JP4687167B2 - Epoxy resin composition, prepreg and fiber reinforced composite material - Google Patents

Epoxy resin composition, prepreg and fiber reinforced composite material Download PDF

Info

Publication number
JP4687167B2
JP4687167B2 JP2005076622A JP2005076622A JP4687167B2 JP 4687167 B2 JP4687167 B2 JP 4687167B2 JP 2005076622 A JP2005076622 A JP 2005076622A JP 2005076622 A JP2005076622 A JP 2005076622A JP 4687167 B2 JP4687167 B2 JP 4687167B2
Authority
JP
Japan
Prior art keywords
epoxy resin
resin composition
prepreg
epoxy
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005076622A
Other languages
Japanese (ja)
Other versions
JP2005298815A (en
Inventor
史郎 本田
浩之 瀧山
美穂 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP2005076622A priority Critical patent/JP4687167B2/en
Publication of JP2005298815A publication Critical patent/JP2005298815A/en
Application granted granted Critical
Publication of JP4687167B2 publication Critical patent/JP4687167B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Reinforced Plastic Materials (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Epoxy Resins (AREA)

Description

本発明は、繊維強化複合材料、半導体封止剤、積層板、接着剤、塗料等に有用なエポキシ樹脂組成物、繊維強化複合材料を得るための中間基材としてのプリプレグ、およびスポーツ用途、航空宇宙用途、一般産業用途に適した炭素繊維強化複合材料、特に、ゴルフシャフト、釣り竿、自動車のプロペラシャフトなどの管状体材料に好適に用いることができる繊維強化複合材料に関するものである。   The present invention relates to an epoxy resin composition useful for fiber reinforced composite materials, semiconductor encapsulants, laminates, adhesives, paints, etc., a prepreg as an intermediate substrate for obtaining fiber reinforced composite materials, and sports applications, aircraft The present invention relates to a carbon fiber reinforced composite material suitable for space use and general industrial use, and particularly to a fiber reinforced composite material that can be suitably used for tubular body materials such as golf shafts, fishing rods, and automobile propeller shafts.

分子内にエポキシ基を有する化合物で構成されるエポキシ樹脂と、その硬化剤とからなる一液型のエポキシ樹脂組成物は、その優れた機械強度、耐薬品性、耐熱性、金属部材や強化繊維などの機材への良好な接着性などのために、塗料・舗装材料、接着剤、あるいは炭素繊維などの強化繊維と組み合わせて繊維強化複合材料用マトリックス樹脂として用いられている。   A one-pack type epoxy resin composition consisting of an epoxy resin composed of a compound having an epoxy group in the molecule and its curing agent, has excellent mechanical strength, chemical resistance, heat resistance, metal members and reinforcing fibers. For example, it is used as a matrix resin for fiber-reinforced composite materials in combination with paints / paving materials, adhesives, or reinforcing fibers such as carbon fibers.

強化繊維とマトリックス樹脂とからなる繊維強化複合材料は、軽量性能と優れた強度特性のため、ゴルフシャフト、釣り竿、テニスやバトミントン等のラケット、ホッケー等のスティックなど、スポーツ用途をはじめ、航空宇宙用途、自動車・船舶、浴槽、ヘルメット等の一般産業用途などに広く用いられているが、さらなる軽量化要求に応えるため、かかる材料の強度特性を向上させる技術が必要とされている。   Fiber reinforced composite material consisting of reinforced fiber and matrix resin is lightweight and has excellent strength characteristics, so it can be used for sports applications such as golf shafts, fishing rods, rackets such as tennis and badminton, sticks such as hockey, and aerospace applications. Although widely used in general industrial applications such as automobiles / ships, bathtubs, helmets, etc., in order to meet the demand for further weight reduction, there is a need for a technique for improving the strength characteristics of such materials.

例えば、特定範囲の平均エポキシ当量とし、さらにその樹脂硬化物が特定範囲のガラス転移温度及びゴム状態弾性率を有するように制御されたエポキシ樹脂組成物をマトリックス樹脂として用いる手法が知られている(例えば、特許文献1参照)。しかし、かかる方法では、平均エポキシ当量を高めると耐熱性が不足しがちな傾向にあると共に、この手法だけでは更なる高性能な繊維強化複合材料への要求に対し応えきれず、かかる強度特性をさらに向上させる技術が必要であった。   For example, a technique is known in which an epoxy resin composition having a specific range of average epoxy equivalent and controlled so that the cured resin has a specific range of glass transition temperature and rubber elastic modulus is used as a matrix resin ( For example, see Patent Document 1). However, in such a method, when the average epoxy equivalent is increased, the heat resistance tends to be insufficient, and this method alone cannot satisfy the demand for a higher performance fiber-reinforced composite material, and the strength characteristics are not improved. A technique for further improvement was required.

また、樹脂硬化物が特定範囲の圧縮弾性率を2.4〜3.5GPaと圧縮破壊時呼び歪みを50%以上有するように制御されたエポキシ樹脂をマトリックス樹脂として用いる手法が知られている(例えば、特許文献2参照)。しかし、かかる方法では、圧縮弾性率を高めると、圧縮破壊呼び歪みもしくは耐熱性が低下する傾向にあり、耐熱性と強度特性の両立は未だ不十分な場合があった。   In addition, a technique is known in which a cured resin has a specific range of compressive modulus of 2.4 to 3.5 GPa and an epoxy resin that is controlled to have a nominal strain at compression fracture of 50% or more as a matrix resin ( For example, see Patent Document 2). However, in such a method, when the compressive elastic modulus is increased, the compressive fracture nominal strain or the heat resistance tends to decrease, and there are cases where the compatibility between the heat resistance and the strength characteristics is still insufficient.

さらに、樹脂硬化物の圧縮降伏応力110〜140MPaと圧縮降伏呼び歪み6〜10%を有するように制御されたエポキシ樹脂をマトリックス樹脂として用いる手法が知られている(例えば、特許文献3参照)。   Furthermore, a technique is known in which an epoxy resin controlled to have a compression yield stress of 110 to 140 MPa and a compression yield nominal strain of 6 to 10% of the cured resin is used as a matrix resin (see, for example, Patent Document 3).

しかし、従来の技術では樹脂の圧縮破壊呼び歪みもしくは圧縮弾性率を高めようとすると耐熱性が低下する傾向にあり、結果として耐熱性と強度特性の両立は未だ不十分であった。   However, in the prior art, when attempting to increase the compressive fracture nominal strain or compressive elastic modulus of the resin, the heat resistance tends to decrease, and as a result, both heat resistance and strength characteristics are still insufficient.

このように、これら公知の技術でも一定の効果は得られるものの、優れた耐熱性と機械強度を発現できるエポキシ樹脂組成物や繊維強化複合材料は未だ得られていないのが現状であった。
特開2002−327041号公報 特開2003−128746号公報 特開2003−277471号公報
As described above, the epoxy resin composition and the fiber reinforced composite material capable of exhibiting excellent heat resistance and mechanical strength have not yet been obtained, although certain effects can be obtained even with these known techniques.
JP 2002-327041 A JP 2003-128746 A JP 2003-277471 A

本発明の目的は、上述した問題点を解決し、優れた耐熱性および強度特性を有するエポキシ樹脂組成物、また、該樹脂組成物を用いて得られる取り扱い性に優れたプリプレグ、さらに、より軽量で強度特性に優れた繊維強化複合材料を提供することにある。   An object of the present invention is to solve the above-mentioned problems, an epoxy resin composition having excellent heat resistance and strength characteristics, a prepreg excellent in handleability obtained by using the resin composition, and further lightweight. Another object of the present invention is to provide a fiber-reinforced composite material having excellent strength characteristics.

本発明は、前述した目的を達成する為に以下の構成を有する。すなわち、次の構成要素[A]、[B]、[C]を含むエポキシ樹脂組成物であって、構成要素[A]が[A1]ビフェニル、ナフタレン、フルオレン、ジシクロペンタジエン、およびオキサゾリドン環から選ばれる少なくとも1つの骨格を有する1種以上のエポキシ樹脂を含み、構成要素[C]が構成要素[A]100重量部に対して、3〜35重量部含まれるエポキシ樹脂組成物である。
[A]エポキシ樹脂
[B]硬化剤
[C]p−tert−ブチルフェニルグリシジルエーテル、ヘキサヒドロフタル酸ジグリシジルエステル、ジグリシジルアニリン、p−アミノフェノール型液状エポキシ化合物、およびアニリンからなる群から選ばれる少なくとも1種以上の反応性化合物
また、前記エポキシ樹脂組成物と強化繊維とからなるプリプレグ、さらには、かかるプリプレグを硬化せしめてなる繊維強化複合材料である。
The present invention has the following configuration in order to achieve the above-described object. That is, an epoxy resin composition containing the following constituent elements [A], [B], and [C], wherein the constituent element [A] is selected from [A1] biphenyl, naphthalene, fluorene, dicyclopentadiene, and an oxazolidone ring. look containing one or more epoxy resins having at least one skeleton selected for component [C] is a component [a] 100 parts by weight, an epoxy resin composition that contains 3 to 35 parts by weight.
[A] Epoxy resin [B] Curing agent [C] p-tert-butylphenylglycidyl ether, hexahydrophthalic acid diglycidyl ester, diglycidylaniline, p-aminophenol type liquid epoxy compound, and aniline The prepreg composed of the epoxy resin composition and the reinforcing fiber, and further a fiber-reinforced composite material obtained by curing the prepreg.

本発明のエポキシ樹脂組成物は、樹脂硬化物の圧縮弾性率、圧縮破壊呼び歪み、圧縮降伏応力、および耐熱性が良好である。   The epoxy resin composition of the present invention has good compression modulus, compression fracture nominal strain, compression yield stress, and heat resistance of the cured resin.

また、本発明のプリプレグは、取り扱い性が良好であり、成形性に優れるため機械特性に優れた繊維強化複合材料を提供することができる。   Moreover, since the prepreg of the present invention has good handleability and excellent moldability, it can provide a fiber-reinforced composite material having excellent mechanical properties.

さらに、本発明の繊維強化複合材料は軽量で、かつ例えば円筒状繊維強化複合材料のねじり強さなど、優れた機械特性を有する。   Furthermore, the fiber reinforced composite material of the present invention is lightweight and has excellent mechanical properties such as, for example, the torsional strength of a cylindrical fiber reinforced composite material.

前記課題を解決するため、本発明者らが鋭意検討した結果、炭素繊維強化複合材料用樹脂硬化物について、圧縮弾性率、圧縮降伏応力および圧縮破壊呼び歪みを高いレベルで発現する樹脂組成物が管状体(円筒状)繊維強化複合材料のねじり強さを著しく向上させることを見いだし、該樹脂硬化物特性を耐熱性との両立できることが可能な樹脂処方を見いだし本発明に至ったものである。   As a result of intensive studies by the present inventors to solve the above-mentioned problems, a resin composition that exhibits a high level of compressive elastic modulus, compressive yield stress, and compressive fracture nominal strain is obtained for the cured resin for carbon fiber reinforced composite materials. The present inventors have found that the torsional strength of a tubular (cylindrical) fiber reinforced composite material can be remarkably improved, and have found a resin formulation capable of simultaneously satisfying the properties of the cured resin with heat resistance.

本発明のエポキシ樹脂組成物は、次の構成要素[A]、[B]、[C]を含むエポキシ樹脂組成物であって、構成要素[A]が[A1]ビフェニル、ナフタレン、フルオレン、ジシクロペンタジエン、およびオキサゾリドン環から選ばれる少なくとも1つの骨格を有する1種以上のエポキシ樹脂を含み、構成要素[C]が構成要素[A]100重量部に対して、3〜35重量部含まれるエポキシ樹脂組成物である。
[A]エポキシ樹脂
[B]硬化剤
[C]p−tert−ブチルフェニルグリシジルエーテル、ヘキサヒドロフタル酸ジグリシジルエステル、ジグリシジルアニリン、p−アミノフェノール型液状エポキシ化合物、およびアニリンからなる群から選ばれる少なくとも1種以上の反応性化合物
本発明の構成要素[A]であるエポキシ樹脂は、分子内に平均して1個を超えるエポキシ基を有する化合物である。ここで、かかるエポキシ樹脂は1種類のエポキシ樹脂であってもよく、複数種類のエポキシ樹脂の混合物であってもよい。なお、後述する構成要素[C]がエポキシ樹脂に該当する場合、構成要素[A]には含まないものとする。また、構成要素[C]が硬化剤にも該当する場合、構成要素[B]には含まないものとする。
The epoxy resin composition of the present invention is an epoxy resin composition containing the following components [A], [B] and [C], wherein the component [A] is [A1] biphenyl, naphthalene, fluorene, di- cyclopentadiene, and looking containing one or more epoxy resins having at least one skeleton selected from oxazolidone ring, with respect to component [C] is a component [a] 100 parts by weight, include 3 to 35 parts by weight It is an epoxy resin composition.
[A] Epoxy resin [B] Curing agent [C] p-tert-butylphenylglycidyl ether, hexahydrophthalic acid diglycidyl ester, diglycidylaniline, p-aminophenol type liquid epoxy compound, and aniline At least one or more kinds of reactive compounds The epoxy resin as the constituent element [A] of the present invention is a compound having an average of more than one epoxy group in the molecule. Here, the epoxy resin may be one kind of epoxy resin or a mixture of plural kinds of epoxy resins. In addition, when the component [C] mentioned later corresponds to an epoxy resin, it shall not be included in the component [A]. In addition, when the constituent element [C] corresponds to the curing agent, it is not included in the constituent element [B].

