component)
EXA-4850-150:
Epoxy resin represented by chemical formula (II) manufactured by Dainippon Ink Co., Ltd.

Figure 2006274110
Figure 2006274110

・“エピクロン”TSR−601 :
登録商標、大日本インキ(株)製
化学式(III)で表されるエポキシ樹脂
・ "Epiclon" TSR-601:
Epoxy resin represented by chemical formula (III), registered trademark, Dainippon Ink Co., Ltd.

Figure 2006274110
Figure 2006274110

・“デナコール”EX−841 :
登録商標、ナガセケムテックス(株)製
化学式(IV)で表されるエポキシ樹脂
・ "Denacol" EX-841:
Epoxy resin represented by chemical formula (IV), registered trademark, manufactured by Nagase ChemteX Corporation

Figure 2006274110
Figure 2006274110

・“エピコート”828 :
登録商標、ジャパンエポキシレジン(株)製
ビスフェノールA型エポキシ樹脂、エポキシ当量が189g/mol、分子内に含まれる芳香環の数が2.2個。
・“エピコート”1004 :
登録商標、ジャパンエポキシレジン(株)製
ビスフェノールA型エポキシ樹脂、エポキシ当量が925g/mol、分子内に含まれる芳香環の数が12個。
・“エリシス”GE−20
登録商標、PTIジャパン(株)製
ネオペンチルグリコールジグリシジルエーテル、エポキシ当量が135g/mol、分子内に含まれる芳香環の数が0個。
(硬化剤)
・Dicy7 :
品番、ジャパンエポキシレジン(株)製
ジシアンジアミド
(硬化促進剤)
・DCMU99 :
品番、保土谷化学(株)製
3−(3,4−ジクロロフェニル)−1,1−ジメチルウレア
(熱可塑性樹脂)
・“マツモトマイクロスフェアー”M:
登録商標、松本油脂(株)製
ポリメチルメタクリレート
次に、熱硬化性樹脂組成物の調整、熱硬化性樹脂組成物の硬化板の作製、繊維強化複合材料の製造、各種物性の測定法を以下に示す。
1.プリプレグ用樹脂組成物の調整
表1、表2に示す配合比で、プリプレグ用樹脂組成物を、次の手順で調整した。各成分の混合にはニーダーを用いた。なお、表中の数値は、重量部を示す。
(1)樹脂成分をニーダーに投入し、40℃で30分間混合した。
(2)熱可塑性樹脂をニーダーに投入し、170℃まで昇温後、170℃で60分間混合した。
(3)60℃まで降温後、硬化剤、硬化促進剤をニーダーに投入し、60℃で30分間混合した。
2.RTM用樹脂組成物の調整
表4に示す配合比で、各成分をポリエチレン製ディスポカップに投入し、スパチュラを用いて混合し、RTM用樹脂組成物を調整した。なお、表中の数値は、重量部を示す。
3.プリプレグ用樹脂組成物の硬化板の作製
次の手順でプリプレグ用樹脂組成物の硬化板を作製した。
・ "Epicoat" 828:
Registered trademark, Japan Epoxy Resin Co., Ltd. bisphenol A type epoxy resin, epoxy equivalent is 189 g / mol, and the number of aromatic rings contained in the molecule is 2.2.
"Epicoat" 1004:
Registered trademark, Japan Epoxy Resin Co., Ltd. bisphenol A type epoxy resin, epoxy equivalent is 925 g / mol, and the number of aromatic rings contained in the molecule is twelve.
・ "Elisys" GE-20
Registered trademark, manufactured by PTI Japan
Neopentyl glycol diglycidyl ether, epoxy equivalent is 135 g / mol, and the number of aromatic rings contained in the molecule is zero.
(Curing agent)
・ Dicy7:
Part number, Japan Epoxy Resin Co., Ltd. Dicyandiamide (curing accelerator)
DCMU99:
No., manufactured by Hodogaya Chemical Co., Ltd. 3- (3,4-dichlorophenyl) -1,1-dimethylurea (thermoplastic resin)
・ "Matsumoto Microsphere" M:
Registered trademark, manufactured by Matsumoto Yushi Co., Ltd. Polymethylmethacrylate Next, preparation of thermosetting resin composition, preparation of cured plate of thermosetting resin composition, production of fiber reinforced composite material, measurement methods of various physical properties are as follows: Shown in
1. Adjustment of resin composition for prepreg The resin composition for prepreg was adjusted by the following procedure with the compounding ratios shown in Tables 1 and 2. A kneader was used for mixing each component. In addition, the numerical value in a table | surface shows a weight part.
(1) The resin component was put into a kneader and mixed at 40 ° C. for 30 minutes.
(2) The thermoplastic resin was put into a kneader, heated to 170 ° C., and then mixed at 170 ° C. for 60 minutes.
(3) After the temperature was lowered to 60 ° C., a curing agent and a curing accelerator were added to the kneader and mixed at 60 ° C. for 30 minutes.
2. Adjustment of the resin composition for RTMs By the mixture ratio shown in Table 4, each component was thrown into the disposable cup made from polyethylene, it mixed using the spatula, and the resin composition for RTMs was adjusted. In addition, the numerical value in a table | surface shows a weight part.
3. Preparation of cured plate of resin composition for prepreg A cured plate of a resin composition for prepreg was prepared by the following procedure.

(1)プリプレグ用樹脂組成物を80℃に加熱し、真空ポンプを直結したセパラブルフラスコ内で約20分間脱泡した。
(2)12cm×20cm×2mm(厚み)のキャビティーを有するモールドにプリプレグ用樹脂組成物を流し込んだ。
(1) The resin composition for prepreg was heated to 80 ° C. and degassed for about 20 minutes in a separable flask directly connected to a vacuum pump.
(2) The resin composition for prepreg was poured into a mold having a cavity of 12 cm × 20 cm × 2 mm (thickness).

(3)モールドをオーブン内にセットし、135℃2時間加熱して硬化させた。   (3) The mold was set in an oven and cured by heating at 135 ° C. for 2 hours.

(4)冷却後、モールドからプリプレグ用樹脂組成物の硬化板を取り外した。
4.RTM用樹脂組成物の硬化板の作製
次の手順でRTM用樹脂組成物の硬化板を作製した。
(1)RTM用樹脂組成物を40℃に加熱し、真空ポンプを直結したセパラブルフラスコ内で約5分間脱泡した。
(2)12cm×20cm×2mm(厚み)のキャビティーを有するモールドにRTM用樹脂組成物を流し込んだ。
(4) After cooling, the cured plate of the resin composition for prepreg was removed from the mold.
4). Preparation of Cured Plate of RTM Resin Composition A cured plate of RTM resin composition was prepared by the following procedure.
(1) The RTM resin composition was heated to 40 ° C. and defoamed in a separable flask directly connected to a vacuum pump for about 5 minutes.
(2) The resin composition for RTM was poured into a mold having a cavity of 12 cm × 20 cm × 2 mm (thickness).

