JP2004269861A - Prepreg, fiber reinforced composite material and tubular product made from the fiber reinforced composite material - Google Patents

Prepreg, fiber reinforced composite material and tubular product made from the fiber reinforced composite material Download PDF

Info

Publication number
JP2004269861A
JP2004269861A JP2004034589A JP2004034589A JP2004269861A JP 2004269861 A JP2004269861 A JP 2004269861A JP 2004034589 A JP2004034589 A JP 2004034589A JP 2004034589 A JP2004034589 A JP 2004034589A JP 2004269861 A JP2004269861 A JP 2004269861A
Authority
JP
Japan
Prior art keywords
prepreg
composite material
fiber
reinforced composite
epoxy resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004034589A
Other languages
Japanese (ja)
Inventor
Takeshi Ito
壮史 伊藤
Shunsaku Noda
俊作 野田
Etsuko Tanigaki
えつ子 谷垣
Hiroyuki Takiyama
浩之 瀧山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP2004034589A priority Critical patent/JP2004269861A/en
Publication of JP2004269861A publication Critical patent/JP2004269861A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Reinforced Plastic Materials (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a molded prepreg product with excellent impact resistance prepared by curing the prepreg. <P>SOLUTION: The prepreg is a cured resin composed of a reinforced fiber and a matrix resin prepared by curing at 130°C for two hours, and satisfies the following equations of (1) and (2) in maximum load Pmax (N) and Strand tensile modulus of elasticity Y (GPa) in Charpy impact test; formulae (1) Pmax ≥ -1.04×Y + 1650 and (2) 200≤Y≤700. In addition, the prepreg is composed of the reinforced fiber and the matrix resin of the fiber reinforced composite material prepared by curing at 130°C for two hours, and satisfies the following formulae of (3) and (4) in Charpy impact value A (kj/m<SP>2</SP>) and tensile modulus of elasticity Y (GPa) before maximum load; formulae (3) A ≥-0.12×Y + 85 and (4) 200≤Y≤700. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

本発明は、スポーツ用途、航空宇宙用途、一般産業用途において、高度の衝撃強度特性を発揮する繊維強化複合材料および繊維強化複合材料製管状体に関する。また、かかる繊維強化複合材料および繊維強化複合材料製管状体を得るためのプリプレグに関する。   The present invention relates to a fiber-reinforced composite material and a tubular body made of the fiber-reinforced composite material that exhibit high impact strength characteristics in sports, aerospace, and general industrial applications. The present invention also relates to a prepreg for obtaining such a fiber-reinforced composite material and a tubular body made of the fiber-reinforced composite material.

強化繊維とマトリックス樹脂とからなる繊維強化複合材料を製造するに当たっては、各種の方式が適用されるが、強化繊維にマトリックス樹脂を含浸されたシート状中間基材であるプリプレグを用いる方法が繁用される。この方法ではプリプレグを複数枚積層し、加熱して硬化させることによって繊維強化複合材料である成形体とする。   Various methods are applied in producing a fiber-reinforced composite material comprising a reinforcing fiber and a matrix resin, but a method using a prepreg, which is a sheet-like intermediate substrate in which a reinforcing fiber is impregnated with a matrix resin, is frequently used. Is done. In this method, a plurality of prepregs are laminated, heated and cured to obtain a molded article which is a fiber-reinforced composite material.

かかる繊維強化複合材料は、軽量であり、かつ力学特性に優れるために、スポーツ用途をはじめ、航空宇宙用途、一般産業用途に広く用いられている。特にスポーツ用途では、ゴルフシャフト、釣り竿、テニスやバトミントン等のラケット、ホッケー等のスティック等が主要な用途として挙げられる。   Such a fiber-reinforced composite material is widely used in sports applications, aerospace applications, and general industrial applications because of its light weight and excellent mechanical properties. Particularly in sports applications, golf shafts, fishing rods, rackets for tennis and badminton, sticks for hockey, and the like can be cited as main applications.

スポーツ用途では、力学特性を高める観点から、強化繊維として炭素繊維、マトリックス樹脂としてはエポキシ樹脂とからなるプリプレグを中間基材とする繊維強化複合材料が主として用いられる。中でも、ゴルフシャフト、釣り竿等は、軽量化が強く要求される用途であるが、軽量化の前に材料の力学特性を高めることが必要となる。   In sports applications, from the viewpoint of enhancing the mechanical properties, a fiber-reinforced composite material using a prepreg composed of carbon fiber as the reinforcing fiber and epoxy resin as the matrix resin as an intermediate base material is mainly used. Above all, golf shafts, fishing rods, and the like are applications that require strong weight reduction, but it is necessary to enhance the mechanical properties of the material before weight reduction.

スポーツ用途では、短時間で大きな負荷がかかることが多く、力学特性の中でも特に衝撃強度が重要となる。   In sports applications, a large load is often applied in a short time, and impact strength is particularly important among mechanical properties.

かかる目的のために、例えば炭素繊維強化管状体のゴルフシャフトの最内層及び/または層間や最外層に有機系重合体からなるフィルムを配する方法や、複合材料管状体の軸方向に配された補強繊維と樹脂の外層に、特定厚みのガラス繊維を含む層を積層することが提案されている(例えば特許文献1〜3参照)。しかしながら、これらの方法はフィルムやガラス繊維層を積層するため、軽量化の点で不利であり、また繊維強化複合材料を作製する際の作業性が悪化するという課題がある。   For this purpose, for example, a method of arranging a film made of an organic polymer in the innermost layer and / or the interlayer or the outermost layer of the golf shaft of a carbon fiber reinforced tubular body, or a method of arranging the film in the axial direction of the composite material tubular body. It has been proposed to laminate a layer containing a glass fiber having a specific thickness on the outer layer of the reinforcing fiber and the resin (for example, see Patent Documents 1 to 3). However, these methods are disadvantageous in terms of weight reduction because a film or a glass fiber layer is laminated, and also have a problem that workability in producing a fiber-reinforced composite material is deteriorated.

またマトリックス樹脂に全エポキシ樹脂中、2官能エポキシ樹脂を70重量%以上含み、またゴム相を含みエポキシ樹脂に実質不溶な微粒子と硬化剤を含むエポキシ樹脂を用いることで硬化物のガラス転移温度と、モードI破壊ひずみエネルギー開放率GICを特定範囲としたり(例えば特許文献4参照)、マトリックス樹脂組成物に特定のエポキシ樹脂とゴム変性エポキシ樹脂を用い、マトリックス樹脂粘度と硬化物のGICを特定の範囲とすることで繊維強化複合材料の力学特性を高めることが提案されてきた(例えば特許文献5参照)。 Further, by using an epoxy resin containing 70% by weight or more of a bifunctional epoxy resin in the total epoxy resin in the matrix resin and containing a rubber phase and fine particles substantially insoluble in the epoxy resin and a curing agent, the glass transition temperature of the cured product can be reduced. (see e.g. Patent Document 4) mode I fracture strain energy releasing rate GIC or a specific range using a specific epoxy resin and a rubber-modified epoxy resin in the matrix resin composition, identify G IC of the cured product matrix resin viscosity It has been proposed to increase the mechanical properties of the fiber-reinforced composite material by setting the range as described above (for example, see Patent Document 5).

しかしながら、ゴム成分を添加する場合には、樹脂調製の作業性が悪化したり、樹脂硬化物の弾性率が低下する等の課題があり、また、例えばゴルフシャフトの折損率低減といった観点から、力学特性の向上、とりわけ耐衝撃性の更なる向上が求められている。
特開平03−168167号公報(第4頁) 特開平03−168168号公報(第4頁) 特開平10−329247号公報(第2頁) 特開平09−085844号公報(第2頁) 特開2001−139662号公報(第6頁)
However, when a rubber component is added, there are problems such as deterioration in workability of resin preparation and a decrease in the elastic modulus of the cured resin, and, for example, from the viewpoint of reducing the breakage rate of a golf shaft, There is a demand for improved characteristics, especially further improved impact resistance.
Japanese Patent Application Laid-Open No. 03-168167 (page 4) JP-A-03-168168 (page 4) JP-A-10-329247 (page 2) JP-A-09-085844 (page 2) JP 2001-139662 A (page 6)

本発明は、上記課題に鑑み耐衝撃性に優れた炭素繊維強化複合材料を得ることができるプリプレグを提供せんとするものである。   The present invention has been made in view of the above problems, and has as its object to provide a prepreg capable of obtaining a carbon fiber reinforced composite material having excellent impact resistance.

さらに詳しくは、本発明は、耐衝撃性に優れながら、軽量化されたゴルフクラブ用シャフト等の管状体が得られるプリプレグ、及び該プリプレグから得られる繊維強化複合材料を提供せんとするものである。   More specifically, the present invention is intended to provide a prepreg capable of obtaining a tubular body such as a golf club shaft which is excellent in impact resistance and reduced in weight, and a fiber-reinforced composite material obtained from the prepreg. .

上記目的を達成するために、本発明は、次の構成を有する。即ち、強化繊維とマトリックス樹脂からなり、130℃で2時間硬化して得られる繊維強化複合材料のシャルピー衝撃試験による最大荷重Pmax(N)と強化繊維のストランド引張弾性率Y(GPa)が式(1)および(2)をみたすプリプレグである。
Pmax≧−1.04×Y+1650・・・・式(1)
200≦Y≦700・・・・式(2)
または強化繊維とマトリックス樹脂からなり、130℃で2時間硬化して得られる繊維強化複合材料の最大荷重前シャルピー衝撃値A(kJ/m2)と強化繊維の引張弾性率Y(GPa)が式(3)および(4)をみたすプリプレグである。
A≧−0.12×Y+85・・・・式(3)
200≦Y≦700・・・・式(4)
または、前記プリプレグを硬化せしめてなる繊維強化複合材料であり、更にはかかる繊維強化複合材料を含む管状体である。
In order to achieve the above object, the present invention has the following configuration. That is, the maximum load Pmax (N) and the strand tensile elastic modulus Y (GPa) of the reinforcing fiber of the fiber-reinforced composite material, which is composed of the reinforcing fiber and the matrix resin and cured at 130 ° C. for 2 hours, are obtained by the following equation ( This is a prepreg that satisfies 1) and (2).
Pmax ≧ −1.04 × Y + 1650 Equation (1)
200 ≦ Y ≦ 700 (2)
Alternatively, the Charpy impact value A (kJ / m 2 ) and the tensile modulus Y (GPa) of the reinforcing fiber of the fiber reinforced composite material, which is composed of the reinforcing fiber and the matrix resin and cured at 130 ° C. for 2 hours, are obtained by the following formula. This is a prepreg satisfying (3) and (4).
A ≧ −0.12 × Y + 85 Equation (3)
200 ≦ Y ≦ 700 Equation (4)
Alternatively, it is a fiber-reinforced composite material obtained by curing the prepreg, and further a tubular body containing such a fiber-reinforced composite material.

本発明によれば、強化繊維とマトリックス樹脂との接着性、及びマトリックス樹脂の引張伸度と曲げ弾性率に優れた樹脂組成物が得られる。この樹脂組成物と炭素繊維とから良質なプリプレグを作製することができ、本発明のプリプレグを積層して成形することにより、衝撃強度特性に優れた繊維強化複合材料を製造することができる。   ADVANTAGE OF THE INVENTION According to this invention, the resin composition excellent in the adhesiveness of a reinforcing fiber and a matrix resin, and the tensile elongation and bending elastic modulus of a matrix resin is obtained. A high-quality prepreg can be produced from the resin composition and the carbon fibers, and a fiber-reinforced composite material having excellent impact strength properties can be produced by laminating and molding the prepreg of the present invention.

本発明による繊維強化複合材料は、スポーツ用途では、ゴルフシャフト、釣り竿、テニス、バトミントン、スカッシュ等のラケット用途、ホッケー等のスティック用途、スキーポール用途等に好適に用いられる。また、航空宇宙用途では、主翼、尾翼、フロアビーム等の航空機一次構造材用途、フラップ、エルロン、カウル、フェアリング、内装材等の二次構造材用途、ロケットモーターケース、人工衛星構造材用途等に好適に用いられる。さらに一般産業用途では、自動車、船舶、鉄道車両等の移動体の構造材、ドライブシャフト、板バネ、風車ブレード、圧力容器、フライホイール、製紙用ローラ、屋根材、ケーブル、補強筋、補修補強材料等の土木・建築材料用途等に好適に用いられる。特に本発明の繊維強化複合材料を含む管状体は耐衝撃性に優れる。   The fiber reinforced composite material according to the present invention is suitably used for sports applications such as golf shafts, fishing rods, rackets for tennis, badminton, squash, etc., sticks for hockey, etc., and ski poles. In aerospace applications, primary structural materials such as main wings, tail fins, and floor beams, secondary structural materials such as flaps, ailerons, cowls, fairings, and interior materials, rocket motor cases, artificial satellite structural materials, etc. It is suitably used. In general industrial applications, structural materials for vehicles such as automobiles, ships, and railway vehicles, drive shafts, leaf springs, windmill blades, pressure vessels, flywheels, papermaking rollers, roofing materials, cables, reinforcing bars, repair reinforcing materials It is suitably used for civil engineering and building material applications. In particular, a tubular body containing the fiber-reinforced composite material of the present invention is excellent in impact resistance.

