JP6771883B2 - Epoxy resin compositions, prepregs and fiber reinforced composites - Google Patents

Epoxy resin compositions, prepregs and fiber reinforced composites Download PDF

Info

Publication number
JP6771883B2
JP6771883B2 JP2015236346A JP2015236346A JP6771883B2 JP 6771883 B2 JP6771883 B2 JP 6771883B2 JP 2015236346 A JP2015236346 A JP 2015236346A JP 2015236346 A JP2015236346 A JP 2015236346A JP 6771883 B2 JP6771883 B2 JP 6771883B2
Authority
JP
Japan
Prior art keywords
epoxy resin
resin composition
prepreg
mass
component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015236346A
Other languages
Japanese (ja)
Other versions
JP2016148020A (en
Inventor
健太郎 佐野
健太郎 佐野
玲生 高岩
玲生 高岩
啓之 平野
啓之 平野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Publication of JP2016148020A publication Critical patent/JP2016148020A/en
Application granted granted Critical
Publication of JP6771883B2 publication Critical patent/JP6771883B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、スポーツ用途および一般産業用途に適した繊維強化複合材料のマトリックス樹脂として好ましく用いられるエポキシ樹脂組成物、ならびに、これをマトリックス樹脂としたプリプレグおよび繊維強化複合材料に関するものである。 The present invention relates to an epoxy resin composition preferably used as a matrix resin for a fiber-reinforced composite material suitable for sports applications and general industrial applications, and a prepreg and a fiber-reinforced composite material using the same as a matrix resin.

エポキシ樹脂はその優れた機械的特性をいかし、塗料、接着剤、電気電子情報材料、先端複合材料など、各種産業分野に広く使用されている。特に炭素繊維、ガラス繊維、アラミド繊維などの強化繊維とマトリックス樹脂からなる繊維強化複合材料ではエポキシ樹脂が多用されている。 Epoxy resins are widely used in various industrial fields such as paints, adhesives, electrical and electronic information materials, and advanced composite materials due to their excellent mechanical properties. In particular, epoxy resins are often used in fiber-reinforced composite materials composed of reinforcing fibers such as carbon fibers, glass fibers, and aramid fibers and matrix resins.

繊維強化複合材料の製造は、炭素繊維の基材にあらかじめエポキシ樹脂を含浸させた、プリプレグが汎用される。プリプレグは、積層もしくはプリフォーム後、加熱してエポキシ樹脂を硬化させることで、成形品を与える。プリプレグに要求される特性は、成形品が優れた機械特性を示すことに加え、特に近年では、優れた生産性、すなわち速硬化性が求められている。この傾向は、特に生産性が要求される自動車などの産業用途で強い。 For the production of fiber-reinforced composite materials, prepregs in which a carbon fiber base material is pre-impregnated with an epoxy resin are widely used. After laminating or preforming, the prepreg is heated to cure the epoxy resin to give a molded product. As for the characteristics required for the prepreg, in addition to the molded product exhibiting excellent mechanical properties, in recent years, excellent productivity, that is, quick curing is required. This tendency is particularly strong in industrial applications such as automobiles where productivity is required.

また、現行のプリプレグは室温においても反応性があり、通常冷凍保管が必要である。それには冷凍設備の手配や使用前の解凍が要求されることから、常温で保管、取扱いが可能な、保管安定性に優れたプリプレグが求められている。 In addition, current prepregs are reactive even at room temperature and usually require freezing storage. Since it is necessary to arrange refrigeration equipment and thaw before use, a prepreg that can be stored and handled at room temperature and has excellent storage stability is required.

保管安定性を高める技術として、特許文献1には、粒径を制御したイミダゾール誘導体の粒子表面をホウ酸エステル化合物でコーティングする方法が開示されており、良好な保管安定性と硬化速度の両立が可能であると記載されている。 As a technique for improving storage stability, Patent Document 1 discloses a method of coating the particle surface of an imidazole derivative having a controlled particle size with a borate ester compound, and achieves both good storage stability and curing speed. It is stated that it is possible.

特許文献2には、エポキシ樹脂中の加水分解塩素量を適切な範囲に制御することにより、長期保存安定性を有するエポキシ樹脂組成物が得られると記載されている。 Patent Document 2 describes that an epoxy resin composition having long-term storage stability can be obtained by controlling the amount of hydrolyzed chlorine in the epoxy resin within an appropriate range.

特許文献3には、硬化開始温度から硬化度が一定に達するまでの時間を制御し、粒径や硬化温度を限定した硬化剤を用いる方法が開示されており、保管安定性と速硬化性を両立したと記載されている。 Patent Document 3 discloses a method of using a curing agent in which the time from the curing start temperature to the curing degree reaching a certain level is controlled and the particle size and the curing temperature are limited, and storage stability and quick curing are improved. It is stated that they are compatible.

特開平9−157498号公報Japanese Unexamined Patent Publication No. 9-157498 特開2003−301029号公報Japanese Unexamined Patent Publication No. 2003-301029 特開2004−75914号公報Japanese Unexamined Patent Publication No. 2004-75914

しかし、特許文献1に記載された方法では、活性の高いイミダゾール誘導体を用いるため、樹脂の調合時やプリプレグ作製時およびプリプレグ保管・輸送時の熱履歴により、長期保存安定性が失われる場合があった。 However, since the method described in Patent Document 1 uses a highly active imidazole derivative, long-term storage stability may be lost due to the heat history during resin preparation, prepreg preparation, and prepreg storage / transportation. It was.

また、特許文献2および3には、比較的高い保存安定性をもつ樹脂組成物が示されているものの、保存安定性は十分とは言えなかった。また炭素繊維複合材料の力学特性に重要な、樹脂硬化物の弾性率や撓みに関する言及もなかった。 Further, although Patent Documents 2 and 3 show resin compositions having relatively high storage stability, it cannot be said that the storage stability is sufficient. In addition, there was no mention of the elastic modulus and bending of the cured resin, which are important for the mechanical properties of the carbon fiber composite material.

そこで、本発明は、製造プロセスや保管・輸送時の熱履歴に対し安定で、保管安定性を高いレベルで有するエポキシ樹脂組成物およびプリプレグを提供すること、かつ繊維強化複合材料として優れた機械特性を示すエポキシ樹脂組成物を提供することを課題とする。 Therefore, the present invention provides an epoxy resin composition and a prepreg that are stable against the heat history during the manufacturing process and storage / transportation and have a high level of storage stability, and have excellent mechanical properties as a fiber-reinforced composite material. It is an object of the present invention to provide an epoxy resin composition showing the above.

本発明者らは、前記課題を解決すべく鋭意検討した結果、下記構成からなるエポキシ樹脂組成物を見いだし、本発明を完成させるに至った。すなわち本発明のエポキシ樹脂組成物は、以下の構成からなる。 As a result of diligent studies to solve the above problems, the present inventors have found an epoxy resin composition having the following constitution, and have completed the present invention. That is, the epoxy resin composition of the present invention has the following constitution.

次の成分[A]、[B]、[C]、[D]を含み、下記条件[a]および[b]を満たすことを特徴とするエポキシ樹脂組成物。
[A]:エポキシ樹脂
[B]:ジシアンジアミド
[C]:芳香族ウレア
[D]:ホウ酸エステル
[a]:窒素気流下、100℃の等温で示差走査熱量分析計によりエポキシ樹脂組成物を分析したとき、100℃に達してから熱流量がピークトップに至るまでの時間が60分以下
[b]:窒素気流下、60℃の等温で示差走査熱量分析計によりエポキシ樹脂組成物を分析したとき、60℃に達してから熱流量がピークトップに至るまでの時間が25時間以上。
An epoxy resin composition containing the following components [A], [B], [C], and [D], and satisfying the following conditions [a] and [b].
[A]: Epoxy resin [B]: Dicyandiamide [C]: Aromatic urea [D]: Borate ester [a]: Analyzing the epoxy resin composition with a differential scanning calorimeter at an isothermal temperature of 100 ° C. under a nitrogen stream. When the epoxy resin composition is analyzed by a differential scanning calorimetry at an isothermal temperature of 60 ° C. under a nitrogen stream, the time from reaching 100 ° C. to the peak top of the heat flow is 60 minutes or less [b]. It takes more than 25 hours from reaching 60 ° C to the peak heat flow.

また、本発明のプリプレグは、前記エポキシ樹脂組成物と炭素繊維からなるプリプレグである。 The prepreg of the present invention is a prepreg composed of the epoxy resin composition and carbon fibers.

また、本発明の繊維強化複合材料は、前記プリプレグを硬化して得られる繊維強化複合材料である。 Further, the fiber-reinforced composite material of the present invention is a fiber-reinforced composite material obtained by curing the prepreg.

本発明によれば、製造プロセスおよび保管・輸送時の熱履歴に対し安定で、保管安定性に極めて優れるとともに、プリプレグを成形して得られる繊維強化複合材料が高い機械特性を有するエポキシ樹脂組成物、ならびに、該エポキシ樹脂組成物を用いたプリプレグおよび繊維強化複合材料を提供することができる。 According to the present invention, an epoxy resin composition that is stable against the heat history during the manufacturing process and storage / transportation, has extremely excellent storage stability, and the fiber-reinforced composite material obtained by molding a prepreg has high mechanical properties. , And prepregs and fiber-reinforced composite materials using the epoxy resin composition can be provided.

本発明のエポキシ樹脂組成物は、成分[A]:エポキシ樹脂、成分[B]:ジシアンジアミド、成分[C]:芳香族ウレア化合物、成分[D]ホウ酸エステルを必須成分として含む。まずはこれらの構成要素について説明する。 The epoxy resin composition of the present invention contains component [A]: epoxy resin, component [B]: dicyandiamide, component [C]: aromatic urea compound, and component [D] boric acid ester as essential components. First, these components will be described.

(成分[A])
本発明における成分[A]はエポキシ樹脂である。例えば、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールS型エポキシ樹脂、ビフェニル型エポキシ樹脂、ナフタレン型エポキシ樹脂、ノボラック型エポキシ樹脂、フルオレン骨格を有するエポキシ樹脂、フェノール化合物とジシクロペンタジエンの共重合体を原料とするエポキシ樹脂、ジグリシジルレゾルシノール、テトラキス(グリシジルオキシフェニル)エタン、トリス(グリシジルオキシフェニル)メタンのようなグリシジルエーテル型エポキシ樹脂、テトラグリシジルジアミノジフェニルメタン、トリグリシジルアミノフェノール、トリグリシジルアミノクレゾール、テトラグリシジルキシレンジアミンのようなグリシジルアミン型エポキシ樹脂が挙げられる。エポキシ樹脂は、これらを単独で用いても、複数種類を組み合わせても良い。
(Component [A])
The component [A] in the present invention is an epoxy resin. For example, bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol S type epoxy resin, biphenyl type epoxy resin, naphthalene type epoxy resin, novolac type epoxy resin, epoxy resin having a fluorene skeleton, both phenol compound and dicyclopentadiene. Epoxy resin made from polymer, diglycidyl resorcinol, tetrakis (glycidyloxyphenyl) ethane, glycidyl ether type epoxy resin such as tris (glycidyloxyphenyl) methane, tetraglycidyldiaminodiphenylmethane, triglycidylaminophenol, triglycidylamino Examples thereof include glycidylamine type epoxy resins such as cresol and tetraglycidylxylene diamine. As the epoxy resin, these may be used alone or a plurality of types may be combined.

成分[A]としては、3官能以上の多官能エポキシ樹脂を含むことが好ましい。3官能以上の多官能エポキシ樹脂を含むことにより、極めて高い保管安定性を有しながら、硬化速度も良好なエポキシ樹脂組成物が得られる。 The component [A] preferably contains a trifunctional or higher functional epoxy resin. By containing a trifunctional or higher functional epoxy resin, an epoxy resin composition having extremely high storage stability and a good curing rate can be obtained.

3官能以上の多官能エポキシ樹脂としては、硬化速度と保管安定性、および硬化物の力学特性のバランスの観点から、成分[A1]下記式(I)および/または下記式(II)で示されるエポキシ樹脂であることが好ましい。成分[A1]は、一般にフェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、またはジシクロペンタジエン型エポキシ樹脂として知られているものであり、2官能以上の多官能エポキシ樹脂の混合物として市販されている。 The trifunctional or higher functional epoxy resin is represented by the following formula (I) and / or the following formula (II) of the component [A1] from the viewpoint of the balance between the curing rate, the storage stability, and the mechanical properties of the cured product. It is preferably an epoxy resin. The component [A1] is generally known as a phenol novolac type epoxy resin, a cresol novolac type epoxy resin, or a dicyclopentadiene type epoxy resin, and is commercially available as a mixture of bifunctional or higher functional polyfunctional epoxy resins. ..

成分[A1]は、エポキシ樹脂組成物に含まれる全エポキシ樹脂100質量部中10質量部〜50質量部含むことが、保管安定性と硬化速度のバランスの観点から好ましい。また、硬化速度の観点から、成分[A1]中の3官能以上の多官能エポキシ樹脂の割合は多いほうが好ましく、その観点から、成分[A1]のエポキシ基の平均官能基数は3.0個以上であることが好ましい。 The component [A1] is preferably contained in an amount of 10 parts by mass to 50 parts by mass out of 100 parts by mass of the total epoxy resin contained in the epoxy resin composition from the viewpoint of balance between storage stability and curing rate. Further, from the viewpoint of curing speed, it is preferable that the proportion of the trifunctional or higher functional epoxy resin in the component [A1] is large, and from that viewpoint, the average number of epoxy groups of the component [A1] is 3.0 or more. Is preferable.

