JP4506189B2 - Epoxy resin composition, prepreg and fiber reinforced composite material - Google Patents

Epoxy resin composition, prepreg and fiber reinforced composite material Download PDF

Info

Publication number
JP4506189B2
JP4506189B2 JP2004036263A JP2004036263A JP4506189B2 JP 4506189 B2 JP4506189 B2 JP 4506189B2 JP 2004036263 A JP2004036263 A JP 2004036263A JP 2004036263 A JP2004036263 A JP 2004036263A JP 4506189 B2 JP4506189 B2 JP 4506189B2
Authority
JP
Japan
Prior art keywords
epoxy resin
resin composition
prepreg
fiber
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2004036263A
Other languages
Japanese (ja)
Other versions
JP2005225982A (en
JP2005225982A5 (en
Inventor
浩之 瀧山
史郎 本田
美穂 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP2004036263A priority Critical patent/JP4506189B2/en
Publication of JP2005225982A publication Critical patent/JP2005225982A/en
Publication of JP2005225982A5 publication Critical patent/JP2005225982A5/ja
Application granted granted Critical
Publication of JP4506189B2 publication Critical patent/JP4506189B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

本発明は、エポキシ樹脂組成物および樹脂組成物を含浸させたプリプレグに関するものであり、さらに詳しくは、プリプレグ作製時のプロセス通過性に優れたエポキシ樹脂組成物、および作業性に優れたプリプレグに関するものである。   The present invention relates to an epoxy resin composition and a prepreg impregnated with the resin composition. More specifically, the present invention relates to an epoxy resin composition excellent in process passability during prepreg production, and a prepreg excellent in workability. It is.

強化繊維とマトリックス樹脂とからなる繊維強化複合材料は、軽量性能と力学特性に優れるために、スポーツ用途をはじめ、航空宇宙用途、一般産業用途に広く用いられている。中でも、スポーツ用途では、ゴルフクラブシャフト、釣り竿、テニスやバトミントン等のラケット、ホッケー等のスティックなどが重要な用途となっている。   A fiber reinforced composite material composed of a reinforced fiber and a matrix resin is widely used in sports applications, aerospace applications, and general industrial applications because of its excellent lightweight performance and mechanical properties. Among them, for sports applications, golf club shafts, fishing rods, rackets such as tennis and badminton, sticks such as hockey are important applications.

繊維強化複合材料の製造方法は各種あるが、中でも強化繊維にマトリックス樹脂を含浸させたシート状中間機材であるプリプレグを複数枚積層した後、これを加熱することによって、成形物として、繊維強化複合材料を得る方法が好ましく用いられる。   There are various methods for producing fiber reinforced composite materials. Among them, a plurality of prepregs, which are sheet-like intermediate materials in which reinforced fibers are impregnated with a matrix resin, are laminated, and then heated to form a fiber reinforced composite. A method of obtaining a material is preferably used.

プリプレグは、積層・成形するために適度なプリプレグ同士のタック性(粘着性)が必要とされ、また、マンドレルに巻き付けたり、曲面に貼り合わせることがあるので適度なドレープ性(しなやかさ)が必要とされる。   Pre-preg requires moderate tackiness (adhesiveness) between prepregs for lamination and molding, and also requires moderate drape (flexibility) because it may be wrapped around a mandrel or bonded to a curved surface. It is said.

近年、特に繊維強化複合材料の更なる軽量化要求によって、軽量設計に適したプリプレグが求められており、強化繊維には高弾性率炭素繊維を用いると共に、プリプレグ中の繊維含有量を高める傾向にある。ところが、強化繊維として高弾性率炭素繊維を用いると、プリプレグのドレープ性が低下しがちであり、強化繊維含有率を高めるとタック性が低くするため取り扱い性が犠牲となってきた。   In recent years, a prepreg suitable for lightweight design has been demanded in particular due to further weight reduction requirements of fiber reinforced composite materials. High-modulus carbon fibers are used as the reinforcing fibers and the fiber content in the prepreg tends to be increased. is there. However, when a high elastic modulus carbon fiber is used as the reinforcing fiber, the drapeability of the prepreg tends to be lowered. When the reinforcing fiber content is increased, the tackiness is lowered and the handling property is sacrificed.

そこで取り扱い性を高めるために、特定の粘度範囲を有する液状エポキシ樹脂と、特定の範囲の軟化点を有するエポキシ樹脂、および、特定の重量平均分子量を有する熱可塑性樹脂の組み合わせる方法が提案されているが(例えば、特許文献1参照)、タック・ドレープ性はある程度確保できるものの、樹脂の熱安定性(ポットライフ)が十分でないためプロセス性の点で劣っていた。また、2官能エポキシ樹脂と特定の分子構造を有するエポキシ樹脂の組み合わせる方法も提案されているが(例えば、特許文献2参照)、経時変化に伴いタック性が低下する傾向にあり、取り扱い性が十分であるとはいえなかった。
特開2003−2990号公報 特開平8−301982号公報
Therefore, in order to improve handling, a method of combining a liquid epoxy resin having a specific viscosity range, an epoxy resin having a softening point in a specific range, and a thermoplastic resin having a specific weight average molecular weight has been proposed. However, although the tack and drape properties can be secured to some extent, the thermal stability (pot life) of the resin is not sufficient, so that the processability is inferior. A method of combining a bifunctional epoxy resin and an epoxy resin having a specific molecular structure has also been proposed (see, for example, Patent Document 2). However, tackiness tends to decrease with time, and handling is sufficient. It could not be said.
JP 2003-2990 A JP-A-8-301982

本発明の目的は、上述した問題点を解決し、プリプレグのマトリックス樹脂として好適な樹脂組成物を提供することにある。また、繊維強化複合材料の軽量化に資する取り扱い性良好なプリプレグを提供することにある。さらに、より軽量で諸特性に優れた繊維強化複合材料を提供することにある。   An object of the present invention is to solve the above-described problems and provide a resin composition suitable as a matrix resin for a prepreg. Another object of the present invention is to provide a prepreg with good handleability that contributes to weight reduction of the fiber-reinforced composite material. Furthermore, it is providing the fiber reinforced composite material which was lighter and excellent in various characteristics.

本発明は、前述した目的を達成する為に以下の構成を有する。すなわち、次の構成要素[A]、[B]、[C]を少なくとも含むエポキシ樹脂組成物である。   The present invention has the following configuration in order to achieve the above-described object. That is, it is an epoxy resin composition containing at least the following components [A], [B], and [C].

[A]平均エポキシ当量が200〜300のジシクロペンタジエン型エポキシ樹脂
[B]平均エポキシ当量が1000以上、10000以下であるエポキシ樹脂
[C]ジシアンジアミドを含む硬化剤
また、前記エポキシ樹脂組成物と強化繊維とからなるプリプレグである。
[A] Dicyclopentadiene type epoxy resin having an average epoxy equivalent of 200 to 300 [B] Curing agent containing epoxy resin [C] dicyandiamide having an average epoxy equivalent of 1000 or more and 10,000 or less Further, the epoxy resin composition and the reinforcement A prepreg composed of fibers.

さらには、かかるプリプレグを硬化せしめてなる繊維強化複合材料、および前記エポキ
シ樹脂組成物の硬化物と強化繊維とからなる繊維強化複合材料である。
Furthermore, it is a fiber reinforced composite material obtained by curing such a prepreg, and a fiber reinforced composite material comprising a cured product of the epoxy resin composition and reinforcing fibers.

本発明のエポキシ樹脂組成物は、高弾性率の強化繊維を用いた場合や、強化繊維含有率を高めた場合であっても優れた取り扱い性を有するプリプレグの提供を可能にする。また本発明のエポキシ樹脂組成物は優れた熱安定性を有するため、安定してプリプレグを製造することを可能にする。   The epoxy resin composition of the present invention makes it possible to provide a prepreg having excellent handleability even when a high elastic modulus reinforcing fiber is used or when the reinforcing fiber content is increased. Moreover, since the epoxy resin composition of this invention has the outstanding thermal stability, it enables it to manufacture a prepreg stably.

また、本発明のプリプレグは、タック性、ドレープ性に優れる。さらにタック性の経時変化が小さいため長時間にわたって取り扱い性が良好である。また取り扱い性が良好で成形性に優れるため機械特性に優れた繊維強化複合材料を提供することができる。   Moreover, the prepreg of the present invention is excellent in tackiness and drapeability. Furthermore, since the change with time of tackiness is small, the handleability is good for a long time. Moreover, since the handleability is good and the moldability is excellent, a fiber-reinforced composite material having excellent mechanical properties can be provided.

さらに、本発明の繊維強化複合材料は軽量で、かつ例えばねじり強さなど、優れた機械特性を有する。   Furthermore, the fiber-reinforced composite material of the present invention is lightweight and has excellent mechanical properties such as torsional strength.