本発明者らは、前記課題について鋭意検討し、130℃で2時間硬化して得られる繊維強化複合材料のシャルピー衝撃試験による最大荷重Pmax(N)と強化繊維の弾性率が特定の関係を有するプリプレグを見いだすに至った。またかかるプリプレグを硬化させてなる繊維強化複合材料を構成要素とする管状体が強化衝撃特性に優れたものであることを見出すに至り本発明に到達した。   Means for Solving the Problems The present inventors diligently study the above problem, and have a specific relationship between the maximum load Pmax (N) of a fiber reinforced composite material obtained by curing at 130 ° C. for 2 hours by a Charpy impact test and the elastic modulus of the reinforcing fiber. I came to find a prepreg. Further, the present inventors have found that a tubular body comprising a fiber reinforced composite material obtained by curing such a prepreg as a component is excellent in reinforced impact characteristics, and reached the present invention.

本発明のプリプレグは、130℃で2時間硬化して得られる繊維強化複合材料のシャルピー衝撃試験による最大荷重Pmax(N)と強化繊維の引張弾性率Y(GPa)が特定の範囲とすると、得られる成形体において耐衝撃性を高めることができる。すなわち次式(1)および(2)をみたす必要があり、次式(1)’および(2)’を満たせば好ましい。
Pmax≧−1.04×Y+1650・・・・式(1)
200≦Y≦700・・・・式(2)
Pmax≧−1.04×Y+1700・・・・式(1)’
200≦Y≦700・・・・式(2)’
一般的に炭素繊維の弾性率が高いほど、最大荷重Pmaxが低下するが、最大荷重Pmaxが−1.04×Y+1650よりも小さくなると、成形物の耐衝撃強度が大きく低下、例えばゴルフシャフトの折損率が増大するなどの不具合が生じる。
The prepreg of the present invention can be obtained when the maximum load Pmax (N) and the tensile modulus Y (GPa) of the reinforcing fiber in a specific range are determined by Charpy impact test of a fiber-reinforced composite material obtained by curing at 130 ° C. for 2 hours. The impact resistance can be improved in the molded article to be obtained. That is, it is necessary to satisfy the following expressions (1) and (2), and it is preferable to satisfy the following expressions (1) ′ and (2) ′.
Pmax ≧ −1.04 × Y + 1650 Equation (1)
200 ≦ Y ≦ 700 (2)
Pmax ≧ −1.04 × Y + 1700 Equation (1) ′
200 ≦ Y ≦ 700 Expression (2) ′
In general, the higher the elastic modulus of the carbon fiber, the lower the maximum load Pmax. However, if the maximum load Pmax is smaller than −1.04 × Y + 1650, the impact resistance of the molded product is greatly reduced, for example, breakage of a golf shaft. Problems such as an increase in the rate occur.

またシャルピー衝撃試験による最大荷重前シャルピー衝撃値A(kJ/m2)と強化繊維の引張弾性率Y(GPa)が特定の範囲とすると、得られる成形物において大きなエネルギーを吸収することができる。すなわち最大荷重前シャルピー衝撃値A(kJ/m2)と強化繊維の引張弾性率Y(GPa)が式(3)および(4)をみたす必要があり、式(3)’および(4)’を満たせば好ましい。
A≧−0.12×Y+85・・・・式(3)
200≦Y≦700・・・・式(4)
A≧−0.12×Y+90・・・・式(3)’
200≦Y≦700・・・・式(4)’
炭素繊維の弾性率が高いほど、繊維強化複合材料の伸度が低下し、吸収エネルギーが低下するが、最大荷重前シャルピー衝撃値Aが−0.12×Y+85よりも小さくなると、成形物のエネルギー吸収性が大幅に低下し、例えばゴルフシャフトの折損率が増大するなどの不具合が生じる。
When the Charpy impact value A (kJ / m 2 ) before the maximum load in the Charpy impact test and the tensile elastic modulus Y (GPa) of the reinforcing fibers are in specific ranges, a large energy can be absorbed in the obtained molded product. That is, the Charpy impact value A (kJ / m 2 ) before the maximum load and the tensile modulus Y (GPa) of the reinforcing fiber need to satisfy the equations (3) and (4), and the equations (3) ′ and (4) ′. Is preferably satisfied.
A ≧ −0.12 × Y + 85 Equation (3)
200 ≦ Y ≦ 700 Equation (4)
A ≧ −0.12 × Y + 90 Expression (3) ′
200 ≦ Y ≦ 700 Expression (4) ′
The higher the elastic modulus of the carbon fiber, the lower the elongation of the fiber reinforced composite material and the lower the absorbed energy. However, when the Charpy impact value A before the maximum load is smaller than -0.12 × Y + 85, the energy of the molded product is reduced. Absorbency is greatly reduced, and problems such as an increase in the breakage rate of the golf shaft occur.

ここでシャルピー衝撃試験とは支点間距離を40mmとする以外はJIS K7077に準拠して測定する試験である。試験対象となるプリプレグを繊維方向が一方向になるように重ね合わせ、130℃で2時間硬化して得られた繊維強化複合材料を試験片とし、かかる試験片は厚さ3±0.2mm、長さ、80±1mm、幅10±0.2mmとするものである。最大荷重Pmax(N)とは、試験片が1回の衝撃によって破断するのにかかる最大荷重であり、最大荷重前シャルピー衝撃値A(kJ/m2)とは、最大荷重Pmaxに到達するまでに吸収されるエネルギーを荷重負荷面の断面積によって除した値である。これらは、以下のように求めることができる。すなわち、繊維軸方向と垂直な方向からハンマーによりフラットワイズに衝撃を与え、衝撃波形を検出、FFT解析処理することにより、変位対荷重を算出し、得られた変位対荷重曲線より最大荷重Pmax(N)を求める。また、最大荷重点までの変位対荷重曲線に囲まれた面積を荷重負荷面の断面積により除した値を最大荷重前シャルピー衝撃値Aとする。ここでハンマーの振り上げ角度は135°、ハンマー秤量は300kg・cmとするものである。かかる測定に用いる装置としては、例えば米倉製作所製300CS計装化シャルピー衝撃試験機などを用いることができる。 Here, the Charpy impact test is a test measured in accordance with JIS K7077 except that the distance between fulcrums is 40 mm. The prepregs to be tested are overlapped so that the fiber direction is in one direction, and the fiber-reinforced composite material obtained by curing at 130 ° C. for 2 hours is used as a test piece. The test piece has a thickness of 3 ± 0.2 mm. The length, 80 ± 1 mm, and the width, 10 ± 0.2 mm. The maximum load Pmax (N) is the maximum load that the test piece takes to break by one impact, and the Charpy impact value before maximum load A (kJ / m 2 ) is the value until the maximum load Pmax is reached. Energy divided by the cross-sectional area of the load-bearing surface. These can be determined as follows. That is, a flatwise impact is applied by a hammer from a direction perpendicular to the fiber axis direction, an impact waveform is detected, and FFT analysis processing is performed to calculate a displacement vs. load. From the obtained displacement vs. load curve, the maximum load Pmax ( N). The value obtained by dividing the area enclosed by the displacement versus load curve up to the maximum load point by the cross-sectional area of the load surface is defined as the Charpy impact value A before the maximum load. Here, the swing angle of the hammer is 135 °, and the weight of the hammer is 300 kg · cm. As an apparatus used for such a measurement, for example, a 300CS instrumented Charpy impact tester manufactured by Yonekura Seisakusho can be used.

また本発明でいうところの強化繊維の引張弾性率Y(GPa)とは繊維束(ストランド)の引張弾性率でありJIS R7601に従い求めることができる。   In addition, the tensile elastic modulus Y (GPa) of the reinforcing fiber referred to in the present invention is a tensile elastic modulus of a fiber bundle (strand) and can be obtained according to JIS R7601.

また本発明におけるプリプレグは強化繊維含有量が55〜85重量%であることが望ましい。55重量%よりも低くなると荷重を負担する強化繊維量が減少し、衝撃強度が低下する場合がある。また85重量%よりも高くなると相対的に伸度の高い樹脂含有率が減少し、エネルギー吸収性が低下し、繊維強化複合材料の耐耐疲労性が低下し、ゴルフシャフト等において折損率が増大する場合がある。より好ましくは60〜80重量%、さらに好ましくは65〜75重量%である。かかる繊維含有量はプリプレグをメチルエチルケトン、塩化メチレンなどの有機溶剤中において樹脂組成物を溶解、強化繊維を取り出して洗浄、乾燥することにより強化繊維重量を求め、プリプレグの重量で除することにより求められる。   The prepreg in the present invention preferably has a reinforcing fiber content of 55 to 85% by weight. If it is lower than 55% by weight, the amount of reinforcing fibers that bear the load decreases, and the impact strength may decrease. On the other hand, when the content is higher than 85% by weight, the content of the resin having a relatively high elongation decreases, the energy absorption decreases, the fatigue resistance of the fiber-reinforced composite material decreases, and the breakage rate increases in golf shafts and the like. May be. More preferably, it is 60 to 80% by weight, and still more preferably 65 to 75% by weight. Such a fiber content is determined by dissolving the prepreg in an organic solvent such as methyl ethyl ketone and methylene chloride, taking out the reinforcing fibers, washing and drying to obtain the reinforcing fiber weight, and dividing by the weight of the prepreg. .

本発明において、エポキシ樹脂組成物は、エポキシ樹脂と硬化剤を含むものである。また、本発明では、エポキシ樹脂とは、分子内に2個以上のエポキシ基を有する化合物、即ち、2官能以上のエポキシ樹脂を意味する。具体的には、ポリオールから得られるグリシジルエーテル、分子内に活性水素を複数個有するアミンより得られるグリシジルアミン、ポリカルボン酸より得られるグリシジルエステル、グリシジル基を有するエポキシ樹脂、分子内に複数の2重結合を有する化合物を酸化して得られるポリエポキシド等が挙げられる。   In the present invention, the epoxy resin composition contains an epoxy resin and a curing agent. In the present invention, the epoxy resin means a compound having two or more epoxy groups in a molecule, that is, a bifunctional or more epoxy resin. Specifically, a glycidyl ether obtained from a polyol, a glycidylamine obtained from an amine having a plurality of active hydrogens in a molecule, a glycidyl ester obtained from a polycarboxylic acid, an epoxy resin having a glycidyl group, a plurality of 2 A polyepoxide obtained by oxidizing a compound having a heavy bond is exemplified.

本発明においては、分子内に2個のエポキシ基を有する2官能エポキシ樹脂を使用するのが好ましい。2官能エポキシ樹脂は、架橋密度を低くし架橋点間の距離を大きくすることにより、樹脂硬化物の引張伸度が高められる。2官能エポキシ樹脂は全エポキシ樹脂100重量%に対して、70〜100重量%、好ましくは80〜100重量%配合するのが良い。70重量%より少ないと架橋密度が高くなり、樹脂硬化物の引張伸度が低下し、例えばゴルフシャフト等といった繊維強化複合材料製管状体の強度が低下する場合がある。   In the present invention, it is preferable to use a bifunctional epoxy resin having two epoxy groups in a molecule. The bifunctional epoxy resin increases the tensile elongation of the cured resin by lowering the crosslink density and increasing the distance between crosslink points. The bifunctional epoxy resin is used in an amount of 70 to 100% by weight, preferably 80 to 100% by weight, based on 100% by weight of the total epoxy resin. If the amount is less than 70% by weight, the crosslinking density increases, the tensile elongation of the cured resin decreases, and the strength of a fiber-reinforced composite material tubular body such as a golf shaft may decrease.

架橋点間の距離を大きくするためには、2つのエポキシ基の間隔の大きい2官能エポキシ樹脂を使用するのが有利であり、この意味でエポキシ当量が450以上の高分子量ビスフェノールA型エポキシ樹脂及びエポキシ当量が450以上の高分子量ビスフェノールF型エポキシ樹脂から選ばれる少なくとも1種の高分子量2官能エポキシ樹脂が好ましく使用される。   In order to increase the distance between crosslinking points, it is advantageous to use a bifunctional epoxy resin having a large distance between two epoxy groups, and in this sense, a high molecular weight bisphenol A type epoxy resin having an epoxy equivalent of 450 or more and At least one high molecular weight bifunctional epoxy resin selected from high molecular weight bisphenol F type epoxy resins having an epoxy equivalent of 450 or more is preferably used.