Figure 0006771883
Figure 0006771883

(式中、R、R、Rは、水素原子またはメチル基を表す。また、nは1以上の整数を表す。) (In the formula, R 1 , R 2 , and R 3 represent a hydrogen atom or a methyl group, and n represents an integer of 1 or more.)

Figure 0006771883
Figure 0006771883

(nは1以上の整数を表す)。 (N represents an integer of 1 or more).

成分[A1]の市販品としては、“jER(登録商標)”152、154、180S(以上、三菱化学(株)製)、“エピクロン(登録商標)”N−740,N−770,N−775,N−660,N−665,N−680,N−695,HP7200L,HP7200,HP7200H,HP7200HH,HP7200HHH(以上、DIC(株)製)、PY307,EPN1179,EPN1180,ECN9511,ECN1273,ECN1280,ECN1285,ECN1299(以上、ハンツマン・アドバンスト・マテリアル社製)、YDPN638,YDPN638P,YDCN−701,YDCN−702,YDCN−703,YDCN−704(以上、東都化成(株)製)、DEN431,DEN438,DEN439(以上、ダウケミカル社製)などがある。 Commercially available products of component [A1] include "jER (registered trademark)" 152, 154, 180S (all manufactured by Mitsubishi Chemical Corporation), "Epiclon (registered trademark)" N-740, N-770, N- 775, N-660, N-665, N-680, N-695, HP7200L, HP7200, HP7200H, HP7200HH, HP7200HHH (all manufactured by DIC Corporation), PY307, EPN1179, EPN1180, ECN9511, ECN1273, ECN1280, ECN128 , ECN1299 (above, manufactured by Huntsman Advanced Material), YDPN638, YDPN638P, YDCN-701, YDCN-702, YDCN-703, YDCN-704 (above, manufactured by Toto Kasei Co., Ltd.), DEN431, DEN438, DEN439 (above) As mentioned above, manufactured by Dow Chemical Corporation).

また、3官能以上の多官能エポキシ樹脂として、成分[A2]3官能以上のグリシジルアミン型エポキシ樹脂を含むことが好ましい。 Further, as the trifunctional or higher functional epoxy resin, it is preferable to include a glycidylamine type epoxy resin having the component [A2] trifunctional or higher.

成分[A2]の具体例としては、テトラグリシジルジアミノジフェニルメタン、トリグリシジルアミノフェノール、トリグリシジルアミノクレゾール、テトラグリシジルキシリレンジアミンなどが挙げられる。 Specific examples of the component [A2] include tetraglycidyldiaminodiphenylmethane, triglycidylaminophenol, triglycidylaminocresol, tetraglycidylxylylenediamine and the like.

成分[A2]の市販品としては、テトラグリシジルジアミノジフェニルメタンとして、“スミエポキシ(登録商標)”ELM434(住友化学工業(株)製)、YH434L(東都化成(株)製)、“jER(登録商標)”604(三菱化学(株)製)、“アラルダイト(登録商標)”MY720、MY721(ハンツマン・アドバンスト・マテリアルズ社製)等を使用することができる。トリグリシジルアミノフェノール又はトリグリシジルアミノクレゾールとしては、“スミエポキシ(登録商標)”ELM100、ELM120(住友化学工業(株)製)、“アラルダイト(登録商標)”MY0500、MY0510、MY0600(ハンツマン・アドバンスト・マテリアルズ社製)、“jER(登録商標)”630(三菱化学(株)製)等を使用することができる。テトラグリシジルキシリレンジアミンおよびその水素添加品として、“TETRAD(登録商標)”−X、“TETRAD(登録商標)”−C(三菱ガス化学(株)製)等を使用することができる。 Commercially available products of component [A2] include "Sumiepoxy (registered trademark)" ELM434 (manufactured by Sumitomo Chemical Corporation), YH434L (manufactured by Toto Kasei Co., Ltd.) and "jER (registered trademark)" as tetraglycidyldiaminodiphenylmethane. "604 (manufactured by Mitsubishi Chemical Corporation)," Araldite (registered trademark) "MY720, MY721 (manufactured by Huntsman Advanced Materials) and the like can be used. Examples of triglycidylaminophenol or triglycidylaminocresol include "Sumiepoxy (registered trademark)" ELM100, ELM120 (manufactured by Sumitomo Chemical Corporation), "Araldite (registered trademark)" MY0500, MY0510, MY0600 (Huntsman Advanced Materials). , "JER (registered trademark)" 630 (manufactured by Mitsubishi Chemical Corporation), etc. can be used. As tetraglycidylxylylenediamine and its hydrogenated product, "TETRAD (registered trademark)" -X, "TETRAD (registered trademark)" -C (manufactured by Mitsubishi Gas Chemical Company, Inc.) and the like can be used.

成分[A2]は、全エポキシ樹脂100質量部中10質量部〜50質量部含むことが、保管安定性と硬化速度のバランスの観点から好ましい。 It is preferable that the component [A2] is contained in an amount of 10 to 50 parts by mass out of 100 parts by mass of the total epoxy resin from the viewpoint of the balance between storage stability and curing rate.

成分[A]として、成分[A3]ビスフェノールF型エポキシ樹脂を含むことも、保管安定性と樹脂硬化物の弾性率のバランスの観点から好ましい。成分[A3]は、全エポキシ樹脂100質量部中20質量部〜90質量部含むことが好ましい。 It is also preferable to include the component [A3] bisphenol F type epoxy resin as the component [A] from the viewpoint of the balance between the storage stability and the elastic modulus of the cured resin product. The component [A3] preferably contains 20 parts by mass to 90 parts by mass out of 100 parts by mass of the total epoxy resin.

成分[A3]の市販品としては、例えば“jER(登録商標)”806、807、4002P、4004P、4007P、4009P(以上三菱化学(株)製)、“エポトート(登録商標)”YDF−2001、YDF−2004(以上東都化成(株)製)などが挙げられる。 Commercially available products of the component [A3] include, for example, "jER (registered trademark)" 806, 807, 4002P, 4004P, 4007P, 4009P (all manufactured by Mitsubishi Chemical Corporation), "Epototo (registered trademark)" YDF-2001, Examples include YDF-2004 (all manufactured by Toto Kasei Co., Ltd.).

(成分[B])
本発明における成分[B]は、ジシアンジアミドである。ジシアンジアミドは、化学式(HN)C=N−CNであらわされる化合物である。ジシアンジアミドは、樹脂硬化物に高い力学特性や耐熱性を与える点で優れており、エポキシ樹脂の硬化剤として広く用いられる。かかるジシアンジアミドの市販品としては、DICY7、DICY15(以上、三菱化学(株)製)などが挙げられる。
(Component [B])
The component [B] in the present invention is dicyandiamide. Dicyandiamide is a compound represented by the chemical formula (H 2 N) 2 C = N-CN. Dicyandiamide is excellent in giving a cured resin product high mechanical properties and heat resistance, and is widely used as a curing agent for epoxy resins. Examples of commercially available products of such dicyandiamide include DICY7 and DICY15 (all manufactured by Mitsubishi Chemical Corporation).

ジシアンジアミド[B]を粉体としてエポキシ樹脂組成物に配合することは、室温での保管安定性や、プリプレグ製造時の粘度安定性の観点から好ましい。また、ジシアンジアミド[B]を予め成分[A]のエポキシ樹脂の一部に三本ロールなどを用いて分散させておくことは、エポキシ樹脂組成物を均一にし、硬化物の物性を向上させるため好ましい。 It is preferable to add dicyandiamide [B] as a powder to the epoxy resin composition from the viewpoint of storage stability at room temperature and viscosity stability during prepreg production. Further, it is preferable to disperse dicyandiamide [B] in advance in a part of the epoxy resin of the component [A] by using a triple roll or the like in order to make the epoxy resin composition uniform and improve the physical properties of the cured product. ..

ジシアンジアミドを粉体として樹脂に配合する場合、その平均粒径は10μm以下であることが好ましく、さらに好ましくは7μm以下である。例えば、プリプレグ製造工程において加熱加圧により強化繊維束にエポキシ樹脂組成物を含浸させる際、平均粒径が10μm以下であれば、繊維束内部への樹脂の含浸性が良好となる。 When dicyandiamide is blended as a powder in a resin, its average particle size is preferably 10 μm or less, more preferably 7 μm or less. For example, when the reinforcing fiber bundle is impregnated with the epoxy resin composition by heating and pressurizing in the prepreg manufacturing step, if the average particle size is 10 μm or less, the resin impregnation property inside the fiber bundle is good.

また、ジシアンジアミド[B]の総量は、エポキシ樹脂組成物に含まれる全エポキシ樹脂成分のエポキシ基に対し、活性水素基が0.3〜1.2当量、さらに0.3〜0.7当量の範囲となる量とすることが好ましい。活性水素基の量がこの範囲となることにより、耐熱性と機械特性のバランスに優れた樹脂硬化物を得ることができる。 The total amount of dicyandiamide [B] is 0.3 to 1.2 equivalents of active hydrogen groups and 0.3 to 0.7 equivalents of the epoxy groups of all the epoxy resin components contained in the epoxy resin composition. The amount is preferably in the range. When the amount of active hydrogen groups is in this range, a cured resin product having an excellent balance between heat resistance and mechanical properties can be obtained.

ジシアンジアミド[B]は、後述の成分[C]と併用することにより、成分[B]を単独で配合した場合と比較し、樹脂組成物の硬化温度を下げることができる。本願発明においては、良好な硬化速度を得るために、成分[B]と成分[C]を併用することが必要である。 When dicyandiamide [B] is used in combination with the component [C] described later, the curing temperature of the resin composition can be lowered as compared with the case where the component [B] is blended alone. In the present invention, it is necessary to use the component [B] and the component [C] in combination in order to obtain a good curing rate.

(成分[C])
本発明のエポキシ樹脂組成物には、成分[C]として、芳香族ウレア化合物が含まれている必要がある。成分[C]は硬化促進剤としてはたらき、成分[B]と併用した場合に良好な硬化速度を得ることができる。
(Component [C])
The epoxy resin composition of the present invention needs to contain an aromatic urea compound as a component [C]. The component [C] acts as a curing accelerator, and a good curing rate can be obtained when used in combination with the component [B].

成分[C]における芳香族ウレア化合物の具体例としては、3−(3,4−ジクロロフェニル)−1,1−ジメチルウレア、3−(4−クロロフェニル)−1,1−ジメチルウレア、フェニルジメチルウレア、トルエンビスジメチルウレアなどが挙げられる。また、芳香族ウレア化合物の市販品としては、DCMU−99(保土ヶ谷化学工業(株)製)、“Omicure(登録商標)”24(ピィ・ティ・アイ・ジャパン(株)製)などを使用することができる。 Specific examples of the aromatic urea compound in the component [C] include 3- (3,4-dichlorophenyl) -1,1-dimethylurea, 3- (4-chlorophenyl) -1,1-dimethylurea, and phenyldimethylurea. , Toluene bisdimethylurea and the like. As commercially available aromatic urea compounds, DCMU-99 (manufactured by Hodogaya Chemical Industry Co., Ltd.), "Omicure (registered trademark)" 24 (manufactured by PTI Japan Co., Ltd.), etc. are used. be able to.

成分[C]における芳香族ウレア化合物の配合量は、成分[A]のエポキシ樹脂100質量部に対し、好ましくは1〜8質量部であり、より好ましくは1.5〜6質量部であり、さらに好ましくは2〜4質量部である。成分[C]をこの範囲で配合することにより、保管安定性と硬化速度のバランスに優れ、物性が良好な樹脂硬化物を与えるエポキシ樹脂組成物が得られる。 The blending amount of the aromatic urea compound in the component [C] is preferably 1 to 8 parts by mass, more preferably 1.5 to 6 parts by mass, based on 100 parts by mass of the epoxy resin of the component [A]. More preferably, it is 2 to 4 parts by mass. By blending the component [C] in this range, an epoxy resin composition having an excellent balance between storage stability and curing rate and giving a cured resin product having good physical properties can be obtained.