(3)モールドをオーブン内にセットし、100℃2時間加熱して硬化させた。   (3) The mold was set in an oven and cured by heating at 100 ° C. for 2 hours.

(4)冷却後、モールドからRTM用樹脂組成物の硬化板を取り外した。
5.プリプレグ/オートクレーブ法による繊維強化複合材料の作製
プリプレグ用樹脂組成物を、リバースロールコーターを用いて離型紙上に塗布して樹脂フィルムを作製した。一方向に引き揃えた強化繊維の両側面に樹脂フィルムを重ね、加熱加圧(130℃、0.4MPa)することにより、プリプレグ用樹脂組成物を強化繊維に含浸させ、プリプレグを作製した。プリプレグの単位面積当たりの繊維重量を125g/m、繊維体積含有率を65%とした。
(4) After cooling, the cured plate of the resin composition for RTM was removed from the mold.
5. Preparation of fiber reinforced composite material by prepreg / autoclave method The resin composition for prepreg was applied onto release paper using a reverse roll coater to prepare a resin film. A resin film was stacked on both side surfaces of the reinforcing fibers aligned in one direction, and heated and pressurized (130 ° C., 0.4 MPa) to impregnate the reinforcing fibers with the resin composition for prepreg to prepare a prepreg. The fiber weight per unit area of the prepreg was 125 g / m 2 and the fiber volume content was 65%.

次に、一辺30cmの正方形となるようにカットしたプリプレグを、繊維方向、すなわち0°方向に10ply積層し、ステンレス製ツール板上でナイロンフィルムを用いてバギングした後、オートクレーブを用いて加熱加圧(135℃、0.6MPa、2時間)することにより、プリプレグ用樹脂組成物を硬化させ、引張試験用の繊維強化複合材料を作製した。   Next, 10 ply of the prepreg cut so as to be a square with a side of 30 cm is laminated in the fiber direction, that is, in the 0 ° direction, bagged with a nylon film on a stainless steel tool plate, and then heated and pressurized using an autoclave. (135 ° C., 0.6 MPa, 2 hours) to cure the resin composition for prepreg and prepare a fiber-reinforced composite material for a tensile test.

また、一辺30cmの正方形となるようにカットしたプリプレグを、0°方向に3ply、90°方向に4ply、0°方向に3ply積層し、ステンレス製ツール板上でナイロンフィルムを用いてバギングした後、オートクレーブを用いて加熱加圧(135℃、0.6MPa、2時間)することにより、プリプレグ用樹脂組成物を硬化させ、衝撃貫通試験用の繊維強化複合材料を作製した。
6.RTM法による繊維強化複合材料の作製
各辺が経糸、緯糸のいずれかと平行な1辺30cmの正方形となるようカットした炭素繊維織物CO6343B、10plyを型に積層し、その上にピールプライと樹脂配分媒体であるポリエステル製のネットを積層した。次に、ナイロン製フィルムを用いてバギングし、真空ポンプを用いて[大気圧−0.1](MPa)に減圧した後、型を100℃に保持し、RTM用樹脂組成物を注入した。RTM用樹脂組成物が型内に流入してから5分後に注入を終了し、RTM用樹脂組成物が型内に流入してから2時間に脱型し、引張試験用、衝撃貫通試験用の繊維強化複合材料を作製した。
7.樹脂組成物の硬化物の引張試験
上記の方法で得た樹脂組成物の硬化板から、JIS K 7113−1995の小型1(1/2)号試験片を作製し、JIS K 7113−1995に準拠して、引張強度、引張弾性率、引張破断伸度を測定した。測定装置はインストロン社製の4201型テンシロンを用いた。ここで、クロスヘッドスピードは1.0mm/min、測定温度を23℃とした。表1〜4に結果を示した。
In addition, after prepregs cut so as to be a square of 30 cm on a side, 3 ply in 0 ° direction, 4 ply in 90 ° direction, 3 ply in 0 ° direction, and bagging with a nylon film on a stainless steel tool plate, By applying heat and pressure (135 ° C., 0.6 MPa, 2 hours) using an autoclave, the resin composition for prepreg was cured, and a fiber-reinforced composite material for impact penetration test was produced.
6). Fabrication of fiber reinforced composite material by RTM method Carbon fiber fabric CO6343B, 10ply cut so that each side is a square of 30cm on one side parallel to either warp or weft, is laminated in a mold, and peel ply and resin distribution medium on it A polyester net which is Next, bagging was performed using a nylon film, and the pressure was reduced to [atmospheric pressure-0.1] (MPa) using a vacuum pump. Then, the mold was held at 100 ° C., and an RTM resin composition was injected. The injection was completed 5 minutes after the RTM resin composition flowed into the mold, and the mold was removed 2 hours after the RTM resin composition flowed into the mold, for tensile testing and impact penetration testing. A fiber reinforced composite material was prepared.
7). Tensile test of cured product of resin composition From the cured plate of the resin composition obtained by the above method, a small size 1 (1/2) test piece of JIS K 7113-1995 was prepared and conformed to JIS K 7113-1995. Then, the tensile strength, the tensile elastic modulus, and the tensile elongation at break were measured. As the measuring apparatus, 4201 type Tensilon manufactured by Instron was used. Here, the crosshead speed was 1.0 mm / min, and the measurement temperature was 23 ° C. The results are shown in Tables 1-4.

8.繊維強化複合材料の繊維体積含有率測定
繊維体積含有率は、ASTM D 3171−99に準拠して求めた。表1〜4に結果を示した。
8). Measurement of Fiber Volume Content of Fiber Reinforced Composite Material The fiber volume content was determined according to ASTM D 3171-99. The results are shown in Tables 1-4.

