JP2013185003A - Fiber-reinforced composite material - Google Patents

Fiber-reinforced composite material Download PDF

Info

Publication number
JP2013185003A
JP2013185003A JP2012049297A JP2012049297A JP2013185003A JP 2013185003 A JP2013185003 A JP 2013185003A JP 2012049297 A JP2012049297 A JP 2012049297A JP 2012049297 A JP2012049297 A JP 2012049297A JP 2013185003 A JP2013185003 A JP 2013185003A
Authority
JP
Japan
Prior art keywords
fiber
composite material
reinforced composite
dtex
fibers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012049297A
Other languages
Japanese (ja)
Inventor
Atsuhiko Yamanaka
淳彦 山中
Limin Bao
力民 鮑
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyobo Co Ltd
Original Assignee
Toyobo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyobo Co Ltd filed Critical Toyobo Co Ltd
Priority to JP2012049297A priority Critical patent/JP2013185003A/en
Publication of JP2013185003A publication Critical patent/JP2013185003A/en
Pending legal-status Critical Current

Links

Landscapes

  • Reinforced Plastic Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a fiber-reinforced composite material with high durability to particle collisions.SOLUTION: A fiber-reinforced composite material with fibers embedded in a resin is provided, being characterized in that: at least part of the fibers having a ≥12 cN/dtex and ≤60 cN/dtex tensile tenacity, a ≥500 cN/dtex and ≤3,000 cN/dtex tensile modulus and a ≥2% and ≤10% elongation at break are located at positions less than 0.40 mm and 0.001 mm or greater below the surface of the resin.

Description

本発明は粒子衝突に対する耐久性に優れた繊維強化複合材料に関する。   The present invention relates to a fiber-reinforced composite material having excellent durability against particle collision.

繊維強化複合材料(以下FRP)は飛行機の胴体、翼、高速列車の外装などに使用されている。この場合、砂や埃などの粒子の衝突による磨耗が起こり、材料としての耐久性を低下せしめる原因となっている。   Fiber reinforced composite materials (hereinafter referred to as FRP) are used for airplane fuselage, wings, exteriors of high-speed trains, and the like. In this case, wear due to collision of particles such as sand and dust occurs, causing the durability as a material to deteriorate.

従来、繊維強化複合材料からなる構造材としてはガラス繊維強化複合材料(以下GFRP)、炭素繊維強化複合材料(以下CFRP)など無機繊維強化複合材料が主に使用されてきたが、これらは粒子衝突に対する耐久性が低いことが知られている。このため、軽量性と強度、さらに耐腐食性などを併せもつにも関わらず、上述の用途への適用範囲に制限があった。(特許文献1)   Conventionally, inorganic fiber reinforced composite materials such as glass fiber reinforced composite materials (hereinafter referred to as GFRP) and carbon fiber reinforced composite materials (hereinafter referred to as CFRP) have been mainly used as structural materials made of fiber reinforced composite materials. It is known that the durability against is low. For this reason, there is a limit to the range of application to the above-mentioned applications despite having both lightness and strength, and further corrosion resistance. (Patent Document 1)

これらの問題の解決手段としては金属との複合などが検討されてきた(特許文献1〜3)。しかしながら金属との複合は繊維強化複合材料本来の特長である軽量性・耐腐食性の効果を低減するものであった。   As means for solving these problems, composites with metals have been studied (Patent Documents 1 to 3). However, the composite with metal reduces the effects of lightness and corrosion resistance, which are the original features of fiber-reinforced composite materials.

特公昭57−22017Japanese Patent Publication No.57-222017 特開2000−96180JP 2000-96180 特開2003−48266JP 2003-48266 A

本発明は粒子衝突に対する耐久性に優れた繊維強化複合材料を提供するものである。   The present invention provides a fiber-reinforced composite material having excellent durability against particle collision.