なお、成分[C]は比較的保管安定性が高い硬化促進剤として知られているが、室温でもゆっくりとエポキシ樹脂との反応が進行するため、長期の保管安定性は必ずしも十分ではなかった。エポキシ樹脂と成分[C]の反応メカニズムには諸説あるが、ウレア基の分解により遊離したアミン化合物が、エポキシ樹脂と反応するメカニズムが提唱されている。本願発明者らは、室温において長期の安定性が得られない理由について、以下のように考えた。すなわち、ウレア基の解離反応は可逆反応であるため、成分[C]を含むエポキシ樹脂組成物中には、微量のアミン化合物が遊離して含まれていると考えられる。一方で、アミン化合物とエポキシ樹脂の求核反応は不可逆反応である。遊離した大半のアミン化合物は可逆反応によりウレアに戻るが、一部エポキシ基と反応すれば、不可逆に架橋反応が進行する。これが繰り返されることで、樹脂組成物の長期の安定性が損なわれるのではないかと考えた。そこで、極めて高い保管安定性を得るためには、後述する成分[D]との併用が必要である。 Although component [C] is known as a curing accelerator having relatively high storage stability, long-term storage stability was not always sufficient because the reaction with the epoxy resin proceeded slowly even at room temperature. There are various theories about the reaction mechanism between the epoxy resin and the component [C], but a mechanism has been proposed in which the amine compound liberated by the decomposition of the urea group reacts with the epoxy resin. The inventors of the present application considered the reason why long-term stability could not be obtained at room temperature as follows. That is, since the dissociation reaction of the urea group is a reversible reaction, it is considered that a trace amount of amine compound is liberated and contained in the epoxy resin composition containing the component [C]. On the other hand, the nucleophilic reaction between the amine compound and the epoxy resin is an irreversible reaction. Most of the liberated amine compounds return to urea by a reversible reaction, but if they react with some epoxy groups, the cross-linking reaction proceeds irreversibly. It was thought that the long-term stability of the resin composition would be impaired by repeating this. Therefore, in order to obtain extremely high storage stability, it is necessary to use it in combination with the component [D] described later.

(成分[D])
本発明のエポキシ樹脂組成物には、成分[D]として、ホウ酸エステルが含まれている必要がある。成分[C]と成分[D]とを併用することにより、保管温度における成分[C]とエポキシ樹脂の反応が抑制されるため、プリプレグの保管安定性が著しく向上する。そのメカニズムは定かではないが、成分[D]はルイス酸性を持つため、成分[C]から遊離したアミン化合物と成分[D]が相互作用し、アミン化合物の反応性を低下させているのではないかと考えている。
(Component [D])
The epoxy resin composition of the present invention needs to contain a boric acid ester as the component [D]. By using the component [C] and the component [D] in combination, the reaction between the component [C] and the epoxy resin at the storage temperature is suppressed, so that the storage stability of the prepreg is significantly improved. The mechanism is not clear, but since the component [D] has Lewis acidity, the amine compound liberated from the component [C] and the component [D] may interact with each other to reduce the reactivity of the amine compound. I'm wondering if there is one.

また、成分[C]と成分[D]を併用することにより、熱履歴への安定性に優れた樹脂組成物が得られる。成分[D]を用いたアミン化合物の安定化についてはこれまで知られていた(例えば、特許文献1に記載されている)が、この技術は、エポキシ樹脂との反応性が高いアミン化合物を安定化するものであった。樹脂組成物の調合工程や、強化繊維とあわせてプリプレグとする場合における強化繊維への含浸工程などでは、樹脂組成物に熱を加えることがあるが、反応性の高いアミン化合物と成分[D]の併用では、その際の熱履歴への安定性が十分ではなかった。一方で、本願のように、成分[C]と成分[D]を併用した場合には、成分[C]から遊離するアミン化合物の量は限定的であるため、成分[C]を単独で用いた場合よりも優れた熱履歴への安定性が得られる。この観点においても、成分[C]と成分[D]を併用する必要がある。 Further, by using the component [C] and the component [D] in combination, a resin composition having excellent stability to the thermal history can be obtained. Stabilization of amine compounds using component [D] has been known so far (for example, described in Patent Document 1), but this technique stabilizes amine compounds having high reactivity with epoxy resins. It was something that turned into. In the step of blending the resin composition and the step of impregnating the reinforcing fiber in the case of forming a prepreg together with the reinforcing fiber, heat may be applied to the resin composition, but the highly reactive amine compound and component [D] In combination with, the stability to the heat history at that time was not sufficient. On the other hand, when the component [C] and the component [D] are used in combination as in the present application, the amount of the amine compound liberated from the component [C] is limited, so that the component [C] is used alone. Better stability to thermal history is obtained than if it were. From this viewpoint as well, it is necessary to use the component [C] and the component [D] together.

成分[D]のホウ酸エステルの具体例としては、トリメチルボレート、トリエチルボレート、トリブチルボレート、トリn−オクチルボレート、トリ(トリエチレングリコールメチルエーテル)ホウ酸エステル、トリシクロヘキシルボレート、トリメンチルボレートなどのアルキルホウ酸エステル、トリo−クレジルボレート、トリm−クレジルボレート、トリp−クレジルボレート、トリフェニルボレートなどの芳香族ホウ酸エステル、トリ(1,3−ブタンジオール)ビボレート、トリ(2−メチル−2,4−ペンタンジオール)ビボレート、トリオクチレングリコールジボレートなどが挙げられる。 Specific examples of the borate ester of the component [D] include trimethylborate, triethylborate, tributylborate, tri-n-octylborate, tri (triethylene glycol methyl ether) borate, tricyclohexylborate, and trimentylborate. Aromatic borates such as alkylborate, trio-cresylborate, trim-cresylborate, trip-cresylborate, triphenylborate, tri (1,3-butanediol) viborate, tri (2) -Methyl-2,4-pentanediol) Vivorate, trioctylene glycol diborate and the like.

また、ホウ酸エステルとして、分子内に環状構造を有する環状ホウ酸エステルを用いることもできる。環状ホウ酸エステルとしては、トリス−o−フェニレンビスボレート、ビス−o−フェニレンピロボレート、ビス−2,3−ジメチルエチレンフェニレンピロボレート、ビス−2,2−ジメチルトリメチレンピロボレートなどが挙げられる。 Further, as the boric acid ester, a cyclic boric acid ester having a cyclic structure in the molecule can also be used. Examples of the cyclic borate include tris-o-phenylene bisbolate, bis-o-phenylene pyrobolate, bis-2,3-dimethylethylenephenylene pyrobolate, bis-2,2-dimethyltrimethylene pyroborate and the like. ..

かかるホウ酸エステルを含む製品としては、たとえば、“キュアダクト(登録商標)”L−01B(四国化成工業(株))、“キュアダクト(登録商標)”L−07N(四国化成工業(株))がある。 Examples of products containing such borate esters include "Cure Duct (registered trademark)" L-01B (Shikoku Chemicals Corporation) and "Cure Duct (registered trademark)" L-07N (Shikoku Chemicals Corporation). ).

かかる成分[D]の配合量は、成分[A]のエポキシ樹脂100質量部に対し、好ましくは0.1〜8質量部であり、より好ましくは0.15〜5質量部であり、さらに好ましくは0.2〜4質量部である。成分[D]をこの範囲で配合することにより、保管安定性と硬化速度のバランスに優れ、物性が良好な樹脂硬化物を与えるエポキシ樹脂組成物が得られる。 The blending amount of the component [D] is preferably 0.1 to 8 parts by mass, more preferably 0.15 to 5 parts by mass, still more preferably, with respect to 100 parts by mass of the epoxy resin of the component [A]. Is 0.2 to 4 parts by mass. By blending the component [D] in this range, an epoxy resin composition having an excellent balance between storage stability and curing rate and giving a cured resin product having good physical properties can be obtained.

(示差走査熱量分析計を用いたエポキシ樹脂組成物の分析)
本発明において、エポキシ樹脂組成物の硬化速度の測定には、たとえば示差走査熱量分析計を用いた熱分析が用いられる。
(Analysis of Epoxy Resin Composition Using Differential Scanning Calorimetry)
In the present invention, for measuring the curing rate of the epoxy resin composition, for example, thermal analysis using a differential scanning calorimeter is used.

示差走査熱量分析計で観測できる発熱は、エポキシ樹脂組成物の反応によって生じるものである。従って、等温測定において、発熱が現れるまでの時間は、エポキシ樹脂組成物の反応速度と関係がある。等温測定における発熱のピークトップは、その温度で反応が最も活発化する時を表しており、反応性の指標として用いることができる。 The heat generated by the differential scanning calorimetry is caused by the reaction of the epoxy resin composition. Therefore, in the isothermal measurement, the time until heat generation appears is related to the reaction rate of the epoxy resin composition. The peak top of heat generation in the isothermal measurement represents the time when the reaction is most active at that temperature, and can be used as an index of reactivity.

(示差走査熱量分析計を用いたエポキシ樹脂組成物の100℃等温測定)
本発明のエポキシ樹脂組成物は、示差走査熱量分析計で100℃の等温測定を行った場合、100℃に達してから熱流量が発熱ピークトップに至るまでの時間をT(100)としたとき、T(100)が60分以下であることを特徴とし、45分以下であることがより好ましく、30分以下であることがさらに好ましい。T(100)が60分以下であるエポキシ樹脂組成物をマトリックス樹脂として用いることにより、生産性を損なわない範囲での硬化速度を与えることができる。T(100)が60分より大きくなるエポキシ樹脂組成物をマトリックス樹脂として用いたプリプレグでは、硬化速度が不十分なものとなる。
(100 ° C isothermal measurement of epoxy resin composition using differential scanning calorimeter)
In the epoxy resin composition of the present invention, when isothermal measurement at 100 ° C. is performed with a differential scanning calorimeter, the time from when the temperature reaches 100 ° C. until the heat flow rate reaches the top of the exothermic peak is T (100). , T (100) is 60 minutes or less, more preferably 45 minutes or less, and even more preferably 30 minutes or less. By using the epoxy resin composition having T (100) of 60 minutes or less as the matrix resin, it is possible to provide a curing rate within a range that does not impair productivity. A prepreg using an epoxy resin composition having a T (100) of more than 60 minutes as a matrix resin has an insufficient curing rate.

(示差走査熱量分析計を用いたエポキシ樹脂組成物の60℃等温測定)
また、本発明のエポキシ樹脂組成物は、60℃で等温測定を行った場合、60℃に達してから熱流量が発熱ピークトップに至るまでの時間をT(60)としたとき、T(60)が25時間以上であることを特徴とし、28時間以上であることがより好ましい。T(60)が25時間以上であるエポキシ樹脂組成物をマトリックス樹脂として用いることにより、プリプレグに長期的な保管安定性を与えることができる。25時間未満となるエポキシ樹脂組成物をマトリックス樹脂として用いたプリプレグは、室温における保管安定性が不十分なものとなる。
(60 ° C isothermal measurement of epoxy resin composition using differential scanning calorimetry)
Further, the epoxy resin composition of the present invention is T (60) when the time from reaching 60 ° C. to the heat flow rate reaching the top of the exothermic peak is T (60) when the isothermal measurement is performed at 60 ° C. ) Is 25 hours or more, and more preferably 28 hours or more. By using the epoxy resin composition having T (60) of 25 hours or more as the matrix resin, the prepreg can be provided with long-term storage stability. A prepreg using an epoxy resin composition for less than 25 hours as a matrix resin has insufficient storage stability at room temperature.

(成分[E])
本発明のエポキシ樹脂組成物には、本発明の効果を失わない範囲において、成分[E]として熱可塑性樹脂を配合することができる。熱可塑性樹脂は本発明に必須の成分ではないが、エポキシ樹脂組成物に配合することにより、粘弾性を制御したり、硬化物に靭性を付与したりすることができる。
(Ingredient [E])
The epoxy resin composition of the present invention may contain a thermoplastic resin as the component [E] as long as the effects of the present invention are not lost. The thermoplastic resin is not an essential component in the present invention, but by blending it in the epoxy resin composition, it is possible to control the viscoelasticity and impart toughness to the cured product.

このような熱可塑性樹脂の例としては、ポリメタクリル酸メチル、ポリビニルホルマール、ポリビニルブチラール、ポリビニルアセタール、ポリビニルピロリドン、芳香族ビニル単量体・シアン化ビニル単量体・ゴム質重合体から選ばれる少なくとも2種類を構成成分とする重合体、ポリアミド、ポリエステル、ポリカーボネート、ポリアリーレンオキシド、ポリスルホン、ポリエーテルスルホン、ポリイミドなどが挙げられる。芳香族ビニル単量体・シアン化ビニル単量体・ゴム質重合体から選ばれる少なくとも2種類を構成成分とする重合体の例としては、アクリロニトリル−ブタジエン−スチレン共重合体(ABS樹脂)、アクリロニトリル−スチレン共重合体(AS樹脂)などが挙げられる。ポリスルホン、ポリイミドは、主鎖にエーテル結合や、アミド結合を有するものであってもよい。 Examples of such a thermoplastic resin include at least selected from polymethyl methacrylate, polyvinylformal, polyvinylbutyral, polyvinylacetal, polyvinylpyrrolidone, aromatic vinyl monomer, vinyl cyanide monomer, and rubbery polymer. Examples thereof include polymers containing two types of constituents, polyamides, polyesters, polycarbonates, polyarylene oxides, polysulfones, polyethersulfones, and polyimides. Examples of polymers containing at least two types selected from aromatic vinyl monomers, vinyl cyanide monomers, and rubbery polymers as constituents include acrylonitrile-butadiene-styrene copolymer (ABS resin) and acrylonitrile. -Styrene copolymer (AS resin) and the like can be mentioned. Polysulfone and polyimide may have an ether bond or an amide bond in the main chain.