また本発明においては、脂環式の炭化水素骨格を主鎖中に有するエポキシ樹脂を使用するのが好ましい。脂環式の炭化水素骨格はその疎水性官能基によって、プリプレグに含まれるエポキシ樹脂組成物の吸湿性を下げ、硬化させたときに、エポキシ樹脂組成物中の水分が揮発することによってできるボイドを抑制し、樹脂硬化物の強度低下を抑制することができる。前記脂環式の炭化水素骨格を主鎖中に有するエポキシ樹脂は、数平均分子量が250〜500であることが好ましい。数平均分子量が250より小さいとエポキシ樹脂組成物の吸湿性を下げる効果が低下し、十分なボイド抑制効果が得られない場合がある。数平均分子量が500より大きいと他のエポキシ樹脂との相溶性が低下し、硬化物としたときに強度が均一とならない場合がある。またエポキシ樹脂組成物に含まれる全エポキシ樹脂100重量%中、脂環式の炭化水素骨格を主鎖中に有するエポキシ樹脂が10〜30重量%含まれることが好ましい。10重量%より少ないと、エポキシ樹脂組成物の吸湿性を下げる効果が低下し、十分なボイド抑制効果が得られない場合がある。30重量%より多いと、架橋密度が高くなり、樹脂硬化物の引張伸度が低下する場合がある。   In the present invention, it is preferable to use an epoxy resin having an alicyclic hydrocarbon skeleton in the main chain. The alicyclic hydrocarbon skeleton lowers the hygroscopicity of the epoxy resin composition contained in the prepreg by its hydrophobic functional group, and when cured, forms a void formed by the volatilization of moisture in the epoxy resin composition. It is possible to suppress the decrease in strength of the cured resin. The epoxy resin having an alicyclic hydrocarbon skeleton in the main chain preferably has a number average molecular weight of 250 to 500. If the number average molecular weight is less than 250, the effect of lowering the hygroscopicity of the epoxy resin composition is reduced, and a sufficient void suppression effect may not be obtained. If the number average molecular weight is larger than 500, the compatibility with other epoxy resins is reduced, and the strength may not be uniform when the cured product is obtained. Further, it is preferable that 10 to 30% by weight of an epoxy resin having an alicyclic hydrocarbon skeleton in the main chain is contained in 100% by weight of the total epoxy resin contained in the epoxy resin composition. If the amount is less than 10% by weight, the effect of lowering the hygroscopicity of the epoxy resin composition is reduced, and a sufficient void suppression effect may not be obtained. If the content is more than 30% by weight, the crosslink density may increase, and the tensile elongation of the cured resin may decrease.

また、かかる脂環式炭化水素骨格を主鎖中に有するエポキシ樹脂は、単環であっても多環であってもよいが、多環脂環式炭化水素骨格を主鎖中に有するエポキシ樹脂が好ましい。単環の脂環式炭化水素骨格を主鎖中に有するエポキシ樹脂としては、水添ビスフェノールA型エポキシ樹脂が挙げられる。一方、多環脂環式炭化水素骨格を主鎖中に有するエポキシ樹脂としては、ノルボルナン骨格を有するエポキシ樹脂を挙げることができる。ノルボルナン骨格を有するエポキシ樹脂としては、例えばジシクロペンタジエン型エポキシ樹脂を挙げることができる。   Further, the epoxy resin having the alicyclic hydrocarbon skeleton in the main chain may be monocyclic or polycyclic, but the epoxy resin having the polycyclic alicyclic hydrocarbon skeleton in the main chain. Is preferred. Examples of the epoxy resin having a monocyclic alicyclic hydrocarbon skeleton in the main chain include a hydrogenated bisphenol A type epoxy resin. On the other hand, examples of the epoxy resin having a polycyclic alicyclic hydrocarbon skeleton in the main chain include an epoxy resin having a norbornane skeleton. As an epoxy resin having a norbornane skeleton, for example, a dicyclopentadiene type epoxy resin can be mentioned.

本発明において、エポキシ樹脂組成物には、硬化剤として、4,4’−ジアミノジフェニルメタンのような活性水素を有するアミン、ジメチルアニリンのような活性水素を有しない第三アミン、ジシアンジアミドのようなカルボン酸無水物、ポリカルボン酸ヒドラジド、ノボラック樹脂等のポリフェノール化合物、ルイス酸錯体、芳香族スルホニウム塩等を使用することができる。   In the present invention, the epoxy resin composition contains, as a curing agent, an amine having active hydrogen such as 4,4'-diaminodiphenylmethane, a tertiary amine having no active hydrogen such as dimethylaniline, and a carboxylic acid such as dicyandiamide. Acid anhydrides, polycarboxylic acid hydrazides, polyphenol compounds such as novolak resins, Lewis acid complexes, aromatic sulfonium salts and the like can be used.

これらの硬化剤には、硬化活性を高めるために適当な硬化助剤を組合わせ使用することができる。好ましい例としては、ジシアンジアミドに、3−フェニル−1,1−ジメチル尿素、3−(3,4−ジクロロフェニル)−1,1−ジメチル尿素(DCMU)のような尿素誘導体を硬化助剤として組合わせる例、カルボン酸無水物やノボラック樹脂に第三アミンを硬化助剤として組合わせる例等が挙げられる。   These curing agents can be used in combination with a suitable curing aid to increase the curing activity. As a preferable example, a urea derivative such as 3-phenyl-1,1-dimethylurea or 3- (3,4-dichlorophenyl) -1,1-dimethylurea (DCMU) is combined with dicyandiamide as a curing aid. Examples include a combination of a carboxylic acid anhydride or a novolak resin with a tertiary amine as a curing aid.

本発明において、エポキシ樹脂組成物には、改質剤として、高分子化合物、有機粒子、無機粒子、その他成分を配合することができる。   In the present invention, a polymer compound, organic particles, inorganic particles, and other components can be added to the epoxy resin composition as a modifier.

本発明におけるエポキシ樹脂組成物に配合する高分子化合物としては、熱可塑性樹脂が好ましい。熱可塑性樹脂を配合することにより、樹脂を含浸する際の粘度制御、プリプレグの取り扱い性、及び接着性向上等の効果が高められる。   As the polymer compound to be added to the epoxy resin composition in the present invention, a thermoplastic resin is preferable. By blending the thermoplastic resin, effects such as viscosity control at the time of impregnating the resin, handleability of the prepreg, and improvement of adhesiveness can be enhanced.

ここで使用する熱可塑性樹脂は、接着性向上のために、相乗作用が期待できる水素結合性の官能基を有する熱可塑性樹脂が特に好ましい。水素結合性の官能基の具体例としては、アルコール性水酸基、アミド結合、スルホニル基等が挙げられる。   The thermoplastic resin used here is particularly preferably a thermoplastic resin having a hydrogen-bonding functional group that can be expected to have a synergistic effect in order to improve adhesiveness. Specific examples of the hydrogen-bonding functional group include an alcoholic hydroxyl group, an amide bond, and a sulfonyl group.

熱可塑性樹脂は、エポキシ樹脂組成物に適度な粘弾性を与え、得られる複合材料に良好な物性を得るために、エポキシ樹脂100重量部に対して1〜20重量部配合するのが良く、好ましくは、2〜10重量部配合するのが良い。   The thermoplastic resin is preferably blended in an amount of 1 to 20 parts by weight with respect to 100 parts by weight of the epoxy resin in order to give the epoxy resin composition an appropriate viscoelasticity and obtain good physical properties in the obtained composite material. Is preferably blended in an amount of 2 to 10 parts by weight.

本発明におけるエポキシ樹脂組成物に配合する有機粒子としては、ゴム粒子及び熱可塑性樹脂粒子等が好ましく使用される。これらの粒子はマトリックス樹脂の靭性向上、複合材料の耐衝撃性向上の効果を有する。   Rubber particles, thermoplastic resin particles, and the like are preferably used as the organic particles blended in the epoxy resin composition of the present invention. These particles have the effect of improving the toughness of the matrix resin and the impact resistance of the composite material.

本発明におけるエポキシ樹脂組成物は、上記したような組成により、その樹脂硬化物は、高い衝撃強度を発現するようになる。   The epoxy resin composition of the present invention has a composition as described above, so that the cured resin exhibits high impact strength.

本発明において、強化繊維には、ガラス繊維、炭素繊維、アラミド繊維、ボロン繊維、アルミナ繊維、炭化ケイ素繊維などが用いられる。これらの繊維を2種以上混合しても構わない。より軽量で、より耐久性の高い成形品を得るために、特に炭素繊維の使用が好ましい。具体的には、アクリル系、ピッチ系、レーヨン系等の各種の従来公知の方法で製造される炭素繊維が使用できる。中でも、高強度の炭素繊維が容易に得られるアクリル系の炭素繊維が好ましく使用される。   In the present invention, glass fibers, carbon fibers, aramid fibers, boron fibers, alumina fibers, silicon carbide fibers, and the like are used as the reinforcing fibers. Two or more of these fibers may be mixed. In order to obtain a lighter and more durable molded product, use of carbon fiber is particularly preferable. Specifically, carbon fibers produced by various conventionally known methods such as acrylic, pitch, and rayon can be used. Above all, acrylic carbon fibers from which high-strength carbon fibers can be easily obtained are preferably used.

さらに軽量なゴルフシャフト、釣竿などのスポーツ用品を製造するためには、少量の材料で十分な製品の剛性を発現させうるように、弾性率の高い炭素繊維をプリプレグに用いることが好ましい。このような炭素繊維の引張弾性率は200〜700GPa、好ましくは300〜600GPaであるのが良い。   In order to manufacture lighter sports goods such as golf shafts and fishing rods, it is preferable to use carbon fibers having a high modulus of elasticity in the prepreg so that a small amount of material can exhibit sufficient rigidity of the product. The tensile modulus of such a carbon fiber is 200 to 700 GPa, preferably 300 to 600 GPa.

本発明のプリプレグは、130℃で2時間硬化して得られる繊維強化複合材料の0度層間剪断強度が80MPa以上であることが好ましい。より好ましくは90MPa以上であり、さらに好ましくは100MPa以上である。0度層間剪断強度が80MPa以上とすることでプリプレグよりなる層間でマイクロクラックや剥離が起こりづらくなり、曲げ強度などの静的な力学特性ばかりでなく、動的な力学特性である耐衝撃性がより向上する場合がある。また、130℃で2時間硬化して得られる繊維強化複合材料の90度引張強度は60MPa以上であるのが好ましい。より好ましくは70MPa以上であり、さらに好ましくは80MPa以上であり、特に好ましくは90MPa以上である。より好ましくは35MPa以上である。90度引張強度が30MPa未満であると繊維、樹脂間にマイクロクラックや剥離が生じ、曲げ強度などの静的な力学特性ばかりでなく、動的な力学特性である耐衝撃性が低下する場合がある。ここで、0度層間剪断強度は90MPa、90度引張強度は60MPa、それぞれあれば本発明の効果を奏するに当たり十分であることが多い。   In the prepreg of the present invention, the fiber reinforced composite material obtained by curing at 130 ° C. for 2 hours preferably has a 0 ° interlayer shear strength of 80 MPa or more. It is more preferably at least 90 MPa, further preferably at least 100 MPa. When the 0-degree interlaminar shear strength is 80 MPa or more, microcracks and peeling between layers made of prepregs are less likely to occur, and not only static mechanical properties such as bending strength but also dynamic mechanical properties such as impact resistance are obtained. May be better. The 90-degree tensile strength of the fiber-reinforced composite material obtained by curing at 130 ° C. for 2 hours is preferably 60 MPa or more. It is more preferably at least 70 MPa, further preferably at least 80 MPa, particularly preferably at least 90 MPa. More preferably, it is 35 MPa or more. If the 90 degree tensile strength is less than 30 MPa, microcracks and peeling may occur between the fiber and the resin, and not only static mechanical properties such as bending strength but also impact resistance, which is dynamic mechanical properties, may be reduced. is there. Here, the 0-degree interlaminar shear strength is 90 MPa and the 90-degree tensile strength is 60 MPa, which is often sufficient for achieving the effects of the present invention.

本発明のプリプレグを得る方法としては前記エポキシ樹脂組成物を加熱して低粘度化することにより、強化繊維に含浸させるホットメルト法等を挙げることができる。ホットメルト法では、加熱により低粘度化したマトリックス樹脂組成物を直接強化繊維に含浸させるか、又はマトリックス樹脂組成物を離型紙等の上にコーティングしたフィルムを作製した後、強化繊維の両側又は片側から該フィルムを重ね、加熱加圧することにより樹脂を含浸させプリプレグが得られる。このホットメルト法は、プリプレグ中に溶媒が残留することがないため好ましい。 尚、本発明のプリプレグとは強化繊維を一方向に引き揃えた一方向プリプレグをいう。   Examples of a method for obtaining the prepreg of the present invention include a hot melt method in which the epoxy resin composition is heated to reduce the viscosity so that the reinforcing fibers are impregnated. In the hot melt method, a matrix resin composition reduced in viscosity by heating is directly impregnated into reinforcing fibers, or a matrix resin composition is coated on release paper or the like to prepare a film, and then the reinforcing fibers are coated on both sides or one side. The prepreg is obtained by impregnating the resin by stacking the films and applying heat and pressure. This hot melt method is preferable because no solvent remains in the prepreg. The prepreg of the present invention refers to a unidirectional prepreg in which reinforcing fibers are aligned in one direction.