本発明のエポキシ樹脂組成物は次の構成要素[A]、[B]、[C]を少なくとも含むエポキシ樹脂組成物である。   The epoxy resin composition of the present invention is an epoxy resin composition containing at least the following components [A], [B], and [C].

[A]平均エポキシ当量が200〜300のジシクロペンタジエン型エポキシ樹脂
[B]平均エポキシ当量が1000以上、10000以下であるエポキシ樹脂
[C]ジシアンジアミドを含む硬化剤
本発明においては、構成要素[A]と[B]が共存していること必要である。どちらか一方では熱安定性に優れた樹脂組成物にはならないが、驚くべきことに[A]、[B]の組み合わせることにより、優れた熱安定性が得られる。例えば、80℃における初期の粘度に対する80℃で2時間保持後の粘度、すなわち80℃における増粘倍率を1.6〜3.2倍に抑えることも可能である。
[A] Dicyclopentadiene type epoxy resin having an average epoxy equivalent of 200 to 300 [B] Curing agent containing epoxy resin [C] dicyandiamide having an average epoxy equivalent of 1000 or more and 10000 or less In the present invention, the component [A ] and [B] it is necessary that coexist. Either one does not result in a resin composition excellent in thermal stability, but surprisingly, excellent thermal stability can be obtained by combining [A] and [B]. For example, the viscosity after holding for 2 hours at 80 ° C. relative to the initial viscosity at 80 ° C., that is, the viscosity increase ratio at 80 ° C. can be suppressed to 1.6 to 3.2 times.

本発明の構成要素[A]としては、平均エポキシ当量が200〜300のジシクロペンタジエン型エポキシ樹脂であれば、特に限定されず用いることができる。平均エポキシ当量が200より小さいとタックの経時変化に対する保持率が悪化する場合があり、300より大きと初期タックの向上効果が小さくなる場合がある。 As a component [A] of the present invention may, if dicyclopentadiene type epoxy resin having an average epoxy equivalent of 200 to 300, Ru can be used without particular limitation. The average epoxy equivalent is sometimes retention is deteriorated for aging of less than 200 and a tack, which may have greater than 300 and the effect of improving the initial tack is reduced.

平均エポキシ当量が200〜300のジシクロペンタジエン型エポキシ樹脂は市販のものを用いてもよく、例えばエピクロン(登録商標)HP7200L(エポキシ当量245〜250、軟化点54〜58)、エピクロンHP7200(エポキシ当量255〜260、軟化点59〜63)、エピクロンHP7200H(エポキシ当量275〜280、軟化点80〜85)、エピクロンHP7200HH(エポキシ当量275〜280、軟化点87〜92)(以上、大日本インキ化学工業(株)製)、XD−1000−L(エポキシ当量240〜255、軟化点60〜70)、XD−1000−2L(エポキシ当量235〜250、軟化点53〜63)(以上、日本化薬(株)製)、Tactix(登録商標)556(エポキシ当量215〜235、軟化点79℃)(Vantico Inc社製)などを挙げることができる。 Commercially available dicyclopentadiene type epoxy resins having an average epoxy equivalent of 200 to 300 may be used, for example, Epicron (registered trademark) HP7200L (epoxy equivalents 245 to 250, softening point 54 to 58), Epicron HP7200 (epoxy equivalents) 255-260, softening point 59-63), Epicron HP7200H (epoxy equivalent 275-280, softening point 80-85), Epicron HP7200HH (epoxy equivalent 275-280, softening point 87-92) (above, Dainippon Ink & Chemicals, Inc.) Manufactured by Co., Ltd.), XD-1000-L (epoxy equivalents 240-255, softening point 60-70), XD-1000-2L (epoxy equivalents 235-250, softening point 53-63) (Nippon Kayaku ( Co., Ltd.), Tactix (registered trademark) 556 (epoxy equivalents 215-2) 5, a softening point of 79 ° C.) (Vantico Inc Co., Ltd.) and the like.

構成要素[A]は全エポキシ樹脂100重量%中、5〜55重量%含まれるのが好ましく、10〜50重量%がさらに好ましい。5重量%より低いと熱安定性の向上効果が小さく、耐熱性が低化すると共に初期のタック値が低くなる場合がある。55重量%よりも多いと、残留熱応力が大きくなるため繊維強化複合材料の物性が低下する場合がある。   The component [A] is preferably contained in an amount of 5 to 55% by weight, more preferably 10 to 50% by weight, in 100% by weight of the total epoxy resin. If it is lower than 5% by weight, the effect of improving the thermal stability is small, the heat resistance is lowered and the initial tack value may be lowered. If it exceeds 55% by weight, the residual thermal stress increases, so that the physical properties of the fiber-reinforced composite material may be lowered.

構成要素[B]のエポキシ樹脂は平均エポキシ当量は1000以上、10000以下であることが必要であるが、1200以上、8000以下であることが好ましく、1500以上、5000以下であることがより好ましい。平均エポキシ当量が1000未満であると熱安定性の向上効果が小さくなると共に、タックの保持率が低下する場合がある。10000を超える、プリプレグ製造工程において、樹脂の含浸性が不十分となり、繊維強化複合材料の物性が低下する場合がある。   The epoxy resin of the component [B] needs to have an average epoxy equivalent of 1000 or more and 10000 or less, preferably 1200 or more and 8000 or less, and more preferably 1500 or more and 5000 or less. When the average epoxy equivalent is less than 1000, the effect of improving the thermal stability is reduced, and the tack retention may be lowered. In the prepreg manufacturing process exceeding 10,000, the impregnation property of the resin becomes insufficient, and the physical properties of the fiber reinforced composite material may be deteriorated.

構成要素[B]の平均エポキシ当量が1000以上であるエポキシ樹脂の市販品としては、Ep1005F(ジャパンエポキシレジン(株)製、平均エポキシ当量1000)、ST−5100(東都化成(株)製、平均エポキシ当量1000)、ST−4100D(東都化成(株)製、エポキシ当量1000)、Ep1005H(ジャパンエポキシレジン(株)製、平均エポキシ当量1290)、Ep5354(ジャパンエポキシレジン(株)製、平均エポキシ当量1650)、DER−667(ダウケミカル日本(株)製、平均エポキシ当量1775)、EP−5700(旭電化工業(株)製、平均エポキシ当量1925)、Epc7050(大日本インキ(株)製、平均エポキシ当量1925)、YD−017(東都化成(株)製、平均エポキシ当量1925)、Ep1007(ジャパンエポキシレジン(株)製、平均エポキシ当量1950)、Ep5057(ジャパンエポキシレジン(株)製、平均エポキシ当量2250)、Ep4007P(ジャパンエポキシレジン(株)製、平均エポキシ当量2270)、DER−668(ダウケミカル日本(株)製、平均エポキシ当量2750)、YD−019(東都化成(株)製、平均エポキシ当量2850)、EP−5900(旭電化工業(株)製、平均エポキシ当量2850)、Ep1009(ジャパンエポキシレジン(株)製、平均エポキシ当量3300)、Ep4110P(ジャパンエポキシレジン(株)製、平均エポキシ当量3800)、YD−020N(東都化成(株)製、平均エポキシ当量3900)、Ep1010(ジャパンエポキシレジン、平均エポキシ当量4000)、Ep4010P(ジャパンエポキシレジン(株)製、平均エポキシ当量4400)、DER−669(ダウケミカル日本(株)製、平均エポキシ当量4500)、YD−020H(東都化成(株)、平均エポキシ当量5250)、Ep1256(ジャパンエポキシレジン(株)製、平均エポキシ当量7700)、Ep4250(ジャパンエポキシレジン(株)製、平均エポキシ当量8500)、Ep4275(ジャパンエポキシレジン(株)製、平均エポキシ当量8500)、Ep5203(ジャパンエポキシレジン(株)製、平均エポキシ当量9000)、Ep4210(ジャパンエポキシレジン(株)製、平均エポキシ当量10000)等を挙げることができる。   As an epoxy resin commercial item whose average epoxy equivalent of component [B] is 1000 or more, Ep1005F (made by Japan Epoxy Resin Co., Ltd., average epoxy equivalent 1000), ST-5100 (manufactured by Toto Kasei Co., Ltd., average) Epoxy equivalent 1000), ST-4100D (manufactured by Tohto Kasei Co., Ltd., epoxy equivalent 1000), Ep1005H (Japan Epoxy Resin Co., Ltd., average epoxy equivalent 1290), Ep5354 (Japan Epoxy Resin Co., Ltd., average epoxy equivalent) 1650), DER-667 (Dow Chemical Japan Co., Ltd., average epoxy equivalent 1775), EP-5700 (Asahi Denka Kogyo Co., Ltd., average epoxy equivalent 1925), Epc 7050 (Dainippon Ink Co., Ltd., average) Epoxy equivalent 1925), YD-017 (manufactured by Toto Kasei Co., Ltd., average) Poxy equivalent 1925), Ep1007 (Japan Epoxy Resin Co., Ltd., average epoxy equivalent 1950), Ep5057 (Japan Epoxy Resin Co., Ltd., average epoxy equivalent 2250), Ep4007P (Japan Epoxy Resin Co., Ltd., average epoxy equivalent) 2270), DER-668 (manufactured by Dow Chemical Japan Co., Ltd., average epoxy equivalent 2750), YD-019 (manufactured by Tohto Kasei Co., Ltd., average epoxy equivalent 2850), EP-5900 (manufactured by Asahi Denka Kogyo Co., Ltd.) Average epoxy equivalent 2850), Ep1009 (manufactured by Japan Epoxy Resin Co., Ltd., average epoxy equivalent 3300), Ep4110P (manufactured by Japan Epoxy Resin Co., Ltd., average epoxy equivalent 3800), YD-020N (manufactured by Toto Kasei Co., Ltd., average) Epoxy equivalent 3900), Ep1010 Japan Epoxy Resin, Average Epoxy Equivalent 4000), Ep4010P (Japan Epoxy Resin Co., Ltd., Average Epoxy Equivalent 4400), DER-669 (Dow Chemical Japan Co., Ltd., Average Epoxy Equivalent 4500), YD-020H (Toto Kasei) Co., Ltd., average epoxy equivalent 5250), Ep1256 (manufactured by Japan Epoxy Resin Co., Ltd., average epoxy equivalent 7700), Ep4250 (manufactured by Japan Epoxy Resin Co., Ltd., average epoxy equivalent 8500), Ep4275 (Japan Epoxy Resin Co., Ltd.) Product, average epoxy equivalent 8500), Ep5203 (manufactured by Japan Epoxy Resin Co., Ltd., average epoxy equivalent 9000), Ep4210 (manufactured by Japan Epoxy Resin Co., Ltd., average epoxy equivalent 10,000), and the like.