ポリメタクリル酸メチル、ポリビニルホルマール、ポリビニルブチラール、ポリビニルピロリドンは、ビスフェノールA型エポキシ樹脂、ノボラック型エポキシ樹脂などの多くの種類のエポキシ樹脂と良好な相溶性を有し、エポキシ樹脂組成物の流動性制御の効果が大きい点で好ましく、ポリビニルホルマールが特に好ましい。これらの熱可塑性樹脂の市販品を例示すると、“デンカブチラール(登録商標)”および“デンカホルマール(登録商標)”(電気化学工業(株)製)、“ビニレック(登録商標)”(JNC(株)製)などがある。 Polymethylmethacrylate, polyvinylformal, polyvinylbutyral, and polyvinylpyrrolidone have good compatibility with many types of epoxy resins such as bisphenol A type epoxy resin and novolak type epoxy resin, and control the fluidity of the epoxy resin composition. Is preferable in that the effect of the above is large, and polyvinyl formal is particularly preferable. Examples of commercially available products of these thermoplastic resins are "Denka Butyral (registered trademark)", "Denkaformal (registered trademark)" (manufactured by Denki Kagaku Kogyo Co., Ltd.), and "Vinirec (registered trademark)" (JNC Co., Ltd.). ) Made) and so on.

また、ポリスルホン、ポリエーテルスルホン、ポリイミドは、樹脂そのものが耐熱性に優れるほか、耐熱性が要求される用途、例えば航空機の構造部材などによく用いられるエポキシ樹脂であるテトラグリシジルジアミノジフェニルメタン、トリグリシジルアミノフェノール、トリグリシジルアミノクレゾール、テトラグリシジルキシレンジアミンのようなグリシジルアミン型エポキシ樹脂と適度な相溶性を有する樹脂骨格をもつ重合体があり、これを使用するとエポキシ樹脂組成物の流動性制御の効果が大きいほか、繊維強化樹脂複合材料の耐衝撃性を高める効果があるため好ましい。このような重合体の例としては、ポリスルホンでは“レーデル(登録商標)”A(ソルベイアドバンスドポリマーズ社製)、“スミカエクセル(登録商標)”PES(住友化学(株)製)など、ポリイミドでは“ウルテム(登録商標)”(ジーイープラスチックス社製)、“Matrimid(登録商標)”5218(ハンツマン社製)などが挙げられる。 In addition, the resins themselves of polysulfone, polyethersulfone, and polyimide have excellent heat resistance, and tetraglycidyldiaminodiphenylmethane and triglycidylamino, which are epoxy resins often used for applications requiring heat resistance, such as structural members of aircraft. There are polymers with a resin skeleton that have appropriate compatibility with glycidylamine-type epoxy resins such as phenol, triglycidylaminocresol, and tetraglycidylxylene diamine, and the use of these polymers has the effect of controlling the fluidity of the epoxy resin composition. In addition to being large, it is preferable because it has the effect of increasing the impact resistance of the fiber-reinforced resin composite material. Examples of such polymers include "Radel (registered trademark)" A (manufactured by Solvay Advanced Polymers) and "Sumika Excel (registered trademark)" PES (manufactured by Sumitomo Chemical Co., Ltd.) for polysulfone. Examples thereof include "Ultem (registered trademark)" (manufactured by GE Plastics) and "Polymid (registered trademark)" 5218 (manufactured by Huntsman).

本発明のエポキシ樹脂組成物において、熱可塑性樹脂を含む場合は、エポキシ樹脂組成物に含まれるエポキシ樹脂100質量部に対して、1〜60質量部含まれることが好ましい。 When the epoxy resin composition of the present invention contains a thermoplastic resin, it is preferably contained in an amount of 1 to 60 parts by mass with respect to 100 parts by mass of the epoxy resin contained in the epoxy resin composition.

(粒子の配合)
本発明のエポキシ樹脂組成物は、本発明の効果を妨げない範囲で、カップリング剤や、熱硬化性樹脂粒子、または、カーボンブラック、カーボン粒子や金属めっき有機粒子等の導電性粒子、あるいはシリカゲル、クレー等の無機フィラーを配合することができる。これらの添加には、エポキシ樹脂組成物の粘度を高め、樹脂フローを小さくする粘度調整効果、樹脂硬化物の弾性率、耐熱性を向上させる効果、耐摩耗性を向上させる効果がある。
(Mixing of particles)
The epoxy resin composition of the present invention is a coupling agent, thermosetting resin particles, conductive particles such as carbon black, carbon particles, metal-plated organic particles, or silica gel, as long as the effects of the present invention are not impaired. , Clay and other inorganic fillers can be blended. These additions have an effect of increasing the viscosity of the epoxy resin composition and reducing the resin flow, an effect of improving the elastic modulus of the cured resin product, an effect of improving heat resistance, and an effect of improving wear resistance.

(エポキシ樹脂組成物の調製方法)
本発明のエポキシ樹脂組成物の調製には、例えばニーダー、プラネタリーミキサー、3本ロールおよび2軸押出機といった機械を用いて混練しても良いし、均一な混練が可能であれば、ビーカーとスパチュラなどを用い、手で混ぜても良い。
(Preparation method of epoxy resin composition)
The epoxy resin composition of the present invention may be kneaded using a machine such as a kneader, a planetary mixer, a three-roll or twin-screw extruder, or with a beaker if uniform kneading is possible. You may mix it by hand using a spatula or the like.

(エポキシ樹脂硬化物の曲げ特性)
本発明のエポキシ樹脂組成物を130℃で2時間硬化させた際の樹脂硬化物の曲げ弾性率は、3.5GPa以上であることが好ましく、3.7GPa以上であることがより好ましい。弾性率が3.5GPa以上であると、静的強度に優れた繊維強化複合材料が得られる。曲げ弾性率の上限は、一般には5.0GPa以下である。
(Bending characteristics of cured epoxy resin)
The flexural modulus of the cured resin product when the epoxy resin composition of the present invention is cured at 130 ° C. for 2 hours is preferably 3.5 GPa or more, and more preferably 3.7 GPa or more. When the elastic modulus is 3.5 GPa or more, a fiber-reinforced composite material having excellent static strength can be obtained. The upper limit of the flexural modulus is generally 5.0 GPa or less.

ここで、樹脂硬化物の曲げ弾性率および曲げ撓み量の測定法は以下の通りである。スペーサーにより厚み2mmとなるように設定したモールド中で130℃の温度で2時間硬化させ、厚さ2mmの樹脂硬化物を得る。この樹脂硬化物から幅10mm、長さ60mmの試験片を切り出し、インストロン万能試験機(インストロン社製)を用い、スパン間長さを32mm、クロスヘッドスピードを2.5mm/分とし、JIS K7171(1994)に従って3点曲げ試験を実施することにより、曲げ弾性率および曲げ撓み量が測定できる。 Here, the method for measuring the flexural modulus and the bending deflection amount of the cured resin product is as follows. A cured resin product having a thickness of 2 mm is obtained by curing at a temperature of 130 ° C. for 2 hours in a mold set to have a thickness of 2 mm by a spacer. A test piece having a width of 10 mm and a length of 60 mm was cut out from this cured resin product, and an Instron universal testing machine (manufactured by Instron) was used to set the span length to 32 mm and the crosshead speed to 2.5 mm / min, and JIS. By carrying out a three-point bending test in accordance with K7171 (1994), the flexural modulus and the amount of bending flexure can be measured.

なお、樹脂硬化物を得るための硬化温度や硬化時間は特に限定されず、成形品の形状や厚みにより最適な条件は変わるため、使用者により任意に選択されるものであるが、暴走反応を抑えつつ、短時間で成形する観点から、130℃〜150℃の温度で90分〜2時間硬化させる条件が好ましい。 The curing temperature and curing time for obtaining the cured resin product are not particularly limited, and the optimum conditions vary depending on the shape and thickness of the molded product. Therefore, it is arbitrarily selected by the user, but a runaway reaction may occur. From the viewpoint of molding in a short time while suppressing the temperature, it is preferable to cure at a temperature of 130 ° C. to 150 ° C. for 90 minutes to 2 hours.

(繊維強化複合材料)
次に、繊維強化複合材料について説明する。本発明のエポキシ樹脂組成物を、強化繊維と複合一体化した後、硬化させることにより、本発明のエポキシ樹脂組成物の硬化物をマトリックス樹脂として含む繊維強化複合材料を得ることができる。
(Fiber reinforced composite material)
Next, the fiber-reinforced composite material will be described. By composite-integrating the epoxy resin composition of the present invention with reinforcing fibers and then curing the epoxy resin composition, a fiber-reinforced composite material containing the cured product of the epoxy resin composition of the present invention as a matrix resin can be obtained.

本発明に用いられる強化繊維は特に限定されるものではなく、ガラス繊維、炭素繊維、アラミド繊維、ボロン繊維、アルミナ繊維、炭化ケイ素繊維などが用いられる。これらの繊維を2種以上混合して用いても構わない。この中で、軽量かつ高剛性な繊維強化複合材料が得られる炭素繊維を用いることが好ましい。 The reinforcing fiber used in the present invention is not particularly limited, and glass fiber, carbon fiber, aramid fiber, boron fiber, alumina fiber, silicon carbide fiber and the like are used. Two or more of these fibers may be mixed and used. Among these, it is preferable to use carbon fiber which can obtain a lightweight and highly rigid fiber-reinforced composite material.

(プリプレグ)
繊維強化複合材料を得るにあたり、あらかじめエポキシ樹脂組成物と強化繊維からなるプリプレグとしておくが好ましい。プリプレグ繊維の配置および樹脂の割合を精密に制御でき、複合材料の特性を最大限に引き出すことのできる材料形態である。プリプレグは、本発明のエポキシ樹脂組成物を強化繊維基材に含浸させて得ることができる。含浸させる方法としては、ホットメルト法(ドライ法)などの公知の方法を挙げることができる。
(Prepreg)
In order to obtain a fiber-reinforced composite material, it is preferable to prepare a prepreg composed of an epoxy resin composition and reinforcing fibers in advance. It is a material form in which the arrangement of prepreg fibers and the ratio of resin can be precisely controlled, and the characteristics of the composite material can be maximized. The prepreg can be obtained by impregnating the reinforcing fiber base material with the epoxy resin composition of the present invention. Examples of the impregnation method include known methods such as a hot melt method (dry method).

ホットメルト法は、加熱により低粘度化したエポキシ樹脂組成物を直接強化繊維に含浸させる方法、または離型紙などの上にエポキシ樹脂組成物をコーティングしたフィルムを作製しておき、次いで強化繊維の両側または片側から前記フィルムを重ね、加熱加圧することにより強化繊維に樹脂を含浸させる方法である。 In the hot melt method, the reinforcing fibers are directly impregnated with the epoxy resin composition whose viscosity has been reduced by heating, or a film coated with the epoxy resin composition on a release paper or the like is prepared, and then both sides of the reinforcing fibers are prepared. Alternatively, it is a method in which the films are laminated from one side and the reinforcing fibers are impregnated with the resin by heating and pressurizing.

プリプレグ積層成形法において、熱および圧力を付与する方法としては、プレス成形法、オートクレーブ成形法、バッギング成形法、ラッピングテープ法、内圧成形法などを適宜使用することができる。 In the prepreg laminated molding method, as a method of applying heat and pressure, a press molding method, an autoclave molding method, a bagging molding method, a lapping tape method, an internal pressure molding method and the like can be appropriately used.

本発明のエポキシ樹脂組成物の硬化物と、強化繊維を含む繊維強化複合材料は、スポーツ用途、一般産業用途および航空宇宙用途に好ましく用いられる。より具体的には、スポーツ用途では、ゴルフシャフト、釣り竿、テニスやバドミントンのラケット、ホッケーなどのスティック、およびスキーポールなどに好ましく用いられる。さらに一般産業用途では、自動車、自転車、船舶および鉄道車両などの移動体の構造材、ドライブシャフト、板バネ、風車ブレード、圧力容器、フライホイール、製紙用ローラ、屋根材、ケーブル、および補修補強材料などに好ましく用いられる。 The cured product of the epoxy resin composition of the present invention and the fiber-reinforced composite material containing reinforcing fibers are preferably used for sports applications, general industrial applications and aerospace applications. More specifically, in sports applications, it is preferably used for golf shafts, fishing rods, rackets for tennis and badminton, sticks for hockey, ski poles, and the like. In addition, for general industrial applications, structural materials for moving objects such as automobiles, bicycles, ships and railroad vehicles, drive shafts, leaf springs, wind turbine blades, pressure vessels, flywheels, papermaking rollers, roofing materials, cables, and repair reinforcement materials. It is preferably used for such purposes.

以下に実施例を示し、本発明をさらに具体的に説明するが、本発明はこれら実施例の記載に限定されるものではない。 Examples are shown below, and the present invention will be described in more detail, but the present invention is not limited to the description of these examples.

本実施例で用いる構成要素は以下の通りである。 The components used in this embodiment are as follows.