本発明においては、構成要素[A]に[A1]ビフェニル、ナフタレン、フルオレン、ジシクロペンタジエン、およびオキサゾリドン環から選ばれる少なくとも1つの骨格を有する1種以上のエポキシ樹脂を含むことが必要である。かかるエポキシ樹脂を少なくとも1種以上含むことにより、樹脂硬化物の圧縮弾性率、圧縮降伏応力および圧縮破壊呼び歪みと、耐熱性とを向上することが可能となる。 In the present invention, it is necessary that the constituent element [A] contains at least one epoxy resin having at least one skeleton selected from [A1] biphenyl, naphthalene, fluorene, dicyclopentadiene, and an oxazolidone ring. By including at least one or more of such epoxy resins, it is possible to improve the compression elastic modulus, compression yield stress, compression fracture nominal strain, and heat resistance of the cured resin.

ビフェニル骨格を有するエポキシ樹脂は市販のものを用いてもよく、例えばエピコート(登録商標)YX4000、エピコートYX4000H、エピコートYL6121(以上、ジャパンエポキシレジン(株)製)、NC3000、NC3000H(以上、日本化薬(株)製)などを挙げることができる。   Commercially available epoxy resins having a biphenyl skeleton may be used. For example, Epicoat (registered trademark) YX4000, Epicoat YX4000H, Epicoat YL6121 (above, manufactured by Japan Epoxy Resins Co., Ltd.), NC3000, NC3000H (above, Nippon Kayaku) For example).

ナフタレン骨格を有するエポキシ樹脂としてはエピクロン(登録商標)HP4032、エピクロンHP4032D、エピクロンH4032H、エピクロンEXA4750、エピクロンEXA4700、エピクロンEXA4701(以上、大日本インキ工業(株)製)、NC7000L、NC7300L(以上、日本化薬)などが挙げられる。   As epoxy resins having a naphthalene skeleton, Epicron (registered trademark) HP4032, Epicron HP4032D, Epicron H4032H, Epicron EXA4750, Epicron EXA4700, Epicron EXA4701 (above, Dainippon Ink Industries, Ltd.), NC7000L, NC7300L (above, Nippon Kayaku) Medicine).

フルオレン骨格を有するエポキシ樹脂としてはオグソール(登録商標)PG、オグソール(登録商標)EG(以上、ナガセケムテックス(株)製)などを挙げることができる。   Examples of the epoxy resin having a fluorene skeleton include Ogsol (registered trademark) PG and Ogsol (registered trademark) EG (manufactured by Nagase ChemteX Corporation).

ジシクロペンタジエン骨格を有するエポキシ樹脂としては、エピクロン(登録商標)HP7200L(エポキシ当量245〜250、軟化点54〜58℃)、エピクロンHP7200(エポキシ当量255〜260、軟化点59〜63℃)、エピクロンHP7200H(エポキシ当量275〜280、軟化点80〜85℃)、エピクロンHP7200HH(エポキシ当量275〜280、軟化点87〜92℃)(以上、大日本インキ化学工業(株)製)、XD−1000−L(エポキシ当量240〜255、軟化点60〜70℃)、XD−1000−2L(エポキシ当量235〜250、軟化点53〜63℃)(以上、日本化薬(株)製)、Tactix(登録商標)556(エポキシ当量215〜235、軟化点79℃)(Huntsman Inc社製)などを挙げることができる。   As an epoxy resin having a dicyclopentadiene skeleton, Epicron (registered trademark) HP7200L (epoxy equivalent: 245 to 250, softening point: 54 to 58 ° C.), Epicron HP7200 (epoxy equivalent: 255 to 260, softening point: 59 to 63 ° C.), Epicron HP7200H (epoxy equivalent 275-280, softening point 80-85 ° C.), Epicron HP7200HH (epoxy equivalent 275-280, softening point 87-92 ° C.) (above, Dainippon Ink & Chemicals, Inc.), XD-1000- L (epoxy equivalent 240-255, softening point 60-70 ° C.), XD-1000-2L (epoxy equivalent 235-250, softening point 53-63 ° C.) (Nippon Kayaku Co., Ltd.), Tactix (registered) Trademark) 556 (epoxy equivalents 215 to 235, softening point 79 ° C.) (Huntsma It can be mentioned Inc Co., Ltd.) and the like.

オキサゾリドン環骨格を有するエポキシ樹脂としては、アラルダイトAER(登録商標)4152、XAC4151(以上、旭化成エポキシ(株)製)などを挙げることができる。   Examples of the epoxy resin having an oxazolidone ring skeleton include Araldite AER (registered trademark) 4152, XAC4151 (manufactured by Asahi Kasei Epoxy Co., Ltd.) and the like.

本発明における前記構成要素[A]100重量%中、[A1]ビフェニル、ナフタレン、フルオレン、ジシクロペンタジエン、およびオキサゾリドン環から選ばれる少なくとも1つの骨格を有するエポキシ樹脂が、5〜50重量%含まれることが好ましい。7〜45重量%がより好ましく、10〜40重量%含まれることがさらに好ましい。5重量%未満では、樹脂硬化物の耐熱性、圧縮破壊呼び歪み、および圧縮降伏応力の向上効果が小さい場合がある。50重量%を超えると粘度が高くなりすぎ、プリプレグとした場合の成形性が悪くなる場合がある。 5% to 50% by weight of epoxy resin having at least one skeleton selected from [A1] biphenyl, naphthalene, fluorene, dicyclopentadiene, and oxazolidone ring is included in 100% by weight of the component [A] in the present invention. It is preferable. It is more preferably 7 to 45% by weight, and further preferably 10 to 40% by weight. If it is less than 5% by weight, the effect of improving the heat resistance, compressive fracture nominal strain, and compressive yield stress of the cured resin may be small. If it exceeds 50% by weight, the viscosity becomes too high, and the moldability in the case of a prepreg may deteriorate.

ナフタレン骨格、フルオレン骨格のエポキシ樹脂は、圧縮破壊呼び歪みの向上効果がやや小さいものの、耐熱性の向上効果は大きい点で好ましく、オキサゾリドン環骨格を有するエポキシ樹脂は、圧縮弾性率向上効果は小さいが、圧縮破壊呼び歪みの向上効果は大きい点で好ましい。ビフェニル骨格を有するエポキシ樹脂は圧縮破壊呼び歪み、降伏応力の向上効果に優れているためより好ましく、ジシクロペンタジエン骨格を有するエポキシ樹脂は耐熱性、圧縮破壊呼び歪み、圧縮降伏応力いずれの物性においても向上効果に優れている点で特に好ましい。   Although an epoxy resin with a naphthalene skeleton or a fluorene skeleton has a slightly small effect of improving the compression fracture nominal strain, it is preferable in terms of a large effect of improving the heat resistance, and an epoxy resin having an oxazolidone ring skeleton has a small effect of improving the compression modulus. The effect of improving the compressive fracture nominal strain is preferable because of its large effect. An epoxy resin having a biphenyl skeleton is more preferable because it has an excellent effect of improving compressive fracture nominal strain and yield stress, and an epoxy resin having a dicyclopentadiene skeleton is excellent in heat resistance, compressive fracture nominal strain, and compressive yield stress. This is particularly preferable because of its excellent improvement effect.

本発明における構成要素[A]のエポキシ樹脂には、さらに、平均エポキシ当量が好ましくは1000〜10000、より好ましくは1200〜8000、さらに好ましくは1500〜5000のエポキシ樹脂([A2])が含まれることがよい。 The epoxy resin of the component [A] in the present invention further includes an epoxy resin ( [A2] ) having an average epoxy equivalent of preferably 1000 to 10,000, more preferably 1200 to 8000, and further preferably 1500 to 5000. It is good.

かかるエポキシ樹脂を用いることで、樹脂硬化物の架橋密度を低下させ、塑性変形能力を向上させることができる。従来、1000〜10000もの高い平均エポキシ当量を有するエポキシ樹脂を用いるとエポキシ樹脂組成物の粘度が上がり過ぎるためプリプレグ製造用には適さなかったが、構成要素[C]と組み合わせることによってエポキシ樹脂組成物の粘度をさほど上げることなく、塑性変形能力を高めることが可能となる。その結果、プリプレグとした際の取り扱い性と、得られる繊維強化複合材料の機械特性との両立が可能となるため特に好ましい。すなわち、かかる平均エポキシ当量が1000以上のエポキシ樹脂を用いることにより、耐熱性および圧縮降伏応力を維持しつつ、圧縮破壊呼び歪みを大幅に向上できる。さらに、驚くべきことに平均エポキシ当量が1000以上のエポキシ樹脂を配合するとプリプレグにした際、プリプレグの離型フィルムを剥いだ1日放置後も取り扱い性に優れるプリプレグを得ることができる。   By using such an epoxy resin, the crosslink density of the cured resin can be lowered and the plastic deformation ability can be improved. Conventionally, when an epoxy resin having an average epoxy equivalent as high as 1000 to 10000 was used, the viscosity of the epoxy resin composition was too high to be suitable for prepreg production, but the epoxy resin composition was combined with the component [C]. It is possible to increase the plastic deformation ability without increasing the viscosity of the resin. As a result, it is particularly preferable because it is possible to achieve both the handleability of the prepreg and the mechanical properties of the obtained fiber-reinforced composite material. That is, by using an epoxy resin having an average epoxy equivalent of 1000 or more, the compressive fracture nominal strain can be greatly improved while maintaining heat resistance and compressive yield stress. Furthermore, surprisingly, when an epoxy resin having an average epoxy equivalent of 1000 or more is blended, a prepreg excellent in handleability can be obtained even after leaving for a day when the prepreg release film is peeled off.

平均エポキシ当量が10000を超えるエポキシ樹脂を用いた場合は、高粘度になることにより、プリプレグの製造工程において、樹脂の含浸性が不十分となったり、得られるプリプレグの賦形性が低下し、繊維強化複合材料の物性が低下する場合がある。   When an epoxy resin having an average epoxy equivalent of more than 10,000 is used, the impregnation of the resin becomes insufficient in the prepreg manufacturing process due to high viscosity, or the shapeability of the resulting prepreg decreases, The physical properties of the fiber reinforced composite material may be deteriorated.

また、[A2]平均エポキシ当量が1000〜10000のエポキシ樹脂の配合量は、構成要素[A]100重量%中、3〜60重量%が好ましい。5〜55重量%がより好ましく、10〜50重量%含まれるのがさらに好ましい。3重量%未満では圧縮破壊呼び歪みの向上効果が小さい場合があり、60重量%を超えるとプリプレグの製造工程において、樹脂の含浸性が不十分となったり、得られるプリプレグの賦形性が低下し、繊維強化複合材料の物性が低下する場合がある。 [A2] The blending amount of the epoxy resin having an average epoxy equivalent of 1000 to 10000 is preferably 3 to 60% by weight in 100% by weight of the component [A]. 5 to 55% by weight is more preferable, and 10 to 50% by weight is more preferable. If it is less than 3% by weight, the effect of improving the compressive fracture nominal strain may be small. If it exceeds 60% by weight, the impregnation of the resin may be insufficient in the prepreg manufacturing process, or the shapeability of the resulting prepreg may be reduced. However, the physical properties of the fiber reinforced composite material may be deteriorated.