構成要素[B]は全エポキシ樹脂100重量%中、5〜55重量%が好ましく、10〜50重量%含まれるのがさらに好ましい。配合量が5重量%に満たない場合には、熱安定性の向上効果が低下すると共に、プリプレグのタック保持率が低下する場合がある。また、配合量が55重量%を超えるとプリプレグ製造工程において、強化繊維への樹脂の含浸性が不十分となり、繊維強化複合材料の物性が低下する場合がある。   Component [B] is preferably 5 to 55% by weight, more preferably 10 to 50% by weight, based on 100% by weight of the total epoxy resin. When the blending amount is less than 5% by weight, the effect of improving the thermal stability is lowered and the tack retention of the prepreg may be lowered. On the other hand, when the blending amount exceeds 55% by weight, the impregnation property of the resin to the reinforcing fiber becomes insufficient in the prepreg manufacturing process, and the physical properties of the fiber reinforced composite material may be lowered.

本発明の構成要素[C]の硬化剤として、熱安定性の点から、ジシアンジアミドを含んでいることを必須とするAs a curing agent for the component [C] of the present invention, it is essential to contain dicyandiamide from the viewpoint of thermal stability .

プリプレグを作製する場合、粒径の大きい粒は、加圧含浸しても、強化繊維束中に入り込まない。このため、ジシアンジアミドの平均粒径が大きくなると、強化繊維束中の硬化剤量が少なくなり、部分的に硬化反応が不完全になり、複合材料の機械特性の低下を招くことがある。こうした理由から、ジシアンジアミドの平均粒径は10μm以下であることが好ましく、さらに好ましくは5μm以下である。ここで平均粒径は体積平均を意味する。   When producing a prepreg, even if a particle with a large particle size is impregnated with pressure, it does not enter the reinforcing fiber bundle. For this reason, when the average particle diameter of dicyandiamide is increased, the amount of the curing agent in the reinforcing fiber bundle is decreased, and the curing reaction is partially incomplete, which may cause deterioration of the mechanical properties of the composite material. For these reasons, the average particle diameter of dicyandiamide is preferably 10 μm or less, and more preferably 5 μm or less. Here, the average particle diameter means volume average.

ジシアンジアミドは、エポキシ樹脂100重量部に対して、2〜10重量部用いることが好ましい。2重量部未満では、硬化反応が不完全な場合があり、10重量部を超えると、物性低下の要因となることがある。   It is preferable to use 2 to 10 parts by weight of dicyandiamide with respect to 100 parts by weight of the epoxy resin. If it is less than 2 parts by weight, the curing reaction may be incomplete, and if it exceeds 10 parts by weight, it may cause a decrease in physical properties.

本発明に用いるマトリックス樹脂としては硬化補助剤としてウレア化合物を含むことが好ましい。ジシアンジアミドを単独で硬化剤として用いた場合、十分な硬化反応率を得る為には、180℃、2時間程度の加熱が必要である。そこで、ジシアンジアミドの他に芳香族アミン、脂肪族アミン等の硬化剤、硬化促進剤を併用することができる。   The matrix resin used in the present invention preferably contains a urea compound as a curing aid. When dicyandiamide is used alone as a curing agent, heating at 180 ° C. for about 2 hours is necessary to obtain a sufficient curing reaction rate. Therefore, in addition to dicyandiamide, a curing agent such as aromatic amine and aliphatic amine, and a curing accelerator can be used in combination.

硬化促進剤としては、特に限定されないが、イミダゾール化合物、ウレア化合物、3級アミン等を挙げることができる。樹脂組成物の貯蔵安定性を高めるために、表面が樹脂被覆で覆われているマイクロカプセル型の硬化促進剤を用いても良い。こうした硬化促進剤の中では、樹脂組成物の貯蔵安定性をほとんど損なうこと無く、十分な促進効果が得られるという理由から、ウレア化合物が特に好ましく用いられる。   Although it does not specifically limit as a hardening accelerator, An imidazole compound, a urea compound, tertiary amine, etc. can be mentioned. In order to enhance the storage stability of the resin composition, a microcapsule type curing accelerator whose surface is covered with a resin coating may be used. Among these curing accelerators, a urea compound is particularly preferably used because a sufficient accelerating effect can be obtained without substantially impairing the storage stability of the resin composition.

ウレア化合物は、エポキシ樹脂100重量部に対して、1〜10重量部用いることが好ましい。1重量部未満では、促進効果が弱くなる為、樹脂組成物が135℃、2時間程度の加熱では、十分硬化しない場合があり、逆に10重量部を超えると、促進効果が強くなりすぎて、高温時の樹脂組成物の貯蔵安定性が不十分な場合がある。   It is preferable to use 1 to 10 parts by weight of the urea compound with respect to 100 parts by weight of the epoxy resin. If the amount is less than 1 part by weight, the accelerating effect is weakened. Therefore, if the resin composition is heated at 135 ° C. for about 2 hours, the resin composition may not be sufficiently cured. The storage stability of the resin composition at high temperatures may be insufficient.

本発明におけるエポキシ樹脂組成物には、必要に応じて熱可塑性樹脂、熱可塑性エラストマー、エラストマー、無機粒子等を添加することができる。   A thermoplastic resin, a thermoplastic elastomer, an elastomer, inorganic particles, etc. can be added to the epoxy resin composition in the present invention as necessary.

本発明に用いる熱可塑性樹脂としては、エポキシ樹脂に可溶なものが好ましい。またエポキシ樹脂に不溶のものであっても、粉砕し、微粒子化したものは好ましく、配合することができる。   The thermoplastic resin used in the present invention is preferably one that is soluble in an epoxy resin. Moreover, even if it is insoluble in the epoxy resin, it is preferably pulverized and finely divided, and can be blended.

具体的にはポリアミド、ポリアミドイミド、ポリアラミド、ポリアリレーンオキシド、ポリアリレート、ポリイミド、ポリエチレンテレフタレート、ポリエーテルイミド、ポリエーテルテレフタレート、ポリエーテルイミド、ポリエーテルエーテルケトン、ポリエーテルスルホン、ポリカーボネート、ポリカーボネート、ポリ酢酸ビニル、ポリスチレン、ポリスルホン、ポリビニルアセタール、ポリビニルホルマール、ポリフェニレンオキシド、ポリフェニレンスルフィド、ポリプロピレン、ポリベンズイミダゾール、ポリメタクリル酸メチル等が用いられる。   Specifically, polyamide, polyamideimide, polyaramide, polyarylene oxide, polyarylate, polyimide, polyethylene terephthalate, polyetherimide, polyether terephthalate, polyetherimide, polyetheretherketone, polyethersulfone, polycarbonate, polycarbonate, poly Vinyl acetate, polystyrene, polysulfone, polyvinyl acetal, polyvinyl formal, polyphenylene oxide, polyphenylene sulfide, polypropylene, polybenzimidazole, polymethyl methacrylate and the like are used.