<使用した材料>
・エポキシ樹脂[A]
[A1]−1 “jER(登録商標)”154(フェノールノボラック型エポキシ樹脂、エポキシ当量:178、平均官能基数:3.0個/分子、三菱化学(株)製)
[A1]−2 “エピクロン(登録商標)”N−775(フェノールノボラック型エポキシ樹脂、エポキシ当量:190、平均官能基数:6.5個/分子、DIC(株)製)
[A1]−3 “エピクロン(登録商標)”HP−7200H(ジシクロペンタジエン型エポキシ樹脂、エポキシ当量:279、平均官能基数:3.0個/分子、DIC(株)製)
[A1]−4 “jER(登録商標)”152(フェノールノボラック型エポキシ樹脂、エポキシ当量:177、平均官能基数:2.2個/分子、三菱化学(株)製)
[A2]−1 “スミエポキシ(登録商標)”ELM434(テトラグリシジルジアミノジフェニルメタン、エポキシ当量:125、住友化学工業(株)製)
[A2]−2 “アラルダイト(登録商標)”MY0600(トリグリシジルm−アミノフェノール、エポキシ当量:118、ハンツマン・アドバンスト・マテリアルズ社製)
[A3]−1 “エピクロン(登録商標)”830(液状ビスフェノールF型エポキシ樹脂、エポキシ当量:168、DIC(株)製)
[A3]−2 “エポトート(登録商標)”YDF−2001(固形ビスフェノールF型エポキシ樹脂、エポキシ当量:475、東都化成(株)製)
[A]−1 “jER(登録商標)”828(液状ビスフェノールA型エポキシ樹脂、エポキシ当量:189、三菱化学(株)製)
[A]−2 “jER(登録商標)”1001(固形ビスフェノールA型エポキシ樹脂、エポキシ当量:475、三菱化学(株)製)。
<Material used>
-Epoxy resin [A]
[A1] -1 "jER (registered trademark)" 154 (phenol novolac type epoxy resin, epoxy equivalent: 178, average number of functional groups: 3.0 / molecule, manufactured by Mitsubishi Chemical Corporation)
[A1] -2 "Epiclon (registered trademark)" N-775 (phenol novolac type epoxy resin, epoxy equivalent: 190, average number of functional groups: 6.5 / molecule, manufactured by DIC Corporation)
[A1] -3 "Epiclon (registered trademark)" HP-7200H (dicyclopentadiene type epoxy resin, epoxy equivalent: 279, average number of functional groups: 3.0 / molecule, manufactured by DIC Corporation)
[A1] -4 "jER (registered trademark)" 152 (phenol novolac type epoxy resin, epoxy equivalent: 177, average number of functional groups: 2.2 / molecule, manufactured by Mitsubishi Chemical Corporation)
[A2] -1 "Sumiepoxy (registered trademark)" ELM434 (tetraglycidyldiaminodiphenylmethane, epoxy equivalent: 125, manufactured by Sumitomo Chemical Co., Ltd.)
[A2] -2 "Araldite (registered trademark)" MY0600 (triglycidyl m-aminophenol, epoxy equivalent: 118, manufactured by Huntsman Advanced Materials)
[A3] -1 "Epiclon (registered trademark)" 830 (liquid bisphenol F type epoxy resin, epoxy equivalent: 168, manufactured by DIC Corporation)
[A3] -2 "Epototo (registered trademark)" YDF-2001 (solid bisphenol F type epoxy resin, epoxy equivalent: 475, manufactured by Toto Kasei Co., Ltd.)
[A] -1 "jER (registered trademark)" 828 (liquid bisphenol A type epoxy resin, epoxy equivalent: 189, manufactured by Mitsubishi Chemical Corporation)
[A] -2 "jER (registered trademark)" 1001 (solid bisphenol A type epoxy resin, epoxy equivalent: 475, manufactured by Mitsubishi Chemical Corporation).

・ジシアンジアミド[B]
[B]−1 DICY7(ジシアンジアミド、三菱化学(株)製)。
・ Disyandiamide [B]
[B] -1 DICY7 (dicyandiamide, manufactured by Mitsubishi Chemical Corporation).

・芳香族ウレア化合物[C]
[C]−1 DCMU99(3−(3,4−ジクロロフェニル)−1,1−ジメチルウレア、保土ヶ谷化学工業(株)製)
[C]−2 “Omicure(登録商標)”24(トルエンビスジメチルウレア、ピィ・ティ・アイ・ジャパン(株)製)。
-Aromatic urea compound [C]
[C] -1 DCMU99 (3- (3,4-dichlorophenyl) -1,1-dimethylurea, manufactured by Hodogaya Chemical Co., Ltd.)
[C] -2 "Omicure (registered trademark)" 24 ( toluene bisdimethylurea , manufactured by PTI Japan Co., Ltd.).

・芳香族ウレア化合物以外の硬化促進剤[C’]
[C’]−1 “キュアゾール(登録商標)”2PHZ−PW(2−フェニル−4,5−ジヒドロキシメチルイミダゾール、四国化成工業(株)製)
[C’]−2 “キュアゾール(登録商標)”2P4MHZ−PW(2−フェニル−4−メチル−5−ヒドロキシメチルイミダゾール、四国化成工業(株)製)
[C’]−3 “キュアダクト(登録商標)”P−0505(エポキシ−イミダゾールアダクト、四国化成工業(株)製)。
-Curing accelerators other than aromatic urea compounds [C']
[C'] -1 "Curesol (registered trademark)" 2PHZ-PW (2-phenyl-4,5-dihydroxymethylimidazole, manufactured by Shikoku Chemicals Corporation)
[C'] -2 "Curesol (registered trademark)" 2P4MHZ-PW (2-phenyl-4-methyl-5-hydroxymethylimidazole, manufactured by Shikoku Chemicals Corporation)
[C'] -3 "Cure Duct (registered trademark)" P-0505 (Epoxy-imidazole adduct, manufactured by Shikoku Chemicals Corporation).

・ホウ酸エステルを含む混合物[D]
[D]−1 “キュアダクト(登録商標)”L−07N(ホウ酸エステル化合物を5質量部含む組成物、四国化成工業(株)製)。
-Mixture containing boric acid ester [D]
[D] -1 "Cure Duct (registered trademark)" L-07N (composition containing 5 parts by mass of a boric acid ester compound, manufactured by Shikoku Chemicals Corporation).

・熱可塑性樹脂[E]
[E]−1 “ビニレック(登録商標)”K(ポリビニルホルマール、JNC(株)製)。
-Thermoplastic resin [E]
[E] -1 "Vinirec (registered trademark)" K (polyvinyl formal, manufactured by JNC Co., Ltd.).

・その他の化合物
ビスフェノールS(東京化成工業(株)製ビス(ヒドロキシフェニル)スルホンをハンマーミルで粉砕した後、ふるいで分級したもの。平均粒径14.8μm。)。
-Other compounds Bisphenol S (bis (hydroxyphenyl) sulfone manufactured by Tokyo Chemical Industry Co., Ltd., crushed with a hammer mill and then classified by sieving. Average particle size: 14.8 μm).

<エポキシ樹脂組成物の調製方法>
(1)硬化促進剤マスター、硬化剤マスターの作製方法
液状樹脂である[A3]−1(“エピクロン(登録商標)”830)または[A]−1(“jER(登録商標)”828)10質量部(エポキシ樹脂[A]100質量部のうちの10質量部)に対し、芳香族ウレア化合物[C]または硬化促進剤[C’]、および、ホウ酸エステルを含む混合物[D]を添加し、ニーダーを用いて室温で混練した。三本ロールを用いて混合物をロール間に2回通し、硬化促進剤マスターを調製した。硬化促進剤マスターにジシアンジアミド[B]、およびビスフェノールSを含む場合はビスフェノールSを添加し、ニーダーを用いて室温で混練した後、三本ロールを用いてロール間に2回通し、硬化剤マスターを作製した。
<Preparation method of epoxy resin composition>
(1) Method for producing curing accelerator master and curing agent master Liquid resin [A3] -1 ("Epoxylon (registered trademark)" 830) or [A] -1 ("jER (registered trademark)" 828) 10 To a mass part (10 parts by mass out of 100 parts by mass of the epoxy resin [A]), the aromatic urea compound [C] or the curing accelerator [C'] and the mixture [D] containing the borate ester are added. Then, it was kneaded at room temperature using a kneader. The mixture was passed twice between the rolls using three rolls to prepare a curing accelerator master. When dicyandiamide [B] and bisphenol S are contained in the curing accelerator master, bisphenol S is added, kneaded at room temperature using a kneader, and then passed twice between the rolls using three rolls to pass the curing agent master. Made.

(2)エポキシ樹脂組成物の作製方法
ニーダー中に、エポキシ樹脂[A]のうち前記(1)で使用した[A3]−1(“エピクロン(登録商標)”830)または[A]−1(“jER(登録商標)”828)10質量部を除くエポキシ樹脂[A]90質量部および熱可塑性樹脂[E]を投入し、混練しながら150℃まで昇温し、150℃において1時間混練することで、透明な粘調液を得た。粘調液を60℃まで混練しながら降温させた後、前記(1)で作製した硬化剤マスターを配合し、60℃において30分間混練することにより、エポキシ樹脂組成物を得た。
(2) Method for Producing Epoxy Resin Composition Among the epoxy resins [A], [A3] -1 ("Epiclon (registered trademark)" 830) or [A] -1 ( "JER (registered trademark)" 828) Add 90 parts by mass of epoxy resin [A] and thermoplastic resin [E] excluding 10 parts by mass, raise the temperature to 150 ° C while kneading, and knead at 150 ° C for 1 hour. As a result, a transparent viscous liquid was obtained. After lowering the temperature of the viscous liquid while kneading it to 60 ° C., the curing agent master prepared in (1) above was blended and kneaded at 60 ° C. for 30 minutes to obtain an epoxy resin composition.

各実施例および比較例の成分配合比について表1〜5に示した。 The component compounding ratios of each Example and Comparative Example are shown in Tables 1 to 5.

<樹脂組成物特性の評価方法>
(1)T(100)
エポキシ樹脂組成物3mgをサンプルパンに量り取り、示差走査熱量分析計(Q−2000:TAインスツルメント社製)を用い、30℃から100℃/分で100℃まで昇温した後に8時間の等温測定を行った。昇温開始時刻から42秒後を等温測定開始時刻とし、等温測定開始時刻から熱流量が発熱ピークトップに至るまでの時間を測定し、100℃の等温測定時のピークトップまでの時間として取得した。測定は1つの水準あたり3サンプルずつ行い、その平均値を採用した。以後、本測定で得られた平均値をT(100)と表記する(ただし、T(100)の単位は[分]である。)。
<Evaluation method of resin composition characteristics>
(1) T (100)
Weigh 3 mg of the epoxy resin composition into a sample pan, and use a differential scanning calorimeter (Q-2000: manufactured by TA Instruments) to heat the temperature from 30 ° C to 100 ° C / min to 100 ° C for 8 hours. Isothermal measurements were taken. The isothermal measurement start time was 42 seconds after the temperature rise start time, and the time from the isothermal measurement start time to the heat flow reaching the exothermic peak top was measured and acquired as the time to the peak top during the isothermal measurement at 100 ° C. .. The measurement was performed by 3 samples per level, and the average value was adopted. Hereinafter, the average value obtained in this measurement is referred to as T (100) (however, the unit of T (100) is [minute]).

(2)T(60)
エポキシ樹脂組成物3mgをサンプルパンに量り取り、示差走査熱量分析計(Q−2000:TAインスツルメント社製)を用い、30℃から100℃/分で60℃まで昇温した後に48時間の等温測定を行った。昇温開始時刻から18秒後を等温測定開始時刻とし、等温測定開始時刻から熱流量が発熱ピークトップに至るまでの時間を測定し、60℃の等温測定時のピークトップまでの時間として取得した。測定は1つの水準あたり3サンプルずつ行い、その平均値を採用した。以後、本測定で得られた平均値をT(60)と表記する(ただし、T(60)の単位は[時間]である。)。なお、48時間たってもピークトップが現れなかった場合は、T(60)の値は「48以上」とした。
(2) T (60)
Weigh 3 mg of the epoxy resin composition into a sample pan, and use a differential scanning calorimeter (Q-2000: manufactured by TA Instruments) to raise the temperature from 30 ° C to 100 ° C / min to 60 ° C for 48 hours. Isothermal measurements were taken. Eighteen seconds after the start time of temperature rise was set as the isothermal measurement start time, and the time from the start time of isothermal measurement until the heat flow reached the top of the exothermic peak was measured and acquired as the time to the peak top of the isothermal measurement at 60 ° C. .. The measurement was performed by 3 samples per level, and the average value was adopted. Hereinafter, the average value obtained in this measurement is referred to as T (60) (however, the unit of T (60) is [time]). If the peak top did not appear even after 48 hours, the value of T (60) was set to "48 or more".