本発明繊維強化複合材料は、前記プリプレグを硬化せしめて得ることができる。プリプレグを成形・硬化する方法としては特に限定されず、従来公知の方法も用いることができる。具体的には、特にゴルフシャフト、釣り竿、ラケット等のスポーツ用部材の製造に適した方法として、プリプレグを積層し、積層物に圧力を付与しながら樹脂を加熱し、硬化させて成形する方法等により製造できる。   The fiber reinforced composite material of the present invention can be obtained by curing the prepreg. The method for molding and curing the prepreg is not particularly limited, and a conventionally known method can be used. Specifically, as a method particularly suitable for manufacturing sports members such as golf shafts, fishing rods, rackets, and the like, a method of laminating prepregs, heating the resin while applying pressure to the laminate, and curing and molding the resin. Can be manufactured.

熱及び圧力を付与する方法には、プレス成形法、オートクレーブ成形法、バッギング成形法、ラッピングテープ法、内圧成形法等があり、特にスポーツ用品に関しては、ラッピングテープ法、内圧成形法が好ましく適用される。ラッピングテープ法は、マンドレル等の芯金にプリプレグを巻いて、管状体を成形する方法である。具体的には、マンドレルにプリプレグを巻き付け、プリプレグの固定及び圧力付与のために、プリプレグの外側に熱可塑性樹脂フィルムからなるラッピングテープを巻き付け、オーブン中で樹脂を加熱し、硬化させた後、芯金を抜き去って管状体とする方法である。   Methods for applying heat and pressure include a press molding method, an autoclave molding method, a bagging molding method, a wrapping tape method, an internal pressure molding method, and the like. Particularly, for sports goods, the wrapping tape method and the internal pressure molding method are preferably applied. You. The wrapping tape method is a method in which a prepreg is wound around a core metal such as a mandrel to form a tubular body. Specifically, wrapping a prepreg around a mandrel, wrapping a wrapping tape made of a thermoplastic resin film on the outside of the prepreg for fixing the prepreg and applying pressure, heating the resin in an oven, curing the resin, In this method, gold is removed to form a tubular body.

本発明の繊維強化複合材料製管状体は、前記繊維強化複合材料を含むものである。かかる繊維強化複合材料を含むことにより、好ましくは曲げ強度が2000Nを越える管状体を作製することもできる。また本発明の繊維強化複合材料製管状体は、その全体厚みTが1〜5mmとすることで例えばゴルフシャフト用途等に好適であり、0.1〜2mmとすることで例えば釣竿用途などに好適である。また、本発明の繊維強化複合材料製管状体は、管状体の全体厚みTに対して、管状体内側表面からT/2〜Tの範囲に前記繊維強化複合材料を含み、かかる繊維強化複合材料中の強化繊維方向が管状体軸方向に対し−5°〜+5°の角度を有することが好ましい。管状体の全体厚みTに対して、少なくとも管状体内側表面からT/2〜Tの範囲、すなわち管状体の外層に前記繊維強化複合材料を含むことにより、管状体に加わる曲げの衝撃応力を受け持つ前記繊維強化複合材料の寄与がより大きくなるため、管状体の耐衝撃性を効果的に向上することができる。また、前記繊維強化複合材料の繊維方向を管状体軸方向に対し−5゜〜+5°の範囲、すなわち実質的に強化繊維方向が管状体軸方向に引き揃えられた層を有することにより、管状体に適度な剛性をもたせつつ、耐衝撃性をより効果的に向上することができる。   A tubular body made of a fiber-reinforced composite material of the present invention contains the fiber-reinforced composite material. By including such a fiber-reinforced composite material, a tubular body having a bending strength preferably exceeding 2000 N can be produced. Further, the fiber-reinforced composite material-made tubular body of the present invention has a total thickness T of 1 to 5 mm, which is suitable for, for example, golf shaft applications, and 0.1 to 2 mm, which is suitable for, for example, fishing rod applications. It is. Further, the fiber-reinforced composite material tubular body of the present invention contains the fiber-reinforced composite material in a range of T / 2 to T from the inner surface of the tubular body with respect to the entire thickness T of the tubular body. It is preferable that the direction of the reinforcing fiber in the inside has an angle of −5 ° to + 5 ° with respect to the axial direction of the tubular body. With respect to the entire thickness T of the tubular body, at least a range of T / 2 to T from the inner surface of the tubular body, that is, by including the fiber reinforced composite material in the outer layer of the tubular body, receives bending impact stress applied to the tubular body. Since the contribution of the fiber-reinforced composite material is further increased, the impact resistance of the tubular body can be effectively improved. In addition, the fiber direction of the fiber-reinforced composite material is in a range of −5 ° to + 5 ° with respect to the tubular body axial direction, that is, by having a layer in which the reinforcing fiber direction is substantially aligned in the tubular body axial direction. Impact resistance can be more effectively improved while imparting appropriate rigidity to the body.

また前記強化繊維方向が管状体軸方向に対し−5°〜+5°の範囲である繊維強化複合材料層の厚みが、管状体全体厚みTの10〜70%を占めることが好ましい。かかる層が、管状体全体厚みTの10%より少ないと、耐衝撃性向上の効果が十分に得られないことがある。70%より多いと、管状体軸方向の強度は高くなるものの、周方向の強度が低下し、管状体の耐衝撃性が低下することがある。   It is preferable that the thickness of the fiber-reinforced composite material layer in which the direction of the reinforcing fibers is in the range of −5 ° to + 5 ° with respect to the axial direction of the tubular body occupies 10 to 70% of the entire thickness T of the tubular body. If such a layer is less than 10% of the total thickness T of the tubular body, the effect of improving the impact resistance may not be sufficiently obtained. If it is more than 70%, the strength in the axial direction of the tubular body is increased, but the strength in the circumferential direction is reduced, and the impact resistance of the tubular body may be reduced.

本発明の管状体は、上記強化繊維方向が管状体軸方向に対して−5°〜+5°の角度を有する層以外の層が含まれていてもよく、例えば強化繊維方向が管状体軸方向に対して±25°〜±60°、好ましくは±30°〜±55°の角度を有する、いわゆるバイアス層を設けてもよいし、また、管状体主軸に対し強化繊維方向が互いに軸対称をなす、2層構造のバイアス層を備えていても良い。かかる角度を有する層を設けると、ねじり強度向上という点で好ましく、ゴルフシャフトなどに好適に用いることができる。また、本発明の繊維強化複合材料製管状体は周方向を強化する層、例えば強化繊維方向が管状体軸方向に対して±80°〜90°である層、より好ましくは±85°〜90°である層を設けてもよい。かかる層を設けることは周方向の剛性向上という点で好ましい。このようなバイアス層や周方向層は前記、本発明のプリプレグを硬化させた繊維強化複合材料であっても、異なってもよいが、かかる層も本発明のプリプレグを硬化させた繊維強化複合材料であることが耐衝撃性という点で好ましい。   The tubular body of the present invention may include a layer other than a layer in which the reinforcing fiber direction has an angle of −5 ° to + 5 ° with respect to the tubular body axial direction. For example, the reinforcing fiber direction is the tubular body axial direction. A bias layer having an angle of ± 25 ° to ± 60 °, and preferably ± 30 ° to ± 55 °, and the reinforcing fiber directions are axially symmetric with respect to the main axis of the tubular body. A bias layer having a two-layer structure may be provided. Providing a layer having such an angle is preferable in terms of improving the torsional strength, and can be suitably used for golf shafts and the like. In addition, the fiber-reinforced composite material tubular body of the present invention is a layer that strengthens the circumferential direction, for example, a layer in which the reinforcing fiber direction is ± 80 ° to 90 ° with respect to the tubular body axial direction, and more preferably ± 85 ° to 90 °. ° may be provided. Providing such a layer is preferable in terms of improving rigidity in the circumferential direction. Such a bias layer or a circumferential layer may be different from the above-mentioned fiber-reinforced composite material obtained by curing the prepreg of the present invention, but such a layer may also be a fiber-reinforced composite material obtained by curing the prepreg of the present invention. Is preferable in terms of impact resistance.

以下、本発明を実施例により詳細に説明する。実施例中のプリプレグ製造に用いた炭素繊維のストランド引張強度、引張弾性率の測定、樹脂硬化物の物性測定、プリプレグの作製、繊維強化複合材料製管状体の作製、繊維強化複合材料製管状体の物性測定、一方向複合材料の作製、一方向複合材料の物性測定は次の方法で行った。尚、物性測定はすべて温度23℃、相対湿度50%の環境で行った。
(1)炭素繊維のストランド引張強度、引張弾性率の測定
束状の炭素繊維に下記組成の樹脂を含浸させ、130℃で35分間硬化させた後、樹脂含浸ストランド法(JIS R7601)に基づいて引張試験を行った。
Hereinafter, the present invention will be described in detail with reference to examples. Measurement of strand tensile strength and tensile modulus of carbon fiber used for prepreg production in Examples, measurement of physical properties of cured resin, preparation of prepreg, preparation of fiber-reinforced composite material tubular body, fiber-reinforced composite material tubular body Of the one-way composite material, and measurement of the properties of the one-way composite material were performed by the following methods. All the physical property measurements were performed in an environment at a temperature of 23 ° C. and a relative humidity of 50%.
(1) Measurement of Strand Tensile Strength and Tensile Elastic Modulus of Carbon Fiber A bundle of carbon fibers is impregnated with a resin having the following composition, cured at 130 ° C. for 35 minutes, and based on a resin-impregnated strand method (JIS R7601). A tensile test was performed.

*樹脂組成
・3,4−エポキシシクロヘキシルメチル−3,4−エポキシ−シクロヘキシル−カルボキシレート(ERL−4221、ユニオンカーバイド社製)
100重量部
・3フッ化ホウ素モノエチルアミン(ステラケミファ株式会社製) 3重量部
・アセトン(和光純薬工業株式会社製) 4重量部
(2)プリプレグの作製
エポキシ樹脂組成物をリバースロールコーターを用いて離型紙上に塗布し、樹脂フィルムを作製した。次に、シート状に一方向に整列させた炭素繊維に、この樹脂フィルム2枚を炭素繊維の両面から重ね、加熱加圧して樹脂を含浸せしめ、一方向プリプレグを作製した。
(3)一方向繊維強化複合材料の作製
上記(2)項に示す方法で作製した一方向プリプレグを、強化繊維の方向が同一になるよう所定枚数積層し、オートクレーブを用いて温度130℃、圧力290Paで2時間、加熱加圧して硬化させ、一方向繊維強化複合材料を作製した。
(4)一方向繊維強化複合材料の物性の測定
A.90度引張強度
ASTM D3039に従い、90度引張強度を測定した。試験数はn=5とし平均値を90度引張強度とした。尚、試験機としては引張試験機インストロン1185を用いた。試験片は上記方法により、プリプレグを積層し作製した一方向繊維強化複合材料を用い、サイズは下記の通りとした。
* Resin composition ・ 3,4-epoxycyclohexylmethyl-3,4-epoxy-cyclohexyl-carboxylate (ERL-4221, manufactured by Union Carbide)
100 parts by weight-Boron trifluoride monoethylamine (manufactured by Stella Chemifa Co., Ltd.) 3 parts by weight-Acetone (manufactured by Wako Pure Chemical Industries, Ltd.) 4 parts by weight (2) Preparation of prepreg Epoxy resin composition is prepared using a reverse roll coater. To form a resin film. Next, two resin films were stacked on both sides of the carbon fibers, which were arranged in one direction in a sheet shape, and were heated and pressed to impregnate the resin, thereby producing a one-way prepreg.
(3) Preparation of unidirectional fiber reinforced composite material A predetermined number of unidirectional prepregs prepared by the method described in the above item (2) are laminated so that the direction of the reinforcing fibers is the same, and the temperature is 130 ° C and the pressure is set using an autoclave. The material was cured by heating and pressing at 290 Pa for 2 hours to produce a unidirectional fiber reinforced composite material.
(4) Measurement of physical properties of unidirectional fiber reinforced composite material 90 degree tensile strength According to ASTM D3039, 90 degree tensile strength was measured. The number of tests was n = 5, and the average value was 90 ° tensile strength. Incidentally, a tensile tester Instron 1185 was used as a tester. The test piece was a unidirectional fiber reinforced composite material prepared by laminating prepregs by the above method, and the size was as follows.