これらのうち、特にポリアミドは硬化物の弾性率をほとんど損なわずに、靭性及び耐衝撃性を向上させるのに有効である。また、特にポリーテルイミド、ポリエーテルスルホンは、硬化物の耐熱性を損なうことなく、炭素繊維との接着性を改善するのに有効である。さらに、ポリビニルアセタール、およびポリビニルホルマールは、加熱によりエポキシ樹脂と容易に可溶し、硬化物の耐熱性を損なうことなく、炭素繊維との接着性を改善すると共に、粘度調整が可能であるため好ましい。   Of these, polyamide is particularly effective in improving toughness and impact resistance without substantially impairing the elastic modulus of the cured product. In particular, polyterimide and polyethersulfone are effective in improving the adhesion to carbon fiber without impairing the heat resistance of the cured product. Furthermore, polyvinyl acetal and polyvinyl formal are preferable because they are easily soluble with an epoxy resin by heating, improve adhesiveness with carbon fibers without impairing the heat resistance of the cured product, and can adjust the viscosity. .

全エポキシ樹脂100重量部に対して、かかるポリビニルアセタール、またはポリビニルホルマールが0.1〜10重量部含まれることが好ましく、0.1〜8重量部、さらには、0.1〜5重量部であることが好ましい。10重量部を超えると、プリプレグ製造工程において、強化繊維への樹脂の含浸性が不十分となり、繊維強化複合材料の物性が低下する場合がある。 It is preferable that 0.1-10 weight part of this polyvinyl acetal or polyvinyl formal is contained with respect to 100 weight part of all epoxy resins, 0.1-8 weight part, Furthermore, 0.1-5 weight part Preferably there is. If it exceeds 10 parts by weight, the impregnation property of the resin to the reinforcing fiber becomes insufficient in the prepreg manufacturing process, and the physical properties of the fiber-reinforced composite material may be lowered.

本発明のエポキシ樹脂組成物は、測定周波数0.5Hzにおける30℃でのG’が3000〜1000000Paであることが好ましい。G’が3000Pa未満ではタックの経時変化が大きく、また、成形時の炉落ちの問題が発生することがある。1000000を超えると、ドレープ性が低下する傾向にある。   In the epoxy resin composition of the present invention, G ′ at 30 ° C. at a measurement frequency of 0.5 Hz is preferably 3000 to 1000000 Pa. When G 'is less than 3000 Pa, the change in tack with time is large, and a problem of furnace dropping during molding may occur. When it exceeds 1,000,000, the drape property tends to be lowered.

本発明に用いる強化繊維は、特に限定されないが炭素繊維、ガラス繊維、アラミド繊維、ボロン繊維、アルミナ繊維、炭化ケイ素繊維等が使用できる。これらの繊維を2種以上混在させることもできるが、より軽量かつ高耐久性の成形品を得るために、炭素繊維を用いるのが好ましい。中でも引張弾性率が200〜500GPa、好ましくは300〜500GPaの炭素繊維を用いるのが、軽量性能と力学特性に優れた材料を得るのに好ましい。   The reinforcing fiber used in the present invention is not particularly limited, and carbon fiber, glass fiber, aramid fiber, boron fiber, alumina fiber, silicon carbide fiber and the like can be used. Two or more of these fibers can be mixed, but it is preferable to use carbon fibers in order to obtain a lighter and more durable molded product. Among them, it is preferable to use a carbon fiber having a tensile modulus of 200 to 500 GPa, preferably 300 to 500 GPa, in order to obtain a material excellent in lightweight performance and mechanical properties.

本発明ではプリプレグの強化繊維の形態及び配列は、例えば、一方向に引き揃えたもの、織物(クロス)、トウ、マット、ニット等が用いられる。中でも、積層構成によって容易に強度特性を設計可能であることから、一方向に引き揃えられたものを採用するのが好ましい。   In the present invention, for example, prepreg reinforcing fibers may be arranged in one direction, such as woven fabric (cross), tow, mat, knit, and the like. Among them, it is preferable to adopt one that is aligned in one direction because the strength characteristics can be easily designed by the laminated structure.

本発明のプリプレグ、および繊維強化複合材料の強化繊維重量含有率は60〜90重量%、より好ましくは70〜85重量%である。このように繊維含有率の高い領域のプリプレグを作るときに、本発明のエポキシ樹脂組成物を用いると、タック性、ドレープ性の向上効果が一段と明確に表れ優れたものになる。また前記特に好ましい樹脂組成とすることで、取り扱い性の経時変化制御を行うこともできる。さらには得られる繊維強化複合材料の品位・性能も優れたものとすることができる。   The reinforced fiber weight content of the prepreg of the present invention and the fiber-reinforced composite material is 60 to 90% by weight, more preferably 70 to 85% by weight. Thus, when making the prepreg of the area | region with a high fiber content rate, when the epoxy resin composition of this invention is used, the improvement effect of tack property and drape property will appear more clearly, and it will become excellent. In addition, by using the particularly preferable resin composition, it is possible to control the change in handling properties with time. Furthermore, the quality and performance of the fiber-reinforced composite material obtained can be made excellent.

本発明のプリプレグの単位面積あたりの繊維重量は40〜250g/m2であることが好ましく、さらには50〜200g/m2であることが好ましい。単位面積あたりの繊維重量が40g/m2未満であるとプリプレグの形状保持性が低下し、やや取扱いにくくなる。また単位面積あたりの繊維重量が250g/m2を超えると、プリプレグ内部の繊維アライメントが乱れやすく、高性能な繊維強化複合材料となりにくい。 Preferably the fiber weight per unit area of the prepreg of the present invention is 40~250g / m 2, preferably further is 50 to 200 g / m 2. When the fiber weight per unit area is less than 40 g / m 2 , the shape retention of the prepreg is lowered and the handling becomes somewhat difficult. On the other hand, if the fiber weight per unit area exceeds 250 g / m 2 , the fiber alignment inside the prepreg is likely to be disturbed, making it difficult to obtain a high-performance fiber-reinforced composite material.

このように単位重量あたりの繊維重量が小さいプリプレグであっても、ドレープ性、タック経時変化制御などの取り扱い性、さらには硬化後の品位・性能などにおいて従来の樹脂では得られなかった優れた特性を得ることができる。   In this way, even with a prepreg with a small fiber weight per unit weight, excellent properties that cannot be obtained with conventional resins in terms of drapeability, handleability such as tack aging control, and quality and performance after curing Can be obtained.

ここでいう繊維目付及び繊維含有量はプリプレグから有機溶媒などにより樹脂を溶出し、繊維重量を計量することにより求めることができる。   The fiber basis weight and fiber content mentioned here can be determined by eluting the resin from the prepreg with an organic solvent and measuring the fiber weight.

本発明の繊維強化複合材料の成形は、例えば以下の要領で行われる。プリプレグを裁断して得たパターンを積層後、積層物に圧力を付与しながら、樹脂を加熱硬化させることにより、繊維強化複合材料が得られる。熱および圧力を付与する方法には、プレス成形法、オートクレーブ成形法、真空圧成形法、シートワインディング法、および内圧成形法などがあり、特にスポーツ用品に関しては、シートワインディング法あるいは内圧成形法が好ましく採用される。   For example, the fiber-reinforced composite material of the present invention is molded in the following manner. After laminating the pattern obtained by cutting the prepreg, the fiber reinforced composite material is obtained by heat curing the resin while applying pressure to the laminate. Examples of methods for applying heat and pressure include a press molding method, an autoclave molding method, a vacuum pressure molding method, a sheet winding method, and an internal pressure molding method. Especially for sports equipment, the sheet winding method or the internal pressure molding method is preferable. Adopted.

シートワインディング法は、マンドレルにプリプレグを巻いて円筒状物を成形する方法であり、ゴルフシャフトや釣竿などの棒状体を作製する際に好適である。具体的には、マンドレルにプリプレグを巻き付け、プリプレグがマンドレルから剥離しないように固定したり、または、プリプレグに成形圧力を付与するために、プリプレグの外側にテープ状の熱可塑性樹脂フィルム(ラッピングテープ)を巻き付け、オーブンで樹脂を加熱硬化させた後に、芯金を抜き取って円筒状成形物を得る方法である。 The sheet winding method is a method of forming a cylindrical object by winding a prepreg around a mandrel, and is suitable for producing a rod-shaped body such as a golf shaft or a fishing rod. Specifically, they wound prepreg on a mandrel, fixed or so prepreg does not peel from the mandrel, or to impart molding pressure to the prepreg, tape-like thermoplastic resin film on the outer side of the prepreg (lapping tape) Is wound and the resin is heated and cured in an oven, and then the core metal is removed to obtain a cylindrical molded product.

内圧成形法は、熱可塑性樹脂よりなる内圧付与体の外側にプリプレグを巻き付けたプリフォームを金型内にセットし、内圧付与体に高圧空気を導入して加圧し、同時に金型を加熱することにより繊維強化複合材料を成形する方法である。この内圧成形法は、特殊形状のゴルフシャフトやバット、特にテニスやバトミントンなどのラケットのような複雑な形状を成形する際に好適に用いられる。   In the internal pressure molding method, a preform in which a prepreg is wound around an internal pressure applying body made of a thermoplastic resin is set in a mold, high pressure air is introduced into the internal pressure applying body, and the mold is heated at the same time. This is a method for forming a fiber-reinforced composite material. This internal pressure molding method is suitably used when molding a complicated shape such as a specially shaped golf shaft or bat, particularly a racket such as tennis or badminton.