<樹脂硬化物の作製方法と評価方法>
(1)樹脂硬化物の弾性率と撓み
エポキシ樹脂組成物を真空中で脱泡した後、2mm厚の“テフロン”(登録商標)製スペーサーにより厚み2mmになるように設定したモールド中で、130℃の温度で90分間硬化させ、厚さ2mmの板状の樹脂硬化物を得た。この樹脂硬化物から、幅10mm、長さ60mmの試験片を切り出し、インストロン万能試験機(インストロン社製)を用い、スパンを32mm、クロスヘッドスピードを100mm/分とし、JIS K7171(1994)に従って3点曲げを実施し、弾性率および撓みを測定した。サンプル数n=5で測定した値の平均値を弾性率と撓みの値とした。
<Method of producing and evaluating cured resin>
(1) Elastic modulus and deflection of the cured resin product After defoaming the epoxy resin composition in vacuum, 130 in a mold set to a thickness of 2 mm with a 2 mm thick "Teflon" (registered trademark) spacer. It was cured at a temperature of ° C. for 90 minutes to obtain a plate-shaped resin cured product having a thickness of 2 mm. A test piece having a width of 10 mm and a length of 60 mm was cut out from this cured resin product, and using an Instron universal testing machine (manufactured by Instron), the span was 32 mm and the crosshead speed was 100 mm / min. JIS K7171 (1994) The three-point bending was carried out according to the above, and the elastic modulus and the deflection were measured. The average value of the values measured when the number of samples n = 5 was taken as the elastic modulus and the deflection value.

<プリプレグの作製方法と評価方法>
(1)プリプレグの作製方法
上記<エポキシ樹脂組成物の作製方法>に従い作製したエポキシ樹脂組成物を、フィルムコーターを用いて離型紙上に塗布し、目付が74g/mの樹脂フィルムを作製した。
<Prepreg manufacturing method and evaluation method>
(1) Method for producing prepreg The epoxy resin composition produced according to the above <Method for producing an epoxy resin composition> was applied onto a paper pattern using a film coater to prepare a resin film having a grain size of 74 g / m 2 . ..

この樹脂フィルムをプリプレグ化装置にセットし、一方向に引き揃えたシート状にした炭素繊維“トレカ”(登録商標)T700S(東レ(株)製、目付150g/m)の両面から加熱加圧含浸し、樹脂含有率33質量%のプリプレグを得た。 This resin film is set in a prepreg device and heated and pressed from both sides of the carbon fiber "Treca" (registered trademark) T700S (manufactured by Toray Industries, Inc., with a grain of 150 g / m 2 ) that is made into a sheet that is aligned in one direction. It was impregnated to obtain a prepreg having a resin content of 33% by mass.

(2)プリプレグの硬化速度の評価方法
プリプレグの硬化速度は、プリプレグを20cm四方に切り取り、厚さ150μmの“テフロン(登録商標)”シートで挟み込み、130℃でプレスした後に、取り出した時の取り扱い性によって判定した。取り扱い性は以下の基準で判定し、A〜Cを合格とした。
A:20分後に取り出した時にプリプレグが変形しなかった。
B:20分後に取り出した時はプリプレグが変形したが、30分後に取り出した時は変形しなかった。
C:30分後に取り出した時はプリプレグが変形したが、40分後に取り出した時は変形しなかった。
D:硬化速度が不十分で40分後に取り出した場合にプリプレグが変形した。
(2) Evaluation method of curing rate of prepreg The curing rate of prepreg is the handling when the prepreg is cut into 20 cm squares, sandwiched between 150 μm-thick "Teflon (registered trademark)" sheets, pressed at 130 ° C, and then taken out. Judged by gender. The handleability was judged according to the following criteria, and A to C were accepted.
A: The prepreg was not deformed when it was taken out after 20 minutes.
B: The prepreg was deformed when it was taken out after 20 minutes, but it was not deformed when it was taken out after 30 minutes.
C: The prepreg was deformed when it was taken out after 30 minutes, but it was not deformed when it was taken out after 40 minutes.
D: The curing rate was insufficient and the prepreg was deformed when taken out after 40 minutes.

(3)プリプレグの保管安定性の評価方法
プリプレグの保管安定性は、プリプレグを10cm四方に切り取り、40℃で60日放置した場合のガラス転移温度の増加量によって判定した。ガラス転移温度は、保管後のプリプレグ8mgをサンプルパンに測り取り、示差走査熱量分析計(Q−2000:TAインスツルメント社製)を用い、−50℃から50℃まで10℃/分で昇温して測定した。得られた発熱カーブの変曲点の中点をTgとして取得した。
(3) Method for evaluating storage stability of prepreg The storage stability of prepreg was determined by the amount of increase in the glass transition temperature when the prepreg was cut into 10 cm squares and left at 40 ° C. for 60 days. The glass transition temperature was raised from -50 ° C to 50 ° C at 10 ° C / min using a differential scanning calorimeter (Q-2000: manufactured by TA Instruments) after measuring 8 mg of prepreg after storage on a sample pan. It was warmed and measured. The midpoint of the inflection point of the obtained heat generation curve was acquired as Tg.

(4)プリプレグの80℃1時間熱処理後の保管安定性の評価方法
熱履歴を加えた際の保管安定性の指標として、80℃で1時間の熱処理を加えたプリプレグの保管安定性を評価した。プリプレグを10cm四方に切り取り、80℃に調製したプレス機の盤面にプリプレグを1時間静置し、その後室温のアルミ板の上で急冷し、熱履歴を加えたプリプレグサンプルを調製した。得られたサンプルについて、(3)と同様の方法で、40℃で60日放置した場合のガラス転移温度の増加量を測定することにより、保管安定性を評価した。
(4) Evaluation method of storage stability of prepreg after heat treatment at 80 ° C. for 1 hour As an index of storage stability when heat history was added, the storage stability of prepreg after heat treatment at 80 ° C. for 1 hour was evaluated. .. The prepreg was cut into 10 cm squares, and the prepreg was allowed to stand on the surface of a press machine prepared at 80 ° C. for 1 hour, and then rapidly cooled on an aluminum plate at room temperature to prepare a prepreg sample to which a heat history was added. The storage stability of the obtained sample was evaluated by measuring the amount of increase in the glass transition temperature when the sample was left at 40 ° C. for 60 days in the same manner as in (3).

<炭素繊維複合材料(CFRP)の特性評価方法>
(1)CFRPの一方向積層板の作製方法
CFRPの特性評価に用いる一方向積層板は、次の方法によって作製した。上記<プリプレグの作製方法>に従って作製した一方向プリプレグの繊維方向を揃え、13ply積層した。積層したプリプレグをナイロンフィルムで隙間のないように覆い、これをオートクレーブ中で130℃、内圧0.3MPaで2時間加熱加圧して硬化し、一方向積層板を作製した。
<Characteristic evaluation method for carbon fiber composite material (CFRP)>
(1) Method for producing CFRP unidirectional laminate The unidirectional laminate used for evaluating the characteristics of CFRP was produced by the following method. The fiber directions of the unidirectional prepregs produced according to the above <Method for producing prepregs> were aligned, and 13 ply lamination was performed. The laminated prepreg was covered with a nylon film so as not to have a gap, and this was heated and pressed in an autoclave at 130 ° C. and an internal pressure of 0.3 MPa for 2 hours to cure, thereby producing a unidirectional laminated plate.

(2)CFRPの0°曲げ強度の評価方法
上記に従い作製した一方向積層板を、厚み2mm、幅15mm、長さ100mmとなるように切り出した。インストロン万能試験機(インストロン社製)を用いJIS K7074(1988)に従って3点曲げを実施した。スパンを80mm、クロスヘッドスピードを5.0mm/分、厚子径10mm、支点径4.0mmで測定を行い、0°曲げ強度を測定した。サンプル数n=6で測定した値の平均値を0°曲げ強度の値とした。
(2) Evaluation Method of 0 ° Bending Strength of CFRP The unidirectional laminated board produced according to the above was cut out so as to have a thickness of 2 mm, a width of 15 mm, and a length of 100 mm. Three-point bending was performed according to JIS K7074 (1988) using an Instron universal testing machine (manufactured by Instron). The measurement was performed with a span of 80 mm, a crosshead speed of 5.0 mm / min, a thickness diameter of 10 mm, and a fulcrum diameter of 4.0 mm, and a 0 ° bending strength was measured. The average value of the values measured when the number of samples n = 6 was taken as the value of 0 ° bending strength.

(3)CFRPの90°曲げ強度の評価方法
上記に従い作製した一方向積層板を、厚み2mm、幅15mm、長さ60mmとなるように切り出した。インストロン万能試験機(インストロン社製)を用いJIS K7074(1988)に従って3点曲げを実施した。スパンを40mm、クロスヘッドスピードを1.0mm/分、厚子径10mm、支点径4.0mmで測定を行い、90°曲げ強度を測定した。サンプル数n=6で測定した値の平均値を90°曲げ強度の値とした。
(3) Method for evaluating 90 ° bending strength of CFRP A unidirectional laminated board produced according to the above was cut out so as to have a thickness of 2 mm, a width of 15 mm, and a length of 60 mm. Three-point bending was performed according to JIS K7074 (1988) using an Instron universal testing machine (manufactured by Instron). The measurement was performed with a span of 40 mm, a crosshead speed of 1.0 mm / min, a thickness diameter of 10 mm, and a fulcrum diameter of 4.0 mm, and a 90 ° bending strength was measured. The average value of the values measured with the number of samples n = 6 was taken as the value of the 90 ° bending strength.

(実施例1)
[A]エポキシ樹脂として“jER(登録商標)”154を30質量部、“jER(登録商標)”828を40質量部、jER(登録商標)”1001を30質量部、[B]ジシアンジアミドとしてDICY7を5.3質量部、および[C]芳香族ウレア化合物としてDCMU99を3.0質量部、[D]ホウ酸エステルを含む混合物として“キュアダクト(登録商標)”L−07Nを3.0質量部、熱可塑樹脂として“ビニレック(登録商標)”Kを3.0質量部用い、上記<エポキシ樹脂組成物の作製方法>に従ってエポキシ樹脂組成物を作製した。すなわち、液状樹脂である[A]−1(“jER(登録商標)”828)10質量部(エポキシ樹脂[A]100質量部のうちの10質量部)に対し、DCMU99を3.0質量部、および“キュアダクト(登録商標)”L−07Nを3.0質量部添加しニーダーを用いて室温で混練した。三本ロールを用いて混合物をロール間に2回通し、硬化促進剤マスターを調製した。硬化促進剤マスターにDICY7を5.3質量部添加し、ニーダーを用いて室温で混練した後、三本ロールを用いてロール間に2回通し、硬化剤マスターを作製した。
(Example 1)
[A] 30 parts by mass of "jER (registered trademark)" 154, 40 parts by mass of "jER (registered trademark)" 828, 30 parts by mass of "jER (registered trademark)" 1001 as an epoxy resin, and [B] DICY7 as a dicyandiamide. 5.3 parts by mass, and 3.0 parts by mass of DCMU99 as a [C] aromatic urea compound, and 3.0 parts by mass of "Cureduct (registered trademark)" L-07N as a mixture containing [D] borate ester. An epoxy resin composition was prepared according to the above <Method for producing an epoxy resin composition> using 3.0 parts by mass of "Vinirec (registered trademark)" K as a part and a thermoplastic resin. That is, it is a liquid resin [A]. -1 ("jER®" 828) 10 parts by mass (10 parts by mass out of 100 parts by mass of epoxy resin [A]), 3.0 parts by mass of DCMU99, and "Cureduct (registered trademark)""3.0 parts by mass of L-07N was added and kneaded at room temperature using a kneader. Using three rolls, the mixture was passed twice between the rolls to prepare a curing accelerator master. DICY7 was used as the curing accelerator master. Was added in an amount of 5.3 parts by mass and kneaded at room temperature using a kneader, and then passed twice between the rolls using three rolls to prepare a curing agent master.

ニーダー中に、残りのエポキシ樹脂[A]90質量部として、“jER(登録商標)”154を30質量部、“jER(登録商標)”828を30質量部、jER(登録商標)”1001を30質量部投入し、さらに“ビニレック(登録商標)”Kを3.0質量部投入した。混練しながら150℃まで昇温し、150℃において1時間混練することで、透明な粘調液を得た。粘調液を60℃まで混練しながら降温させた後、上記で作製した硬化剤マスターを配合し、60℃において30分間混練することにより、エポキシ樹脂組成物を得た。 In the kneader, as 90 parts by mass of the remaining epoxy resin [A], 30 parts by mass of "jER (registered trademark)" 154, 30 parts by mass of "jER (registered trademark)" 828, and "jER (registered trademark)" 1001. 30 parts by mass was added, and 3.0 parts by mass of "Vinirec (registered trademark)" K was added. The temperature was raised to 150 ° C. while kneading, and the mixture was kneaded at 150 ° C. for 1 hour to obtain a transparent viscous liquid. The obtained viscous liquid was cooled to 60 ° C. while kneading, and then the curing agent master prepared above was added and kneaded at 60 ° C. for 30 minutes to obtain an epoxy resin composition.

このエポキシ樹脂組成物について、T(100)およびT(60)を測定したところ、T(100)は43分、T(60)は29時間であった。 When T (100) and T (60) were measured for this epoxy resin composition, T (100) was 43 minutes and T (60) was 29 hours.

また、エポキシ樹脂組成物を上記<樹脂硬化物の作製方法と評価方法>に記載の方法で硬化して樹脂硬化物を作製し、同記載の3点曲げ試験を行った結果、弾性率は3.3GPa、撓みは10.2mmと、樹脂硬化物の力学特性も良好であった。 Further, the epoxy resin composition was cured by the method described in the above <Method for producing and evaluating a cured resin product> to prepare a cured resin product, and the three-point bending test described above was performed. As a result, the elastic modulus was 3. The mechanical properties of the cured resin product were also good, with a flexural modulus of 10.2 mm and 3 GPa.