厚み:2±0.2mm
幅:25.4±0.5mm
長さ:38.1±1.0mm
B.0度層間剪断強度(ILSS)
ASTM D2344に従い、3点曲げ試験を行い、0度層間剪断強度を測定した。試験数はn=5とし平均値を0度層間剪断強度とした。尚、試験機としては引張試験機インストロン1125を用いた。試験片は前記方法によりプリプレグを積層し作製した一方向繊維強化複合材料を用い、サイズは下記の通りとした。
Thickness: 2 ± 0.2mm
Width: 25.4 ± 0.5mm
Length: 38.1 ± 1.0mm
B. 0 degree interlayer shear strength (ILSS)
A three-point bending test was performed according to ASTM D2344 to measure the 0-degree interlaminar shear strength. The number of tests was n = 5, and the average value was defined as 0 degree interlayer shear strength. Incidentally, a tensile tester Instron 1125 was used as a tester. The test piece was a unidirectional fiber reinforced composite material prepared by laminating prepregs according to the above method, and the size was as follows.

厚み:2±0.2mm
幅:6.4±0.5mm
長さ:12±1.0mm
また、測定条件は下記の通りとした。
スパン間距離:上部6.35mm、下部3.18mm
クロスヘッド移動速度:1.30mm/min
C.シャルピー衝撃破壊強度
支点間距離を40mmとしたこと以外はJIS K7077記載の方法に従いシャルピー衝撃破壊試験を行った。ハンマー振り上げ角135°、秤量300kg・cmで繊維軸方向と垂直な方向からフラットワイズに衝撃を与え、衝撃波形を検出し、FFT解析処理することにより、変位対荷重を算出した。得られた変位対荷重曲線より最大荷重と、最大荷重点までの変位対荷重曲線に囲まれた面積を荷重負荷面の断面積おいて除した値を最大荷重前シャルピー衝撃値として測定した。測定数はn=6とし、平均値をそれぞれ最大荷重および最大荷重前シャルピー衝撃値とした。本実施例ではシャルピー衝撃試験機として米倉製作所製 300CS計装化シャルピー衝撃試験機を使用した。尚、試験片(ノッチ無し)は前記方法により得られた一方向繊維強化複合材料を用い、サイズは以下の通りとした。
Thickness: 2 ± 0.2mm
Width: 6.4 ± 0.5mm
Length: 12 ± 1.0mm
The measurement conditions were as follows.
Distance between spans: upper 6.35 mm, lower 3.18 mm
Crosshead moving speed: 1.30 mm / min
C. Charpy impact fracture strength A Charpy impact fracture test was performed according to the method described in JIS K7077 except that the distance between the fulcrums was 40 mm. A flatwise impact was applied from a direction perpendicular to the fiber axis direction at a hammer raising angle of 135 ° and a weighing of 300 kg · cm, and an impact waveform was detected, and FFT analysis processing was performed to calculate displacement versus load. From the obtained displacement versus load curve, the value obtained by dividing the area surrounded by the maximum load and the displacement versus load curve up to the maximum load point by the cross-sectional area of the load surface was measured as the Charpy impact value before the maximum load. The number of measurements was n = 6, and the average values were the maximum load and the Charpy impact value before the maximum load, respectively. In this embodiment, a Charpy impact tester manufactured by Yonekura Manufacturing Co., Ltd., 300CS, was used as a Charpy impact tester. In addition, the test piece (without a notch) used the unidirectional fiber reinforced composite material obtained by the said method, and the size was as follows.

厚み:3±2mm
幅:10±2mm
長さ:80±2mm
(5)繊維強化複合材料製管状体の作製
下記(a)〜(c)の手順により、管状体軸方向に対して[±45゜2/0゜3]の積層構成を有する繊維強化複合材料製管状体を作製した。マンドレルには先端外径6.5mm、テーパ6.0/1000、長さ1100mmのステンレス製丸棒を使用した。ステンレス製丸棒には予め離型処理を施した。
(a)所定の一方向プリプレグを強化繊維の方向が台形の高さ方向に対して1枚は45°に、もう1枚は−45°になるように高さ1000mm、上底41mm、下底79mmの台形に切り出した(±45°材)。かかる2枚の台形のプリプレグを繊維方向が互いに交差するように、マンドレル半周分に対応する幅だけずらして貼り合わせた。貼り合わせたプリプレグを離型処理したマンドレルに、プリプレグの高さ方向とマンドレルの軸方向が一致するように巻き付けた。その上に、所定の一方向プリプレグを強化繊維の方向が台形の高さ方向に一致するように高さ1000mmの台形に切り出したもの(0°材)をプリプレグの高さ方向とマンドレルの軸方向が一致するように巻き付けた。尚、上底と下底の長さはかかる0°材の積層数に合わせて適宜決定した。
(b)ラッピングテープ(耐熱性フィルムテープ(ポリプロピレン)、PT30H)を巻きつけ、硬化用の炉の中で130℃、2時間加熱し成形した。
(c)成形後、マンドレルを抜き取り、ラッピングテープを除去して繊維強化複合材料製管状体を得た。
(6)繊維強化複合材料製管状体の耐疲労性測定
繊維強化複合材料製管状体の耐疲労性の指標として、繰り返し衝撃試験を行った。上記方法により得られた繊維強化複合材料管状体に重量180gのヘッドを付け、ゴルフクラブを作製しこれを試験対象とした。ヘッドのほぼ中央に、ボールスピード50m/秒の条件で、重量50gのボールを繰り返し100回当て繰り返し衝撃試験を行った。試験数はn=40とし、繰り返し衝撃試験後、破壊せずに残ったシャフト本数を確認した。かかる繰り返し衝撃試験にはBIRD MACHINE & FAB.社製BMF Golf Ball Cannonを使用した。
Thickness: 3 ± 2mm
Width: 10 ± 2mm
Length: 80 ± 2mm
(5) by the procedure of Preparation following fiber-reinforced composite material tubular body (a) ~ (c), fiber-reinforced composite material having a laminated structure of [± 45 ° 2/0 ° 3] with respect to the tubular body axis A tubular body was produced. As the mandrel, a stainless steel round bar having a tip outer diameter of 6.5 mm, a taper of 6.0 / 1000, and a length of 1100 mm was used. The stainless steel round bar was previously subjected to a release treatment.
(A) A predetermined unidirectional prepreg is 1000 mm in height, 41 mm in upper bottom, and 41 mm in lower bottom such that the direction of the reinforcing fiber is 45 ° with respect to the height direction of the trapezoid and the other is −45 ° A 79 mm trapezoid was cut out (± 45 ° material). The two trapezoidal prepregs were stuck together with a width corresponding to a half circumference of the mandrel so that the fiber directions crossed each other. The bonded prepreg was wound around a mandrel subjected to a release treatment such that the height direction of the prepreg coincided with the axial direction of the mandrel. On top of that, a predetermined unidirectional prepreg cut out into a trapezoid having a height of 1000 mm (0 ° material) so that the direction of the reinforcing fiber coincides with the height direction of the trapezoid was used, and the height direction of the prepreg and the axial direction of the mandrel were cut out. Wound to match. In addition, the length of the upper bottom and the lower bottom was appropriately determined according to the number of stacked 0 ° materials.
(B) A wrapping tape (heat-resistant film tape (polypropylene), PT30H) was wrapped and heated at 130 ° C. for 2 hours in a curing furnace to form.
(C) After the molding, the mandrel was pulled out and the wrapping tape was removed to obtain a fiber-reinforced composite material tubular body.
(6) Measurement of Fatigue Resistance of Tubular Body Made of Fiber-Reinforced Composite Material A repeated impact test was performed as an index of fatigue resistance of a tubular body made of a fiber-reinforced composite material. A head having a weight of 180 g was attached to the fiber-reinforced composite material tubular body obtained by the above method to produce a golf club, which was used as a test object. A ball having a weight of 50 g was repeatedly applied to the center of the head at a ball speed of 50 m / sec 100 times, and the impact test was repeated. The number of tests was n = 40, and the number of shafts remaining without being destroyed after repeated impact tests was confirmed. BIRD MACHINE & FAB. BMF Golf Ball Cannon manufactured by the company was used.

以下、実施例、比較例について説明する。実施例、比較例中に記載の部数はすべて重量部を表す。実施例、比較例の結果は表1〜6に纏めて示した。
(実施例1)
強化繊維として、前記(1)の方法に従い測定した引張強度、引張弾性率の値が、引張強度4500MPa、引張弾性率400GPaのアクリル系炭素繊維を使用した。
Hereinafter, Examples and Comparative Examples will be described. All parts described in Examples and Comparative Examples represent parts by weight. The results of Examples and Comparative Examples are summarized in Tables 1 to 6.
(Example 1)
As the reinforcing fiber, an acrylic carbon fiber having a tensile strength and a tensile modulus of elasticity of 4,500 MPa and a tensile modulus of 400 GPa measured according to the method (1) was used.