本発明の繊維強化複合材料は、ガラス転移温度が100〜140℃であることが好ましく、110〜130℃であれば、さらに好ましい。100未満であると、スポーツ用途などにおいて耐熱性が不足する。140℃を超えると、残留熱応力が大きく、加熱硬化後の繊維強化複合材料の機械物性が低くなる。   The fiber reinforced composite material of the present invention preferably has a glass transition temperature of 100 to 140 ° C, more preferably 110 to 130 ° C. If it is less than 100, the heat resistance is insufficient in sports applications. When the temperature exceeds 140 ° C., the residual thermal stress is large, and the mechanical properties of the fiber-reinforced composite material after heat curing are lowered.

以下、本発明を実施例によりさらに具体的に説明する。なお、実施例中の評価方法は以下に示す通りである。表1、表2、表3に各実施例の樹脂組成、樹脂組成物特性、プリプレグ特性、繊維強化複合材料特性をまとめて示す。
A.熱安定性(増粘倍率)および樹脂動的粘弾性
表1に記載の原料を、ニーダーを用いて混練し、樹脂組成物を調整した。該樹脂組成物の熱安定性の評価は、実施例では増粘倍率として測定した。粘度測定には、レオメトリックス社製粘弾性測定測定装置ARESを使用した。測定は半径20mmの平行平板を用い、平板間距離1.0±0.1mm、測定開始温度25℃、昇温速度1.9℃/分、測定周波数0.5Hzの条件下で、温度80℃まで昇温し、その後2時間の等温測定を行った。測定開始30分後の80℃における複素粘性率η*(1)と150分後の80℃における複素粘性率η*(2)から、以下の式で得られる値を増粘倍率とした。30℃の貯蔵弾性率は測定を開始し、約2分30秒後の30℃における値から求めた。
増粘倍率=η*(2)/η*(1)
B.プリプレグの作製
a.バイアス材の作製
表1に記載の原料を、ニーダーを用いて混練し、樹脂組成物を調整した。該樹脂組成物を、リバースロールコーターを用いて離型紙状に塗布して樹脂フィルムを作製した。次に、一方向に配列させた引張弾性率392GPaの炭素繊維“トレカ(登録商標)M40SC−12K(東レ(株)社製)の両側面に樹脂フィルムを重ね、加熱加圧(130℃、0.4MPa)することによって、樹脂を含浸させ、プリプレグの単位面積あたりの繊維重量が100g/m、繊維重量含有率が76%の一方向プリプレグを作製した。
b.ストレート材の作製
表1に記載の原料を、ニーダーを用いて混練し、樹脂組成物を調整した。該樹脂組成物を、リバースロールコーターを用いて離型紙状に塗布して樹脂フィルムを作製した。次に、一方向に配列させた引張弾性率294GPaの炭素繊維“トレカ(登録商標)T800H−12K(東レ(株)社製)の両側面に樹脂フィルムを重ね、加熱加圧(130℃、0.4MPa)することによって、樹脂を含浸させ、プリプレグの目付が116g/m、繊維重量含有率が76%の一方向プリプレグを作製した。
C.プリプレグのタック性
プリプレグ同士を圧着後、引き剥がしを行い、最大荷重をサンプル面積で割って引き剥がし強さT(MPa)を求めた。測定装置として“インストロン”(登録商標)4201型万能材料試験機(インストロン・ジャパン(株)社製)を使用して、以下の条件で測定した。
・環境 :23±2℃、50±5%RH
・サンプル:50×50mm
・負荷速度:1mm/分
・接着負荷:0.11MPa
・負荷時間:5±2秒
・剥離速度:10mm/分
タック性試験は、まず、プリプレグ表面から、離型紙および離型フィルムを引き剥がして測定した「初期タックT0」、離型紙および離型フィルムを引き剥がして測定環境下に1日放置した後に測定した「1日後タックT1」を測定した。なお、タックの経変率については下記式より算出した。
タック経変率(%)=100×(T0−T1)/T0
D.プリプレグのドレープ性
本実施例におけるドレープ性評価は、プリプレグの曲げ弾性率測定により行った。曲げ弾性率の測定方法は、JIS K7074「繊維強化プラスチックの曲げ試験法」に準じて行った。測定装置として“インストロン”4201型万能材料試験機(インストロン・ジャパン(株)社製)を使用して、以下の条件で測定した。
・環境 :23±2℃、50±5%RH
・サンプル:85mm(繊維方向)×15mm
・負荷速度 :5mm/分
・支点間距離:40mm
・圧子径 :4mmφ
得られた0°曲げ弾性率の逆数D(GPa−1)をドレープ性の指標として用いた。ドレープ性試験は、プリプレグ表面から、離型紙および離型フィルムを引き剥がした直後のドレープ性を測定した。
E.含浸性
できあがったプリプレグの含浸性を目視および触感で4段階評価した。表には極めて良好を○○、良好を○、若干未含浸部があったものを△、含浸不良を×で表した。
F.円筒状繊維強化複合材料の作製
下記(a)〜(e)の操作により、円筒軸方向に対して[±45° /0° の積層構成を有し、内径が10mmの円筒状繊維強化複合材料を作製した。マンドレルには直径10mm(いずれも長さ1000mm)のステンレス製丸棒を使用した。
(a)一方向プリプレグを繊維の方向がマンドレルの軸方向に対して45度になるように、縦800mm×横103mmの長方形に2枚切り出した。この2枚を繊維方向が互いに交差するように、かつ横方向に16mm(マンドレル半周分に対応)ずらして貼り合わせた。
(b)貼り合わせたプリプレグ(バイアス材)を離型処理したマンドレルに、プリプレグの縦方向とマンドレルの軸方向が一致するように巻き付けた。
(c)その上に、プリプレグ(ストレート材)を繊維の方向が縦方向になるように、縦800mm×横112mmの長方形に切り出したものをプリプレグの縦方向とマンドレルの軸方向が一致するように巻き付けた。
(d)ラッピングテープ(耐熱性フィルムテープ)を巻きつけ、硬化炉中で130℃、2時間加熱成形した。
(e)成形後、マンドレルを抜き取り、ラッピングテープを除去して円筒状繊維強化複合材料を得た。
G.円筒繊維強化複合材料の捻り強さの測定
内径10mmの円筒状繊維強化複合材料から長さ400mmの試験片を切り出し、「ゴルフクラブ用シャフトの認定基準及び基準確認方法」(製品安全協会編、通商産業大臣承認5産第2087号、1993年)に記載の方法に従い、捻り試験を行った。試験片ゲージ長は300mmとし、試験片両端の50mmを固定治具で把持した。捻り強度は次式により求めた。