本発明者は上記課題を解決するため、鋭意研究した結果到達できたものであり、以下の構成を採用するものである。即ち、本発明は、以下の構成からなる。
1.樹脂内に繊維が包埋された繊維強化複合材料において、引張り強度12cN/dtex以上、60cN/dtex以下、引張り弾性率が500cN/dtex以上、3000cN/dtex以下、破断伸度2.0%以上10.0%以下である少なくとも一部の繊維が、樹脂の表面から0.001〜0.40mmの範囲に存在していることを特徴とする繊維強化複合材料。
2.繊維強化複合材料中の繊維の体積率が10〜90%であることを特徴とする、上記1記載の繊維強化複合材料。
3.多数本の繊維の長軸が一方向に並べられた層を有し、この層が2〜15層積層されて構成されていることを特徴とする上記1,2いずれかに記載の繊維強化複合材料。
4.繊維が高強度ポリエチレン繊維であることを特徴とする上記1〜3、いずれか1つに記載の繊維強化複合材料。
5.繊維が高強度ポリパラフェニレンベンツビスオキサゾール繊維であることを特徴とする上記1〜3、いずれか1つに記載の繊維強化複合材料。
In order to solve the above-mentioned problems, the present inventor has achieved as a result of earnest research, and adopts the following configuration. That is, this invention consists of the following structures.
1. In a fiber reinforced composite material in which fibers are embedded in a resin, the tensile strength is 12 cN / dtex or more, 60 cN / dtex or less, the tensile elastic modulus is 500 cN / dtex or more, 3000 cN / dtex or less, and the elongation at break is 2.0% or more 10 A fiber-reinforced composite material, wherein at least a part of fibers of 0.0% or less are present in a range of 0.001 to 0.40 mm from the surface of the resin.
2. 2. The fiber-reinforced composite material according to 1 above, wherein the volume ratio of fibers in the fiber-reinforced composite material is 10 to 90%.
3. 2. The fiber-reinforced composite according to any one of the above 1 and 2, characterized in that it has a layer in which the long axes of a large number of fibers are arranged in one direction, and this layer is laminated by 2 to 15 layers. material.
4). The fiber-reinforced composite material according to any one of 1 to 3, wherein the fiber is a high-strength polyethylene fiber.
5. The fiber-reinforced composite material according to any one of the above 1 to 3, wherein the fiber is a high-strength polyparaphenylenebenzbisoxazole fiber.

本発明の繊維強化複合材料は、飛来粒子に対する耐磨耗性が高いため、砂漠地方での構造物、あるいは飛行機、列車等の高速で空気中を移動する構造材に使用することができる。   Since the fiber-reinforced composite material of the present invention has high wear resistance against flying particles, it can be used for a structure in the desert region or a structural material that moves in the air at high speed, such as an airplane or train.

本発明における繊維強化複合材料は飛来粒子衝突によるエネルギーを減じることで磨耗破損を少なくすることが出来る。このために、有機高分子繊維を使用することが必要である。繊維としては、引張強度12cN/dtex以上60cN/dtex以下、好ましくは13cN/dtex以上50cN/dtex以下、引張り弾性率が500cN/dtex以上3000cN/dtex以下、好ましくは550cN/dtex以上2800cN/dtex以下、破断伸度2.0%以上10%以下、好ましくは2.3%以上8.5%以下である少なくとも1種類の有機高分子繊維を使用することが必要である。   The fiber reinforced composite material according to the present invention can reduce wear damage by reducing energy caused by flying particle collision. For this purpose, it is necessary to use organic polymer fibers. The fiber has a tensile strength of 12 cN / dtex to 60 cN / dtex, preferably 13 cN / dtex to 50 cN / dtex, and a tensile modulus of 500 cN / dtex to 3000 cN / dtex, preferably 550 cN / dtex to 2800 cN / dtex, It is necessary to use at least one organic polymer fiber having a breaking elongation of 2.0% to 10%, preferably 2.3% to 8.5%.

有機高分子繊維の強度が12cN/dtex未満の場合、強度が低いためにエネルギーを減じることが出来ず、繊維自体が摩耗破損するので好ましくない。強度は高い方が好ましいが、商業ベースでの有機高分子繊維の強度を考慮すると60cN/dtex以下が好ましい。   When the strength of the organic polymer fiber is less than 12 cN / dtex, the strength is low, so energy cannot be reduced, and the fiber itself is worn and broken. Higher strength is preferable, but 60 cN / dtex or less is preferable in consideration of the strength of the organic polymer fiber on a commercial basis.

有機高分子繊維の弾性率が500cN/dtex未満の場合、飛来粒子衝突による変形が大きくなり、繊維/マトリクス界面の破壊に至る可能性があるため好ましくない。より好ましくは550cN/dtex以上である。弾性率は高い方が好ましいが、商業ベースでの有機高分子繊維の弾性率を考慮すると3000cN/dtex以下が好ましい。   When the elastic modulus of the organic polymer fiber is less than 500 cN / dtex, the deformation due to the collision of the flying particles is increased, and there is a possibility that the fiber / matrix interface is broken. More preferably, it is 550 cN / dtex or more. A higher elastic modulus is preferable, but 3000 cN / dtex or less is preferable in consideration of the elastic modulus of the organic polymer fiber on a commercial basis.