前記炭素繊維と、表1に示すようなエポキシ樹脂組成物を用いて前記(2)の方法に従い、強化繊維目付が100g/m2、強化繊維含有率Wfが76重量%の一方向プリプレグを作製し、さらに前記(3)の方法に従い、これらを積層、硬化して一方向複合材料を作製し、前記(4)の方法に従い、各種強度物性を測定した。エポキシ樹脂の組成、及び炭素繊維、一方向繊維強化複合材料、の物性測定結果を表1に示す。本実施例のプリプレグから得られる一方向繊維強化複合材料は式(1)および式(3)を満たすものであった。また、90度引張強度および0度層間剪断強度も高い値を示した。
(実施例2)
表1に示す通り、強化繊維を引張強度5000MPa、引張弾性率230GPaのアクリル系炭素繊維に変更した以外は実施例1と同様にプリプレグおよび一方向繊維強化複合材料を作製した。実施例1と同様に各特性値を測定したところ表1に示す結果となった。本実施例のプリプレグから得られる一方向繊維強化複合材料は式(1)および式(3)を満たすものであった。また、90度引張強度および0度層間剪断強度も高い値を示した。
(実施例3)
表1に示す通り、強化繊維を引張強度4000MPa、引張弾性率550GPaのアクリル系炭素繊維に変更した以外は実施例1と同様にプリプレグおよび一方向繊維強化複合材料を得た。実施例1と同様に各特性値を測定したところ表1に示す結果となった。本実施例のプリプレグから得られる一方向繊維強化複合材料は式(1)および式(3)を満たすものであった。
(実施例4)
表1に示す通り、繊維含有率を50重量%に変更した以外は、実施例1と同様にプリプレグおよび一方向繊維強化複合材料を得た。実施例1と同様に各特性値を測定したところ表1に示す結果となった。本実施例のプリプレグから得られる一方向繊維強化複合材料は式(1)および式(3)を満たすものであった。また、90度引張強度および0度層間剪断強度も高い値を示した。
(実施例5)
表1に示す通り、繊維含有率を65重量%に変更した以外は、実施例1と同様にプリプレグおよび一方向繊維強化複合材料を得た。実施例1と同様に各特性値を測定したところ表1に示す結果となった。本実施例のプリプレグから得られる一方向繊維強化複合材料は式(1)および式(3)を満たすものであった。また、90度引張強度および0度層間剪断強度も高い値を示した。
(実施例6)
表1に示す通り、繊維含有率を80重量%に変更した以外は、実施例1と同様にプリプレグおよび一方向繊維強化複合材料を得た。実施例1と同様に各特性値を測定したところ表1に示す結果となった。本実施例のプリプレグから得られる一方向繊維強化複合材料は式(1)および式(3)を満たすものであった。90度引張強度および0度層間剪断強度は実施例1や5と比較してやや低下する傾向にあったが、繊維含有量が高いため単位長さあたりの重量は軽量化された。
(実施例7)
表1に示す通り、繊維含有率を80重量%に変更した以外は、実施例2と同様にプリプレグおよび一方向繊維強化複合材料を得た。実施例1と同様に各特性値を測定したところ表1に示す結果となった。本実施例のプリプレグから得られる一方向繊維強化複合材料は式(1)および式(3)を満たすものであった。90度引張強度および0度層間剪断強度は実施例2と比較してやや低下する傾向にあったが、繊維含有量が高いため、単位長さ当たりの重量は軽量化された。
(実施例8)
表1に示す通り、繊維含有率を85重量%に変更した以外は、実施例1と同様にプリプレグおよび一方向繊維強化複合材料を得た。実施例1と同様に各特性値を測定したところ表1に示す結果となった。本実施例のプリプレグから得られる一方向繊維強化複合材料は式(1)および式(3)を満たすものであった。90度引張強度および0度層間剪断強度は実施例2と比較してやや低下する傾向にあった。
(実施例9)
表2に示す通り、樹脂組成からフェノールノボラック型エポキシ樹脂を除いた以外は、実施例1と同様にプリプレグおよび一方向繊維強化複合材料を得た。実施例1と同様に各特性値を測定したところ表2に示す結果となった。本実施例のプリプレグから得られる一方向繊維強化複合材料は式(1)および式(3)を満たすものであった。90度引張強度および0度層間剪断強度も高い値を示した。
(実施例10)
表2に示す通り、樹脂組成を変更した以外は、実施例1と同様にプリプレグおよび一方向繊維強化複合材料を得た。実施例1と同様に各特性値を測定したところ表2に示す結果となった。本実施例のプリプレグから得られる一方向繊維強化複合材料は式(1)および式(3)を満たすものであった。90度引張強度および0度層間剪断強度も高い値を示した。
(実施例11)
表2に示す通り、フェノールノボラック型エポキシ樹脂の配合比率を増やした以外は、実施例10と同様にプリプレグおよび一方向繊維強化複合材料を得た。実施例1と同様に各特性値を測定したところ表2に示す結果となった。本実施例のプリプレグから得られる一方向繊維強化複合材料は式(1)および式(3)を満たすものであった。90度引張強度および0度層間剪断強度は実施例10と比較してやや低下する傾向にあった。
(実施例12)
表2に示す通り、樹脂組成を変更した以外は、実施例1と同様にプリプレグおよび一方向繊維強化複合材料を得た。実施例1と同様に各特性値を測定したところ表2に示す結果となった。本実施例のプリプレグから得られる一方向繊維強化複合材料は式(1)および式(3)を満たすものであった。90度引張強度および0度層間剪断強度は実施例1と比較してやや低下する傾向にあった。
(実施例13)
表2に示す通り、樹脂組成を変更した以外は、実施例1と同様にプリプレグおよび一方向繊維強化複合材料を得た。実施例1と同様に各特性値を測定したところ表2に示す結果となった。本実施例のプリプレグから得られる一方向繊維強化複合材料は式(1)および式(3)を満たすものであった。90度引張強度および0度層間剪断強度は実施例1と比較してやや低下する傾向にあった。
(実施例14)
表2に示す通り、樹脂組成を変更し、EPICLON HP7200L(ジシクロペンタジエン型エポキシ樹脂,大日本インキ化学工業(株)製,平均分子量458,エポキシ価248)を使用した以外は、実施例1と同様にプリプレグおよび一方向繊維強化複合材料を得た。実施例1と同様に各特性値を測定したところ表2に示す結果となった。本実施例のプリプレグから得られる一方向繊維強化複合材料は式(1)および式(3)を満たすものであった。90度引張強度および0度層間剪断強度も高い値を示した。
(実施例15)
表2に示す通り、樹脂組成を変更した以外は、実施例1と同様にプリプレグおよび一方向繊維強化複合材料を得た。実施例1と同様に各特性値を測定したところ表2に示す結果となった。本実施例のプリプレグから得られる一方向繊維強化複合材料は式(1)および式(3)を満たすものであった。90度引張強度および0度層間剪断強度も高い値を示した。
(実施例16)
表3に示す通り、樹脂組成を変更した以外は、実施例1と同様にプリプレグおよび一方向繊維強化複合材料を得た。実施例1と同様に各特性値を測定したところ表3に示す結果となった。本実施例のプリプレグから得られる一方向繊維強化複合材料は式(1)および式(3)を満たすものであった。90度引張強度および0度層間剪断強度も高い値を示した。
(実施例17)
表3に示す通り、EPICLON HP7200LをEPICLON HP7200H(ジシクロペンタジエン型エポキシ樹脂,大日本インキ化学工業(株)製,平均分子量666,エポキシ価248)に変更した以外は、実施例1と同様にプリプレグおよび一方向繊維強化複合材料を得た。実施例1と同様に各特性値を測定したところ表3に示す結果となった。本実施例のプリプレグから得られる一方向繊維強化複合材料は式(1)および式(3)を満たすものであった。90度引張強度および0度層間剪断強度も高い値を示した。
(比較例1)
表3に示す通り、樹脂組成を変更した以外は、実施例1と同様にプリプレグおよび一方向繊維強化複合材料を得た。実施例1と同様に各特性値を測定したところ表3に示す結果となった。本比較例のプリプレグから得られる一方向繊維強化複合材料は式(1)および式(3)を満たさないものであった。90度引張強度および0度層間剪断強度は実施例1と比較してやや低下する傾向にあった。
(比較例2)表3に示す通り、樹脂組成を変更した以外は、実施例4と同様にプリプレグおよび一方向繊維強化複合材料を得た。実施例4と同様に各特性値を測定したところ表3に示す結果となった。本比較例のプリプレグから得られる一方向繊維強化複合材料は式(1)および式(3)を満たさないものであった。
(実施例18)
±45°材として実施例1で得られたプリプレグを、0°材として実施例1で得られたプリプレグを用いて前記(5)に記載の方法で[±45゜2/0゜3]の積層構成を有する繊維強化複合材料製管状体を作製した。尚、0°材は3層分に相当するように上底を64mm、下底を122mmに切り出した台形のプリプレグを使用した。本実施例の管状体は、管状体の全体厚みTに対して、管状体内側表面から0.57T〜Tの範囲に実施例1のプリプレグからなる0°材を含むものであった。得られた管状体を用いて前記(6)記載の方法により繰り返し衝撃試験を行ったところ、シャフトの破壊率は0(%)であった。結果を表4にまとめて示す。
(実施例19)
±45°材として実施例2で得られたプリプレグを、0°材として実施例2で得られたプリプレグを用いた以外は、実施例18と同様の方法でシャフトを成形し、繰り返し衝撃試験を行った。結果を表4に示す。
(実施例20)
±45°材として実施例3で得られたプリプレグを、0°材として実施例3で得られたプリプレグを用いた以外は、実施例18と同様の方法でシャフトを成形し、繰り返し衝撃試験を行った。結果を表4に示す。
(実施例21)
±45°材として実施例4で得られたプリプレグを、0°材として実施例4で得られたプリプレグを用いた以外は、実施例18と同様の方法でシャフトを成形し、繰り返し衝撃試験を行った。結果を表4に示す。
(実施例22)
±45°材として実施例5で得られたプリプレグを、0°材として実施例5で得られたプリプレグを用いた以外は、実施例18と同様の方法でシャフトを成形し、繰り返し衝撃試験を行った。結果を表4に示す。
(実施例23)
±45°材として実施例6で得られたプリプレグを、0°材として実施例6で得られたプリプレグを用いた以外は、実施例18と同様の方法でシャフトを成形し、繰り返し衝撃試験を行った。結果を表4に示す。
(実施例24)
±45°材として実施例7で得られたプリプレグを、0°材として実施例7で得られたプリプレグを用いた以外は、実施例18と同様の方法でシャフトを成形し、繰り返し衝撃試験を行った。結果を表4に示す。
(実施例25)
±45°材として実施例8で得られたプリプレグを、0°材として実施例8で得られたプリプレグを用いた以外は、実施例18と同様の方法でシャフトを成形し、繰り返し衝撃試験を行った。結果を表4に示す。
(実施例26)
±45°材として実施例9で得られたプリプレグを、0°材として実施例9で得られたプリプレグを用いた以外は、実施例18と同様の方法でシャフトを成形し、繰り返し衝撃試験を行った。結果を表5に示す。
(実施例27)
±45°材として実施例10で得られたプリプレグを、0°材として実施例10で得られたプリプレグを用いた以外は、実施例18と同様の方法でシャフトを成形し、繰り返し衝撃試験を行った。結果を表5に示す。
(実施例28)
±45°材として実施例11で得られたプリプレグを、0°材として実施例11で得られたプリプレグを用いた以外は、実施例18と同様の方法でシャフトを成形し、繰り返し衝撃試験を行った。結果を表5に示す。
(実施例29)
±45°材として実施例12で得られたプリプレグを、0°材として実施例12で得られたプリプレグを用いた以外は、実施例18と同様の方法でシャフトを成形し、繰り返し衝撃試験を行った。結果を表5に示す。
(実施例30)
±45°材として実施例13で得られたプリプレグを、0°材として実施例13で得られたプリプレグを用いた以外は、実施例18と同様の方法でシャフトを成形し、繰り返し衝撃試験を行った。結果を表5に示す。
(実施例31)
±45°材として実施例14で得られたプリプレグを、0°材として実施例14で得られたプリプレグを用いた以外は、実施例18と同様の方法でシャフトを成形し、繰り返し衝撃試験を行った。結果を表6に示す。
(実施例32)
±45°材として実施例15で得られたプリプレグを、0°材として実施例15で得られたプリプレグを用いた以外は、実施例18と同様の方法でシャフトを成形し、繰り返し衝撃試験を行った。結果を表6に示す。
(実施例33)
±45°材として実施例16で得られたプリプレグを、0°材として実施例16で得られたプリプレグを用いた以外は、実施例18と同様の方法でシャフトを成形し、繰り返し衝撃試験を行った。結果を表6に示す。
(実施例34)
±45°材として実施例17で得られたプリプレグを、0°材として実施例17で得られたプリプレグを用いた以外は、実施例18と同様の方法でシャフトを成形し、繰り返し衝撃試験を行った。結果を表6に示す。
(実施例35)
±45°材として比較例1で得られたプリプレグを用い、その外側に0°材として比較例1で得られたプリプレグを1層、更に外側に実施例1で得られたプリプレグを2層用い、積層構成を[±45゜2/0゜1/0゜2]に変更した以外は前記(5)に示した方法でシャフトを成形した。尚、0°材は比較例1で得られたプリプレグを1層分に相当するように上底26mm、下底45mmの台形に切り出したもの、および実施例1で得られたプリプレグを外層2層分に相当するように上底52mm、下底90mmの台形に切り出したものを用い実施例1で得られたプリプレグが最外層になるように巻き付けた。本実施例の管状体は、管状体の全体厚みTに対して、管状体内側表面から0.71T〜Tの範囲に実施例1のプリプレグからなる0°材を含むものであった。かかるシャフトについて繰り返し衝撃試験を行った。結果を表7に示す。
(実施例36)
±45°材として比較例1で得られたプリプレグを用い、その外側に0°材として比較例1で得られたプリプレグを2層、更に外側に0°材として実施例1で得られたプリプレグを外層に1層用い、積層構成を[±45゜2/0゜2/0゜1]に変更した以外は実施例27と同様の方法でシャフトを成形し、繰り返し衝撃試験を行った。本実施例の管状体は、管状体の全体厚みTに対して、管状体内側表面から0.86T〜Tの範囲に実施例1のプリプレグからなる0°材を含むものであった。結果を表7に示す。
(比較例3)
±45°材および0°材として比較例1で得られたプリプレグを用いた以外は、実施例1と同様の方法でシャフトを成形し、繰り返し衝撃試験を行った。シャフトの折損率は4%であり、実施例18〜36に比べて悪い結果となった。結果を表7に示す。
(比較例4)
±45°材および0°材として比較例2で得られたプリプレグを用いた以外は、実施例1と同様の方法でシャフトを成形し、繰り返し衝撃試験を行った。シャフトの折損率は4%であり、実施例18〜36に比べて悪い結果となった。結果を表7に示す。
Using the carbon fiber and the epoxy resin composition as shown in Table 1, a unidirectional prepreg having a reinforcing fiber weight of 100 g / m 2 and a reinforcing fiber content Wf of 76% by weight was prepared according to the method (2). Then, according to the method (3), these were laminated and cured to produce a one-way composite material, and various strength properties were measured according to the method (4). Table 1 shows the composition of the epoxy resin and the measurement results of the physical properties of the carbon fiber and the unidirectional fiber reinforced composite material. The unidirectional fiber reinforced composite material obtained from the prepreg of the present example satisfied Formulas (1) and (3). Further, the 90 ° tensile strength and the 0 ° interlayer shear strength also showed high values.
(Example 2)
As shown in Table 1, a prepreg and a unidirectional fiber reinforced composite material were produced in the same manner as in Example 1 except that the reinforcing fibers were changed to acrylic carbon fibers having a tensile strength of 5000 MPa and a tensile modulus of 230 GPa. When the respective characteristic values were measured in the same manner as in Example 1, the results shown in Table 1 were obtained. The unidirectional fiber reinforced composite material obtained from the prepreg of the present example satisfied Formulas (1) and (3). Further, the 90 ° tensile strength and the 0 ° interlayer shear strength also showed high values.
(Example 3)
As shown in Table 1, a prepreg and a unidirectional fiber reinforced composite material were obtained in the same manner as in Example 1, except that the reinforcing fibers were changed to acrylic carbon fibers having a tensile strength of 4000 MPa and a tensile modulus of 550 GPa. When the respective characteristic values were measured in the same manner as in Example 1, the results shown in Table 1 were obtained. The unidirectional fiber reinforced composite material obtained from the prepreg of the present example satisfied Formulas (1) and (3).
(Example 4)
As shown in Table 1, a prepreg and a unidirectional fiber reinforced composite material were obtained in the same manner as in Example 1, except that the fiber content was changed to 50% by weight. When the respective characteristic values were measured in the same manner as in Example 1, the results shown in Table 1 were obtained. The unidirectional fiber reinforced composite material obtained from the prepreg of the present example satisfied Formulas (1) and (3). Further, the 90 ° tensile strength and the 0 ° interlayer shear strength also showed high values.
(Example 5)
As shown in Table 1, a prepreg and a unidirectional fiber reinforced composite material were obtained in the same manner as in Example 1, except that the fiber content was changed to 65% by weight. When the respective characteristic values were measured in the same manner as in Example 1, the results shown in Table 1 were obtained. The unidirectional fiber reinforced composite material obtained from the prepreg of the present example satisfied Formulas (1) and (3). Further, the 90 ° tensile strength and the 0 ° interlayer shear strength also showed high values.
(Example 6)
As shown in Table 1, a prepreg and a unidirectional fiber reinforced composite material were obtained in the same manner as in Example 1 except that the fiber content was changed to 80% by weight. When the respective characteristic values were measured in the same manner as in Example 1, the results shown in Table 1 were obtained. The unidirectional fiber reinforced composite material obtained from the prepreg of the present example satisfied Formulas (1) and (3). The 90-degree tensile strength and the 0-degree interlaminar shear strength tended to decrease slightly as compared with Examples 1 and 5, but the weight per unit length was reduced due to the high fiber content.
(Example 7)
As shown in Table 1, a prepreg and a unidirectional fiber reinforced composite material were obtained in the same manner as in Example 2, except that the fiber content was changed to 80% by weight. When the respective characteristic values were measured in the same manner as in Example 1, the results shown in Table 1 were obtained. The unidirectional fiber reinforced composite material obtained from the prepreg of the present example satisfied Formulas (1) and (3). The 90-degree tensile strength and the 0-degree interlaminar shear strength tended to be slightly lower than those in Example 2, but the weight per unit length was reduced due to the high fiber content.
(Example 8)
As shown in Table 1, a prepreg and a unidirectional fiber reinforced composite material were obtained in the same manner as in Example 1, except that the fiber content was changed to 85% by weight. When the respective characteristic values were measured in the same manner as in Example 1, the results shown in Table 1 were obtained. The unidirectional fiber reinforced composite material obtained from the prepreg of the present example satisfied Formulas (1) and (3). The 90-degree tensile strength and the 0-degree interlaminar shear strength tended to be slightly lower than in Example 2.
(Example 9)
As shown in Table 2, a prepreg and a unidirectional fiber reinforced composite material were obtained in the same manner as in Example 1, except that the phenol novolak type epoxy resin was excluded from the resin composition. When the respective characteristic values were measured in the same manner as in Example 1, the results shown in Table 2 were obtained. The unidirectional fiber reinforced composite material obtained from the prepreg of the present example satisfied Formulas (1) and (3). The 90-degree tensile strength and the 0-degree interlaminar shear strength also showed high values.
(Example 10)
As shown in Table 2, a prepreg and a unidirectional fiber reinforced composite material were obtained in the same manner as in Example 1 except that the resin composition was changed. When the respective characteristic values were measured in the same manner as in Example 1, the results shown in Table 2 were obtained. The unidirectional fiber reinforced composite material obtained from the prepreg of the present example satisfied Formulas (1) and (3). The 90-degree tensile strength and the 0-degree interlaminar shear strength also showed high values.
(Example 11)