9.繊維強化複合材料の0°引張試験
上記の方法で得た繊維強化複合材料から、幅12.7mm、長さ229mmの試験片を、0°方向と長さ方向が同じになるように作製し、ASTM D 3039−93に準拠して、0°引張強度、0°引張弾性率を測定した。測定装置はインストロン社製の4208型テンシロンを用いた。ここで、クロスヘッドスピードは1.27mm/minとし、測定温度を23℃とした。歪み−応力曲線における歪みが0.1%から0.3%の間での傾きから0°引張弾性率を求める。表1〜4に結果を示した。
10.繊維強化複合材料の衝撃貫通試験
上記の方法で得た繊維強化複合材料から、幅100mm、長さ150mmの試験片を、0°方向と長さ方向が同じになるように作製し、重量2.5kg、直径12.5mmの落錘を所定の初期高さから落下させた際の、繊維強化複合材料の損傷具合を目視により観察し、繊維強化複合材料の耐衝撃貫通性を調べた。測定装置はインストロン社製のダイナタップ8250型を用い、落錘の初期高さは10cm、20cm、30cmの3種類とした。落錘が繊維強化複合材料を貫通した場合を×、貫通しなかった場合を○として、表1〜4に結果を示した。
(実施例1)
表1に示すエポキシ樹脂組成物を用いプリプレグを作製し、各種測定を行った。実施例1のエポキシ樹脂組成物は、エポキシ基間が適度に長く、かつ、適度な剛直性を有するエポキシ樹脂であるEXA−4850−150を主成分とする。理論架橋点間分子量は639g/molであり適度に大きい。測定の結果、23℃での熱硬化性樹脂組成物の硬化物の引張弾性率が0.22GPaと適度に小さく、23℃での熱硬化性樹脂組成物の硬化物の引張破断伸度が71%と十分に大きかった。炭素繊維を強化繊維とする繊維強化複合材料の0°引張強度が2330MPa、0°引張弾性率が175GPaと十分に大きく、さらには、耐衝撃性試験の結果も極めて良好であった。
(実施例2)
実施例1のエポキシ樹脂を用い、アラミド繊維を強化繊維とするプリプレグを作製し、各種測定を行った。測定の結果、繊維強化複合材料の0°引張強度が1130MPa、0°引張弾性率が99GPaと比較的大きく、さらには、耐衝撃性試験の結果も極めて良好であった。
(実施例3)
表1に示すエポキシ樹脂組成物を用いプリプレグを作製し、各種測定を行った。実施例3のエポキシ樹脂組成物は、エポキシ基間が適度に長く、かつ、適度な剛直性を有するエポキシ樹脂であるEXA−4850−150を90重量部含み、主成分とするが、加えて、エポキシ基間が短いエポキシ樹脂である“エピコート”828を10重量部含む。理論架橋点間分子量は577g/molであり、実施例1よりも小さい。測定の結果、23℃での熱硬化性樹脂組成物の硬化物の引張弾性率が0.45GPaと適度に小さく、23℃での熱硬化性樹脂組成物の硬化物の引張破断伸度が53%と比較的大きかった。炭素繊維を強化繊維とする繊維強化複合材料の0°引張強度が2380MPa、0°引張弾性率が175GPaと十分に大きく、さらには、耐衝撃性試験の結果も比較的良好であった。
(実施例4)
表1に示すエポキシ樹脂組成物を用いプリプレグを作製し、各種測定を行った。実施例4のエポキシ樹脂組成物は、エポキシ基間が適度に長く、かつ、適度な剛直性を有するエポキシ樹脂であるEXA−4850−150を70重量部含み、主成分とするが、加えて、エポキシ基間が短いエポキシ樹脂である“エピコート”828を30重量部含む。理論架橋点間分子量は459g/molであり、実施例1、2よりも小さい。測定の結果、23℃での熱硬化性樹脂組成物の引張弾性率が0.99GPaと適度に小さく、23℃での熱硬化性樹脂組成物の引張破断伸度が35%とやや大きかった。炭素繊維を強化繊維とする繊維強化複合材料の0°引張強度が2430MPa、0°引張弾性率が178GPaと十分に大きく、さらには、耐衝撃性試験の結果もやや良好であった。
(実施例5)
表1に示すエポキシ樹脂組成物を用いプリプレグを作製し、各種測定を行った。実施例5のエポキシ樹脂組成物は、エポキシ基間が適度に長く、かつ、適度な剛直性を有するエポキシ樹脂であるEXA−4850−150を90重量部含み、主成分とするが、加えて、エポキシ基間が適度に長いものの、過度に剛直な骨格を有するエポキシ樹脂である“エピコート”1004を10重量部含む。理論架橋点間分子量は689g/molであり適度に大きい。測定の結果、23℃での熱硬化性樹脂組成物の引張弾性率が0.38GPaと適度に小さく、23℃での熱硬化性樹脂組成物の引張破断伸度が60%と比較的大きかった。炭素繊維を強化繊維とする繊維強化複合材料の0°引張強度が2310MPa、0°引張弾性率が175GPaと十分に大きく、さらには、耐衝撃性試験の結果も比較的良好であった。
(実施例6)
表1に示すエポキシ樹脂組成物を用いプリプレグを作製し、各種測定を行った。実施例6のエポキシ樹脂組成物は、エポキシ基間が適度に長く、かつ、適度な剛直性を有するエポキシ樹脂であるEXA−4850−150を70重量部含み、主成分とするが、加えて、エポキシ基間が適度に長いものの、過度に剛直な骨格を有するエポキシ樹脂である“エピコート”1004を30重量部含む。理論架橋点間分子量は747g/molであり適度に大きい。測定の結果、23℃での熱硬化性樹脂組成物の引張弾性率が0.78GPaと適度に小さく、23℃での熱硬化性樹脂組成物の硬化物の引張破断伸度が42%と比較的大きかった。炭素繊維を強化繊維とする繊維強化複合材料の0°引張強度が2390MPa、0°引張弾性率が178GPaと十分に大きく、さらには、耐衝撃性試験の結果も比較的良好であった。
(実施例7)
表2に示すエポキシ樹脂組成物を用いプリプレグを作製し、各種測定を行った。実施例7のエポキシ樹脂組成物は、エポキシ基間が適度に長く、かつ、適度な剛直性を有するエポキシ樹脂である“エピクロン”TSR−601を含む。理論架橋点間分子量は689g/molであり適度に大きい。測定の結果、23℃での熱硬化性樹脂組成物の引張弾性率が0.040GPaと適度に小さく、23℃での熱硬化性樹脂組成物の引張破断伸度が55%と十分に大きかった。炭素繊維を強化繊維とする繊維強化複合材料の0°引張強度が2260MPa、0°引張弾性率が170GPaと十分に大きく、さらには、耐衝撃性試験の結果も比較的良好であった。
(実施例8)
表2に示すエポキシ樹脂組成物を用いプリプレグを作製し、各種測定を行った。実施例8のエポキシ樹脂組成物は、エポキシ基間が適度に長いものの、過度に柔軟な骨格を有するエポキシ樹脂である“デナコール”EX−841を含む。理論架橋点間分子量は542g/molであり適度に大きい。測定の結果、23℃での熱硬化性樹脂組成物の引張弾性率が0.015GPaと適度に小さく、23℃での熱硬化性樹脂組成物の引張破断伸度が40%と十分に大きかった。炭素繊維を強化繊維とする繊維強化複合材料の0°引張強度が2020MPa、0°引張弾性率が165GPaと十分に大きく、さらには、耐衝撃性試験の結果もやや良好であった。
(比較例1)
表2に示すエポキシ樹脂組成物を用いプリプレグを作製し、各種測定を行った。比較例1のエポキシ樹脂組成物は、エポキシ基間が短いエポキシ樹脂である“エピコート”828を含む。理論架橋点間分子量は283g/molであり小さい。測定の結果、23℃での熱硬化性樹脂組成物の引張弾性率が3.3GPaと過度に大きく、23℃での熱硬化性樹脂組成物の引張破断伸度が6%と小さかった。炭素繊維を強化繊維とする繊維強化複合材料の0°引張強度が2550MPa、0°引張弾性率が180GPaと十分に大きいものの、耐衝撃性試験の結果は優れなかった。
(比較例2)
表2に示すエポキシ樹脂組成物を用いプリプレグを作製し、各種測定を行った。比較例2のエポキシ樹脂組成物は、エポキシ基間が短いエポキシ樹脂である“エピコート”828を50重量部含み、加えて、エポキシ基間が適度に長いものの、過度に柔軟な骨格を有する“エピコート”1004を50重量部含む。理論架橋点間分子量は459g/molであり適度に大きい。測定の結果、23℃での熱硬化性樹脂組成物の引張弾性率が3.1GPaと過度に大きく、23℃での熱硬化性樹脂組成物の引張破断伸度が8%と小さかった。炭素繊維を強化繊維とする繊維強化複合材料の0°引張強度が2600MPa、0°引張弾性率が179GPaと十分に大きいものの、耐衝撃性試験の結果は優れなかった。
(比較例3)
表2に示すエポキシ樹脂組成物を用いプリプレグを作製し、各種測定を行った。比較例3のエポキシ樹脂組成物は、エポキシ基間が短いエポキシ樹脂である“エピコート”828を50重量部含み、加えて、エポキシ基間が短く、過度に柔軟な骨格を有する“エリシス”GE―20を50重量部含む。理論架橋点間分子量は169g/molであり小さい。測定の結果、23℃での樹脂引張弾性率が1.2GPaと過度に大きく、23℃での樹脂破断伸度が15%と小さかった。炭素繊維を強化繊維とする繊維強化複合材料の0°引張強度が2530MPa、0°引張弾性率が177GPaと十分に大きいものの、耐衝撃性試験の結果は優れなかった。
9. 0 ° tensile test of fiber reinforced composite material From the fiber reinforced composite material obtained by the above method, a test piece having a width of 12.7 mm and a length of 229 mm was prepared so that the 0 ° direction and the length direction were the same. Based on ASTM D 3039-93, 0 ° tensile strength and 0 ° tensile elastic modulus were measured. The measuring device used was Instron 4208 type Tensilon. Here, the crosshead speed was 1.27 mm / min, and the measurement temperature was 23 ° C. The 0 ° tensile elastic modulus is determined from the slope when the strain in the strain-stress curve is between 0.1% and 0.3%. The results are shown in Tables 1-4.
10. Impact Penetration Test of Fiber Reinforced Composite Material A test piece having a width of 100 mm and a length of 150 mm is prepared from the fiber reinforced composite material obtained by the above method so that the 0 ° direction and the length direction are the same, and the weight is 2. When a falling weight of 5 kg and a diameter of 12.5 mm was dropped from a predetermined initial height, the damage condition of the fiber reinforced composite material was observed with the naked eye, and the impact penetration resistance of the fiber reinforced composite material was examined. As the measuring device, Dyna Tap 8250 type manufactured by Instron was used, and the initial height of the falling weight was three types of 10 cm, 20 cm, and 30 cm. The results are shown in Tables 1 to 4, where x is the case where the falling weight penetrates the fiber-reinforced composite material, and ○ is the case where the falling weight does not penetrate.