平均エポキシ当量が1000以上であるエポキシ樹脂の市販品としては、エピコート(登録商標)1005F(ジャパンエポキシレジン(株)製、平均エポキシ当量1000)、ST−5100(東都化成(株)製、平均エポキシ当量1000)、ST−4100D(東都化成(株)製、エポキシ当量1000)、エピコート1005H(ジャパンエポキシレジン(株)製、平均エポキシ当量1290)、エピコート5354(ジャパンエポキシレジン(株)製、平均エポキシ当量1650)、DER−667(ダウケミカル日本(株)製、平均エポキシ当量1775)、EP−5700(旭電化工業(株)製、平均エポキシ当量1925)、Epc7050(大日本インキ(株)製、平均エポキシ当量1925)、YD−017(東都化成(株)製、平均エポキシ当量1925)、エピコート1007(ジャパンエポキシレジン(株)製、平均エポキシ当量1950)、エピコート5057(ジャパンエポキシレジン(株)製、平均エポキシ当量2250)、エピコート4007P(ジャパンエポキシレジン(株)製、平均エポキシ当量2270)、DER−668(ダウケミカル日本(株)製、平均エポキシ当量2750)、YD−019(東都化成(株)製、平均エポキシ当量2850)、EP−5900(旭電化工業(株)製、平均エポキシ当量2850)、エピコート1009(ジャパンエポキシレジン(株)製、平均エポキシ当量3300)、エピコート4110P(ジャパンエポキシレジン(株)製、平均エポキシ当量3800)、YD−020N(東都化成(株)製、平均エポキシ当量3900)、エピコート1010(ジャパンエポキシレジン、平均エポキシ当量4000)、エピコート4010P(ジャパンエポキシレジン(株)製、平均エポキシ当量4400)、DER−669(ダウケミカル日本(株)製、平均エポキシ当量4500)、YD−020H(東都化成(株)、平均エポキシ当量5250)、エピコート1256(ジャパンエポキシレジン(株)製、平均エポキシ当量7700)、エピコート4250(ジャパンエポキシレジン(株)製、平均エポキシ当量8500)、エピコート4275(ジャパンエポキシレジン(株)製、平均エポキシ当量8500)、エピコート5203(ジャパンエポキシレジン(株)製、平均エポキシ当量9000)、エピコート4210(ジャパンエポキシレジン(株)製、平均エポキシ当量10000)等を挙げることができる。これらの中でも特にビスフェノールA型の骨格を有する樹脂が塑性変形能力と耐熱性の両立の点から好ましい。   As an epoxy resin commercial product with an average epoxy equivalent of 1000 or more, Epicoat (registered trademark) 1005F (manufactured by Japan Epoxy Resin Co., Ltd., average epoxy equivalent 1000), ST-5100 (manufactured by Toto Kasei Co., Ltd., average epoxy) Equivalent 1000), ST-4100D (manufactured by Toto Kasei Co., Ltd., epoxy equivalent 1000), Epicoat 1005H (manufactured by Japan Epoxy Resin Co., Ltd., average epoxy equivalent 1290), Epicote 5354 (manufactured by Japan Epoxy Resins Co., Ltd., average epoxy) Equivalent 1650), DER-667 (Dow Chemical Japan Co., Ltd., average epoxy equivalent 1775), EP-5700 (Asahi Denka Kogyo Co., Ltd., average epoxy equivalent 1925), Epc 7050 (Dainippon Ink Co., Ltd.) Average epoxy equivalent 1925), YD-017 (Tohto Kasei) Co., Ltd., average epoxy equivalent 1925), Epicoat 1007 (Japan Epoxy Resin Co., Ltd., average epoxy equivalent 1950), Epicoat 5057 (Japan Epoxy Resin Co., Ltd., average epoxy equivalent 2250), Epicoat 4007P (Japan Epoxy Resin) Manufactured by Co., Ltd., average epoxy equivalent 2270), DER-668 (manufactured by Dow Chemical Japan Co., Ltd., average epoxy equivalent 2750), YD-019 (manufactured by Toto Kasei Co., Ltd., average epoxy equivalent 2850), EP-5900 ( Asahi Denka Kogyo Co., Ltd., average epoxy equivalent 2850), Epicoat 1009 (Japan Epoxy Resin Co., Ltd., average epoxy equivalent 3300), Epicoat 4110P (Japan Epoxy Resin Co., Ltd., average epoxy equivalent 3800), YD- 020N (Toto Kasei Co., Ltd.) , Average epoxy equivalent 3900), Epicoat 1010 (Japan epoxy resin, average epoxy equivalent 4000), Epicoat 4010P (Japan Epoxy Resin Co., Ltd., average epoxy equivalent 4400), DER-669 (Dow Chemical Japan Co., Ltd., average) Epoxy equivalent 4500), YD-020H (Toto Kasei Co., Ltd., average epoxy equivalent 5250), Epikote 1256 (manufactured by Japan Epoxy Resin Co., Ltd., average epoxy equivalent 7700), Epicote 4250 (manufactured by Japan Epoxy Resin Co., Ltd., average) Epoxy equivalent 8500), Epicoat 4275 (manufactured by Japan Epoxy Resin Co., Ltd., average epoxy equivalent 8500), Epicoat 5203 (manufactured by Japan Epoxy Resin Co., Ltd., average epoxy equivalent 9000), Epicorte 4210 (Japan Epoch) And an average epoxy equivalent of 10,000) manufactured by Xyresin Corporation. Among these, a resin having a bisphenol A-type skeleton is particularly preferable from the viewpoint of both plastic deformation ability and heat resistance.

本発明の構成要素[A]には、前記エポキシ樹脂以外のエポキシ樹脂が配合されていてもよく、例えば、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールAD型エポキシ樹脂、ビスフェノールS型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、脂肪族エポキシ樹脂等のグリシジルエーテル型エポキシ樹脂、グリシジルエステル型エポキシ樹脂、グリシジルアミン型エポキシ樹脂、ゴム変性エポキシ樹脂などを配合していてもよい。   The constituent element [A] of the present invention may contain an epoxy resin other than the epoxy resin, for example, bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol AD type epoxy resin, bisphenol S type epoxy. Resin, phenol novolac type epoxy resin, cresol novolac type epoxy resin, glycidyl ether type epoxy resin such as aliphatic epoxy resin, glycidyl ester type epoxy resin, glycidyl amine type epoxy resin, rubber modified epoxy resin, etc. may be blended .

ここで、構成要素[A]に、グリシジルアミン型等の多官能エポキシ樹脂を含ませることは、弾性率向上、耐熱性向上の観点からは好ましい。耐熱性の観点からは、好ましくは20〜90重量%、より好ましくは30〜80重量%、更に好ましくは40〜70重量%含まれるのがよい。一方、多官能エポキシ樹脂は配合量が多くなるにつれ樹脂硬化物の圧縮破壊呼び歪みが低下する傾向にあるので、圧縮破壊呼び歪みを特に向上させたい場合のみを考えれば、構成要素[A]100重量%中、多官能の配合量は60重量%未満が好ましく、30重量%未満がより好ましく、20重量%未満が更に好ましく、含まれていないことが特に好ましい。   Here, it is preferable to include a polyfunctional epoxy resin such as a glycidylamine type in the component [A] from the viewpoints of improving the elastic modulus and heat resistance. From the viewpoint of heat resistance, the content is preferably 20 to 90% by weight, more preferably 30 to 80% by weight, and still more preferably 40 to 70% by weight. On the other hand, the polyfunctional epoxy resin tends to decrease the compressive fracture nominal strain of the cured resin as the blending amount increases. Therefore, considering only the case where it is desired to particularly improve the compressive fracture nominal strain, the component [A] 100 In the wt%, the polyfunctional compounding amount is preferably less than 60 wt%, more preferably less than 30 wt%, still more preferably less than 20 wt%, and particularly preferably not contained.

また、樹脂圧縮破壊呼び歪みをより向上させる観点からは、2官能エポキシ樹脂を含むことが好ましく、構成要素[A]100重量%中、40重量%以上、が好ましく、50重量%以上がより好ましく、60重量%以上がさらに好ましい。   Further, from the viewpoint of further improving the resin compressive fracture nominal strain, it is preferable to include a bifunctional epoxy resin, preferably 40% by weight or more, more preferably 50% by weight or more, in 100% by weight of the component [A]. 60% by weight or more is more preferable.

本発明においては、構成要素[B]の硬化剤が必要である。構成要素[B]としては、硬化剤であれば特に限定されず、例えばアミン系硬化剤、酸および酸無水物系硬化剤、フェノール系硬化剤、ポリアミノアミド系硬化剤、ルイス酸およびブレンステッド酸、ポリメルカプタン系硬化剤、イソシアネートおよびブロックイソシアネート化合物などを用いることができる。   In the present invention, a curing agent for component [B] is required. The component [B] is not particularly limited as long as it is a curing agent. For example, an amine curing agent, an acid and acid anhydride curing agent, a phenol curing agent, a polyaminoamide curing agent, a Lewis acid, and a Bronsted acid. Polymercaptan-based curing agents, isocyanates, blocked isocyanate compounds, and the like can be used.

本発明において構成要素[C]の25℃における粘度0.001〜1Pa・sとなる。かかる粘度はE型粘度計により、JIS Z8803(1991)に準拠して測定できる。 In the present invention, the viscosity at 25 ° C. of the components [C] becomes 0.001~1Pa · s. Such viscosity can be measured with an E-type viscometer according to JIS Z8803 (1991).

構成要素[C]のような化合物を配合することによって、樹脂硬化物の自由体積が埋められ圧縮破壊呼び歪みを低下させることなく、弾性率が向上でき、また同時にこのような化合物を配合すると圧縮降伏応力が向上する。構成要素[A]と[C]を組み合わせることにより、耐熱性と圧縮弾性率、圧縮破壊呼び歪み、および圧縮降伏応力のいずれも優れた樹脂組成物を与えることが可能となり、該エポキシ樹脂組成物をマトリックス樹脂として用いた繊維強化複合材料は耐熱性と優れた機械強度、詳しくは円筒ねじり強さの両立が可能となる。   By blending a compound such as component [C], the free volume of the cured resin can be filled and the elastic modulus can be improved without lowering the compression fracture nominal strain. Yield stress is improved. By combining the constituent elements [A] and [C], it becomes possible to give a resin composition excellent in both heat resistance and compressive elastic modulus, compressive fracture nominal strain, and compressive yield stress, and the epoxy resin composition The fiber reinforced composite material using as a matrix resin can achieve both heat resistance and excellent mechanical strength, specifically cylindrical torsional strength.

かかる構成要素[C]の市販品としては、例えば、アニリン(粘度0.004Pa・s、和光純薬工業(株)製)デナコールEX−146(粘度0.02Pa・s、ナガセケムテックス(株)製)、GAN(粘度0.16Pa・s、日本化薬(株)製)AK601(粘度0.35Pa・s、日本化薬(株))、Ep190P(粘度0.85Pa・s、ジャパンエポキシレジン(株)製)、Ep191P(粘度0.85Pa・s、ジャパンエポキシレジン(株)製)Ep630(粘度1.0Pa・s、ジャパンエポキシレジン(株)製)等を挙げることができる。 Examples of commercially available components [C] include aniline (viscosity 0.004 Pa · s, manufactured by Wako Pure Chemical Industries, Ltd.) , Denacol EX-146 (viscosity 0.02 Pa · s, Nagase ChemteX Corporation). )), GAN (viscosity 0.16 Pa · s, manufactured by Nippon Kayaku Co., Ltd.) , AK601 (viscosity 0.35 Pa · s, Nippon Kayaku Co., Ltd.), Ep190P (viscosity 0.85 Pa · s, Japan Epoxy) Resin Co., Ltd.), Ep191P (viscosity 0.85 Pa · s, manufactured by Japan Epoxy Resin Co., Ltd.) , Ep630 (viscosity 1.0 Pa · s, manufactured by Japan Epoxy Resin Co., Ltd.), and the like.

本発明における構成要素[C]は前記構成要素[A]100重量部に対して、3〜35重量部含まれる5〜30重量部好ましく、10〜25重量部含まれるのがより好ましい。3重量部未満では圧縮弾性率向上、圧縮降伏応力向上の効果が十分でない場合がある。また35重量部を超えると耐熱性が低下する傾向にある。 The component [C] in the present invention is contained in an amount of 3 to 35 parts by weight with respect to 100 parts by weight of the component [A] . 5-30 weight part is preferable and it is more preferable that 10-25 weight part is contained. If it is less than 3 parts by weight, the effect of improving the compressive modulus and compressive yield stress may not be sufficient. Moreover, when it exceeds 35 weight part, it exists in the tendency for heat resistance to fall.

本発明における構成要素[C]は、構成要素[A]または構成要素[B]の少なくともいずれかと化学結合を形成する箇所を2個有することが好ましい。化学結合を形成する箇所が1箇所では、耐熱性を維持する効果が小さく、3箇所以上あると、樹脂硬化物の伸度が低下する傾向にある。   The constituent element [C] in the present invention preferably has two portions that form a chemical bond with at least one of the constituent element [A] and the constituent element [B]. The effect of maintaining the heat resistance is small at one place where a chemical bond is formed, and if there are three or more places, the elongation of the cured resin tends to decrease.

本発明における構成要素[C]が芳香環を有することが好ましい。芳香環を有することによって、耐熱性の低下を最小限に抑えることができる The component [C] in the present invention preferably has an aromatic ring. By having an aromatic ring, a decrease in heat resistance can be minimized .

本発明における全エポキシ樹脂の平均エポキシ当量は230〜400であることが好ましい。ここでいう、全エポキシ樹脂とは、文字通りエポキシ樹脂組成物に含まれる全てのエポキシ樹脂を指し、[C]がエポキシ樹脂の場合、[A]だけでなく[C]も含めて求める平均エポキシ当量を意味する。   It is preferable that the average epoxy equivalent of all the epoxy resins in this invention is 230-400. Here, the total epoxy resin literally means all epoxy resins contained in the epoxy resin composition, and when [C] is an epoxy resin, the average epoxy equivalent determined by including not only [A] but also [C] Means.

かかるエポキシ当量となるように原料樹脂を配合することで、得られる樹脂組成物の樹脂硬化物の架橋密度を好ましい範囲とすることができる。即ち、エポキシ当量が大きいほど架橋点となるエポキシ基の密度が低下し、硬化物の架橋密度は小さくなことで塑性変形能力を高めることができる。かかる平均エポキシ当量が230未満では樹脂硬化物の塑性変形能力が低下する傾向にあり、円筒状繊維強化複合材料とした場合のねじり強さががさほど向上しない。一方、400を超えると、樹脂硬化物の弾性率や耐熱性が低下したり、樹脂組成物の粘度が高くなりすぎる場合がある。より好ましくは240〜370、さらに好ましくは250〜350である。   By mix | blending raw material resin so that it may become this epoxy equivalent, the crosslinking density of the resin cured material of the resin composition obtained can be made into a preferable range. That is, the larger the epoxy equivalent, the lower the density of the epoxy group that becomes a cross-linking point, and the low cross-linking density of the cured product can increase the plastic deformation ability. When the average epoxy equivalent is less than 230, the plastic deformation ability of the resin cured product tends to decrease, and the torsional strength in the case of a cylindrical fiber reinforced composite material does not increase so much. On the other hand, when it exceeds 400, the elastic modulus and heat resistance of the resin cured product may be lowered, or the viscosity of the resin composition may be too high. More preferably, it is 240-370, More preferably, it is 250-350.

ここで、エポキシ当量は、エポキシ樹脂の質量(g)を樹脂に含まれる全エポキシ基のモル数で除した値である。樹脂の混合物のエポキシ当量は、混合物の直接滴定により定量化できるが、個々の平均エポキシ当量と配合量から計算によって求めることもできる。   Here, the epoxy equivalent is a value obtained by dividing the mass (g) of the epoxy resin by the number of moles of all epoxy groups contained in the resin. The epoxy equivalent of a mixture of resins can be quantified by direct titration of the mixture, but can also be determined by calculation from the individual average epoxy equivalents and loadings.