As shown in Table 2, a prepreg and a unidirectional fiber reinforced composite material were obtained in the same manner as in Example 10, except that the mixing ratio of the phenol novolak type epoxy resin was increased. When the respective characteristic values were measured in the same manner as in Example 1, the results shown in Table 2 were obtained. The unidirectional fiber reinforced composite material obtained from the prepreg of the present example satisfied Formulas (1) and (3). The 90-degree tensile strength and the 0-degree interlaminar shear strength tended to be slightly lower than in Example 10.
(Example 12)
As shown in Table 2, a prepreg and a unidirectional fiber reinforced composite material were obtained in the same manner as in Example 1 except that the resin composition was changed. When the respective characteristic values were measured in the same manner as in Example 1, the results shown in Table 2 were obtained. The unidirectional fiber reinforced composite material obtained from the prepreg of the present example satisfied Formulas (1) and (3). The 90-degree tensile strength and the 0-degree interlaminar shear strength tended to be slightly lower than in Example 1.
(Example 13)
As shown in Table 2, a prepreg and a unidirectional fiber reinforced composite material were obtained in the same manner as in Example 1 except that the resin composition was changed. When the respective characteristic values were measured in the same manner as in Example 1, the results shown in Table 2 were obtained. The unidirectional fiber reinforced composite material obtained from the prepreg of the present example satisfied Formulas (1) and (3). The 90-degree tensile strength and the 0-degree interlaminar shear strength tended to be slightly lower than in Example 1.
(Example 14)
As shown in Table 2, except that the resin composition was changed and EPICLON HP7200L (dicyclopentadiene type epoxy resin, manufactured by Dainippon Ink and Chemicals, Inc., average molecular weight 458, epoxy value 248) was used. Similarly, a prepreg and a unidirectional fiber reinforced composite material were obtained. When the respective characteristic values were measured in the same manner as in Example 1, the results shown in Table 2 were obtained. The unidirectional fiber reinforced composite material obtained from the prepreg of the present example satisfied Formulas (1) and (3). The 90-degree tensile strength and the 0-degree interlaminar shear strength also showed high values.
(Example 15)
As shown in Table 2, a prepreg and a unidirectional fiber reinforced composite material were obtained in the same manner as in Example 1 except that the resin composition was changed. When the respective characteristic values were measured in the same manner as in Example 1, the results shown in Table 2 were obtained. The unidirectional fiber reinforced composite material obtained from the prepreg of the present example satisfied Formulas (1) and (3). The 90-degree tensile strength and the 0-degree interlaminar shear strength also showed high values.
(Example 16)
As shown in Table 3, a prepreg and a unidirectional fiber reinforced composite material were obtained in the same manner as in Example 1 except that the resin composition was changed. When the respective characteristic values were measured in the same manner as in Example 1, the results shown in Table 3 were obtained. The unidirectional fiber reinforced composite material obtained from the prepreg of the present example satisfied Formulas (1) and (3). The 90-degree tensile strength and the 0-degree interlaminar shear strength also showed high values.
(Example 17)
As shown in Table 3, the prepreg was the same as in Example 1 except that EPICLON HP7200L was changed to EPICLON HP7200H (dicyclopentadiene-type epoxy resin, manufactured by Dainippon Ink and Chemicals, Inc., average molecular weight 666, epoxy value 248). And a unidirectional fiber reinforced composite material was obtained. When the respective characteristic values were measured in the same manner as in Example 1, the results shown in Table 3 were obtained. The unidirectional fiber reinforced composite material obtained from the prepreg of the present example satisfied Formulas (1) and (3). The 90-degree tensile strength and the 0-degree interlaminar shear strength also showed high values.
(Comparative Example 1)
As shown in Table 3, a prepreg and a unidirectional fiber reinforced composite material were obtained in the same manner as in Example 1 except that the resin composition was changed. When the respective characteristic values were measured in the same manner as in Example 1, the results shown in Table 3 were obtained. The unidirectional fiber reinforced composite material obtained from the prepreg of this comparative example did not satisfy the formulas (1) and (3). The 90-degree tensile strength and the 0-degree interlaminar shear strength tended to be slightly lower than in Example 1.
(Comparative Example 2) As shown in Table 3, a prepreg and a unidirectional fiber reinforced composite material were obtained in the same manner as in Example 4 except that the resin composition was changed. When the respective characteristic values were measured in the same manner as in Example 4, the results shown in Table 3 were obtained. The unidirectional fiber reinforced composite material obtained from the prepreg of this comparative example did not satisfy the formulas (1) and (3).
(Example 18)
The prepregs obtained in Example 1 as 45 ° material ±, of [± 45 ° 2/0 ° 3] The method according to (5) using the prepregs obtained in Example 1 as 0 ° material A tubular body made of a fiber-reinforced composite material having a laminated structure was produced. The 0 ° material used was a trapezoidal prepreg whose upper base was cut to 64 mm and whose lower base was cut to 122 mm so as to correspond to three layers. The tubular body of the present example included the 0 ° material made of the prepreg of Example 1 in a range of 0.57 T to T from the inner surface of the tubular body with respect to the entire thickness T of the tubular body. When the impact test was repeatedly performed on the obtained tubular body by the method described in the above (6), the fracture rate of the shaft was 0 (%). The results are summarized in Table 4.
(Example 19)
A shaft was molded in the same manner as in Example 18 except that the prepreg obtained in Example 2 was used as a ± 45 ° material and the prepreg obtained in Example 2 was used as a 0 ° material, and a repeated impact test was performed. went. Table 4 shows the results.
(Example 20)
A shaft was formed in the same manner as in Example 18 except that the prepreg obtained in Example 3 was used as a ± 45 ° material and the prepreg obtained in Example 3 was used as a 0 ° material, and a repeated impact test was performed. went. Table 4 shows the results.
(Example 21)
A shaft was molded in the same manner as in Example 18 except that the prepreg obtained in Example 4 was used as a ± 45 ° material and the prepreg obtained in Example 4 was used as a 0 ° material, and a repeated impact test was performed. went. Table 4 shows the results.
(Example 22)
A shaft was molded in the same manner as in Example 18 except that the prepreg obtained in Example 5 was used as a ± 45 ° material and the prepreg obtained in Example 5 was used as a 0 ° material, and a repeated impact test was performed. went. Table 4 shows the results.
(Example 23)
A shaft was molded in the same manner as in Example 18 except that the prepreg obtained in Example 6 was used as a ± 45 ° material and the prepreg obtained in Example 6 was used as a 0 ° material, and a repeated impact test was performed. went. Table 4 shows the results.
(Example 24)
A shaft was molded in the same manner as in Example 18 except that the prepreg obtained in Example 7 was used as a ± 45 ° material and the prepreg obtained in Example 7 was used as a 0 ° material, and a repeated impact test was performed. went. Table 4 shows the results.
(Example 25)
A shaft was molded in the same manner as in Example 18 except that the prepreg obtained in Example 8 was used as a ± 45 ° material and the prepreg obtained in Example 8 was used as a 0 ° material, and a repeated impact test was performed. went. Table 4 shows the results.
(Example 26)
A shaft was molded in the same manner as in Example 18 except that the prepreg obtained in Example 9 was used as a ± 45 ° material and the prepreg obtained in Example 9 was used as a 0 ° material, and a repeated impact test was performed. went. Table 5 shows the results.
(Example 27)
A shaft was molded in the same manner as in Example 18 except that the prepreg obtained in Example 10 was used as a ± 45 ° material and the prepreg obtained in Example 10 was used as a 0 ° material, and a repeated impact test was performed. went. Table 5 shows the results.
(Example 28)
A shaft was molded in the same manner as in Example 18 except that the prepreg obtained in Example 11 was used as a ± 45 ° material and the prepreg obtained in Example 11 was used as a 0 ° material, and a repeated impact test was performed. went. Table 5 shows the results.
(Example 29)
A shaft was molded in the same manner as in Example 18 except that the prepreg obtained in Example 12 was used as a ± 45 ° material and the prepreg obtained in Example 12 was used as a 0 ° material, and a repeated impact test was performed. went. Table 5 shows the results.
(Example 30)
A shaft was molded in the same manner as in Example 18 except that the prepreg obtained in Example 13 was used as a ± 45 ° material and the prepreg obtained in Example 13 was used as a 0 ° material, and a repeated impact test was performed. went. Table 5 shows the results.
(Example 31)
A shaft was molded in the same manner as in Example 18 except that the prepreg obtained in Example 14 was used as a ± 45 ° material and the prepreg obtained in Example 14 was used as a 0 ° material, and a repeated impact test was performed. went. Table 6 shows the results.
(Example 32)
A shaft was formed in the same manner as in Example 18 except that the prepreg obtained in Example 15 was used as a ± 45 ° material and the prepreg obtained in Example 15 was used as a 0 ° material, and a repeated impact test was performed. went. Table 6 shows the results.
(Example 33)
A shaft was molded in the same manner as in Example 18 except that the prepreg obtained in Example 16 was used as a ± 45 ° material and the prepreg obtained in Example 16 was used as a 0 ° material, and a repeated impact test was performed. went. Table 6 shows the results.
(Example 34)
A shaft was molded in the same manner as in Example 18 except that the prepreg obtained in Example 17 was used as a ± 45 ° material and the prepreg obtained in Example 17 was used as a 0 ° material, and a repeated impact test was performed. went. Table 6 shows the results.
(Example 35)
Using the prepreg obtained in Comparative Example 1 as ± 45 ° material, using one layer of the prepreg obtained in Comparative Example 1 as 0 ° material outside, and using two layers of the prepreg obtained in Example 1 outside the material. , except for changing the laminate structure to [± 45 ° 2/0 ° 1/0 ° 2] it was molded shaft in the manner shown in the above (5). The 0 ° material was obtained by cutting the prepreg obtained in Comparative Example 1 into a trapezoid having an upper base of 26 mm and a lower base of 45 mm so as to correspond to one layer, and the prepreg obtained in Example 1 as two outer layers. The prepreg obtained in Example 1 was cut into a trapezoid having an upper base of 52 mm and a lower base of 90 mm so as to correspond to a minute, and was wound so as to be the outermost layer. The tubular body of the present example included the 0 ° material made of the prepreg of Example 1 in the range of 0.71 T to T from the inner surface of the tubular body with respect to the entire thickness T of the tubular body. Such a shaft was repeatedly subjected to an impact test. Table 7 shows the results.
(Example 36)
The prepreg obtained in Comparative Example 1 was used as a ± 45 ° material, the prepreg obtained in Comparative Example 1 was used as a 0 ° material in two layers on the outside thereof, and the prepreg obtained in Example 1 was further used as a 0 ° material on the outside. the used one layer to the outer layer, except for changing the laminate structure to [± 45 ° 2/0 ° 2/0 ° 1] is molded shaft in the same manner as in example 27, was subjected to repeated impact test. The tubular body of the present example included the 0 ° material made of the prepreg of Example 1 in a range of 0.86 T to T from the inner surface of the tubular body with respect to the entire thickness T of the tubular body. Table 7 shows the results.
(Comparative Example 3)
A shaft was formed in the same manner as in Example 1 except that the prepreg obtained in Comparative Example 1 was used as the ± 45 ° material and the 0 ° material, and a repeated impact test was performed. The breakage rate of the shaft was 4%, which was worse than Examples 18 to 36. Table 7 shows the results.
(Comparative Example 4)
A shaft was molded in the same manner as in Example 1 except that the prepreg obtained in Comparative Example 2 was used as the ± 45 ° material and the 0 ° material, and a repeated impact test was performed. The breakage rate of the shaft was 4%, which was worse than Examples 18 to 36. Table 7 shows the results.