Example 1
A prepreg was prepared using the epoxy resin composition shown in Table 1, and various measurements were performed. The epoxy resin composition of Example 1 is mainly composed of EXA-4850-150, which is an epoxy resin having an appropriately long space between epoxy groups and an appropriate rigidity. The molecular weight between the theoretical crosslinking points is 639 g / mol, which is reasonably large. As a result of the measurement, the tensile modulus of the cured product of the thermosetting resin composition at 23 ° C. is reasonably small as 0.22 GPa, and the tensile elongation at break of the cured product of the thermosetting resin composition at 23 ° C. is 71. % And big enough. The fiber-reinforced composite material using carbon fibers as the reinforcing fibers had a sufficiently large 0 ° tensile strength of 2330 MPa and a 0 ° tensile elastic modulus of 175 GPa, and the results of the impact resistance test were also very good.
(Example 2)
Using the epoxy resin of Example 1, a prepreg having an aramid fiber as a reinforcing fiber was prepared, and various measurements were performed. As a result of the measurement, the fiber reinforced composite material had a relatively high 0 ° tensile strength of 1130 MPa and a 0 ° tensile elastic modulus of 99 GPa. Furthermore, the results of the impact resistance test were also very good.
(Example 3)
A prepreg was prepared using the epoxy resin composition shown in Table 1, and various measurements were performed. The epoxy resin composition of Example 3 contains 90 parts by weight of EXA-4850-150, which is an epoxy resin having an appropriately long space between epoxy groups and an appropriate rigidity, and includes, as a main component, 10 parts by weight of “Epicoat” 828, which is an epoxy resin between epoxy groups is short. The molecular weight between theoretical cross-link points is 577 g / mol, which is smaller than Example 1. As a result of the measurement, the tensile modulus of the cured product of the thermosetting resin composition at 23 ° C. is reasonably small as 0.45 GPa, and the tensile elongation at break of the cured product of the thermosetting resin composition at 23 ° C. is 53. % Was relatively large. The fiber-reinforced composite material using carbon fibers as reinforcing fibers had a sufficiently high 0 ° tensile strength of 2380 MPa and a 0 ° tensile elastic modulus of 175 GPa, and the results of the impact resistance test were relatively good.
Example 4
A prepreg was prepared using the epoxy resin composition shown in Table 1, and various measurements were performed. The epoxy resin composition of Example 4 contains 70 parts by weight of EXA-4850-150, which is an epoxy resin having a moderately long space between epoxy groups and moderate rigidity, and in addition, 30 parts by weight of “Epicoat” 828, which is an epoxy resin between epoxy groups is short The molecular weight between the theoretical crosslinking points is 459 g / mol, which is smaller than those in Examples 1 and 2. As a result of the measurement, the tensile elastic modulus of the thermosetting resin composition at 23 ° C. was moderately small as 0.99 GPa, and the tensile breaking elongation of the thermosetting resin composition at 23 ° C. was slightly large as 35%. The fiber-reinforced composite material using carbon fibers as the reinforcing fibers had a sufficiently high 0 ° tensile strength of 2430 MPa and a 0 ° tensile elastic modulus of 178 GPa, and the results of the impact resistance test were also somewhat good.
(Example 5)
A prepreg was prepared using the epoxy resin composition shown in Table 1, and various measurements were performed. The epoxy resin composition of Example 5 contains 90 parts by weight of EXA-4850-150, which is an epoxy resin having a moderately long space between epoxy groups and a moderate rigidity, and includes, as a main component, 10 parts by weight of “Epicoat” 1004, which is an epoxy resin having an excessively rigid skeleton, although the space between the epoxy groups is moderately long. The molecular weight between the theoretical crosslinking points is 689 g / mol, which is reasonably large. As a result of the measurement, the tensile elastic modulus of the thermosetting resin composition at 23 ° C. was reasonably small as 0.38 GPa, and the tensile breaking elongation of the thermosetting resin composition at 23 ° C. was relatively large as 60%. . The fiber reinforced composite material using carbon fibers as the reinforcing fibers had a sufficiently high 0 ° tensile strength of 2310 MPa and a 0 ° tensile elastic modulus of 175 GPa, and the results of the impact resistance test were relatively good.
(Example 6)