Hereinafter, the present invention will be described more specifically with reference to examples. In addition, the evaluation method in an Example is as showing below. Tables 1, 2, and 3 collectively show the resin composition, resin composition characteristics, prepreg characteristics, and fiber reinforced composite material characteristics of each example.
A. Thermal stability (thickening ratio) and resin dynamic viscoelasticity The raw materials listed in Table 1 were kneaded using a kneader to prepare a resin composition. The thermal stability of the resin composition was evaluated as a thickening factor in the examples. For measuring the viscosity, a viscoelasticity measuring apparatus ARES manufactured by Rheometrics was used. The measurement uses a parallel plate with a radius of 20 mm, the distance between the plates is 1.0 ± 0.1 mm, the measurement start temperature is 25 ° C., the heating rate is 1.9 ° C./min, and the measurement frequency is 0.5 Hz, and the temperature is 80 ° C. And then isothermal measurement was performed for 2 hours. From the complex viscosity η * (1) at 80 ° C. 30 minutes after the start of measurement and the complex viscosity η * (2) at 80 ° C. after 150 minutes, the value obtained by the following equation was used as the viscosity increase ratio. The storage elastic modulus at 30 ° C. was measured from the value at 30 ° C. after about 2 minutes and 30 seconds.
Thickening factor = η * (2) / η * (1)
B. Preparation of prepreg a. Production of Bias Material The raw materials listed in Table 1 were kneaded using a kneader to prepare a resin composition. The resin composition was applied to a release paper using a reverse roll coater to prepare a resin film. Next, resin films are stacked on both sides of carbon fiber “Treca (registered trademark) M40SC-12K (manufactured by Toray Industries, Inc.)” having a tensile elastic modulus of 392 GPa arranged in one direction, and heated and pressurized (130 ° C., 0 4 MPa), the resin was impregnated to prepare a unidirectional prepreg having a fiber weight per unit area of 100 g / m 2 and a fiber weight content of 76%.
b. Production of Straight Material The raw materials listed in Table 1 were kneaded using a kneader to prepare a resin composition. The resin composition was applied to a release paper using a reverse roll coater to prepare a resin film. Next, a resin film is laminated on both sides of carbon fiber “Treca (registered trademark) T800H-12K (manufactured by Toray Industries, Inc.)” having a tensile elastic modulus of 294 GPa arranged in one direction, and heated and pressurized (130 ° C., 0.4 MPa), the resin was impregnated to prepare a unidirectional prepreg having a basis weight of 116 g / m 2 and a fiber weight content of 76%.
C. Tackability of prepreg After prepregs were pressure-bonded, they were peeled off, and the peel strength T (MPa) was determined by dividing the maximum load by the sample area. Using “Instron” (registered trademark) 4201 universal material testing machine (manufactured by Instron Japan Co., Ltd.) as a measuring device, the measurement was performed under the following conditions.
・ Environment: 23 ± 2 ℃, 50 ± 5% RH
・ Sample: 50x50mm
・ Loading speed: 1 mm / min ・ Adhesive load: 0.11 MPa
・ Loading time: 5 ± 2 seconds ・ Peeling speed: 10 mm / min The tackiness test was performed by first peeling off the release paper and release film from the surface of the prepreg and measuring “initial tack T0”, release paper and release film. Was peeled off and left in the measurement environment for 1 day, and “1 day after tack T1” was measured. In addition, the change rate of tack was calculated from the following formula.
Tack variability (%) = 100 × (T0−T1) / T0
D. Drapability of prepreg Drapability evaluation in this example was performed by measuring the flexural modulus of prepreg. The measuring method of the bending elastic modulus was performed according to JIS K7074 “Bending test method of fiber reinforced plastic”. An “Instron” 4201 universal material testing machine (manufactured by Instron Japan Co., Ltd.) was used as a measuring apparatus, and measurement was performed under the following conditions.
・ Environment: 23 ± 2 ℃, 50 ± 5% RH
・ Sample: 85mm (fiber direction) x 15mm
・ Loading speed: 5 mm / min ・ Distance between fulcrums: 40 mm
・ Indenter diameter: 4mmφ
The obtained reciprocal number D (GPa −1 ) of the 0 ° bending elastic modulus was used as an index of drapeability. In the drapeability test, the drapeability immediately after the release paper and the release film were peeled off from the prepreg surface was measured.
E. Impregnation property The impregnation property of the finished prepreg was evaluated by visual and tactile sensation in four stages. In the table, “Excellent” is indicated by “Good”, “Good” is indicated by “Good”, “Slightly unimpregnated part” is indicated by “△”, and Impregnation failure is indicated by “X”.
F. The operation of making the following cylindrical fiber reinforced composite material (a) ~ (e), has a laminated structure of [± 45 ° 3/0 ° 3] with respect to the cylindrical axis, inner diameter 10mm cylindrical fibers A reinforced composite material was prepared. A stainless steel round bar having a diameter of 10 mm (both 1000 mm in length) was used for the mandrel.
(A) Two unidirectional prepregs were cut into a rectangle of 800 mm in length and 103 mm in width so that the fiber direction was 45 degrees with respect to the axial direction of the mandrel. The two sheets were bonded so that the fiber directions intersected with each other and shifted in the lateral direction by 16 mm (corresponding to the half circumference of the mandrel).
(B) It wound around the mandrel which carried out the mold release process of the bonded prepreg (bias material) so that the longitudinal direction of a prepreg and the axial direction of a mandrel may correspond.
(C) On top of that, a prepreg (straight material) cut into a rectangle of 800 mm in length and 112 mm in width so that the fiber direction is in the longitudinal direction so that the longitudinal direction of the prepreg and the axial direction of the mandrel coincide with each other. I wrapped it.
(D) Wrapping tape (heat-resistant film tape) was wound, and heat-molded in a curing furnace at 130 ° C. for 2 hours.
(E) After molding, the mandrel was extracted and the wrapping tape was removed to obtain a cylindrical fiber reinforced composite material.
G. Measurement of torsional strength of cylindrical fiber reinforced composite material A test piece of 400 mm length was cut out from a cylindrical fiber reinforced composite material having an inner diameter of 10 mm, and “Golf Club Shaft Certification Criteria and Standard Confirmation Method” (Product Safety Association, Trade) The torsion test was conducted according to the method described in the Minister of Industry 5th Production No. 2087 (1993). The test piece gauge length was 300 mm, and 50 mm at both ends of the test piece was held with a fixing jig. The torsional strength was obtained by the following formula.



捻り強度(N・m・deg)=破壊トルク(N・m)×破壊時の捻れ角(deg)
H.ガラス転移温度(Tg)
F.で作製した繊維強化複合材料を用い、JIS K7121に従い、示差走査熱量計(DSC)によりガラス転移温度測定を行った。容量50μlの密閉型サンプル容器に15〜20mgの試料を詰め、昇温速度40℃/分で30〜200℃まで昇温し、測定した。尚、ここでは、測定装置としてPerkinElmer社製Pyris1DSCを使用した。
Torsional strength (N · m · deg) = Fracture torque (N · m) × Twist angle at break (deg)
H. Glass transition temperature (Tg)
F. Using the fiber reinforced composite material prepared in step 1, the glass transition temperature was measured by a differential scanning calorimeter (DSC) according to JIS K7121. A sealed sample container having a capacity of 50 μl was packed with 15 to 20 mg of sample, heated to 30 to 200 ° C. at a heating rate of 40 ° C./min, and measured. In this case, Pyris1DSC manufactured by PerkinElmer was used as a measuring device.

具体的には、得られたDSC曲線の階段状変化を示す部分において、各ベースラインの延長した直線から縦軸方向に等距離にある直線と、ガラス転移の階段状変化部分の曲線とが交わる点の温度をガラス転移温度とした。   Specifically, in the portion showing the step change of the obtained DSC curve, the straight line equidistant from the extended straight line of each baseline in the vertical axis direction and the curve of the step change portion of the glass transition intersect. The temperature at the point was taken as the glass transition temperature.

(実施例1)
表1に示す配合比で各原料を混合しエポキシ樹脂組成物を作製した。得られた樹脂組成物の増粘倍率は4.7と安定した樹脂組成物が得られた。かかるエポキシ樹脂組成物を用いて前記方法によりプリプレグおよび円筒状繊維強化複合材料を作製した。得られたプリプレグは表1に示す通り、含浸性にも取り扱い性にも優れたものであった。また、円筒状繊維強化複合材料のねじり強さも2400N・m・degと高いものが得られた。
Example 1
Each raw material was mixed by the compounding ratio shown in Table 1, and the epoxy resin composition was produced. The resulting resin composition had a thickening ratio of 4.7 and a stable resin composition was obtained. Using such an epoxy resin composition, a prepreg and a cylindrical fiber reinforced composite material were produced by the above-described method. The obtained prepreg was excellent in impregnation property and handleability as shown in Table 1. Moreover, the torsional strength of the cylindrical fiber reinforced composite material was as high as 2400 N · m · deg.

(実施例2〜7)
表1に示すとおり、構成要素[A]を構成要素[B]の配合比を変更した以外は実施例1と同様にエポキシ樹脂組成物、プリプレグ、円筒状繊維強化複合材料を作製した。得られた樹脂組成物の増粘倍率は1.7〜4.3と実施例1に比較してさらに安定した樹脂組成物が得られた。実施例3、4、5は特に安定した樹脂組成物が得られた。かかるエポキシ樹脂組成物を用いて、前記方法によりプリプレグおよび円筒状繊維強化複合材料を作製した。得られたプリプレグは表1に示す通り、含浸性にも優れ、1日放置後のタックもさらに優れたものであった。また、円筒状強化繊維複合材料のねじり強さも2410〜2610N・m・degと高いものが得られた。
(Examples 2 to 7)
As shown in Table 1, an epoxy resin composition, a prepreg, and a cylindrical fiber reinforced composite material were produced in the same manner as in Example 1 except that the blending ratio of the constituent element [A] to the constituent element [B] was changed. The resulting resin composition had a thickening ratio of 1.7 to 4.3, which was a more stable resin composition than Example 1. In Examples 3, 4, and 5, particularly stable resin compositions were obtained. Using such an epoxy resin composition, a prepreg and a cylindrical fiber reinforced composite material were produced by the method described above. As shown in Table 1, the obtained prepreg was excellent in impregnation property and further excellent in tack after standing for 1 day. In addition, the torsional strength of the cylindrical reinforcing fiber composite material was as high as 2410 to 2610 N · m · deg.