有機高分子繊維の破断伸度が2.0%以上とすると、飛来粒子衝突による耐摩耗性が大きく改善されることを本願発明者らは見出した。理由は定かではないが、伸度が低すぎることにより、飛来粒子衝突による衝撃で有機高分子繊維とマトリクス樹脂との界面で破壊が生じ、繊維強化複合材料としての機能を失ってしまうため、と考えられる。好ましい破断伸度は2.3%以上、より好ましくは2.5%以上、さらに好ましくは3.0%以上、最も好ましくは3.5%以上である。伸度は高い方が望ましいが、高すぎると逆に有機繊維の変形に対してマトリクス樹脂が追随せずに界面破壊が生じるため好ましくない。破断伸度は10.0%以下が好ましく、より好ましくは8.5%以下、さらに好ましくは7.0%以下である。   The inventors of the present application have found that when the breaking elongation of the organic polymer fiber is 2.0% or more, the wear resistance due to the collision of flying particles is greatly improved. The reason is not clear, but because the elongation is too low, the impact due to the impact of flying particles causes destruction at the interface between the organic polymer fiber and the matrix resin, and the function as a fiber-reinforced composite material is lost. Conceivable. The breaking elongation is preferably 2.3% or more, more preferably 2.5% or more, further preferably 3.0% or more, and most preferably 3.5% or more. Higher elongation is desirable, but if it is too high, the matrix resin does not follow the deformation of the organic fiber and interface breakage occurs. The elongation at break is preferably 10.0% or less, more preferably 8.5% or less, and still more preferably 7.0% or less.

本発明に用いる有機高分子繊維としては、具体的には高強度ポリエチレン繊維やポリパラフェニレンベンゾビスオキサゾール(PBO)繊維、パラアラミド繊維などが挙げられる。   Specific examples of the organic polymer fiber used in the present invention include high-strength polyethylene fiber, polyparaphenylene benzobisoxazole (PBO) fiber, and para-aramid fiber.

本発明に用いる有機高分子繊維は所定の物性を有する繊維を使用するが、単一種類で用いてもよく、複数種類を混合使用してもよい。また所定の物性を有しない繊維と混合使用してもよい。ここでいう所定の物性を有しない繊維とはポリエステル繊維、ナイロン繊維、セルロース繊維、羊毛、アクリル繊維など衣料用繊維、またメタアラミド繊維、ポリベンゾイミダゾール、炭素繊維、ガラス繊維、アルミナ繊維、ジルコニア繊維、シリカ繊維、シリコンカーバイド繊維、チタニア繊維などが挙げられる。また本発明に用いる繊維の形態であるが、長繊維(フィラメント)、カットファイバーのいずれでもよい。   Although the organic polymer fiber used in the present invention uses a fiber having predetermined physical properties, it may be used as a single kind or a mixture of plural kinds. Moreover, you may mix and use with the fiber which does not have a predetermined physical property. The fiber having no predetermined physical properties here is a fiber for clothing such as polyester fiber, nylon fiber, cellulose fiber, wool, acrylic fiber, meta-aramid fiber, polybenzimidazole, carbon fiber, glass fiber, alumina fiber, zirconia fiber, Examples thereof include silica fiber, silicon carbide fiber, and titania fiber. Moreover, although it is a form of the fiber used for this invention, any of a long fiber (filament) and a cut fiber may be sufficient.

本発明でいう繊維強化複合材料における繊維の配合形態としては一方向強化、織物強化、フィラメントワインディング、押し出し成形、引き抜き成形、シートワインディングなどが挙げられるが、強化繊維物性が効果的に性能に寄与されるという点では、一方向強化複合材料が望ましい。また一方向強化複合材料を1層としてこの層を複数枚使用することでより強固な複合材料を得ることが出来る。一方向複合材料を積層する際に全ての層を同じ方向にそろえることも可能であるが、角度を変えて積層することで、あらゆる方向からの力に応じることが出来るため好ましい。例えば、各層ごとに繊維の長軸方向が90°に変更された繊維強化複合材料も使用できる。   Examples of the fiber composition in the fiber-reinforced composite material according to the present invention include unidirectional reinforcement, fabric reinforcement, filament winding, extrusion molding, pultrusion molding, sheet winding, and the like, but the physical properties of the reinforcing fiber contributes effectively to the performance. In this respect, a unidirectional reinforced composite material is desirable. In addition, a stronger composite material can be obtained by using a single reinforced composite material as a single layer and using a plurality of such layers. When laminating a unidirectional composite material, it is possible to align all the layers in the same direction, but laminating at different angles is preferable because it can respond to forces from all directions. For example, a fiber reinforced composite material in which the major axis direction of the fiber is changed to 90 ° for each layer can also be used.