Figure 2004269861
Figure 2004269861

Figure 2004269861
Figure 2004269861

Figure 2004269861
Figure 2004269861

Figure 2004269861
Figure 2004269861

Figure 2004269861
Figure 2004269861

Figure 2004269861
Figure 2004269861

Figure 2004269861
Figure 2004269861

Claims (14)

強化繊維とマトリックス樹脂からなり、130℃で2時間硬化して得られる繊維強化複合材料のシャルピー衝撃試験による最大荷重Pmax(N)と強化繊維のストランド引張弾性率Y(GPa)が式(1)および(2)をみたすプリプレグ。
Pmax≧−1.04×Y+1650・・・・式(1)
200≦Y≦700・・・・式(2)
The maximum load Pmax (N) and the strand tensile elastic modulus Y (GPa) of the fiber reinforced composite material, which is composed of a reinforcing fiber and a matrix resin and obtained by curing at 130 ° C. for 2 hours by a Charpy impact test, are expressed by the following formula (1). A prepreg satisfying (2).
Pmax ≧ −1.04 × Y + 1650 Equation (1)
200 ≦ Y ≦ 700 (2)
強化繊維とマトリックス樹脂からなり、130℃で2時間硬化して得られる繊維強化複合材料の最大荷重前シャルピー衝撃値A(kJ/m2)と強化繊維の引張弾性率Y(GPa)が式(3)および(4)をみたすプリプレグ。
A≧−0.12×Y+85・・・・式(3)
200≦Y≦700・・・・式(4)
The Charpy impact value before maximum load A (kJ / m 2 ) and the tensile modulus of elasticity Y (GPa) of the fiber-reinforced composite material, which is composed of a reinforcing fiber and a matrix resin and cured at 130 ° C. for 2 hours, are expressed by the following formula ( A prepreg that satisfies 3) and (4).
A ≧ −0.12 × Y + 85 Equation (3)
200 ≦ Y ≦ 700 Equation (4)
強化繊維含有量が55〜85重量%である請求項1または2記載のプリプレグ。 The prepreg according to claim 1 or 2, wherein the reinforcing fiber content is 55 to 85% by weight. 前記強化繊維が炭素繊維である請求項1〜3いずれか記載のプリプレグ。 The prepreg according to any one of claims 1 to 3, wherein the reinforcing fibers are carbon fibers. 前記マトリックス樹脂がエポキシ樹脂組成物である請求項1〜4のいずれかに記載のプリプレグ。 The prepreg according to any one of claims 1 to 4, wherein the matrix resin is an epoxy resin composition. 前記エポキシ樹脂組成物が2官能のエポキシ樹脂を含んでなり、該2官能エポキシ樹脂が、該エポキシ樹脂組成物中の全エポキシ樹脂100重量%に対して、70重量%以上である請求項5に記載のプリプレグ。 6. The epoxy resin composition according to claim 5, wherein the epoxy resin composition comprises a bifunctional epoxy resin, and the bifunctional epoxy resin accounts for 70% by weight or more based on 100% by weight of the total epoxy resin in the epoxy resin composition. The prepreg described. 前記エポキシ樹脂組成物が脂環式の炭化水素骨格を主鎖中に有するエポキシ樹脂を含む請求項5または6に記載のプリプレグ。 The prepreg according to claim 5, wherein the epoxy resin composition includes an epoxy resin having an alicyclic hydrocarbon skeleton in a main chain. 前記脂環式の炭化水素骨格を主鎖中に有するエポキシ樹脂が数平均分子量250〜500である請求項7記載のプリプレグ。   The prepreg according to claim 7, wherein the epoxy resin having the alicyclic hydrocarbon skeleton in the main chain has a number average molecular weight of 250 to 500. 全エポキシ樹脂100重量%中、前記脂環式の炭化水素骨格を主鎖中に有するエポキシ樹脂が10〜30重量%含まれる、請求項7または8記載のプリプレグ。   9. The prepreg according to claim 7, wherein the epoxy resin having the alicyclic hydrocarbon skeleton in the main chain is contained in an amount of 10 to 30% by weight based on 100% by weight of the entire epoxy resin. 10. 前記脂環式の炭化水素骨格を主鎖中に有するエポキシ樹脂がノルボルナン骨格を有する請求項7〜9のいずれかに記載のプリプレグ。   The prepreg according to any one of claims 7 to 9, wherein the epoxy resin having an alicyclic hydrocarbon skeleton in a main chain has a norbornane skeleton. 請求項1〜10のいずれかに記載のプリプレグが硬化されてなる繊維強化複合材料。 A fiber-reinforced composite material obtained by curing the prepreg according to any one of claims 1 to 10. 請求項11記載の繊維強化複合材料を含む繊維強化複合材料製管状体。 A tubular body made of a fiber-reinforced composite material containing the fiber-reinforced composite material according to claim 11. 管状体の全体厚みTに対して、管状体内側表面からT/2〜Tの範囲に前記繊維強化複合材料を含み、かかる繊維強化複合材料中の強化繊維方向が管状体軸方向に対し−5°〜+5°の角度を有する請求項12記載の繊維強化複合材料製管状体。 The fiber-reinforced composite material is contained in the range of T / 2 to T from the inner surface of the tubular body with respect to the entire thickness T of the tubular body, and the direction of the reinforcing fibers in the fiber-reinforced composite material is -5 with respect to the axial direction of the tubular body. 13. The tubular body made of a fiber-reinforced composite material according to claim 12, which has an angle of from + 5 °. 前記強化繊維方向が管状体軸方向に対し−5°〜+5°の角度を有する繊維強化複合材料層が管状体全体厚みTの10〜70%を占める請求項12または13記載の繊維強化複合材料製管状体。 The fiber-reinforced composite material according to claim 12 or 13, wherein the fiber-reinforced composite material layer having the reinforcing fiber direction at an angle of -5 ° to + 5 ° with respect to the axial direction of the tubular body occupies 10 to 70% of the entire thickness T of the tubular body. Tubular body.
JP2004034589A 2003-02-18 2004-02-12 Prepreg, fiber reinforced composite material and tubular product made from the fiber reinforced composite material Pending JP2004269861A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004034589A JP2004269861A (en) 2003-02-18 2004-02-12 Prepreg, fiber reinforced composite material and tubular product made from the fiber reinforced composite material

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003039398 2003-02-18
JP2004034589A JP2004269861A (en) 2003-02-18 2004-02-12 Prepreg, fiber reinforced composite material and tubular product made from the fiber reinforced composite material

Publications (1)

Publication Number Publication Date
JP2004269861A true JP2004269861A (en) 2004-09-30

Family

ID=33134067

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004034589A Pending JP2004269861A (en) 2003-02-18 2004-02-12 Prepreg, fiber reinforced composite material and tubular product made from the fiber reinforced composite material

Country Status (1)

Country Link
JP (1) JP2004269861A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013185003A (en) * 2012-03-06 2013-09-19 Toyobo Co Ltd Fiber-reinforced composite material
CN105037653A (en) * 2015-07-30 2015-11-11 苏州天健竹业科技有限公司 Titanium reinforced carbon fiber composite material for badminton racket, and preparation method for titanium reinforced carbon fiber composite material
WO2016148175A1 (en) * 2015-03-17 2016-09-22 東レ株式会社 Epoxy resin composition, prepreg, and carbon fiber-reinforced composite material
JP2016204671A (en) * 2016-09-01 2016-12-08 東洋紡株式会社 Fiber-reinforced composite material
CN108635785A (en) * 2018-05-11 2018-10-12 沈阳建筑大学 A kind of restorative procedure of battledore frame

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013185003A (en) * 2012-03-06 2013-09-19 Toyobo Co Ltd Fiber-reinforced composite material
WO2016148175A1 (en) * 2015-03-17 2016-09-22 東レ株式会社 Epoxy resin composition, prepreg, and carbon fiber-reinforced composite material
JPWO2016148175A1 (en) * 2015-03-17 2017-12-28 東レ株式会社 Epoxy resin composition, prepreg and carbon fiber reinforced composite material
US10280251B2 (en) 2015-03-17 2019-05-07 Toray Industries, Inc. Epoxy resin composition, prepreg, and carbon fiber-reinforced composite material
CN105037653A (en) * 2015-07-30 2015-11-11 苏州天健竹业科技有限公司 Titanium reinforced carbon fiber composite material for badminton racket, and preparation method for titanium reinforced carbon fiber composite material
JP2016204671A (en) * 2016-09-01 2016-12-08 東洋紡株式会社 Fiber-reinforced composite material
CN108635785A (en) * 2018-05-11 2018-10-12 沈阳建筑大学 A kind of restorative procedure of battledore frame

Similar Documents

Publication Publication Date Title
KR101318093B1 (en) Epoxy resin composition, prepreg, and fiber-reinforced composite material
JP6497370B2 (en) Epoxy resin composition, and film, prepreg and fiber reinforced plastic using the same
US8858358B2 (en) Tubular body made of fiber-reinforced epoxy resin material
JP4687167B2 (en) Epoxy resin composition, prepreg and fiber reinforced composite material
JP6497027B2 (en) Epoxy resin composition, cured resin, prepreg and fiber reinforced composite material
JP4314845B2 (en) Epoxy resin composition, prepreg and fiber reinforced composite material
JP6573029B2 (en) Manufacturing method of fiber reinforced composite material
JP4506189B2 (en) Epoxy resin composition, prepreg and fiber reinforced composite material
JP2004269861A (en) Prepreg, fiber reinforced composite material and tubular product made from the fiber reinforced composite material
JP2003103519A (en) Prepreg sheet, tubular article, and golf club shaft
JP2003277471A (en) Epoxy resin composition, prepreg and carbon fiber- reinforced composite material
JP2001106879A (en) Epoxy resin comoposition, prepreg, and fiber-reinforced composite
JP2003277532A (en) Prepreg and tubular product made of fiber reinforced composite material
JP6198569B2 (en) Fiber-reinforced epoxy resin material and tubular body formed therefrom
JP4843932B2 (en) Method for producing epoxy resin composition for fiber-reinforced composite material, prepreg, and fiber-reinforced composite material
JP6198568B2 (en) Prepreg, fiber reinforced epoxy resin molded body, and tubular body made of fiber reinforced epoxy resin material
JP2011057851A (en) Epoxy resin composition, prepreg and fiber-reinforced composite material
JP2009215481A (en) Prepreg and fiber-reinforced composite material
JP2003012837A (en) Epoxy resin composition for fiber-reinforced composite material, prepreg and fiber-reinforced composition material
JP2008231288A (en) Epoxy resin composition for fiber-reinforced composite material, prepreg and fiber-reinforced composite material
JP3864751B2 (en) Resin composition for carbon fiber reinforced composite material, prepreg, and carbon fiber reinforced composite material
JP2005298810A (en) Epoxy resin composition, prepreg, fiber-reinforced composite material and method for producing them
WO2021095628A1 (en) Epoxy resin composition, prepreg, and fiber-reinforced composite material
JP2005238472A (en) Tubular body made of fiber reinforced composite material
JP2004345157A (en) Laminate and tubular body comprising using it