(比較例1)
表2に示す通り、構成要素[B]を配合しなかった以外は、実施例1と同様の方法によりエポキシ樹脂組成物、プリプレグ、円筒状繊維強化複合材料を作製した。得られたエポキシ樹脂組成物の増粘倍率は12.1であり不安定なものであった。また、プリプレグのタック保持率が低く、円筒状強化繊維複合材料のねじり強さは2100N・m・degと実施例に比べて低いものであった。
(Comparative Example 1)
As shown in Table 2, an epoxy resin composition, a prepreg, and a cylindrical fiber reinforced composite material were produced in the same manner as in Example 1 except that the component [B] was not blended. The resulting epoxy resin composition had a thickening factor of 12.1 and was unstable. Further, the tack retention of the prepreg was low, and the torsional strength of the cylindrical reinforcing fiber composite material was 2100 N · m · deg, which was lower than in the examples.

(比較例2)
表2に示す通り、構成要素[A]を配合量しなかった以外は、実施例1と同様の方法によりエポキシ樹脂組成物、プリプレグ、円筒状繊維強化複合材料を作製した。得られたエポキシ樹脂組成物の増粘倍率は11.1であり不安定なものであった。また、プリプレグの初期タック値が低く、円筒状繊維強化複合材料のねじり強さは2250N・m・degと実施例に比べて低いものであった。
(Comparative Example 2)
As shown in Table 2, an epoxy resin composition, a prepreg, and a cylindrical fiber reinforced composite material were produced in the same manner as in Example 1 except that the component [A] was not blended. The resulting epoxy resin composition had a thickening factor of 11.1 and was unstable. Further, the initial tack value of the prepreg was low, and the torsional strength of the cylindrical fiber reinforced composite material was 2250 N · m · deg, which was lower than that of the example.

(実施例8)
表2に示す通り、構成要素[B]をEp1007からEp1005Hへと、エポキシ当量がやや低いエポキシ樹脂に変更した以外は、実施例3と同様にエポキシ樹脂組成物を作製した。得られた樹脂組成物の増粘倍率は3.2と、実施例3に比べるとやや劣るが、安定したものであり、プリプレグの取り扱い性や円筒状繊維強化複合材料のねじり強さも優れたものであった。
(Example 8)
As shown in Table 2, an epoxy resin composition was prepared in the same manner as in Example 3 except that the constituent element [B] was changed from Ep1007 to Ep1005H to an epoxy resin having a slightly low epoxy equivalent. The resulting resin composition has a thickening ratio of 3.2, which is slightly inferior to that of Example 3. However, the resin composition is stable and has excellent prepreg handling properties and excellent torsional strength of the cylindrical fiber-reinforced composite material. Met.

(実施例9〜11)
表2に示す通り、構成要素[B]をエポキシ当量が異なるエポキシ樹脂に変更した以外は、実施例3と同様の方法で、エポキシ樹脂組成物、プリプレグ、円筒状繊維強化複合材料を作製した。得られたエポキシ樹脂組成物の増粘倍率は1.5〜1.7とより優れたものとなった。またプリプレグの取り扱い性や円筒状繊維強化複合材料のねじり強さも優れたものであった。
(Examples 9 to 11)
As shown in Table 2, an epoxy resin composition, a prepreg, and a cylindrical fiber reinforced composite material were produced in the same manner as in Example 3 except that the component [B] was changed to an epoxy resin having a different epoxy equivalent. The viscosity increase ratio of the obtained epoxy resin composition was 1.5 to 1.7, which was more excellent. Moreover, the handleability of the prepreg and the torsional strength of the cylindrical fiber reinforced composite material were also excellent.

(比較例3)
表2に示す通り、構成要素[B]を平均エポキシ当量が1000以下のエポキシ樹脂に変更した以外は、実施例3と同様の方法で、エポキシ樹脂組成物、プリプレグ、円筒状繊維強化複合材料を作製した。得られたエポキシ樹脂組成物の増粘倍率は10.3であり不安定なものであった。また、プリプレグのタック保持率が低く、円筒状強化繊維のねじり強さは2260と実施例に比べて低いものであった。
(Comparative Example 3)
As shown in Table 2, the epoxy resin composition, prepreg, and cylindrical fiber reinforced composite material were prepared in the same manner as in Example 3 except that the component [B] was changed to an epoxy resin having an average epoxy equivalent of 1000 or less. Produced. The resulting epoxy resin composition had a thickening factor of 10.3 and was unstable. Moreover, the tack retention of the prepreg was low, and the torsional strength of the cylindrical reinforcing fiber was 2260, which was lower than that of the example.

(実施例12)
表3に示す通り、エポキシ樹脂100重量部に対して、ポリビニルホルマールを0.2重量部配合した以外は実施例4と同様の方法で、エポキシ樹脂組成物、プリプレグ、円筒状繊維強化複合材料を作製した。得られたエポキシ樹脂組成物の安定性、プリプレグの取り扱い性、円筒状繊維強化複合材料のねじり強さはいずれも優れたものであった。
(Example 12)
As shown in Table 3, the epoxy resin composition, prepreg, and cylindrical fiber reinforced composite material were prepared in the same manner as in Example 4 except that 0.2 parts by weight of polyvinyl formal was blended with 100 parts by weight of the epoxy resin. Produced. The stability of the obtained epoxy resin composition, the handleability of the prepreg, and the torsional strength of the cylindrical fiber reinforced composite material were all excellent.

(実施例13〜17)
表3に示す通り、ポリビニルホルマールの配合量を変更した以外は実施例12と同様の方法で、エポキシ樹脂組成物、プリプレグ、円筒状繊維強化複合材料を作製した。得られたエポキシ樹脂組成物の安定性、プリプレグの取り扱い性、円筒状繊維強化複合材料のねじり強さはいずれも優れたものであり、実施例13〜5は実施例中最も高いねじり強さを示した。一方、ポリビニルホルマールが7重量部、13重量部と多い実施例16および17では、ねじり強さがやや低下する傾向にあった。
(Examples 13 to 17)
As shown in Table 3, an epoxy resin composition, a prepreg, and a cylindrical fiber reinforced composite material were produced in the same manner as in Example 12 except that the blending amount of polyvinyl formal was changed. The stability of the obtained epoxy resin composition, the handleability of the prepreg, and the torsional strength of the cylindrical fiber reinforced composite material are all excellent, and Examples 13 to 5 have the highest torsional strength among the examples. Indicated. On the other hand, in Examples 16 and 17 in which polyvinyl formal was 7 parts by weight and 13 parts by weight, the torsional strength tended to be slightly reduced.

(実施例18)
表3に示す通り、構成要素[A]を軟化点の異なるエポキシ樹脂に変更した以外は実施例4と同じ方法でエポキシ樹脂組成物、プリプレグ、繊維強化複合材料を作製した。得られたエポキシ樹脂組成物の安定性、プリプレグの取り扱い性、円筒状繊維強化複合材料のねじり強さはいずれも優れたものであった。
(Example 18)
As shown in Table 3, an epoxy resin composition, a prepreg, and a fiber reinforced composite material were produced in the same manner as in Example 4 except that the constituent element [A] was changed to an epoxy resin having a different softening point. The stability of the obtained epoxy resin composition, the handleability of the prepreg, and the torsional strength of the cylindrical fiber reinforced composite material were all excellent.

Figure 0004506189
Figure 0004506189

Figure 0004506189
Figure 0004506189

Figure 0004506189
Figure 0004506189

Claims (12)