本発明における構成要素[B]の硬化剤は融点もしくは軟化点が50℃以上の固形の硬化剤を用いることが好ましい。具体的には4,4’−ジアミノジフェニルスルフォン(融点176℃)、3,3’−ジアミノジフェニルスルフォン(融点170℃)、4,4’−ジアミノジフェニルメタン(融点92℃)、4,4’−メチレンビス−(2,6−ジエチル)アニリン(融点88℃)などの芳香族アミン、ジシアンジアミド(融点209℃)などのグアニジン化合物、アジピン酸ジヒドラジド(融点179℃)、アミキュアVDH(味の素(株)製、融点120℃)、アミキュアLDH(味の素(株)製、融点180℃)、アミキュアUDH(味の素(株)製、融点160℃)などの有機ヒドラジド化合物、アミキュアPN23(味の素(株)製、融点100℃)、アミキュアMY24(味の素(株)製、融点120℃)などのアミンアダクトなどがあげられるがこれに限られる物ではない。これらの中でもジシアンジアミドが熱安定性や硬化性の点から好ましい。   As the curing agent for the component [B] in the present invention, a solid curing agent having a melting point or a softening point of 50 ° C. or higher is preferably used. Specifically, 4,4′-diaminodiphenylsulfone (melting point 176 ° C.), 3,3′-diaminodiphenylsulfone (melting point 170 ° C.), 4,4′-diaminodiphenylmethane (melting point 92 ° C.), 4,4′- Aromatic amines such as methylenebis- (2,6-diethyl) aniline (melting point 88 ° C.), guanidine compounds such as dicyandiamide (melting point 209 ° C.), adipic acid dihydrazide (melting point 179 ° C.), Amicure VDH (manufactured by Ajinomoto Co., Inc.) Melting point 120 ° C.), Amicure LDH (Ajinomoto Co., Ltd., melting point 180 ° C.), Amicure UDH (Ajinomoto Co., Ltd., melting point 160 ° C.) and other organic hydrazide compounds, Amicure PN23 (Ajinomoto Co., Ltd., melting point 100 ° C.) ), Amine adducts such as Amicure MY24 (Ajinomoto Co., Inc., melting point 120 ° C.) and the like. But the present invention is not limited to this. Among these, dicyandiamide is preferable from the viewpoint of thermal stability and curability.

また、プリプレグを作製する場合、硬化剤の融点以下の温度で硬化剤をエポキシ樹脂に混合させることが熱安定性の点から好ましい。粒径の大きい粒は、加圧含浸しても、強化繊維束中に入り込まない。このため、ジシアンジアミドの平均粒径が大きくなると、強化繊維束中の硬化剤量が少なくなり、部分的に硬化反応が不完全になり、複合材料の機械特性の低下を招くことがある。こうした理由から、ジシアンジアミドの平均粒径は10μm以下であることが好ましく、さらに好ましくは5μm以下である。ここで平均粒径は体積平均を意味する。   Moreover, when producing a prepreg, it is preferable from a heat-stable point to mix a hardening | curing agent with an epoxy resin at the temperature below melting | fusing point of a hardening | curing agent. Even when the particles having a large particle size are impregnated under pressure, they do not enter the reinforcing fiber bundle. For this reason, when the average particle diameter of dicyandiamide is increased, the amount of the curing agent in the reinforcing fiber bundle is decreased, and the curing reaction is partially incomplete, which may cause deterioration of the mechanical properties of the composite material. For these reasons, the average particle diameter of dicyandiamide is preferably 10 μm or less, and more preferably 5 μm or less. Here, the average particle diameter means volume average.

ジシアンジアミドは、全エポキシ樹脂100重量部に対して、2〜10重量部用いることが好ましい。2重量部未満では、硬化反応が不完全な場合があり、10重量部を超えると、物性低下の要因となることがある。   It is preferable to use 2 to 10 parts by weight of dicyandiamide with respect to 100 parts by weight of the total epoxy resin. If it is less than 2 parts by weight, the curing reaction may be incomplete, and if it exceeds 10 parts by weight, it may cause a decrease in physical properties.

ジシアンジアミドを単独で硬化剤として用いた場合、十分な硬化反応率を得る為には、180℃、2時間程度の加熱が必要である。そこで、ジシアンジアミドの他に芳香族アミン、脂肪族アミン等の硬化剤、硬化促進剤を併用することができる。   When dicyandiamide is used alone as a curing agent, heating at 180 ° C. for about 2 hours is necessary to obtain a sufficient curing reaction rate. Therefore, in addition to dicyandiamide, a curing agent such as aromatic amine and aliphatic amine, and a curing accelerator can be used in combination.

硬化促進剤としては、特に限定されないが、イミダゾール化合物、ウレア化合物、3級アミン等を挙げることができる。樹脂組成物の貯蔵安定性を高めるために、表面が樹脂被覆されているマイクロカプセル型の硬化促進剤を用いても良い。中でも硬化促進剤としてウレア化合物を含むことが、樹脂組成物の貯蔵安定性をほとんど損なうこと無く、十分な促進効果が得られるという理由から、特に好ましく用いられる。ウレア化合物として具体的には、3−(3,4−ジクロロフェニル)−1,1−ジメチルウレア、商品名“DCMU99”保土谷化学製や3−フェニル−1,1−ジメチルウレア、商品名“オミキュア94”RTIジャパン製、トルエンビス(ジメチルウレア)、商品名“オミキュア24”PTIジャパン製、4,4’−メチレンビス(フェニルジメチルウレア)、商品名“オミキュア52”RTIジャパン製などがあげられるがこれに限定されるものではない。   Although it does not specifically limit as a hardening accelerator, An imidazole compound, a urea compound, tertiary amine, etc. can be mentioned. In order to increase the storage stability of the resin composition, a microcapsule type curing accelerator whose surface is coated with a resin may be used. Among these, inclusion of a urea compound as a curing accelerator is particularly preferably used because a sufficient accelerating effect can be obtained without substantially impairing the storage stability of the resin composition. Specific examples of urea compounds include 3- (3,4-dichlorophenyl) -1,1-dimethylurea, trade name “DCMU99” manufactured by Hodogaya Chemical Co., Ltd., 3-phenyl-1,1-dimethylurea, trade name “Omicure” 94 "RTI Japan, Toluene bis (dimethylurea), trade name" Omicure 24 "made by PTI Japan, 4,4'-methylenebis (phenyldimethylurea), trade name" Omicure 52 "made by RTI Japan. It is not limited to.

ウレア化合物は、全エポキシ樹脂100重量部に対して、1〜10重量部用いることが好ましい。1重量部未満では、促進効果が弱くなる為、樹脂組成物が135℃、2時間程度の加熱では、十分硬化しない場合があり、逆に10重量部を超えると、促進効果が強くなりすぎて、高温時の樹脂組成物の貯蔵安定性が不十分な場合がある。   It is preferable to use 1 to 10 parts by weight of the urea compound with respect to 100 parts by weight of the total epoxy resin. If the amount is less than 1 part by weight, the accelerating effect is weakened. Therefore, the resin composition may not be sufficiently cured by heating at 135 ° C. for about 2 hours. Conversely, if the amount exceeds 10 parts by weight, the accelerating effect is too strong. The storage stability of the resin composition at high temperatures may be insufficient.

本発明におけるエポキシ樹脂組成物には、必要に応じて熱可塑性樹脂、熱可塑性エラストマー、エラストマー、無機粒子等を添加することができる。   A thermoplastic resin, a thermoplastic elastomer, an elastomer, inorganic particles, etc. can be added to the epoxy resin composition in the present invention as necessary.

熱可塑性樹脂としては、エポキシ樹脂に可溶なものが好ましい。またエポキシ樹脂に不溶のものであっても、粉砕し、微粒子化したものは好ましく、配合することができる。   As a thermoplastic resin, what is soluble in an epoxy resin is preferable. Moreover, even if it is insoluble in the epoxy resin, it is preferably pulverized and finely divided, and can be blended.

具体的にはポリアミド、ポリアミドイミド、ポリアラミド、ポリアリーレンオキシド、ポリアリレート、ポリイミド、ポリエチレンテレフタレート、ポリエーテルイミド、ポリエーテルテレフタレート、ポリエーテルイミド、ポリエーテルエーテルケトン、ポリエーテルスルホン、ポリカーボネート、ポリカーボネート、ポリ酢酸ビニル、ポリスチレン、ポリスルホン、ポリビニルアセタール樹脂、ポリフェニレンオキシド、ポリフェニレンスルフィド、ポリプロピレン、ポリベンズイミダゾール、ポリメタクリル酸メチル等が用いられる。   Specifically, polyamide, polyamideimide, polyaramide, polyarylene oxide, polyarylate, polyimide, polyethylene terephthalate, polyetherimide, polyether terephthalate, polyetherimide, polyetheretherketone, polyethersulfone, polycarbonate, polycarbonate, polyacetic acid Vinyl, polystyrene, polysulfone, polyvinyl acetal resin, polyphenylene oxide, polyphenylene sulfide, polypropylene, polybenzimidazole, polymethyl methacrylate and the like are used.

これらのうち、特にポリアミドは硬化物の弾性率をほとんど損なわずに、靭性及び耐衝撃性を向上させるのに有効である。   Of these, polyamide is particularly effective in improving toughness and impact resistance without substantially impairing the elastic modulus of the cured product.

また、特にポリーテルイミド、ポリエーテルスルホンは、硬化物の耐熱性を損なうことなく、炭素繊維との接着性を改善するのに有効である。   In particular, polyterimide and polyethersulfone are effective in improving the adhesion to carbon fiber without impairing the heat resistance of the cured product.

さらに、ポリビニルアセタール樹脂、およびポリメタクリル酸メチルは、加熱によりエポキシ樹脂と容易に可溶し、硬化物の耐熱性を損なうことなく、炭素繊維との接着性を改善すると共に、粘度調整が可能であるため、本発明における熱可塑性樹脂として特に好ましい。   In addition, polyvinyl acetal resin and polymethyl methacrylate are easily soluble with epoxy resin by heating, improving adhesion to carbon fibers and maintaining the viscosity without compromising the heat resistance of the cured product. Therefore, it is particularly preferable as the thermoplastic resin in the present invention.

具体的にはポリビニルアセタール樹脂としては、“ビニレック”K、L、H、E(チッソ(株)製)などのポリビニルホルマール、“エスレック”K(積水化学工業(株)製)などのポリビニルアセタール、“エスレック”B(積水化学工業(株)製)や“デンカブチラール”(電気化学工業(株)製)のポリビニルブチラールなどがあげられ、ポリメタクリル酸メチルとしては、“ダイヤナール”BR−85、BR−88、BR−108(以上、三菱レイヨン(株)製)、“マツモトマイクロスフェアー”M、M100、M500(以上松本油脂製薬(株)製)などがあげられるが、これらに限られる物ではない。   Specific examples of the polyvinyl acetal resin include polyvinyl formals such as “Vinylec” K, L, H, E (manufactured by Chisso Corporation), polyvinyl acetals such as “ESREC” K (manufactured by Sekisui Chemical Co., Ltd.), “Sleck” B (manufactured by Sekisui Chemical Co., Ltd.) and “Denka Butyral” (manufactured by Denki Kagaku Kogyo Co., Ltd.) are listed as polymethyl methacrylates. BR-88, BR-108 (Mitsubishi Rayon Co., Ltd.), “Matsumoto Microsphere” M, M100, M500 (Made Matsumoto Yushi Seiyaku Co., Ltd.), etc. is not.

前記構成要素[A]100重量部に対して、熱可塑性樹脂が0.1〜10重量部含まれることが好ましい。0.1〜7重量部であればより好ましく、0.1〜5重量部がさらに好ましい。10重量部を超えると、プリプレグの製造工程において、樹脂の含浸性が不十分となったり、得られるプリプレグの賦形性が悪くなり、結果、繊維強化複合材料の物性が低下する場合がある。0.1未満では、繊維強化複合材料となした際の、マトリックス樹脂と強化繊維との接着の向上効果が十分ではない場合がある。   The thermoplastic resin is preferably contained in an amount of 0.1 to 10 parts by weight with respect to 100 parts by weight of the component [A]. The amount is more preferably 0.1 to 7 parts by weight, and further preferably 0.1 to 5 parts by weight. If it exceeds 10 parts by weight, the impregnation property of the resin may be insufficient in the prepreg production process, or the shapeability of the resulting prepreg may be deteriorated, resulting in a decrease in the physical properties of the fiber-reinforced composite material. If it is less than 0.1, the effect of improving the adhesion between the matrix resin and the reinforcing fibers when the fiber-reinforced composite material is obtained may not be sufficient.

本発明のエポキシ樹脂組成物のガラス転移温度は100〜140℃であることが好ましい。110〜140℃であればより好ましく、115〜140℃であればさらに好ましい。100未満であると、スポーツ用途などにおいて耐熱性が不足する。140℃を超えると、残留熱応力が大きく、加熱硬化後の繊維強化複合材料とした際に機械物性が低くなる場合がある。   The glass transition temperature of the epoxy resin composition of the present invention is preferably 100 to 140 ° C. 110-140 ° C is more preferable, and 115-140 ° C is more preferable. If it is less than 100, the heat resistance is insufficient in sports applications. When the temperature exceeds 140 ° C., the residual thermal stress is large, and the mechanical properties may be lowered when a fiber-reinforced composite material after heat curing is obtained.

本発明のプリプレグは、強化繊維に本発明のエポキシ樹脂組成物を含浸せしめたものである。   The prepreg of the present invention is obtained by impregnating a reinforcing fiber with the epoxy resin composition of the present invention.