A prepreg was prepared using the epoxy resin composition shown in Table 1, and various measurements were performed. The epoxy resin composition of Example 6 contains 70 parts by weight of EXA-4850-150, which is an epoxy resin having a moderately long space between epoxy groups and moderate rigidity, and is composed mainly of 30 parts by weight of “Epicoat” 1004, which is an epoxy resin having an excessively rigid skeleton, although the space between the epoxy groups is moderately long. The molecular weight between the theoretical crosslinking points is 747 g / mol, which is reasonably large. As a result of the measurement, the tensile elastic modulus of the thermosetting resin composition at 23 ° C. is moderately small as 0.78 GPa, and the tensile elongation at break of the cured product of the thermosetting resin composition at 23 ° C. is compared with 42%. It was big. The fiber-reinforced composite material using carbon fibers as the reinforcing fibers had a sufficiently high 0 ° tensile strength of 2390 MPa and a 0 ° tensile elastic modulus of 178 GPa, and the results of the impact resistance test were relatively good.
(Example 7)
A prepreg was prepared using the epoxy resin composition shown in Table 2, and various measurements were performed. The epoxy resin composition of Example 7 contains “Epiclon” TSR-601, which is an epoxy resin having a reasonably long space between epoxy groups and moderate rigidity. The molecular weight between the theoretical crosslinking points is 689 g / mol, which is reasonably large. As a result of the measurement, the tensile elastic modulus of the thermosetting resin composition at 23 ° C. was reasonably small as 0.040 GPa, and the tensile breaking elongation of the thermosetting resin composition at 23 ° C. was sufficiently large as 55%. . The fiber-reinforced composite material using carbon fibers as the reinforcing fibers had a sufficiently high 0 ° tensile strength of 2260 MPa and a 0 ° tensile elastic modulus of 170 GPa, and the results of the impact resistance test were relatively good.
(Example 8)
A prepreg was prepared using the epoxy resin composition shown in Table 2, and various measurements were performed. The epoxy resin composition of Example 8 includes “Denacol” EX-841, which is an epoxy resin having an excessively flexible skeleton, although the distance between the epoxy groups is moderately long. The molecular weight between the theoretical crosslinking points is 542 g / mol, which is reasonably large. As a result of the measurement, the tensile elastic modulus of the thermosetting resin composition at 23 ° C. was reasonably small as 0.015 GPa, and the tensile breaking elongation of the thermosetting resin composition at 23 ° C. was sufficiently large as 40%. . The fiber-reinforced composite material using carbon fibers as the reinforcing fibers had a sufficiently high 0 ° tensile strength of 2020 MPa and a 0 ° tensile elastic modulus of 165 GPa, and the results of the impact resistance test were also somewhat good.
(Comparative Example 1)
A prepreg was prepared using the epoxy resin composition shown in Table 2, and various measurements were performed. The epoxy resin composition of Comparative Example 1 includes “Epicoat” 828, which is an epoxy resin having short epoxy groups. The molecular weight between the theoretical crosslinking points is 283 g / mol, which is small. As a result of the measurement, the tensile modulus of the thermosetting resin composition at 23 ° C. was excessively large as 3.3 GPa, and the tensile elongation at break of the thermosetting resin composition at 23 ° C. was as small as 6%. Although the fiber reinforced composite material using carbon fiber as the reinforcing fiber has a sufficiently high 0 ° tensile strength of 2550 MPa and a 0 ° tensile elastic modulus of 180 GPa, the result of the impact resistance test was not excellent.
(Comparative Example 2)
A prepreg was prepared using the epoxy resin composition shown in Table 2, and various measurements were performed. The epoxy resin composition of Comparative Example 2 contains 50 parts by weight of “Epicoat” 828, which is an epoxy resin having a short distance between epoxy groups. "Contains 50 parts by weight of 1004." The molecular weight between the theoretical crosslinking points is 459 g / mol, which is reasonably large. As a result of the measurement, the tensile modulus of the thermosetting resin composition at 23 ° C. was excessively large as 3.1 GPa, and the tensile elongation at break of the thermosetting resin composition at 23 ° C. was as small as 8%. Although the fiber reinforced composite material using carbon fiber as the reinforced fiber has a sufficiently high 0 ° tensile strength of 2600 MPa and a 0 ° tensile elastic modulus of 179 GPa, the result of the impact resistance test was not excellent.
(Comparative Example 3)
A prepreg was prepared using the epoxy resin composition shown in Table 2, and various measurements were performed. The epoxy resin composition of Comparative Example 3 contains 50 parts by weight of “Epicoat” 828, which is an epoxy resin having short epoxy groups, and in addition, “Elysis” GE—having an excessively flexible skeleton with short epoxy groups. 20 parts by weight are included. The molecular weight between the theoretical cross-linking points is as small as 169 g / mol. As a result of the measurement, the resin tensile modulus at 23 ° C. was excessively large as 1.2 GPa, and the resin breaking elongation at 23 ° C. was as small as 15%. Although the fiber reinforced composite material using carbon fiber as the reinforcing fiber has a sufficiently high 0 ° tensile strength of 2530 MPa and a 0 ° tensile elastic modulus of 177 GPa, the result of the impact resistance test was not excellent.