次の構成要素[A]、[B]、[C]を少なくとも含むエポキシ樹脂組成物。
[A]平均エポキシ当量が200〜300のジシクロペンタジエン型エポキシ樹脂
[B]平均エポキシ当量が1000以上、10000以下であるエポキシ樹脂
[C]ジシアンジアミドを含む硬化剤
An epoxy resin composition comprising at least the following components [A], [B], and [C].
[A] Dicyclopentadiene type epoxy resin having an average epoxy equivalent of 200 to 300 [B] Curing agent containing epoxy resin [C] dicyandiamide having an average epoxy equivalent of 1000 or more and 10,000 or less
前記構成要素[A]が全エポキシ樹脂100重量%中、5〜55重量%含まれる請求項1記載のエポキシ樹脂組成物。 The epoxy resin composition according to claim 1, wherein the component [A] is contained in an amount of 5 to 55% by weight in 100% by weight of the total epoxy resin. 前記構成要素[B]が全エポキシ樹脂100重量%中、5〜55重量%含まれる請求項1または2記載のエポキシ樹脂組成物。 The epoxy resin composition according to claim 1 or 2, wherein the component [B] is contained in an amount of 5 to 55% by weight in 100% by weight of the total epoxy resin. 全エポキシ樹脂100重量部に対して、ポリビニルアセタール、またはポリビニルホルマールが0.1〜10重量部含まれる請求項1〜のいずれかに記載のエポキシ樹脂組成物。 The epoxy resin composition according to any one of claims 1 to 3 , wherein 0.1 to 10 parts by weight of polyvinyl acetal or polyvinyl formal is contained with respect to 100 parts by weight of all epoxy resins. 硬化補助剤としてウレア化合物を含む請求項1〜記載のいずれかに記載のエポキシ樹脂組成物。 The epoxy resin composition according to any one of claims 1 to 4 , comprising a urea compound as a curing aid. 測定周波数0.5Hzにおける30℃で測定する貯蔵弾性率G’が3000〜100000Paである請求項1〜のいずれかに記載のエポキシ樹脂組成物。 The epoxy resin composition according to any one of claims 1 to 5 storage modulus G measuring at 30 ° C. in the measurement frequency 0.5 Hz 'is 3000~100000Pa. 強化繊維と請求項1〜のいずれかに記載のエポキシ樹脂組成物を含むプリプレグ。 A prepreg comprising the reinforcing fiber and the epoxy resin composition according to any one of claims 1 to 6 . 強化繊維が炭素繊維を少なくとも含む請求項記載のプリプレグ。 The prepreg according to claim 7, wherein the reinforcing fibers include at least carbon fibers. 強化繊維重量含有率が60〜90%である請求項7または8記載のプリプレグ。 The prepreg according to claim 7 or 8, wherein the reinforcing fiber weight content is 60 to 90%. 請求項7または8に記載のプリプレグを硬化せしめてなる繊維強化複合材料。 A fiber-reinforced composite material obtained by curing the prepreg according to claim 7 or 8 . 請求項1〜のいずれかに記載のエポキシ樹脂組成物の硬化物と強化繊維とからなる繊維強化複合材料。 A fiber-reinforced composite material comprising a cured product of the epoxy resin composition according to any one of claims 1 to 6 and reinforcing fibers. ガラス転移温度が100〜140℃である請求項10または11に記載の繊維強化複合材料。 The fiber-reinforced composite material according to claim 10 or 11 , having a glass transition temperature of 100 to 140 ° C.
JP2004036263A 2004-02-13 2004-02-13 Epoxy resin composition, prepreg and fiber reinforced composite material Expired - Lifetime JP4506189B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004036263A JP4506189B2 (en) 2004-02-13 2004-02-13 Epoxy resin composition, prepreg and fiber reinforced composite material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004036263A JP4506189B2 (en) 2004-02-13 2004-02-13 Epoxy resin composition, prepreg and fiber reinforced composite material

Publications (3)

Publication Number Publication Date
JP2005225982A JP2005225982A (en) 2005-08-25
JP2005225982A5 JP2005225982A5 (en) 2006-10-12
JP4506189B2 true JP4506189B2 (en) 2010-07-21

Family

ID=35000948

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004036263A Expired - Lifetime JP4506189B2 (en) 2004-02-13 2004-02-13 Epoxy resin composition, prepreg and fiber reinforced composite material

Country Status (1)

Country Link
JP (1) JP4506189B2 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4687224B2 (en) * 2004-04-23 2011-05-25 東レ株式会社 Epoxy resin composition, prepreg and fiber reinforced composite material
JP4141478B2 (en) * 2006-04-25 2008-08-27 横浜ゴム株式会社 Epoxy resin composition for fiber reinforced composite materials
TWI435887B (en) 2008-02-26 2014-05-01 Toray Industries Epoxy resin composition, prepreg and fiber-reinforced composite material
MX369404B (en) * 2011-12-05 2019-11-07 Toray Industries Carbon fiber molding material, molding material, and carbon fiber-strengthening composite material.
JP6771884B2 (en) * 2015-02-09 2020-10-21 東レ株式会社 Epoxy resin compositions, prepregs and fiber reinforced composites
JP6771883B2 (en) * 2015-02-09 2020-10-21 東レ株式会社 Epoxy resin compositions, prepregs and fiber reinforced composites
JP6771885B2 (en) * 2015-02-09 2020-10-21 東レ株式会社 Epoxy resin compositions, prepregs and fiber reinforced composites
WO2016129167A1 (en) * 2015-02-09 2016-08-18 東レ株式会社 Epoxy resin composition, prepreg, and fiber-reinforced composite material
WO2019065470A1 (en) 2017-09-29 2019-04-04 日鉄ケミカル&マテリアル株式会社 Curable epoxy resin composition and fiber-reinforced composite material using same
CN112662129B (en) * 2020-12-21 2023-05-26 上海中化科技有限公司 Resin composition, composite material and preparation method thereof

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0925393A (en) * 1995-05-09 1997-01-28 Toray Ind Inc Epoxy resin composition for fiber reinforced composite material, prepreg and fiber reinforced composite material
JPH0959486A (en) * 1995-08-23 1997-03-04 Tdk Corp Epoxy resin composition and production of laminate using the same
JPH115887A (en) * 1997-04-21 1999-01-12 Toray Ind Inc Resin composition for fiber-reinforced composite material, prepreg and fiber-reinforced composite material
JP2002012650A (en) * 2000-06-30 2002-01-15 Dainippon Ink & Chem Inc Epoxy resin composition for low-dielectric material
JP2002284852A (en) * 2001-01-19 2002-10-03 Toray Ind Inc Epoxy resin composition, prepreg, and fiber reinforced composite material
JP2003082063A (en) * 2001-09-12 2003-03-19 Dainippon Ink & Chem Inc Epoxy resin composition for electronic material and electronic material having low permittivity
JP2004027043A (en) * 2002-06-26 2004-01-29 Toray Ind Inc Epoxy resin composition for fiber-reinforced composite material and the resulting fiber-reinforced composite material

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0925393A (en) * 1995-05-09 1997-01-28 Toray Ind Inc Epoxy resin composition for fiber reinforced composite material, prepreg and fiber reinforced composite material
JPH0959486A (en) * 1995-08-23 1997-03-04 Tdk Corp Epoxy resin composition and production of laminate using the same
JPH115887A (en) * 1997-04-21 1999-01-12 Toray Ind Inc Resin composition for fiber-reinforced composite material, prepreg and fiber-reinforced composite material
JP2002012650A (en) * 2000-06-30 2002-01-15 Dainippon Ink & Chem Inc Epoxy resin composition for low-dielectric material
JP2002284852A (en) * 2001-01-19 2002-10-03 Toray Ind Inc Epoxy resin composition, prepreg, and fiber reinforced composite material
JP2003082063A (en) * 2001-09-12 2003-03-19 Dainippon Ink & Chem Inc Epoxy resin composition for electronic material and electronic material having low permittivity
JP2004027043A (en) * 2002-06-26 2004-01-29 Toray Ind Inc Epoxy resin composition for fiber-reinforced composite material and the resulting fiber-reinforced composite material

Also Published As

Publication number Publication date
JP2005225982A (en) 2005-08-25

Similar Documents

Publication Publication Date Title
JP4571714B2 (en) Epoxy resin composition for FRP, prepreg and tubular molded body using the same
JP4687167B2 (en) Epoxy resin composition, prepreg and fiber reinforced composite material
JP2016222935A (en) Epoxy resin composition, film using it, prepreg and fiber reinforced plastic
JP4506189B2 (en) Epoxy resin composition, prepreg and fiber reinforced composite material
WO1996002592A1 (en) Epoxy resin composition, prepreg, and fiber-reinforced composite material
WO2000039188A1 (en) Epoxy resin composition, prepreg, and roll made of resin reinforced with reinforcing fibers
JP2003201388A (en) Epoxy resin composition, resin cured product, prepreg and fiber reinforced composite
KR101420056B1 (en) Golf club shaft
JP4736246B2 (en) Prepreg
JP2003277471A (en) Epoxy resin composition, prepreg and carbon fiber- reinforced composite material
JP2003103519A (en) Prepreg sheet, tubular article, and golf club shaft
JP2003277532A (en) Prepreg and tubular product made of fiber reinforced composite material
JP2003253094A (en) Epoxy resin composition for fiber reinforced composite material, prepreg and fiber reinforced composite material
JP2009215481A (en) Prepreg and fiber-reinforced composite material
JP2006124555A (en) Epoxy resin composition for fiber-reinforced composite material, prepreg and fiber-reinforced composite material
JPH08301982A (en) Epoxy resin composition for fiber-reinforced composite, prepreg, and composite
JP3864751B2 (en) Resin composition for carbon fiber reinforced composite material, prepreg, and carbon fiber reinforced composite material
KR101884606B1 (en) Epoxy resin composition for fiber reinforced composite with high impact resistance and high strength
JPH09194611A (en) Preimpregnated material and its composite
JP2004269861A (en) Prepreg, fiber reinforced composite material and tubular product made from the fiber reinforced composite material
JP2008167790A (en) Golf club shaft
JP2005298810A (en) Epoxy resin composition, prepreg, fiber-reinforced composite material and method for producing them
JP2003183476A (en) Resin composition for fiber-reinforced composite material, prepreg, and fiber-reinforced composite material
JP2005238472A (en) Tubular body made of fiber reinforced composite material
JP2004285292A (en) Roving prepreg and epoxy resin composition for the same

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060825

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060825

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090528

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090901

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091001

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100406

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100419

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130514

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4506189

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130514

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130514

Year of fee payment: 3