本発明のプリプレグに用いる強化繊維は、特に限定されないが炭素繊維、ガラス繊維、アラミド繊維、ボロン繊維、アルミナ繊維、炭化ケイ素繊維、気相成長炭素繊維、カーボンナノチューブ等が使用できる。これらの繊維を2種以上混在させることもできる。中でも引張弾性率が200〜500GPaの炭素繊維を主として用いるのが、軽量性能と力学特性に優れた材料を得るのに好ましい。   The reinforcing fiber used in the prepreg of the present invention is not particularly limited, and carbon fiber, glass fiber, aramid fiber, boron fiber, alumina fiber, silicon carbide fiber, vapor grown carbon fiber, carbon nanotube, and the like can be used. Two or more kinds of these fibers can be mixed. Among them, it is preferable to use mainly carbon fibers having a tensile modulus of 200 to 500 GPa in order to obtain a material excellent in lightweight performance and mechanical properties.

本発明のプリプレグに含まれる強化繊維の形態及び配列は、例えば、一方向に引き揃えたもの、織物(クロス)、トウ、マット、ニット等が用いられる。中でも、積層構成によって容易に強度特性を設計可能であることから、一方向に引き揃えられたものを採用するのが好ましい。   As the form and arrangement of the reinforcing fibers contained in the prepreg of the present invention, for example, those aligned in one direction, woven fabric (cross), tow, mat, knit and the like are used. Among them, it is preferable to adopt one that is aligned in one direction because the strength characteristics can be easily designed by the laminated structure.

本発明のプリプレグ、および繊維強化複合材料の強化繊維重量含有率は60〜90重量%、より好ましくは70〜85重量%である。本発明のエポキシ樹脂組成物を用いた場合、このように繊維含有率の高い領域において、プリプレグの成形性、特に管状体(円筒状繊維強化複合材料)を成形する際の成形性向上効果が一段と明確に表れ優れたものになる。また前記特に好ましい樹脂組成とすることで、プリプレグにおける取り扱い性の経時変化制御を行うこともできる。さらには得られる繊維強化複合材料の品位・性能も優れたものとすることができる。   The reinforced fiber weight content of the prepreg of the present invention and the fiber-reinforced composite material is 60 to 90% by weight, more preferably 70 to 85% by weight. When the epoxy resin composition of the present invention is used, the effect of improving the moldability of the prepreg, in particular, the moldability when molding a tubular body (cylindrical fiber reinforced composite material) is further enhanced in such a high fiber content region. It becomes clear and excellent. Further, by using the particularly preferable resin composition, it is possible to control the change with time of the handling property in the prepreg. Furthermore, the quality and performance of the fiber-reinforced composite material obtained can be made excellent.

本発明のプリプレグの単位面積あたりの繊維重量は40〜250g/mであることが好ましく、さらには50〜200g/mであることが好ましい。単位面積あたりの繊維重量が40g/m未満であるとプリプレグの形状保持性が低下し、やや取扱いにくくなる。また単位面積あたりの繊維重量が250g/mを超えると、プリプレグ内部の繊維アライメントが乱れやすく、高性能な繊維強化複合材料となりにくい。 Preferably the fiber weight per unit area of the prepreg of the present invention is 40~250g / m 2, preferably further is 50 to 200 g / m 2. When the fiber weight per unit area is less than 40 g / m 2 , the shape retention of the prepreg is lowered and the handling becomes somewhat difficult. Moreover, when the fiber weight per unit area exceeds 250 g / m < 2 >, the fiber alignment inside a prepreg tends to be disturbed, and it becomes difficult to become a high-performance fiber-reinforced composite material.

このように単位重量あたりの繊維重量が小さいプリプレグであっても、円筒(管状体)の成形性、さらには硬化後の品位・性能などにおいて優れた特性を得ることができる。   Thus, even with a prepreg having a small fiber weight per unit weight, it is possible to obtain excellent characteristics in the formability of a cylinder (tubular body) and the quality and performance after curing.

ここでいう単位面積あたりの繊維重量及び繊維含有量はプリプレグから有機溶媒などにより樹脂を溶出し、繊維重量を計量することにより求めることができる。   The fiber weight per unit area and the fiber content mentioned here can be determined by eluting the resin from the prepreg with an organic solvent and measuring the fiber weight.

本発明の繊維強化複合材料の成形は、例えば以下の要領で行われる。プリプレグを裁断して得たパターンを積層後、積層物に圧力を付与しながら、樹脂を加熱硬化させることにより、繊維強化複合材料が得られる。熱および圧力を付与する方法には、プレス成型法、オートクレーブ成型法、真空圧成形法、シートワインディング法、および内圧成形法などがあり、特にスポーツ用品に関しては、シートワインディング法あるいは内圧成形法が好ましく採用される。   For example, the fiber-reinforced composite material of the present invention is molded in the following manner. After laminating the pattern obtained by cutting the prepreg, the fiber reinforced composite material is obtained by heat curing the resin while applying pressure to the laminate. Methods for applying heat and pressure include a press molding method, an autoclave molding method, a vacuum pressure molding method, a sheet winding method, and an internal pressure molding method. Especially for sports equipment, the sheet winding method or the internal pressure molding method is preferable. Adopted.

シートワインディング法は、マンドレルにプリプレグを巻いて円筒状物を成形する方法であり、ゴルフシャフトや釣竿などの棒状体を作成する際に好適である。具体的には、マンドレルにプリプレグを巻き付け、プリプレグがマンドレルから剥離しないように固定したり、または、プリプレグに成形圧力を不溶するために、プリプレグの外側にテープ状の熱可塑性樹脂フィルム(ラッピングテープ)を巻き付け、オーブンで樹脂を加熱硬化させた後に、芯金を抜き取って円筒状成形物を得る方法である。   The sheet winding method is a method of forming a cylindrical object by winding a prepreg around a mandrel, and is suitable for producing a rod-shaped body such as a golf shaft or a fishing rod. Specifically, a prepreg is wound around a mandrel and fixed so that the prepreg does not peel off from the mandrel, or a tape-like thermoplastic resin film (wrapping tape) is provided on the outside of the prepreg in order to make the molding pressure insoluble. Is wound and the resin is heated and cured in an oven, and then the core metal is removed to obtain a cylindrical molded product.

内圧成形法は、熱可塑性樹脂よりなる内圧付与体の外側にプリプレグを巻き付けたプリフォームを金型内にセットし、内圧付与体に高圧空気を導入して加圧し、同時に金型を加熱することにより繊維強化複合材料を成形する方法である。この内圧成形法は、特殊形状のゴルフシャフトやバット、特にテニスやバトミントンなどのラケットのような複雑な形状を成形する際に好適に用いられる。   In the internal pressure molding method, a preform in which a prepreg is wound around an internal pressure applying body made of a thermoplastic resin is set in a mold, high pressure air is introduced into the internal pressure applying body, and the mold is heated at the same time. This is a method for forming a fiber-reinforced composite material. This internal pressure molding method is suitably used when molding a complicated shape such as a specially shaped golf shaft or bat, particularly a racket such as tennis or badminton.

以下、本発明を実施例によりさらに具体的に説明する。なお、実施例中の評価方法は以下に示す通りである。表1、表2、表3、表4、表5、および表6に各実施例の樹脂組成、樹脂組成物特性、プリプレグ特性、繊維強化複合材料特性をまとめて示す。   Hereinafter, the present invention will be described more specifically with reference to examples. In addition, the evaluation method in an Example is as showing below. Table 1, Table 2, Table 3, Table 4, Table 5, and Table 6 collectively show the resin composition, resin composition characteristics, prepreg characteristics, and fiber reinforced composite material characteristics of each example.

A.樹脂硬化物の圧縮試験
エポキシ樹脂組成物を80℃に加熱して真空ポンプにて脱泡後、モールドに注入し、130℃で90分間、加熱処理することにより、厚さ6±0.2mmの樹脂硬化物の板を作製した。ついで、樹脂硬化物の板から一辺の長さが6±0.2mmの立方対の試験片を切り出し、試験速度1±0.2mm/分で、他の条件はJISK7181に準じた条件により圧縮弾性率、圧縮降伏応力、および圧縮破壊時呼び歪みを測定した。試験数はn=6とし、平均値をそれぞれ圧縮弾性率、圧縮降伏応力、および圧縮破壊時呼び歪みとした。
A. Compression test of cured resin The epoxy resin composition was heated to 80 ° C., defoamed with a vacuum pump, poured into a mold, and heat-treated at 130 ° C. for 90 minutes to obtain a thickness of 6 ± 0.2 mm. A cured resin plate was prepared. Next, a cube-pair test piece having a side length of 6 ± 0.2 mm was cut out from the cured resin plate, the test speed was 1 ± 0.2 mm / min, and the other conditions were compression elastic according to the conditions according to JISK7181. Rate, compressive yield stress, and nominal strain at compressive failure were measured. The number of tests was n = 6, and the average values were compression elastic modulus, compression yield stress, and nominal strain at the time of compression fracture, respectively.


B.ガラス転移温度(Tg)
A.で作製した樹脂硬化物を用い、JIS K7121に従い、示差走査熱量計(DSC)によりガラス転移温度測定を行った。容量50μlの密閉型サンプル容器に5〜20mgの試料を詰め、昇温速度40℃/分で30〜200℃まで昇温し、測定した。尚、ここでは、測定装置としてPerkinElmer社製Pyris1DSCを使用した。

B. Glass transition temperature (Tg)
A. The glass transition temperature was measured with a differential scanning calorimeter (DSC) in accordance with JIS K7121 using the cured resin produced in 1. A sealed sample container having a capacity of 50 μl was packed with 5 to 20 mg of sample, heated to 30 to 200 ° C. at a heating rate of 40 ° C./min, and measured. In this case, Pyris1DSC manufactured by PerkinElmer was used as a measuring device.

具体的には、得られたDSC曲線の階段状変化を示す部分において、各ベースラインの延長した直線から縦軸方向に等距離にある直線と、ガラス転移の階段状変化部分の曲線とが交わる点の温度をガラス転移温度とした。   Specifically, in the portion showing the step change of the obtained DSC curve, the straight line equidistant from the extended straight line of each baseline in the vertical axis direction and the curve of the step change portion of the glass transition intersect. The temperature at the point was taken as the glass transition temperature.

C.プリプレグの作製
a.バイアス材の作製
エポキシ樹脂組成物を、リバースロールコーターを用いて離型紙状に塗布して樹脂フィルムを作製した。次に、一方向に配列させた引張弾性率392GPaの炭素繊維“トレカ(登録商標)M40SC−12K(東レ(株)社製)の両側面に樹脂フィルムを重ね、加熱加圧(130℃、0.4MPa)することによって、樹脂を含浸させ、プリプレグの単位面積あたりの繊維重量が100g/m、繊維重量含有率が76%の一方向プリプレグaを作製した。
b.ストレート材の作製
エポキシ樹脂組成物を、リバースロールコーターを用いて離型紙状に塗布して樹脂フィルムを作製した。次に、一方向に配列させた引張弾性率294GPaの炭素繊維トレカ(登録商標)T800H−12K(東レ(株)社製)の両側面に樹脂フィルムを重ね、加熱加圧(130℃、0.4MPa)することによって、樹脂を含浸させ、プリプレグの目付が116g/m、繊維重量含有率が76%の一方向プリプレグbを作製した。
C. Preparation of prepreg a. Production of Bias Material The epoxy resin composition was applied to a release paper using a reverse roll coater to produce a resin film. Next, resin films are stacked on both sides of carbon fiber “Treca (registered trademark) M40SC-12K (manufactured by Toray Industries, Inc.)” having a tensile elastic modulus of 392 GPa arranged in one direction, and heated and pressurized (130 ° C., 0 4 MPa), the resin was impregnated to produce a unidirectional prepreg a having a fiber weight per unit area of 100 g / m 2 and a fiber weight content of 76%.
b. Production of Straight Material An epoxy resin composition was applied to a release paper using a reverse roll coater to produce a resin film. Next, a resin film is laminated on both sides of a carbon fiber trading card (registered trademark) T800H-12K (manufactured by Toray Industries, Inc.) having a tensile elastic modulus of 294 GPa arranged in one direction, and heated and pressurized (130 ° C., 0. 4 MPa), the resin was impregnated to prepare a unidirectional prepreg b having a basis weight of 116 g / m 2 and a fiber weight content of 76%.

D.含浸性
できあがったプリプレグの含浸性を目視および触感で4段階評価した。表には極めて良好を○○、良好を○、若干未含浸部があったものを△、含浸不良を×で表した。
D. Impregnation property The impregnation property of the finished prepreg was evaluated on a four-point scale by visual and tactile sensation. In the table, “Excellent” is indicated by “Good”, “Good” is indicated by “Good”, “Slightly unimpregnated part” is indicated by “△”, and Impregnation failure is indicated by “X”.