Figure 2006274110
Figure 2006274110

Figure 2006274110
Figure 2006274110

(実施例9)
表3に示すように実施例1のプリプレグと、比較例2のプリプレグとの2種類のプリプレグを用い、繊維強化複合材料を作製し、各種測定を行った。引張測定用には、比較例2のプリプレグを0°方向に3ply、実施例1のプリプレグを0°方向に4ply、比較例2のプリプレグを0°方向に3ply積層したものを用いた。耐衝撃試験用には、比較例2のプリプレグを0°方向に3ply、実施例1のプリプレグを90°方向に4ply、比較例2のプリプレグを0°方向に3ply積層したものを用いた。測定の結果、炭素繊維を強化繊維とする繊維強化複合材料の0°引張強度が2620MPa、0°引張弾性率が180GPaと十分に大きく、さらには、耐衝撃性試験の結果が極めて良好であることがわかった。
(実施例10)
表3に示すように実施例1のプリプレグを、実施例7のプリプレグに変更した以外は、実施例9と同様の方法で各種測定を行った。測定の結果、炭素繊維を強化繊維とする繊維強化複合材料の0°引張強度が2530MPa、0°引張弾性率が178GPaと十分に大きく、さらには、耐衝撃性試験の結果が比較的良好であることがわかった。
Example 9
As shown in Table 3, a fiber reinforced composite material was prepared using two types of prepregs of the prepreg of Example 1 and the prepreg of Comparative Example 2, and various measurements were performed. For tensile measurement, the prepreg of Comparative Example 2 was laminated at 3 ply in the 0 ° direction, the prepreg of Example 1 was laminated at 4 ply in the 0 ° direction, and the prepreg of Comparative Example 2 was laminated at 3 ply in the 0 ° direction. For the impact resistance test, the prepreg of Comparative Example 2 was laminated at 3 ply in the 0 ° direction, the prepreg of Example 1 was laminated at 4 ply in the 90 ° direction, and the prepreg of Comparative Example 2 was laminated at 3 ply in the 0 ° direction. As a result of the measurement, the fiber reinforced composite material using carbon fiber as the reinforcing fiber has a sufficiently large 0 ° tensile strength of 2620 MPa and a 0 ° tensile elastic modulus of 180 GPa, and furthermore, the result of the impact resistance test is extremely good. I understood.
(Example 10)
As shown in Table 3, various measurements were performed in the same manner as in Example 9, except that the prepreg of Example 1 was changed to the prepreg of Example 7. As a result of the measurement, the fiber-reinforced composite material using carbon fiber as the reinforcing fiber has a sufficiently high 0 ° tensile strength of 2530 MPa and a 0 ° tensile elastic modulus of 178 GPa, and the impact resistance test result is relatively good. I understood it.

Figure 2006274110
Figure 2006274110

(実施例11)
表4に示すエポキシ樹脂組成物を用い、RTM法により繊維強化複合材料を作製し、各種測定を行った。実施例11のエポキシ樹脂組成物は、エポキシ基間が適度に長く、かつ、適度な剛直性を有するエポキシ樹脂であるEXA−4850−150を含む。理論架橋点間分子量は1015g/molであり適度に大きい。測定の結果、23℃での熱硬化性樹脂組成物の硬化物の引張弾性率が0.063GPaと適度に小さく、23℃での熱硬化性樹脂組成物の引張破断伸度が82%と十分に大きかった。炭素繊維を強化繊維とする繊維強化複合材料の0°引張強度が780MPa、0°引張弾性率が61GPaと十分に大きく、さらには、耐衝撃性試験の結果も極めて良好であった。
(比較例4)
表4に示すエポキシ樹脂組成物を用い、RTM法により繊維強化複合材料を作製し、各種測定を行った。比較例4のエポキシ樹脂組成物は、エポキシ基間が短いエポキシ樹脂である“エピコート”828を含む。理論架橋点間分子量は494g/molであり適度に大きい。測定の結果、23℃での熱硬化性樹脂組成物の引張弾性率が2.6GPaと過度に大きく、23℃での熱硬化性樹脂組成物の引張破断伸度が8%と小さかった。炭素繊維を強化繊維とする繊維強化複合材料の0°引張強度が790MPa、0°引張弾性率が63GPaと十分に大きいものの、耐衝撃性試験の結果は優れなかった。
(Example 11)
Using the epoxy resin composition shown in Table 4, a fiber reinforced composite material was prepared by the RTM method, and various measurements were performed. The epoxy resin composition of Example 11 includes EXA-4850-150, which is an epoxy resin having a reasonably long space between epoxy groups and moderate rigidity. The molecular weight between the theoretical crosslinking points is 1015 g / mol, which is reasonably large. As a result of the measurement, the tensile elastic modulus of the cured product of the thermosetting resin composition at 23 ° C. is reasonably small as 0.063 GPa, and the tensile elongation at break of the thermosetting resin composition at 23 ° C. is sufficiently high at 82%. It was big. The fiber reinforced composite material using carbon fibers as the reinforcing fibers had a sufficiently high 0 ° tensile strength of 780 MPa and a 0 ° tensile elastic modulus of 61 GPa, and the results of the impact resistance test were also very good.
(Comparative Example 4)
Using the epoxy resin composition shown in Table 4, a fiber reinforced composite material was prepared by the RTM method, and various measurements were performed. The epoxy resin composition of Comparative Example 4 includes “Epicoat” 828, which is an epoxy resin having short epoxy groups. The molecular weight between the theoretical crosslinking points is 494 g / mol, which is reasonably large. As a result of the measurement, the tensile elastic modulus of the thermosetting resin composition at 23 ° C. was excessively large as 2.6 GPa, and the tensile elongation at break of the thermosetting resin composition at 23 ° C. was as small as 8%. Although the fiber reinforced composite material using carbon fibers as the reinforcing fibers has a sufficiently high 0 ° tensile strength of 790 MPa and a 0 ° tensile elastic modulus of 63 GPa, the results of the impact resistance test were not excellent.

Figure 2006274110
Figure 2006274110

本発明の繊維強化複合材料は、軽量であり、強度や弾性率などの機械特性が優れ、かつ、耐衝撃性が優れるため、航空機宇宙用途、スポーツ用品用途、自動車用途などに広く用いることができる。   The fiber-reinforced composite material of the present invention is lightweight, excellent in mechanical properties such as strength and elastic modulus, and excellent in impact resistance. Therefore, it can be widely used in aircraft space applications, sports equipment applications, automobile applications, and the like. .