さらに、得られたエポキシ樹脂組成物から、<プリプレグの作製方法と評価方法>に記載の方法でプリプレグを作製した。得られたプリプレグは十分なタック性・ドレープ性を有していた。得られたプリプレグに関し、同記載の硬化速度と保管安定性の評価を行ったところ、130℃において30分以内にプリプレグは変形しなくなる程度まで硬化し、また、40℃において60日間保管後にTgは2℃の上昇に留まり、プリプレグは十分な硬化速度と保管安定性を有していた。さらに、熱履歴への安定性について、80℃で1時間熱処理後のプリプレグの保管安定性を評価したところ、40℃において60日間保管後にTgは3℃の上昇に留まり、80℃での熱処理前とほぼ同等の保管安定性を有していた。 Further, from the obtained epoxy resin composition, a prepreg was prepared by the method described in <Method for producing and evaluating prepreg>. The obtained prepreg had sufficient tackiness and drapeability. When the curing rate and storage stability described above were evaluated for the obtained prepreg, the prepreg was cured to the extent that the prepreg was not deformed within 30 minutes at 130 ° C., and Tg was obtained after storage at 40 ° C. for 60 days. Only at an increase of 2 ° C., the prepreg had sufficient curing rate and storage stability. Furthermore, regarding the stability to the thermal history, when the storage stability of the prepreg after heat treatment at 80 ° C. for 1 hour was evaluated, Tg remained at an increase of 3 ° C. after storage at 40 ° C. for 60 days, and before heat treatment at 80 ° C. It had almost the same storage stability as.

<炭素繊維複合材料(CFRP)の評価方法>に記載の方法で積層・硬化して一方向積層板を作製し、3点曲げ試験を行った結果、0°曲げ強度は1420MPa、90°曲げ強度は105MPaと、CFRPの力学特性も良好であった。 As a result of laminating and curing to prepare a one-way laminated plate by the method described in <Evaluation method of carbon fiber composite material (CFRP)> and performing a three-point bending test, 0 ° bending strength is 1420 MPa and 90 ° bending strength. Was 105 MPa, and the mechanical properties of CFRP were also good.

(実施例2〜16)
樹脂組成をそれぞれ表1〜3に示したように変更した以外は、実施例1と同じ方法でエポキシ樹脂組成物、樹脂硬化物、およびプリプレグを作製した。得られたプリプレグは、実施例1と同様、いずれも十分なタック性・ドレープ性を示した。
(Examples 2 to 16)
An epoxy resin composition, a cured resin product, and a prepreg were prepared in the same manner as in Example 1 except that the resin compositions were changed as shown in Tables 1 to 3. The obtained prepregs all showed sufficient tackiness and drapeability as in Example 1.

各実施例のエポキシ樹脂組成物に関して、T(100)、T(60)は、それぞれ表1〜3に記載の通りであった。 For the epoxy resin compositions of each example, T (100) and T (60) are as shown in Tables 1 to 3, respectively.

プリプレグの硬化速度と保管安定性、および熱履歴への安定性について、実施例1と同様の評価を行った結果、全ての水準において十分な硬化速度と保管安定性、熱履歴への安定性を示した。 As a result of the same evaluation as in Example 1 regarding the curing rate and storage stability of the prepreg and the stability in the thermal history, sufficient curing rate, storage stability, and stability in the thermal history were obtained at all levels. Indicated.

また、樹脂硬化物の弾性率と撓みの値は、いずれも良好であり、CFRPの力学特性も良好であった。 In addition, the elastic modulus and the deflection value of the cured resin product were both good, and the mechanical properties of CFRP were also good.

(比較例1)
表4に示した樹脂組成について、実施例1と同じ方法でエポキシ樹脂組成物、プリプレグ、および樹脂硬化物を作製した。樹脂組成物特性および評価結果は表4に示した。エポキシ樹脂組成物のT(60)の値が23時間と25時間未満であり、プリプレグの保管安定性は不十分であった。また、80℃で1時間熱処理後のプリプレグの保管安定性を評価したところ、ビスフェノールSを含むためか、Tgは44℃と大きく上昇し、熱履歴への安定性は得られなかった。
(Comparative Example 1)
With respect to the resin compositions shown in Table 4, an epoxy resin composition, a prepreg, and a cured resin product were prepared in the same manner as in Example 1. The properties of the resin composition and the evaluation results are shown in Table 4. The value of T (60) of the epoxy resin composition was less than 23 hours and 25 hours, and the storage stability of the prepreg was insufficient. Moreover, when the storage stability of the prepreg after heat treatment at 80 ° C. for 1 hour was evaluated, the Tg increased significantly to 44 ° C., probably because it contained bisphenol S, and stability in the thermal history could not be obtained.

(比較例2)
表4に示した樹脂組成について、実施例1と同じ方法でエポキシ樹脂組成物、プリプレグ、および樹脂硬化物を作製した。本組成は、比較例1からビスフェノールSを除いた組成にあたる。樹脂組成物特性および評価結果は表4に示した。プリプレグの保管安定性および硬化物特性は良好であり、熱履歴への安定性も有したが、エポキシ樹脂組成物のT(100)の値が70分と60分より長く、得られたプリプレグの硬化速度が不十分であった。
(Comparative Example 2)
With respect to the resin compositions shown in Table 4, an epoxy resin composition, a prepreg, and a cured resin product were prepared in the same manner as in Example 1. This composition corresponds to the composition obtained by removing bisphenol S from Comparative Example 1. The properties of the resin composition and the evaluation results are shown in Table 4. The storage stability and cured product properties of the prepreg were good and stable to the thermal history, but the value of T (100) of the epoxy resin composition was longer than 70 minutes and 60 minutes, and the obtained prepreg The curing rate was insufficient.

(比較例3)
成分[D]を添加しなかった以外は、実施例4と同じ方法でエポキシ樹脂組成物、プリプレグ、および樹脂硬化物を作製した。樹脂組成物特性および評価結果は表4に示した。エポキシ樹脂組成物のT(60)の値が19時間と25時間未満であり、プリプレグの保管安定性は不十分であった。また、80℃で1時間熱処理後のプリプレグの保管安定性を評価したところ、Tgは43℃と大きく上昇し、熱履歴への安定性は得られなかった。
(Comparative Example 3)
An epoxy resin composition, a prepreg, and a cured resin product were prepared in the same manner as in Example 4 except that the component [D] was not added. The properties of the resin composition and the evaluation results are shown in Table 4. The value of T (60) of the epoxy resin composition was 19 hours and less than 25 hours, and the storage stability of the prepreg was insufficient. Moreover, when the storage stability of the prepreg after heat treatment at 80 ° C. for 1 hour was evaluated, the Tg increased significantly to 43 ° C., and stability in the thermal history could not be obtained.

(比較例4)
硬化促進剤を“キュアゾール(登録商標)”2PHZ−PW(1.0質量部)に変更し、成分[D]を添加しなかった以外は、実施例2と同じ方法でエポキシ樹脂組成物、プリプレグ、および樹脂硬化物を作製した。樹脂組成物特性および評価結果は表4に示した。プリプレグの保管安定性および硬化物特性は良好であり、熱履歴への安定性も有したが、エポキシ樹脂組成物のT(100)の値が300分と60分より極めて長く、得られたプリプレグの硬化速度が不十分であった。
(Comparative Example 4)
The epoxy resin composition and prepreg were prepared in the same manner as in Example 2 except that the curing accelerator was changed to "Curesol (registered trademark)" 2PHZ-PW (1.0 part by mass) and the component [D] was not added. , And a cured resin product were prepared. The properties of the resin composition and the evaluation results are shown in Table 4. The storage stability and cured product properties of the prepreg were good, and the prepreg was also stable in the thermal history, but the value of T (100) of the epoxy resin composition was extremely longer than 300 minutes and 60 minutes, and the obtained prepreg was obtained. The curing rate was insufficient.

(比較例5)
硬化促進剤を“キュアゾール(登録商標)”2P4MHZ−PW(1.0質量部)に変更し、成分[D]を添加しなかった以外は、実施例2と同じ方法でエポキシ樹脂組成物、プリプレグ、および樹脂硬化物を作製した。樹脂組成物特性および評価結果は表4に示した。エポキシ樹脂組成物のT(60)の値が24時間と25時間未満であり、プリプレグの保管安定性は不十分であった。また、80℃で1時間熱処理後のプリプレグの保管安定性を評価したところ、Tgは44℃と大きく上昇し、熱履歴への安定性は得られなかった。
(Comparative Example 5)
The epoxy resin composition and prepreg were prepared in the same manner as in Example 2 except that the curing accelerator was changed to "Curesol (registered trademark)" 2P4MHZ-PW (1.0 part by mass) and the component [D] was not added. , And a cured resin product were prepared. The properties of the resin composition and the evaluation results are shown in Table 4. The value of T (60) of the epoxy resin composition was less than 24 hours and 25 hours, and the storage stability of the prepreg was insufficient. Moreover, when the storage stability of the prepreg after heat treatment at 80 ° C. for 1 hour was evaluated, the Tg increased significantly to 44 ° C., and stability in the thermal history could not be obtained.

(比較例6)
樹脂組成をそれぞれ表5に示したように変更した以外は、実施例1と同じ方法でエポキシ樹脂組成物、プリプレグ、および樹脂硬化物を作製した。樹脂組成物特性および評価結果は表5に示した。エポキシ樹脂組成物のT(60)の値が15時間と25時間未満であり、プリプレグの保管安定性は不十分であった。また、80℃で1時間熱処理後のプリプレグの保管安定性を評価したところ、Tgは42℃と大きく上昇し、熱履歴への安定性は得られなかった。また、樹脂硬化物の弾性率と撓みのバランスが悪化し、CFRPの90°曲げ強度は83MPaと低いものであった。
(Comparative Example 6)
An epoxy resin composition, a prepreg, and a cured resin were prepared in the same manner as in Example 1 except that the resin compositions were changed as shown in Table 5. The properties of the resin composition and the evaluation results are shown in Table 5. The value of T (60) of the epoxy resin composition was less than 15 hours and less than 25 hours, and the storage stability of the prepreg was insufficient. Moreover, when the storage stability of the prepreg after the heat treatment at 80 ° C. for 1 hour was evaluated, the Tg increased significantly to 42 ° C., and the stability in the thermal history could not be obtained. Further, the balance between the elastic modulus and the bending of the cured resin product was deteriorated, and the 90 ° bending strength of CFRP was as low as 83 MPa.

(比較例7)
樹脂組成をそれぞれ表5に示したように変更した以外は、実施例1と同じ方法でエポキシ樹脂組成物、プリプレグ、および樹脂硬化物を作製した。樹脂組成物特性および評価結果は表5に示した。プリプレグの保管安定性および硬化物特性は良好であり、熱履歴への安定性も有したが、エポキシ樹脂組成物のT(100)の値が70分と60分より極めて長く、得られたプリプレグの硬化速度が不十分であった。
(Comparative Example 7)
An epoxy resin composition, a prepreg, and a cured resin were prepared in the same manner as in Example 1 except that the resin compositions were changed as shown in Table 5. The properties of the resin composition and the evaluation results are shown in Table 5. The storage stability and cured product properties of the prepreg were good, and the prepreg was also stable in the thermal history, but the value of T (100) of the epoxy resin composition was much longer than 70 minutes and 60 minutes, and the obtained prepreg was obtained. The curing rate was insufficient.

(比較例8)
樹脂組成をそれぞれ表5に示したように変更した以外は、実施例1と同じ方法でエポキシ樹脂組成物、プリプレグ、および樹脂硬化物を作製した。樹脂組成物特性および評価結果は表5に示した。エポキシ樹脂組成物のT(60)の値が24時間と25時間未満であり、プリプレグの保管安定性は不十分であった。
(Comparative Example 8)
An epoxy resin composition, a prepreg, and a cured resin were prepared in the same manner as in Example 1 except that the resin compositions were changed as shown in Table 5. The properties of the resin composition and the evaluation results are shown in Table 5. The value of T (60) of the epoxy resin composition was less than 24 hours and 25 hours, and the storage stability of the prepreg was insufficient.

(比較例9)
樹脂組成をそれぞれ表5に示したように変更した以外は、実施例1と同じ方法でエポキシ樹脂組成物、プリプレグ、および樹脂硬化物を作製した。樹脂組成物特性および評価結果は表5に示した。プリプレグの保管安定性および硬化物特性は良好であり、熱履歴への安定性も有したが、エポキシ樹脂組成物のT(100)の値が65分と60分より極めて長く、得られたプリプレグの硬化速度が不十分であった。
(Comparative Example 9)
An epoxy resin composition, a prepreg, and a cured resin were prepared in the same manner as in Example 1 except that the resin compositions were changed as shown in Table 5. The properties of the resin composition and the evaluation results are shown in Table 5. The storage stability and cured product properties of the prepreg were good, and the prepreg was also stable in the thermal history, but the value of T (100) of the epoxy resin composition was much longer than 65 minutes and 60 minutes, and the obtained prepreg was obtained. The curing rate was insufficient.