E.円筒状繊維強化複合材料の作製
下記(a)〜(e)の操作により、円筒軸方向に対して[0/±45]の積層構成を有し、内径が10mmの円筒状繊維強化複合材料を作製した。マンドレルには直径10mm(いずれも長さ1000mm)のステンレス製丸棒を使用した。
(a)一方向プリプレグaを繊維の方向がマンドレルの軸方向に対して45度になるように、縦800mm×横103mmの長方形に2枚切り出した。この2枚の離型フィルムを剥いだ直後に繊維方向が互いに交差するように、かつ横方向に16mm(マンドレル半周分に対応)ずらして貼り合わせた。
(b)貼り合わせたプリプレグ(バイアス材)の離型紙をはぎ取り、離型処理したマンドレルに、プリプレグの縦方向とマンドレルの軸方向が一致するように巻き付けた。
(c)その上に、プリプレグb(ストレート材)を繊維の方向が縦方向になるように、縦800mm×横112mmの長方形に切り出したものをプリプレグの縦方向とマンドレルの軸方向が一致するように巻き付けた。
(d)ラッピングテープ(耐熱性フィルムテープ)を巻きつけ、硬化炉中で130℃、2時間加熱成形した。
(e)成形後、マンドレルを抜き取り、ラッピングテープを除去して円筒状繊維強化複合材料を得た。
E. Production of Cylindrical Fiber Reinforced Composite Material A cylindrical fiber reinforced composite having a laminated configuration of [0 3 / ± 45 3 ] in the cylindrical axis direction and an inner diameter of 10 mm by the following operations (a) to (e). The material was made. A stainless steel round bar having a diameter of 10 mm (both 1000 mm in length) was used for the mandrel.
(A) Two unidirectional prepregs a were cut into a rectangle of 800 mm in length and 103 mm in width so that the fiber direction was 45 degrees with respect to the axial direction of the mandrel. Immediately after the two release films were peeled, they were bonded so that the fiber directions intersected each other and shifted by 16 mm in the lateral direction (corresponding to the half circumference of the mandrel).
(B) The release paper of the bonded prepreg (bias material) was peeled off and wound around the release mandrel so that the longitudinal direction of the prepreg and the axial direction of the mandrel coincided.
(C) On top of that, a prepreg b (straight material) cut into a rectangle of length 800 mm × width 112 mm so that the fiber direction is in the vertical direction so that the vertical direction of the prepreg and the axial direction of the mandrel coincide. Wound around.
(D) Wrapping tape (heat-resistant film tape) was wound, and heat-molded in a curing furnace at 130 ° C. for 2 hours.
(E) After molding, the mandrel was extracted and the wrapping tape was removed to obtain a cylindrical fiber reinforced composite material.

F.円筒成形性の評価
E.で貼り合わせたプリプレグ(バイアス材)の離型紙をはぎ取り、離型処理したマンドレルに、プリプレグの縦方向とマンドレルの軸方向が一致するように巻き付けた時の触感から3段階評価した。極めて良好を○○、良好を○、若干、巻き付け難いを△で表した。
F. Evaluation of cylindrical formability E. The release paper of the prepreg (bias material) that was bonded together was peeled off, and the three-stage evaluation was made based on the tactile sensation when the longitudinal direction of the prepreg and the axial direction of the mandrel were wound around the release mandrel. Extremely good is indicated by ◯, good is indicated by 、, slightly wound, and difficult to wind by △.

プリプレグ表面から離型フィルムを剥いだ直後に貼り合わせた場合と、フィルムを剥いだ後に、温度23℃、湿度50%RHの雰囲気下で1日放置したプリプレグを貼り合わせた場合について行った。   This was performed for the case where the prepreg was pasted immediately after the release film was peeled off from the surface of the prepreg, and the case where the prepreg which was left for 1 day in an atmosphere of 23 ° C. and 50% humidity after the film was pasted.

G.円筒繊維強化複合材料のねじり強さの測定
内径10mmの円筒状繊維強化複合材料から長さ400mmの試験片を切り出し、「ゴルフクラブ用シャフトの認定基準及び基準確認方法」(製品安全協会編、通商産業大臣承認5産第2087号、1993年)に記載の方法に従い、ねじり試験を行った。試験片ゲージ長は300mmとし、試験片両端の50mmを固定治具で把持した。ねじり強さは次式により求めた。
G. Measurement of Torsional Strength of Cylindrical Fiber Reinforced Composite Material A 400 mm long test piece was cut out from a cylindrical fiber reinforced composite material with an inner diameter of 10 mm, “Golf Club Shaft Certification Criteria and Standard Confirmation Method” (Product Safety Association, Trade) The torsion test was conducted according to the method described in the Minister of Industry 5th No. 2087 (1993). The test piece gauge length was 300 mm, and 50 mm at both ends of the test piece was held with a fixing jig. The torsional strength was obtained by the following formula.

ねじり強さ(N・m・deg)=破壊トルク(N・m)×破壊時のねじれ角(deg)
(実施例1)
表1に示す配合比で各原料を混合しエポキシ樹脂組成物を作製した。得られた樹脂組成物の圧縮弾性率は2.73GPa、圧縮降伏応力130.3MPa、圧縮破壊呼び歪み60.0%、耐熱性114℃と優れた樹脂組成物が得られた。かかるエポキシ樹脂組成物を用いて前記方法によりプリプレグおよび円筒状繊維強化複合材料を作製した。得られたプリプレグは表1に示す通り、含浸性にも円筒成形性にも優れたものであった。また、円筒状繊維強化複合材料のねじり強さも2570N・m・degと高いものが得られた。
Torsional strength (N · m · deg) = Breaking torque (N · m) × Torsion angle at break (deg)
Example 1
Each raw material was mixed by the compounding ratio shown in Table 1, and the epoxy resin composition was produced. The resulting resin composition had an excellent resin composition with a compression modulus of 2.73 GPa, a compressive yield stress of 130.3 MPa, a compressive fracture nominal strain of 60.0%, and a heat resistance of 114 ° C. Using such an epoxy resin composition, a prepreg and a cylindrical fiber reinforced composite material were produced by the above-described method. As shown in Table 1, the obtained prepreg was excellent in impregnation property and cylindrical formability. In addition, the torsional strength of the cylindrical fiber reinforced composite material was as high as 2570 N · m · deg.

(実施例2〜5)
表1に示す通り、構成要素[C]の配合量を変更した以外は実施例1と同様の方法で、エポキシ樹脂組成物、プリプレグ、円筒状繊維強化複合材料を作製した。得られたエポキシ樹脂組成物の圧縮弾性率、圧縮降伏応力、圧縮破壊呼び歪み、プリプレグの含浸性、円筒成形性、円筒状繊維強化複合材料のねじり強さはいずれも優れたものであった。一方、構成要素[C]が多いと、耐熱性がやや低下する傾向あった。
(Examples 2 to 5)
As shown in Table 1, an epoxy resin composition, a prepreg, and a cylindrical fiber reinforced composite material were produced in the same manner as in Example 1 except that the amount of component [C] was changed. The resulting epoxy resin composition had excellent compressive modulus, compressive yield stress, compressive fracture nominal strain, prepreg impregnation property, cylindrical moldability, and torsional strength of the cylindrical fiber reinforced composite material. On the other hand, when the constituent element [C] is large, the heat resistance tends to be slightly lowered.

(比較例1)
表1に示す通り、構成要素[C]を配合しなかった以外は、実施例1と同様の方法によりエポキシ樹脂組成物、プリプレグ、円筒状繊維強化複合材料を作製した。得られたエポキシ樹脂組成物の樹脂圧縮弾性率は2.58MPa、圧縮降伏応力127.4MPaと低いものであった。また、プリプレグの含浸性に若干、未含浸部があり、円筒状強化繊維複合材料のねじり強さは2450N・m・degと実施例に比べて低いものであった。
(Comparative Example 1)
As shown in Table 1, an epoxy resin composition, a prepreg, and a cylindrical fiber reinforced composite material were produced in the same manner as in Example 1 except that the component [C] was not blended. The resulting epoxy resin composition had a low resin compression modulus of 2.58 MPa and a compression yield stress of 127.4 MPa. Moreover, the impregnation property of the prepreg was slightly unimpregnated, and the torsional strength of the cylindrical reinforcing fiber composite material was 2450 N · m · deg, which was lower than in the examples.

Figure 0004687167
Figure 0004687167

(実施例6)
表2に示す通り、構成要素[C]をGANからデナコールEx146へと、硬化剤もしくはエポキシ樹脂と反応する箇所が1つの芳香環を有する反応性化合物に変更した以外は、実施例3と同様の方法によりエポキシ樹脂組成物、プリプレグ、円筒状繊維強化複合材料を作製した。得られたエポキシ樹脂組成物の耐熱性は105℃、と、実施例3に比べるとやや劣るが樹脂圧縮弾性率、圧縮降伏応力、圧縮破壊呼び歪みは優れたものであった。プリプレグの含浸性、円筒成形性や円筒状繊維強化複合材料のねじり強さも優れたものであった。
(Example 6)
As shown in Table 2, the constituent element [C] was changed from GAN to Denacol Ex146, except that the part that reacts with the curing agent or the epoxy resin was changed to a reactive compound having one aromatic ring. An epoxy resin composition, a prepreg, and a cylindrical fiber reinforced composite material were produced by the method. The heat resistance of the obtained epoxy resin composition was 105 ° C., which was slightly inferior to that of Example 3, but the resin compressive modulus, compressive yield stress, and compressive fracture nominal strain were excellent. The impregnation property of the prepreg, the cylindrical formability, and the torsional strength of the cylindrical fiber reinforced composite material were also excellent.

(実施例7)
表2に示す通り、構成要素[C]をGANからAK601へと、芳香環を有さない反応性化合物に変更した以外は、実施例3と同様の方法によりエポキシ樹脂組成物、プリプレグ、円筒状繊維強化複合材料を作製した。得られたエポキシ樹脂組成物の耐熱性は109℃、と、実施例3に比べるとやや劣るが樹脂圧縮弾性率、圧縮降伏応力、圧縮破壊呼び歪みは優れたものであった。プリプレグの含浸性、円筒成形性や円筒状繊維強化複合材料のねじり強さも優れたものであった。
(Example 7)
As shown in Table 2, the epoxy resin composition, prepreg, and cylindrical shape were produced in the same manner as in Example 3 except that the constituent element [C] was changed from GAN to AK601 and a reactive compound having no aromatic ring. A fiber reinforced composite material was prepared. The obtained epoxy resin composition had a heat resistance of 109 ° C., which was slightly inferior to that of Example 3. However, the resin compressive modulus, compressive yield stress, and compressive fracture nominal strain were excellent. The impregnation property of the prepreg, the cylindrical formability, and the torsional strength of the cylindrical fiber reinforced composite material were also excellent.

(実施例8)
表2に示す通り、構成要素[C]をGANから、アニリンへと硬化剤として配合した以外は、実施例3と同様の方法によりエポキシ樹脂組成物、プリプレグ、円筒状繊維強化複合材料を作製した。得られたエポキシ樹脂組成物の耐熱性、樹脂圧縮弾性率、圧縮降伏応力、圧縮破壊呼び歪みに優れたものであった。プリプレグの含浸性、円筒成形性や円筒状繊維強化複合材料のねじり強さも優れたものであった。
(Example 8)
As shown in Table 2, an epoxy resin composition, a prepreg, and a cylindrical fiber reinforced composite material were produced in the same manner as in Example 3 except that the component [C] was blended from GAN into aniline as a curing agent. . The obtained epoxy resin composition was excellent in heat resistance, resin compressive elastic modulus, compressive yield stress, and compressive fracture nominal strain. The impregnation property of the prepreg, the cylindrical formability, and the torsional strength of the cylindrical fiber reinforced composite material were also excellent.

(実施例9)
表2に示す通り、構成要素[C]をGANから、エピコート630へと、硬化剤もしくはエポキシ樹脂と反応する箇所が3つの芳香環を有する反応性化合物に変更した以外は、実施例3と同様の方法によりエポキシ樹脂組成物、プリプレグ、円筒状繊維強化複合材料を作製した。得られたエポキシ樹脂組成物の圧縮破壊歪みが59.2%と、実施例3に比べるとやや劣るが耐熱性、樹脂圧縮弾性率、圧縮降伏応力は優れたものであった。プリプレグの含浸性、円筒成形性や円筒状繊維強化複合材料のねじり強さも実施例3に比べるとやや劣るものの優れたものであった。
Example 9
As shown in Table 2, the constituent element [C] was changed from GAN to Epicoat 630, except that the part that reacts with the curing agent or epoxy resin was changed to a reactive compound having three aromatic rings. An epoxy resin composition, a prepreg, and a cylindrical fiber reinforced composite material were prepared by the above method. The resulting epoxy resin composition had a compression fracture strain of 59.2%, which was slightly inferior to that of Example 3, but was excellent in heat resistance, resin compression modulus, and compression yield stress. The impregnation property of the prepreg, the cylindrical formability, and the torsional strength of the cylindrical fiber reinforced composite material were also excellent, although somewhat inferior to those of Example 3.

(比較例2)
表2に示す通り、構成要素[C]をGANから、DMAAへと、環状骨格を有さない反応性化合物に変更した以外は、実施例3と同様の方法によりエポキシ樹脂組成物、プリプレグ、円筒状繊維強化複合材料を作製した。得られたエポキシ樹脂組成物の耐熱性は99℃と低いものであった。
(Comparative Example 2)
As shown in Table 2, the epoxy resin composition, the prepreg, and the cylinder were formed in the same manner as in Example 3 except that the constituent element [C] was changed from GAN to DMAA to a reactive compound having no cyclic skeleton. A fiber reinforced composite material was prepared. The resulting epoxy resin composition had a heat resistance as low as 99 ° C.

(比較例3)
表2に示す通り、構成要素[C]をGANから、デナコールEx711へと、固体の反応性化合物に変更した以外は、実施例3と同様の方法によりエポキシ樹脂組成物、プリプレグ、円筒状繊維強化複合材料を作製した。得られたプリプレグは含浸不良であり、ねじり強さも2480N・m・degと低いものであった。
(Comparative Example 3)
As shown in Table 2, the epoxy resin composition, prepreg, and cylindrical fiber reinforcement were prepared in the same manner as in Example 3 except that the component [C] was changed from GAN to Denacol Ex711 to a solid reactive compound. A composite material was prepared. The obtained prepreg was poorly impregnated and had a low torsional strength of 2480 N · m · deg.