Claims (18)

強化繊維とマトリックス樹脂とを含み、マトリックス樹脂の一部、もしくは、全部が、23℃で測定される引張弾性率が0.001〜1GPaの範囲内であり、かつ、23℃で測定される引張破断伸度が30%以上である熱硬化性樹脂組成物の硬化物である繊維強化複合材料。   Tensile strength includes a reinforcing fiber and a matrix resin, and part or all of the matrix resin has a tensile modulus measured at 23 ° C. within a range of 0.001 to 1 GPa and is measured at 23 ° C. A fiber-reinforced composite material which is a cured product of a thermosetting resin composition having a breaking elongation of 30% or more. 強化繊維が、ガラス繊維、炭素繊維、アラミド繊維、アルミナ繊維、ボロン繊維から選ばれる少なくとも1種であることを特徴とする請求項1記載の繊維強化複合材料。   The fiber reinforced composite material according to claim 1, wherein the reinforcing fiber is at least one selected from glass fiber, carbon fiber, aramid fiber, alumina fiber, and boron fiber. 強化繊維の体積含有率が、30〜80%の範囲内であることを特徴とする請求項1、2のいずれかに記載の繊維強化複合材料。   The fiber-reinforced composite material according to any one of claims 1 and 2, wherein the volume content of the reinforcing fibers is within a range of 30 to 80%. 熱硬化性樹脂組成物の硬化物の理論架橋点間分子量αが、400〜1600g/molの範囲内であることを特徴とする請求項1〜3のいずれかに記載の繊維強化複合材料。   The fiber reinforced composite material according to any one of claims 1 to 3, wherein the molecular weight α between theoretical crosslink points of the cured product of the thermosetting resin composition is in the range of 400 to 1600 g / mol. 熱硬化性樹脂組成物が、官能基当量300〜1000g/molの範囲内である樹脂成分を含み、該樹脂成分を主成分とすることを特徴とする請求項1〜4のいずれかに記載の繊維強化複合材料。   The thermosetting resin composition includes a resin component having a functional group equivalent in a range of 300 to 1000 g / mol, and the resin component is a main component. Fiber reinforced composite material. 熱硬化性樹脂組成物が、1分子内に含まれる芳香環の数が2〜6の範囲内である樹脂成分を含み、該樹脂成分を主成分とすることを特徴とする請求項1〜5のいずれかに記載の繊維強化複合材料。   The thermosetting resin composition contains a resin component having 2 to 6 aromatic rings in one molecule, and the resin component is a main component. The fiber-reinforced composite material according to any one of the above. 熱硬化性樹脂組成物が、エポキシ樹脂を含むことを特徴とする請求項1〜6のいずれかに記載の繊維強化複合材料。   The fiber reinforced composite material according to claim 1, wherein the thermosetting resin composition contains an epoxy resin. 熱硬化性樹脂組成物が、下記式(I)で示すことができるエポキシ樹脂から選ばれる少なくとも1種のエポキシ樹脂を含むことを特徴とする請求項7に記載の繊維強化複合材料。
Figure 2006274110
The fiber-reinforced composite material according to claim 7, wherein the thermosetting resin composition contains at least one epoxy resin selected from epoxy resins that can be represented by the following formula (I).
Figure 2006274110
23℃で測定される0°引張強度が600MPa以上であることを特徴とする請求項1〜8記載の繊維強化複合材料。   The fiber-reinforced composite material according to claim 1, wherein the 0 ° tensile strength measured at 23 ° C. is 600 MPa or more. 23℃で測定される0°引張弾性率が40GPa以上であることを特徴とする請求項1〜9記載の繊維強化複合材料。   The fiber-reinforced composite material according to claim 1, wherein a 0 ° tensile elastic modulus measured at 23 ° C. is 40 GPa or more. 23℃で測定される引張弾性率が0.001〜1GPaの範囲内であり、かつ、23℃で測定される引張破断伸度が30%以上である熱硬化性樹脂組成物を、強化繊維に含浸してなるプリプレグ。   A thermosetting resin composition having a tensile elastic modulus measured at 23 ° C. within a range of 0.001 to 1 GPa and a tensile elongation at break measured at 23 ° C. of 30% or more is used as a reinforcing fiber. A prepreg made by impregnation. 強化繊維が、ガラス繊維、炭素繊維、アラミド繊維、アルミナ繊維、ボロン繊維から選ばれる少なくとも1種であることを特徴とする請求項11記載のプリプレグ。   The prepreg according to claim 11, wherein the reinforcing fiber is at least one selected from glass fiber, carbon fiber, aramid fiber, alumina fiber, and boron fiber. 強化繊維の体積含有率が、30〜80%の範囲内であることを特徴とする請求項11、12のいずれかに記載のプリプレグ。   The prepreg according to any one of claims 11 and 12, wherein a volume content of the reinforcing fibers is in a range of 30 to 80%. 熱硬化性樹脂組成物の硬化物の理論架橋点間分子量αが、400〜1600g/molの範囲内であることを特徴とする請求項11〜13のいずれかに記載のプリプレグ。   The prepreg according to any one of claims 11 to 13, wherein the molecular weight α between theoretical cross-linking points of the cured product of the thermosetting resin composition is in the range of 400 to 1600 g / mol. 熱硬化性樹脂組成物が、官能基当量300〜1000g/molの範囲内である樹脂成分を含み、該樹脂成分を主成分とすることを特徴とする請求項11〜14のいずれかに記載のプリプレグ。   The thermosetting resin composition includes a resin component having a functional group equivalent in a range of 300 to 1000 g / mol, and the resin component is a main component. Prepreg. 熱硬化性樹脂組成物が、1分子内に含まれる芳香環の数が2〜6の範囲内である樹脂成分を含み、該樹脂成分を主成分とすることを特徴とする請求項11〜15のいずれかに記載のプリプレグ。   The thermosetting resin composition contains a resin component in which the number of aromatic rings contained in one molecule is in the range of 2 to 6, and the resin component is a main component. The prepreg according to any one of the above. 熱硬化性樹脂組成物が、エポキシ樹脂を含むことを特徴とする請求項11〜16のいずれかに記載のプリプレグ。   The prepreg according to any one of claims 11 to 16, wherein the thermosetting resin composition contains an epoxy resin. 熱硬化性樹脂組成物が、下記式(I)で示すことができるエポキシ樹脂から選ばれる少なくとも1種のエポキシ樹脂を含むことを特徴とする請求項17に記載のプリプレグ。
Figure 2006274110
The prepreg according to claim 17, wherein the thermosetting resin composition contains at least one epoxy resin selected from epoxy resins that can be represented by the following formula (I).
Figure 2006274110
JP2005097275A 2005-03-30 2005-03-30 Prepreg and fiber-reinforced composite material Pending JP2006274110A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005097275A JP2006274110A (en) 2005-03-30 2005-03-30 Prepreg and fiber-reinforced composite material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005097275A JP2006274110A (en) 2005-03-30 2005-03-30 Prepreg and fiber-reinforced composite material