(比較例10)
樹脂組成をそれぞれ表5に示したように変更した以外は、実施例1と同じ方法でエポキシ樹脂組成物、プリプレグ、および樹脂硬化物を作製した。樹脂組成物特性および評価結果は表5に示した。エポキシ樹脂組成物のT(60)の値が22時間と25時間未満であり、プリプレグの保管安定性は不十分であった。
(Comparative Example 10)
An epoxy resin composition, a prepreg, and a cured resin were prepared in the same manner as in Example 1 except that the resin compositions were changed as shown in Table 5. The properties of the resin composition and the evaluation results are shown in Table 5. The value of T (60) of the epoxy resin composition was 22 hours and less than 25 hours, and the storage stability of the prepreg was insufficient.

(比較例11)
樹脂組成をそれぞれ表5に示したように変更した以外は、実施例1と同じ方法でエポキシ樹脂組成物、プリプレグ、および樹脂硬化物を作製した。樹脂組成物特性および評価結果は表5に示した。エポキシ樹脂組成物のT(60)の値が13時間と25時間未満であり、プリプレグの保管安定性は不十分であった。また、80℃で1時間熱処理後のプリプレグの保管安定性を評価したところ、Tgは43℃と大きく上昇し、熱履歴への安定性は得られなかった。また、樹脂硬化物の弾性率と撓みのバランスが悪化し、CFRPの90°曲げ強度は73MPaと低いものであった。
(Comparative Example 11)
An epoxy resin composition, a prepreg, and a cured resin were prepared in the same manner as in Example 1 except that the resin compositions were changed as shown in Table 5. The properties of the resin composition and the evaluation results are shown in Table 5. The value of T (60) of the epoxy resin composition was 13 hours and less than 25 hours, and the storage stability of the prepreg was insufficient. Moreover, when the storage stability of the prepreg after heat treatment at 80 ° C. for 1 hour was evaluated, the Tg increased significantly to 43 ° C., and stability in the thermal history could not be obtained. Further, the balance between the elastic modulus and the bending of the cured resin product was deteriorated, and the 90 ° bending strength of CFRP was as low as 73 MPa.

Figure 0006771883
Figure 0006771883

Figure 0006771883
Figure 0006771883

Figure 0006771883
Figure 0006771883

Figure 0006771883
Figure 0006771883

Figure 0006771883
Figure 0006771883

本発明のエポキシ樹脂組成物は、保管安定性が極めて優れており、硬化したときの力学特性にも優れるため、繊維強化複合材料のマトリックス樹脂として好適に用いられる。また、本発明のプリプレグおよび繊維強化複合材料は、スポーツ用途、一般産業用途および航空宇宙用途に好ましく用いられる。 Since the epoxy resin composition of the present invention has extremely excellent storage stability and excellent mechanical properties when cured, it is suitably used as a matrix resin for a fiber-reinforced composite material. In addition, the prepreg and fiber reinforced composite material of the present invention are preferably used for sports applications, general industrial applications and aerospace applications.

Claims (6)

次の成分[A]、[B]、[C]、[D]を含み、下記条件[a]および[b]を満たし、成分[A]が[A1]または[A2]のエポキシ樹脂を全エポキシ樹脂100質量部中10質量部〜50質量部含むことを特徴とするエポキシ樹脂組成物。
[A]:エポキシ樹脂
[B]:ジシアンジアミド
[C]:芳香族ウレア
[D]:ホウ酸エステル
[a]:窒素気流下、100℃の等温で示差走査熱量分析計によりエポキシ樹脂組成物を分析したとき、100℃に達してから熱流量がピークトップに至るまでの時間が60分以下
[b]:窒素気流下、60℃の等温で示差走査熱量分析計によりエポキシ樹脂組成物を分析したとき、60℃に達してから熱流量がピークトップに至るまでの時間が25時間以上
[A1]式(I)および/または式(II)で示されるエポキシ樹脂
Figure 0006771883
(式中、R 、R 、R は、水素原子またはメチル基を表す。また、nは1以上の整数を表す。)
Figure 0006771883
(nは1以上の整数を表す。)
[A2]3官能以上のグリシジルアミン型エポキシ樹脂
The following components [A], [B], [C], [D] wherein the following conditions [a] and meets [b], the epoxy resin of component [A] is [A1] or [A2] An epoxy resin composition comprising 10 parts by mass to 50 parts by mass in 100 parts by mass of all epoxy resins .
[A]: Epoxy resin [B]: Dicyandiamide [C]: Aromatic urea [D]: Borate ester [a]: Analyzing the epoxy resin composition with a differential scanning calorimeter at an isothermal temperature of 100 ° C. under a nitrogen stream. When the epoxy resin composition is analyzed by a differential scanning calorimetry at an isothermal temperature of 60 ° C. under a nitrogen stream, the time from reaching 100 ° C. to the peak top of the heat flow is 60 minutes or less [b]. , The time from reaching 60 ° C to the peak top of the heat flow is 25 hours or more.
[A1] Epoxy resin represented by formula (I) and / or formula (II)
Figure 0006771883
(In the formula, R 1 , R 2 , and R 3 represent a hydrogen atom or a methyl group, and n represents an integer of 1 or more.)
Figure 0006771883
(N represents an integer of 1 or more.)
[A2] Trifunctional or higher functional glycidylamine type epoxy resin
[A1]式(I)および/または式(II)で示されるエポキシ樹脂のエポキシ基の平均官能基数が3.0個/分子以上である請求項に記載のエポキシ樹脂組成物。 [A1] The epoxy resin composition according to claim 1 , wherein the average number of functional groups of the epoxy groups of the epoxy resin represented by the formula (I) and / or the formula (II) is 3.0 elements / molecule or more. 成分[A]が[A3]ビスフェノールF型エポキシ樹脂を全エポキシ樹脂100質量部中20質量部〜90質量部含む請求項1または2に記載のエポキシ樹脂組成物。 The epoxy resin composition according to claim 1 or 2 , wherein the component [A] contains [A3] bisphenol F-type epoxy resin in an amount of 20 to 90 parts by mass based on 100 parts by mass of the total epoxy resin. 130℃で2時間加熱し硬化させた樹脂硬化物の曲げ弾性率が3.5GPa以上である請求項1〜のいずれかに記載のエポキシ樹脂組成物。 The epoxy resin composition according to any one of claims 1 to 3 , wherein the cured resin composition cured by heating at 130 ° C. for 2 hours has a flexural modulus of 3.5 GPa or more. 請求項1〜のいずれかに記載のエポキシ樹脂組成物と炭素繊維からなるプリプレグ。 A prepreg comprising the epoxy resin composition according to any one of claims 1 to 4 and carbon fibers. 請求項に記載のプリプレグを硬化して得られる繊維強化複合材料。 A fiber-reinforced composite material obtained by curing the prepreg according to claim 5 .
JP2015236346A 2015-02-09 2015-12-03 Epoxy resin compositions, prepregs and fiber reinforced composites Active JP6771883B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015022915 2015-02-09
JP2015022915 2015-02-09

Publications (2)

Publication Number Publication Date
JP2016148020A JP2016148020A (en) 2016-08-18
JP6771883B2 true JP6771883B2 (en) 2020-10-21

Family

ID=56688259

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015236346A Active JP6771883B2 (en) 2015-02-09 2015-12-03 Epoxy resin compositions, prepregs and fiber reinforced composites

Country Status (1)

Country Link
JP (1) JP6771883B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018162361A (en) * 2017-03-24 2018-10-18 新日鉄住金化学株式会社 Epoxy resin composition
US11345808B2 (en) 2017-07-21 2022-05-31 Toray Industries, Inc. Epoxy resin composition, prepreg, and fiber-reinforced composite material
JP7215002B2 (en) * 2017-07-21 2023-01-31 東レ株式会社 Epoxy resin composition, prepreg and fiber reinforced composite
JP7423891B2 (en) 2017-07-21 2024-01-30 東レ株式会社 Epoxy resin compositions, prepregs and fiber reinforced composites
JP7215001B2 (en) * 2017-07-21 2023-01-31 東レ株式会社 Epoxy resin compositions, prepregs and fiber reinforced composites
JP7180446B2 (en) * 2018-02-28 2022-11-30 東レ株式会社 Resin feedstock, preform, and method for producing fiber-reinforced composite material using same
JPWO2020100785A1 (en) * 2018-11-12 2021-09-27 三菱ケミカル株式会社 Method for manufacturing thermosetting epoxy resin composition, thermosetting molding material, thermosetting molding material, fiber-reinforced composite material
JP7431508B2 (en) 2019-03-29 2024-02-15 帝人株式会社 Binder resin composition, preform, fiber reinforced composite material, and method for producing fiber reinforced composite material

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09157498A (en) * 1995-12-12 1997-06-17 Toray Ind Inc Epoxy resin composition for fiber-reinforced composite material, prepreg and fiber-reinforced composite material
JP3653906B2 (en) * 1996-12-26 2005-06-02 東レ株式会社 Epoxy resin composition, prepreg and fiber reinforced composite material
JPH10330513A (en) * 1997-06-02 1998-12-15 Toray Ind Inc Prepreg and fiber-reinforced composite material
JP2002284852A (en) * 2001-01-19 2002-10-03 Toray Ind Inc Epoxy resin composition, prepreg, and fiber reinforced composite material
JP4506189B2 (en) * 2004-02-13 2010-07-21 東レ株式会社 Epoxy resin composition, prepreg and fiber reinforced composite material
TWI435887B (en) * 2008-02-26 2014-05-01 Toray Industries Epoxy resin composition, prepreg and fiber-reinforced composite material
US20110319525A1 (en) * 2009-03-25 2011-12-29 Yuki Maeda Epoxy resin composition, prepreg, carbon fiber reinforced composite material, and housing for electronic or electrical component
JP5828758B2 (en) * 2011-12-29 2015-12-09 ダンロップスポーツ株式会社 Tubular body made of fiber reinforced epoxy resin material
JP5561350B2 (en) * 2012-12-21 2014-07-30 東レ株式会社 Prepreg and carbon fiber reinforced composites
JP2014167103A (en) * 2013-01-29 2014-09-11 Toray Ind Inc Epoxy resin composition, prepreg and fiber-reinforced composite material
JP2014167102A (en) * 2013-01-29 2014-09-11 Toray Ind Inc Epoxy resin composition, prepreg and fiber-reinforced composite material
JP2014185296A (en) * 2013-03-25 2014-10-02 Asahi Kasei E-Materials Corp Liquid resin composition and processed product

Also Published As

Publication number Publication date
JP2016148020A (en) 2016-08-18

Similar Documents

Publication Publication Date Title
JP6771883B2 (en) Epoxy resin compositions, prepregs and fiber reinforced composites
JP6771884B2 (en) Epoxy resin compositions, prepregs and fiber reinforced composites
JP6771885B2 (en) Epoxy resin compositions, prepregs and fiber reinforced composites
KR102389775B1 (en) Epoxy resin composition, prepreg, and fiber-reinforced composite material
EP2947109B1 (en) Epoxy resin composition, prepreg, and carbon-fiber-reinforced composite material
JP6623757B2 (en) Epoxy resin composition for fiber reinforced composite material, prepreg and fiber reinforced composite material
JP6977560B2 (en) Prepreg and fiber reinforced composites
JP6710972B2 (en) Epoxy resin composition, prepreg, cured resin and fiber reinforced composite material
JP7200928B2 (en) Thermosetting resin compositions, prepregs and fiber-reinforced composites
US11345808B2 (en) Epoxy resin composition, prepreg, and fiber-reinforced composite material
JP6547478B2 (en) Epoxy resin composition, prepreg and fiber reinforced composite material
JP7423891B2 (en) Epoxy resin compositions, prepregs and fiber reinforced composites
JP2019023281A (en) Epoxy resin composition, prepreg and fiber-reinforced composite material
JP6421897B1 (en) Epoxy resin composition, prepreg, fiber reinforced composite material and method for producing the same
JP7215001B2 (en) Epoxy resin compositions, prepregs and fiber reinforced composites
JP2023067809A (en) Epoxy resin composition, prepreg and fiber-reinforced composite material
JP2015108052A (en) Epoxy resin composition, prepreg and fiber reinforced composite material
JP2019023283A (en) Epoxy resin composition, prepreg and fiber-reinforced composite material
JP2022033709A (en) Epoxy resin composition, prepreg and fiber-reinforced composite material
JP2020189922A (en) Epoxy resin composition, base material and fiber-reinforced composite material
KR20200088291A (en) Prepreg and fiber reinforced composite materials

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180821

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190516

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190528

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190627

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20190723

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20191021

C22 Notice of designation (change) of administrative judge

Free format text: JAPANESE INTERMEDIATE CODE: C22

Effective date: 20200602

C22 Notice of designation (change) of administrative judge

Free format text: JAPANESE INTERMEDIATE CODE: C22

Effective date: 20200714

C23 Notice of termination of proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C23

Effective date: 20200825

C03 Trial/appeal decision taken

Free format text: JAPANESE INTERMEDIATE CODE: C03

Effective date: 20200929

C30A Notification sent

Free format text: JAPANESE INTERMEDIATE CODE: C3012

Effective date: 20200929

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200930

R151 Written notification of patent or utility model registration

Ref document number: 6771883

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151