Figure 0004687167
Figure 0004687167

(実施例10〜14)
表3に示す通り、構成要素[A]に含むエピクロンHP7200Lの配合量を変更した以外は実施例3と同様の方法で、エポキシ樹脂組成物、プリプレグ、円筒状繊維強化複合材料を作製した。配合量が増えるに従い、耐熱性、圧縮降伏応力、圧縮破壊呼び歪みが向上し、得られたエポキシ樹脂組成物の耐熱性、圧縮弾性率、圧縮降伏応力、圧縮破壊呼び歪み、プリプレグの含浸性、円筒成形性、円筒状繊維強化複合材料のねじり強さはいずれも優れたものであった。構成要素[A]に含むHP7200Lの配合比が多いと、円筒の成形性がやや低下する傾向であった。
(Examples 10 to 14)
As shown in Table 3, an epoxy resin composition, a prepreg, and a cylindrical fiber reinforced composite material were produced in the same manner as in Example 3 except that the blending amount of Epicron HP7200L included in the component [A] was changed. As the compounding amount increases, the heat resistance, compressive yield stress, and compressive fracture nominal strain improve, and the resulting epoxy resin composition has heat resistance, compression modulus, compressive yield stress, compressive fracture nominal strain, prepreg impregnation, Both the cylindrical formability and the torsional strength of the cylindrical fiber-reinforced composite material were excellent. When the blending ratio of HP7200L included in the component [A] is large, the formability of the cylinder tends to be slightly lowered.

(比較例4)
表3に示す通り、構成要素[A]に含むエピクロンHP7200LをビスフェノールA型液状エポキシ樹脂エピコート828に全て変更した以外は実施例3と同様の方法で、エポキシ樹脂組成物、プリプレグ、円筒状繊維強化複合材料を作製した。耐熱性、圧縮降伏応力、圧縮破壊呼び歪みが低下し、円筒状繊維強化複合材料のねじり強さは低いものであった。
(Comparative Example 4)
As shown in Table 3, the epoxy resin composition, the prepreg, and the cylindrical fiber reinforced were the same as in Example 3 except that the epiclone HP7200L contained in the component [A] was all changed to the bisphenol A type liquid epoxy resin epicoat 828. A composite material was prepared. The heat resistance, compressive yield stress, and compressive fracture nominal strain were reduced, and the torsional strength of the cylindrical fiber reinforced composite material was low.

Figure 0004687167
Figure 0004687167

(実施例15)
表4に示す通り、構成要素[A]に含まれるジシクロペンタジエン骨格を有するエピクロンHP7200Lを、ビフェニル骨格を有するNC3000に変更した以外は、実施例12と同様の方法によりエポキシ樹脂組成物、プリプレグ、円筒状繊維強化複合材料を作製した。得られたエポキシ樹脂組成物は、耐熱性が114℃と実施例12に比べるとやや劣るが、樹脂圧縮弾性率、圧縮降伏応力、圧縮破壊呼び歪みのいずれも優れたものであった。プリプレグの含浸性、円筒成形性や円筒状繊維強化複合材料のねじり強さも優れたものであった。
(Example 15)
As shown in Table 4, the epoxy resin composition, the prepreg, and the epoxy resin composition were prepared in the same manner as in Example 12 except that the epiclone HP7200L having a dicyclopentadiene skeleton contained in the component [A] was changed to NC3000 having a biphenyl skeleton. A cylindrical fiber reinforced composite material was prepared. The obtained epoxy resin composition had a heat resistance of 114 ° C., which was slightly inferior to that of Example 12, but was excellent in all of the resin compression modulus, compression yield stress, and compression fracture nominal strain. The impregnation property of the prepreg, the cylindrical formability, and the torsional strength of the cylindrical fiber reinforced composite material were also excellent.

(実施例16)
表4に示す通り、構成要素[A]に含まれるジシクロペンタジエン骨格を有するエピクロンHP7200Lを、ナフタレン骨格を有するエピクロンEXA4700に変更した以外は、実施例12と同様の方法によりエポキシ樹脂組成物、プリプレグ、円筒状繊維強化複合材料を作製した。得られたエポキシ樹脂組成物は、圧縮破壊歪みが58.7%と実施例12に比べるとやや劣るが、耐熱性、樹脂圧縮弾性率、圧縮降伏応力はいずれも優れたものであった。プリプレグの含浸性、円筒成形性や円筒状繊維強化複合材料のねじり強さも実施例12に比べるとやや劣るが十分なものであった。
(Example 16)
As shown in Table 4, the epoxy resin composition and the prepreg were prepared in the same manner as in Example 12, except that the epiclone HP7200L having a dicyclopentadiene skeleton contained in the component [A] was changed to epiclone EXA4700 having a naphthalene skeleton. A cylindrical fiber reinforced composite material was prepared. The obtained epoxy resin composition had a compressive fracture strain of 58.7%, which is slightly inferior to that of Example 12, but was excellent in heat resistance, resin compression modulus, and compression yield stress. The impregnation property of the prepreg, the cylindrical moldability, and the torsional strength of the cylindrical fiber reinforced composite material were slightly inferior to those of Example 12, but sufficient.

(実施例17)
表4に示す通り、構成要素[A]に含まれるジシクロペンタジエン骨格を有するエピクロンHP7200Lを、フルオレン骨格を有するオグソールPGに変更した以外は、実施例12と同様の方法によりエポキシ樹脂組成物、プリプレグ、円筒状繊維強化複合材料を作製した。得られたエポキシ樹脂組成物は、圧縮破壊歪みが58.4%と実施例12に比べるとやや劣るが、耐熱性、樹脂圧縮弾性率、圧縮降伏応力はいずれも優れたものであった。プリプレグの含浸性、円筒成形性や円筒状繊維強化複合材料のねじり強さも実施例12に比べるとやや劣るが十分なものであった。
(Example 17)
As shown in Table 4, the epoxy resin composition and the prepreg were prepared in the same manner as in Example 12 except that epiclone HP7200L having a dicyclopentadiene skeleton contained in the component [A] was changed to ogsol PG having a fluorene skeleton. A cylindrical fiber reinforced composite material was prepared. The obtained epoxy resin composition had a compressive fracture strain of 58.4%, which is slightly inferior to that of Example 12, but was excellent in heat resistance, resin compression modulus, and compression yield stress. The impregnation property of the prepreg, the cylindrical moldability, and the torsional strength of the cylindrical fiber reinforced composite material were slightly inferior to those of Example 12, but sufficient.

(実施例18)
表4に示す通り、構成要素[A]に含まれるジシクロペンタジエン骨格を有するエピクロンHP7200Lを、オキサゾリドン環骨格を有するアラルダイトAER4152に変更した以外は、実施例12と同様の方法によりエポキシ樹脂組成物、プリプレグ、円筒状繊維強化複合材料を作製した。得られたエポキシ樹脂組成物は、圧縮弾性率が2.98MPaと実施例12に比べるとやや劣るが、耐熱性、圧縮降伏応力、圧縮破壊呼び歪みはいずれも優れたものであった。プリプレグの含浸性、円筒成形性や円筒状繊維強化複合材料のねじり強さも実施例12に比べるとやや劣るが十分なものであった。
(Example 18)
As shown in Table 4, the epoxy resin composition was prepared in the same manner as in Example 12, except that epiclone HP7200L having a dicyclopentadiene skeleton contained in the component [A] was changed to araldite AER4152 having an oxazolidone ring skeleton. A prepreg and a cylindrical fiber reinforced composite material were prepared. The obtained epoxy resin composition had a compression modulus of 2.98 MPa, which was slightly inferior to that of Example 12, but was excellent in heat resistance, compression yield stress, and compression fracture nominal strain. The impregnation property of the prepreg, the cylindrical moldability, and the torsional strength of the cylindrical fiber reinforced composite material were slightly inferior to those of Example 12, but sufficient.

Figure 0004687167
Figure 0004687167

(実施例19)
表5に示す通り、構成要素[A]のエポキシ樹脂のうち、平均エポキシ当量が925のエピコート1004を平均エポキシ当量が1950のエピコート1007に5部置き換えた以外は実施例12と同様の方法で、エポキシ樹脂組成物、プリプレグ、円筒状繊維強化複合材料を作製した。得られたエポキシ樹脂組成物の樹脂圧縮破壊呼び歪み64.1%とより優れたものであった。プリプレグの含浸性も優れたものであり、円筒成形については1日放置後の円筒成形性がより優れたものになった。1日放置後の、円筒状繊維強化複合材料のねじり強さも2870N・m・degとより優れたものであった。
(実施例20〜24)
表5に示す通り、構成要素[A]のエポキシ樹脂のうち、平均エポキシ当量が1950であるEp1007の配合比を変更した以外は実施例12と同様の方法で、エポキシ樹脂組成物、プリプレグ、円筒状繊維強化複合材料を作製した。得られたエポキシ樹脂組成物の樹脂圧縮破壊呼び歪みは65.0〜66.8%とより優れたものであった。プリプレグの含浸性、円筒成形性に優れ、円筒状繊維強化複合材料のねじり強さ2910〜3020N・m・degとより優れたものであった。一方、配合比が大きくなると含浸性、円筒成形がやや劣る傾向にあった。
(Example 19)
As shown in Table 5, among the epoxy resins of the component [A], in the same manner as in Example 12, except that 5 parts of Epicoat 1004 having an average epoxy equivalent of 925 was replaced with Epicoat 1007 having an average epoxy equivalent of 1950, An epoxy resin composition, a prepreg, and a cylindrical fiber reinforced composite material were produced. The resulting epoxy resin composition was more excellent at a resin compression fracture nominal strain of 64.1%. The impregnation property of the prepreg was also excellent, and the cylindrical moldability after standing for 1 day was more excellent for the cylindrical molding. The torsional strength of the cylindrical fiber reinforced composite material after standing for 1 day was 2870 N · m · deg, which was more excellent.
(Examples 20 to 24)
As shown in Table 5, the epoxy resin composition, the prepreg, and the cylinder were the same as in Example 12 except that the blending ratio of Ep1007 having an average epoxy equivalent of 1950 was changed among the epoxy resins of the component [A]. A fiber reinforced composite material was prepared. The resulting epoxy resin composition had a resin compressive fracture nominal strain of 65.0 to 66.8%, which was more excellent. The impregnation property and cylindrical formability of the prepreg were excellent, and the torsional strength of the cylindrical fiber-reinforced composite material was 2910 to 3020 N · m · deg, which was more excellent. On the other hand, when the compounding ratio is increased, the impregnation property and the cylindrical molding tend to be slightly inferior.

Figure 0004687167
Figure 0004687167

(実施例25)
表6に示す通り、構成要素[A]のエポキシ樹脂のうち、エピコート1007をエポキシ当量1290であるエピコート1005Hのエポキシ樹脂に変更した以外は、実施例21と同様の方法で、エポキシ樹脂組成物、プリプレグ、円筒状繊維強化複合材料を作製した。得られたエポキシ樹脂組成物の圧縮破壊呼び歪みは64.7とやや劣るが、耐熱性、圧縮弾性率、圧縮降伏応力は優れたものであった。またプリプレグの含浸性、円筒成形性も優れたものであった。円筒状繊維強化複合材料のねじり強さは2860N・m・degとやや劣るものが優れたものであった。
(Example 25)
As shown in Table 6, among the epoxy resins of the component [A], except that Epicoat 1007 was changed to an Epicoat 1005H epoxy resin having an epoxy equivalent of 1290, an epoxy resin composition, A prepreg and a cylindrical fiber reinforced composite material were prepared. The resulting epoxy resin composition had a compressive fracture nominal strain of 64.7, which was slightly inferior, but was excellent in heat resistance, compression modulus, and compression yield stress. Moreover, the impregnation property and cylindrical moldability of the prepreg were also excellent. The torsional strength of the cylindrical fiber reinforced composite material was excellent, although it was slightly inferior to 2860 N · m · deg.

(実施例26〜28)
表6に示す通り、構成要素[A]のエポキシ樹脂のうち、エピコート1007をエポキシ当量のより大きいエポキシ樹脂に変更した以外は、実施例21と同様の方法で、エポキシ樹脂組成物、プリプレグ、円筒状繊維強化複合材料を作製した。得られたエポキシ樹脂組成物の圧縮破壊呼び歪みは66.7〜67.7%とより優れるものであった。またプリプレグの含浸性、円筒成形性も優れ、円筒状繊維強化複合材料のねじり強さは3060〜3080N・m・degと優れたものであった。一方、平均エポキシ当量が大きくなると、プリプレグの含浸性、円筒成形性がやや劣る傾向にあった。
(Examples 26 to 28)
As shown in Table 6, the epoxy resin composition, the prepreg, and the cylinder were the same as in Example 21 except that Epicoat 1007 was changed to an epoxy resin having a higher epoxy equivalent among the epoxy resins of the component [A]. A fiber reinforced composite material was prepared. The compressive fracture nominal strain of the obtained epoxy resin composition was 66.7 to 67.7%, which was more excellent. Further, the impregnation property and cylindrical formability of the prepreg were excellent, and the torsional strength of the cylindrical fiber reinforced composite material was excellent at 3060-3080 N · m · deg. On the other hand, when the average epoxy equivalent was increased, the prepreg impregnation property and the cylindrical moldability tended to be slightly inferior.