Publications (2)

Publication Number Publication Date
JP2006274110A true JP2006274110A (en) 2006-10-12
JP2006274110A5 JP2006274110A5 (en) 2008-05-08

Family

ID=37209163

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005097275A Pending JP2006274110A (en) 2005-03-30 2005-03-30 Prepreg and fiber-reinforced composite material

Country Status (1)

Country Link
JP (1) JP2006274110A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010155986A (en) * 2008-12-10 2010-07-15 Honda Motor Co Ltd Carbon fiber- and glass fiber-reinforced composite material
WO2018070537A1 (en) * 2016-10-13 2018-04-19 富士フイルム株式会社 Hardening composition, hardened substance and method for manufacturing same, layered sheet, optical member, lenticular sheet, and three-dimensional structure
CN111836852A (en) * 2018-03-06 2020-10-27 伊士曼化工公司 Resin composition and resin molded article thereof

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6420262A (en) * 1987-07-15 1989-01-24 Yokohama Rubber Co Ltd Thermosetting resin composition
JPH07173450A (en) * 1993-12-21 1995-07-11 Toray Ind Inc Resin composition for bonding prepreg
JPH09268221A (en) * 1996-04-01 1997-10-14 Nippon Oil Co Ltd Resin composition for prepreg
JPH11172076A (en) * 1997-12-08 1999-06-29 Toray Ind Inc Epoxy resin composition for fiber-reinforced composite material, prepreg, and fiber-reinforced composite material
JP2003012889A (en) * 2001-06-27 2003-01-15 Mitsubishi Rayon Co Ltd Epoxy resin composition and tennis racket using the same
JP2003261744A (en) * 2002-01-04 2003-09-19 Mitsubishi Rayon Co Ltd Epoxy resin composition and autohesive prepreg
JP2004156024A (en) * 2002-10-15 2004-06-03 Dainippon Ink & Chem Inc Epoxy resin composition, production method for epoxy resin, new epoxy resin and new phenol resin
JP2005029634A (en) * 2003-07-09 2005-02-03 Dainippon Ink & Chem Inc Epoxy resin composition and its cured product
JP2006036935A (en) * 2004-07-27 2006-02-09 Matsushita Electric Works Ltd Epoxy resin composition, memory card and semiconductor device

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6420262A (en) * 1987-07-15 1989-01-24 Yokohama Rubber Co Ltd Thermosetting resin composition
JPH07173450A (en) * 1993-12-21 1995-07-11 Toray Ind Inc Resin composition for bonding prepreg
JPH09268221A (en) * 1996-04-01 1997-10-14 Nippon Oil Co Ltd Resin composition for prepreg
JPH11172076A (en) * 1997-12-08 1999-06-29 Toray Ind Inc Epoxy resin composition for fiber-reinforced composite material, prepreg, and fiber-reinforced composite material
JP2003012889A (en) * 2001-06-27 2003-01-15 Mitsubishi Rayon Co Ltd Epoxy resin composition and tennis racket using the same
JP2003261744A (en) * 2002-01-04 2003-09-19 Mitsubishi Rayon Co Ltd Epoxy resin composition and autohesive prepreg
JP2004156024A (en) * 2002-10-15 2004-06-03 Dainippon Ink & Chem Inc Epoxy resin composition, production method for epoxy resin, new epoxy resin and new phenol resin
JP2005029634A (en) * 2003-07-09 2005-02-03 Dainippon Ink & Chem Inc Epoxy resin composition and its cured product
JP2006036935A (en) * 2004-07-27 2006-02-09 Matsushita Electric Works Ltd Epoxy resin composition, memory card and semiconductor device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010155986A (en) * 2008-12-10 2010-07-15 Honda Motor Co Ltd Carbon fiber- and glass fiber-reinforced composite material
WO2018070537A1 (en) * 2016-10-13 2018-04-19 富士フイルム株式会社 Hardening composition, hardened substance and method for manufacturing same, layered sheet, optical member, lenticular sheet, and three-dimensional structure
CN111836852A (en) * 2018-03-06 2020-10-27 伊士曼化工公司 Resin composition and resin molded article thereof
CN111836852B (en) * 2018-03-06 2023-02-03 伊士曼化工公司 Resin composition and resin molded article thereof

Similar Documents

Publication Publication Date Title
JP6007914B2 (en) Pre-preg for vacuum forming, fiber reinforced composite material and method for producing the same
EP2794735B1 (en) Improvements in or relating to fibre reinforced composites
JP5739361B2 (en) Fiber reinforced composite material
CN109196026B (en) Prepreg and method for producing same
US7208228B2 (en) Epoxy resin for fiber reinforced composite materials
JP5785111B2 (en) Fiber reinforced composite material
KR20140127868A (en) Fiber-reinforced composite material
KR20100133963A (en) Epoxy resin composition, prepreg, abd fiber-reinforced composite material
JP4687167B2 (en) Epoxy resin composition, prepreg and fiber reinforced composite material
KR101950627B1 (en) Epoxy resin composition, and film, prepreg, and fiber-reinforced plastic using same
JP2014167102A (en) Epoxy resin composition, prepreg and fiber-reinforced composite material
JP2010095557A (en) Prepreg and fiber-reinforced composite material
JP5228289B2 (en) Prepreg and fiber reinforced composites
JP5904521B2 (en) Fiber reinforced resin composite and method for producing the same
JP5912920B2 (en) Fiber reinforced composite material
JP5912922B2 (en) Fiber reinforced composite material
JP2006274110A (en) Prepreg and fiber-reinforced composite material
JP4655329B2 (en) Unidirectional prepreg and fiber reinforced composites
JP2004027043A (en) Epoxy resin composition for fiber-reinforced composite material and the resulting fiber-reinforced composite material
WO2014157097A1 (en) Prepreg, fiber-reinforced composite material, and resin composition containing particles
JP2013075998A (en) Composition including adamantane derivative and fiber-reinforced composite material
JP5912921B2 (en) Fiber reinforced composite material
JP2023140385A (en) Molding material, fiber-reinforced composite material, and manufacturing method of fiber-reinforced composite material

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080325

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080325

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100701

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100713

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20101116