(実施例29)
表6に示す通り、構成要素[A]のエポキシ樹脂のうち、ビスフェノールA型エポキシ樹脂のエピコート1007をビスフェノールF型エポキシ樹脂のエピコート4004Pに変更した以外は、実施例21と同様の方法で、エポキシ樹脂組成物、プリプレグ、円筒状繊維強化複合材料を作製した。得られたエポキシ樹脂組成物の圧縮破壊呼び歪みは61.2%と優れるものであった。またプリプレグの含浸性、円筒成形性も優れ、円筒状繊維強化複合材料のねじり強さは2850N・m・degと優れたものであった。ただし、ビスフェノールF型エポキシ樹脂の使用によりTgが低下し、耐熱性にやや劣る傾向にあった。
(Example 29)
As shown in Table 6, among the epoxy resins of the component [A], the epoxy resin 100 was replaced with the bisphenol F epoxy resin Epicoat 1004P by the same method as in Example 21 except that the epoxy coating 1004P was changed to the epoxy resin. A resin composition, a prepreg, and a cylindrical fiber reinforced composite material were produced. The resulting epoxy resin composition had an excellent compressive fracture nominal strain of 61.2%. The impregnation property and cylindrical formability of the prepreg were also excellent, and the torsional strength of the cylindrical fiber-reinforced composite material was excellent at 2850 N · m · deg. However, the Tg decreased due to the use of the bisphenol F type epoxy resin, and the heat resistance tended to be slightly inferior.

(実施例30〜31)
表6に示す通り、配合する熱可塑性樹脂をビニレックKから、ビニレックKとマイクロスフェアーMの併用、あるいはマイクロスフェアーMに変更した以外は、実施例21と同様の方法で、エポキシ樹脂組成物、プリプレグ、円筒状繊維強化複合材料を作製した。得られたエポキシ樹脂組成物の圧縮破壊呼び歪みは66.6、65.8%と優れるものであった。またプリプレグの含浸性、円筒成形性も優れ、円筒状繊維強化複合材料のねじり強さは3010、2970N・m・degと優れたものであった。
(Examples 30 to 31)
As shown in Table 6, the epoxy resin composition was prepared in the same manner as in Example 21 except that the thermoplastic resin to be blended was changed from Vinylec K to the combined use of Vinylec K and Microsphere M, or to Microsphere M. A prepreg and a cylindrical fiber reinforced composite material were prepared. The resulting epoxy resin composition had excellent compressive fracture nominal strains of 66.6 and 65.8%. The impregnation property and cylindrical formability of the prepreg were also excellent, and the torsional strength of the cylindrical fiber reinforced composite material was excellent at 3010 and 2970 N · m · deg.

Figure 0004687167
Figure 0004687167

Claims (9)

次の構成要素[A]、[B]、[C]を含むエポキシ樹脂組成物であって、構成要素[A]が[A1]ビフェニル、ナフタレン、フルオレン、ジシクロペンタジエン、およびオキサゾリドン環から選ばれる少なくとも1つの骨格を有する1種以上のエポキシ樹脂を含み、構成要素[C]が構成要素[A]100重量部に対して、3〜35重量部含まれるエポキシ樹脂組成物。
[A]エポキシ樹脂
[B]硬化剤
[C]p−tert−ブチルフェニルグリシジルエーテル、ヘキサヒドロフタル酸ジグリシジルエステル、ジグリシジルアニリン、p−アミノフェノール型液状エポキシ化合物、およびアニリンからなる群から選ばれる少なくとも1種以上の反応性化合物
An epoxy resin composition comprising the following constituent elements [A], [B], and [C], wherein the constituent element [A] is selected from [A1] biphenyl, naphthalene, fluorene, dicyclopentadiene, and an oxazolidone ring look containing one or more epoxy resins having at least one skeleton component [C] is a component [a] with respect to 100 parts by weight of an epoxy resin composition that contains 3 to 35 parts by weight.
[A] Epoxy resin [B] Curing agent [C] p-tert-butylphenylglycidyl ether, hexahydrophthalic acid diglycidyl ester, diglycidylaniline, p-aminophenol type liquid epoxy compound, and aniline At least one reactive compound
構成要素[A]100重量%中、[A1]ビフェニル、ナフタレン、フルオレン、ジシクロペンタジエン、およびオキサゾリドン環から選ばれる少なくとも1つの骨格を有する1種以上のエポキシ樹脂が5〜50重量%含まれる、請求項1に記載のエポキシ樹脂組成物。 In 100% by weight of component [A], [A1] 5 to 50% by weight of at least one epoxy resin having at least one skeleton selected from biphenyl, naphthalene, fluorene, dicyclopentadiene, and oxazolidone ring is included , The epoxy resin composition according to claim 1 . 全エポキシ樹脂の平均エポキシ当量が230〜400である、請求項1または2に記載のエポキシ樹脂組成物。 The epoxy resin composition of Claim 1 or 2 whose average epoxy equivalent of all the epoxy resins is 230-400. 構成要素[B]がジシアンジアミドを含む、請求項1〜3のいずれかに記載のエポキシ樹脂組成物。 The epoxy resin composition according to any one of claims 1 to 3, wherein the constituent element [B] contains dicyandiamide. 硬化促進剤としてウレア化合物を含む、請求項1〜4のいずれかに記載のエポキシ樹脂組成物。 The epoxy resin composition in any one of Claims 1-4 containing a urea compound as a hardening accelerator. 構成要素[A]100重量%中、[A2]平均エポキシ当量が1000〜10000のエポキシ樹脂が3〜60重量%含まれる、請求項1〜5のいずれかに記載のエポキシ樹脂組成物。 Component [A] in 100 wt%, [A2] average epoxy equivalent weight of 1,000 to 10,000 epoxy resin is contained 3 to 60 wt%, epoxy resin composition according to any one of claims 1 to 5. 構成要素[A]100重量部に対して、ポリビニルアセタール樹脂、ポリメタクリル酸メチルから選ばれる少なくとも1種以上の熱可塑性樹脂が0.1〜10重量部含まれる、請求項1〜6のいずれかに記載のエポキシ樹脂組成物。 7. The composition according to claim 1, wherein 0.1 to 10 parts by weight of at least one thermoplastic resin selected from a polyvinyl acetal resin and polymethyl methacrylate is included with respect to 100 parts by weight of the component [A]. The epoxy resin composition described in 1. 強化繊維と請求項1〜7のいずれかに記載のエポキシ樹脂組成物を含むプリプレグ。 A prepreg comprising reinforcing fibers and the epoxy resin composition according to claim 1 . 請求項記載のプリプレグを硬化せしめてなる繊維強化複合材料。 A fiber-reinforced composite material obtained by curing the prepreg according to claim 8 .
JP2005076622A 2004-03-17 2005-03-17 Epoxy resin composition, prepreg and fiber reinforced composite material Active JP4687167B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005076622A JP4687167B2 (en) 2004-03-17 2005-03-17 Epoxy resin composition, prepreg and fiber reinforced composite material

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2004075823 2004-03-17
JP2004075823 2004-03-17
JP2005076622A JP4687167B2 (en) 2004-03-17 2005-03-17 Epoxy resin composition, prepreg and fiber reinforced composite material

Publications (2)

Publication Number Publication Date
JP2005298815A JP2005298815A (en) 2005-10-27
JP4687167B2 true JP4687167B2 (en) 2011-05-25

Family

ID=35330739

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005076622A Active JP4687167B2 (en) 2004-03-17 2005-03-17 Epoxy resin composition, prepreg and fiber reinforced composite material

Country Status (1)

Country Link
JP (1) JP4687167B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016208618A1 (en) 2015-06-25 2016-12-29 東レ株式会社 Epoxy resin composition, fiber-reinforced composite material, molded article, and pressure vessel

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007107359A1 (en) * 2006-03-21 2007-09-27 Dsm Ip Assets B.V. Process for the manufacture of a shaped part and shaped part obtainable with said process
JP5200744B2 (en) * 2008-08-01 2013-06-05 住友電気工業株式会社 Adhesive and electrode connection method using the same
JP5733679B2 (en) * 2008-11-28 2015-06-10 味の素株式会社 Resin composition
JP2010202727A (en) * 2009-03-02 2010-09-16 Mitsubishi Rayon Co Ltd Epoxy resin composition for fiber-reinforced composite material and fiber-reinforced composite material using the same
US9963589B2 (en) 2013-07-26 2018-05-08 Toray Industries, Inc. Epoxy resin composition, prepreg, and fiber-reinforced composite material
JP6399650B2 (en) * 2013-10-15 2018-10-03 日本化薬株式会社 Alicyclic polyfunctional acid anhydride and thermosetting resin composition
CN105793315B (en) * 2013-12-02 2018-08-03 三菱化学株式会社 Composition epoxy resin and use its film, prepreg and fibre reinforced plastics
KR20180066107A (en) * 2015-10-13 2018-06-18 다우 글로벌 테크놀로지스 엘엘씨 Fast cure epoxy compositions for use in high throughput manufacturing processes
EP4011930B1 (en) * 2019-12-26 2024-04-24 Toray Industries, Inc. Prepreg

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11171972A (en) * 1997-12-08 1999-06-29 Toray Ind Inc Epoxy resin composition for fiber-reinforced composite material, prepreg and fiber-reinforced composite material
JPH11172076A (en) * 1997-12-08 1999-06-29 Toray Ind Inc Epoxy resin composition for fiber-reinforced composite material, prepreg, and fiber-reinforced composite material
JP2002327041A (en) * 2001-02-14 2002-11-15 Toray Ind Inc Epoxy resin composition for fiber-reinforced composite material, prepreg and fiber-reinforced composite material
JP2003201388A (en) * 2002-01-08 2003-07-18 Toray Ind Inc Epoxy resin composition, resin cured product, prepreg and fiber reinforced composite
JP2004269600A (en) * 2003-03-06 2004-09-30 Toray Ind Inc Epoxy resin composition, prepreg and fiber-reinforced composite material

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11171972A (en) * 1997-12-08 1999-06-29 Toray Ind Inc Epoxy resin composition for fiber-reinforced composite material, prepreg and fiber-reinforced composite material
JPH11172076A (en) * 1997-12-08 1999-06-29 Toray Ind Inc Epoxy resin composition for fiber-reinforced composite material, prepreg, and fiber-reinforced composite material
JP2002327041A (en) * 2001-02-14 2002-11-15 Toray Ind Inc Epoxy resin composition for fiber-reinforced composite material, prepreg and fiber-reinforced composite material
JP2003201388A (en) * 2002-01-08 2003-07-18 Toray Ind Inc Epoxy resin composition, resin cured product, prepreg and fiber reinforced composite
JP2004269600A (en) * 2003-03-06 2004-09-30 Toray Ind Inc Epoxy resin composition, prepreg and fiber-reinforced composite material

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016208618A1 (en) 2015-06-25 2016-12-29 東レ株式会社 Epoxy resin composition, fiber-reinforced composite material, molded article, and pressure vessel
US10696805B2 (en) 2015-06-25 2020-06-30 Toray Industries, Inc. Epoxy resin composition, fiber reinforced composite material, molded article, and pressure vessel
US11186692B2 (en) 2015-06-25 2021-11-30 Toray Industries, Inc. Epoxy resin composition, fiber reinforced composite material, molded article and pressure vessel
US11186691B2 (en) 2015-06-25 2021-11-30 Toray Industries, Inc. Epoxy resin composition, fiber reinforced composite material, molded article and pressure vessel

Also Published As

Publication number Publication date
JP2005298815A (en) 2005-10-27

Similar Documents

Publication Publication Date Title
JP4687167B2 (en) Epoxy resin composition, prepreg and fiber reinforced composite material
KR101761439B1 (en) Epoxy resin composition for use in a carbon-fiber-reinforced composite material, prepreg, and carbon-fiber-reinforced composite material
JP6497370B2 (en) Epoxy resin composition, and film, prepreg and fiber reinforced plastic using the same
KR101318093B1 (en) Epoxy resin composition, prepreg, and fiber-reinforced composite material
JP5800031B2 (en) Epoxy resin composition, prepreg and carbon fiber reinforced composite material
US7208228B2 (en) Epoxy resin for fiber reinforced composite materials
KR20100133963A (en) Epoxy resin composition, prepreg, abd fiber-reinforced composite material
KR20140127868A (en) Fiber-reinforced composite material
JP2010059225A (en) Epoxy resin composition for carbon fiber-reinforced composite material, prepreg, and carbon fiber-reinforced composite material
KR20140127869A (en) Fiber-reinforced composite material
JP6776649B2 (en) Epoxy resin composition, and films, prepregs and fiber reinforced plastics using it.
KR101950627B1 (en) Epoxy resin composition, and film, prepreg, and fiber-reinforced plastic using same
JP4687224B2 (en) Epoxy resin composition, prepreg and fiber reinforced composite material
KR20140127867A (en) Fiber-reinforced composite material
JP4475880B2 (en) Epoxy resin composition
JP6573029B2 (en) Manufacturing method of fiber reinforced composite material
JP4506189B2 (en) Epoxy resin composition, prepreg and fiber reinforced composite material
JP4843932B2 (en) Method for producing epoxy resin composition for fiber-reinforced composite material, prepreg, and fiber-reinforced composite material
JP6961912B2 (en) Epoxy resin compositions, fiber reinforced composites, moldings and pressure vessels
JP2003277471A (en) Epoxy resin composition, prepreg and carbon fiber- reinforced composite material
JP2011057851A (en) Epoxy resin composition, prepreg and fiber-reinforced composite material
JPH08301982A (en) Epoxy resin composition for fiber-reinforced composite, prepreg, and composite
JP2009215481A (en) Prepreg and fiber-reinforced composite material
JP2006274110A (en) Prepreg and fiber-reinforced composite material
KR101790110B1 (en) Prepreg of high speed curing system and fiber reinforced composites for compression molding

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080313

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100915

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100928

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101020

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20101020

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110118

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110131

R151 Written notification of patent or utility model registration

Ref document number: 4687167

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140225

Year of fee payment: 3