本発明における繊維強化複合材料のマトリクス樹脂としてはエポキシ樹脂、ビニルエステル樹脂、ウレタン樹脂、不飽和ポリエステル樹脂、ポリエステル樹脂、ナイロン樹脂、ウレタンアクリレート樹脂が挙げられるが、好ましいのは不飽和ポリエステル樹脂又はエポキシ樹脂である。   Examples of the matrix resin of the fiber reinforced composite material in the present invention include an epoxy resin, a vinyl ester resin, a urethane resin, an unsaturated polyester resin, a polyester resin, a nylon resin, and a urethane acrylate resin, preferably an unsaturated polyester resin or an epoxy. Resin.

本発明における繊維強化複合材料の繊維体積率(Vf)は10%以上、90%以下、好ましくは25%以上、80%以下である。Vfが10%未満では本発明における繊維の性能が発現されず、よって本発明による効果を発揮しない。一方、Vfが90%以上では繊維間へのマトリクス樹脂の含浸が不十分となり、繊維強化複合材料としての特性を発揮しない。すなわち、繊維とマトリクス樹脂との間で適切な含浸構造を有することが本発明において好ましいことを見出したものである。具体的には、本願発明の繊維強化複合材料の飛来粒子衝突面において飛来粒子が衝突する面にはマトリクス樹脂が存在するが、この衝突表面から繊維に到達するまでの厚みを制御することで、耐摩耗性に優れた繊維強化複合材料を提供することが出来る。   The fiber volume fraction (Vf) of the fiber-reinforced composite material in the present invention is 10% or more and 90% or less, preferably 25% or more and 80% or less. If Vf is less than 10%, the performance of the fiber in the present invention is not expressed, and thus the effect of the present invention is not exhibited. On the other hand, when Vf is 90% or more, the impregnation of the matrix resin between the fibers becomes insufficient, and the characteristics as a fiber-reinforced composite material are not exhibited. That is, it has been found that it is preferable in the present invention to have an appropriate impregnation structure between the fiber and the matrix resin. Specifically, the matrix resin is present on the surface where the flying particles collide with the flying particle collision surface of the fiber-reinforced composite material of the present invention, but by controlling the thickness from the collision surface to the fiber, A fiber-reinforced composite material having excellent wear resistance can be provided.

樹脂から繊維にまでの樹脂の厚みが0.001mm未満では、飛来粒子の衝突により容易にマトリクス樹脂が破壊され、容易に繊維が表層に現れるため、繊維強化複合材料の効果が見られず好ましくない。0.001mm以上が好ましく、より好ましくは0.005mm以上、さらに好ましくは0.01mm以上である。逆にマトリクス樹脂の厚みが厚すぎると、飛来粒子の衝突によりマトリクス樹脂のみが破壊され、繊維強化複合材料の効果が見られないため好ましくない。好ましくは樹脂の厚みが0.40mm未満、より好ましくは0.30mm以下、さらに好ましくは0.20mm以下である。なお、本願における「樹脂の表面」とは飛来粒子が主に衝突する平面のことを示す。   When the thickness of the resin from the resin to the fiber is less than 0.001 mm, the matrix resin is easily destroyed by the collision of the flying particles, and the fiber easily appears on the surface layer. . 0.001 mm or more is preferable, More preferably, it is 0.005 mm or more, More preferably, it is 0.01 mm or more. On the other hand, if the thickness of the matrix resin is too thick, only the matrix resin is destroyed due to the collision of the flying particles, and the effect of the fiber-reinforced composite material is not preferable. The thickness of the resin is preferably less than 0.40 mm, more preferably 0.30 mm or less, and still more preferably 0.20 mm or less. The “resin surface” in the present application refers to a plane on which incoming particles mainly collide.

樹脂の厚みを変更する方法としては、繊維体積率(Vf)を変更する、マトリクス樹脂の粘度を変更する、複合材料形成時に繊維の位置を調節した上で形成する、あるいは、繊維強化複合材料成型時の圧縮力を変える等が考えられるが、これらに限定されるものではない。   As a method of changing the thickness of the resin, the fiber volume fraction (Vf) is changed, the viscosity of the matrix resin is changed, the fiber position is adjusted at the time of forming the composite material, or the fiber reinforced composite material is molded. It is conceivable to change the compression force at the time, but is not limited thereto.

本発明における繊維強化複合材料は上記繊維強化複合材料単体からなっているものでもよく、また飛来粒子衝突面には上記繊維強化複合材料を配し、飛来粒子衝突面の反対側にはガラス繊維強化複合材料などを配する2重構造としてもよい。   The fiber reinforced composite material in the present invention may be composed of the above fiber reinforced composite material alone, and the fiber reinforced composite material is arranged on the flying particle collision surface, and the glass fiber reinforced is on the opposite side of the flying particle collision surface. It is good also as a double structure which distributes a composite material etc.

以下、実施例によって本発明をさらに詳述するが、下記実施例は本発明を制限するものではなく、本願記載の趣旨を逸脱しない範囲で変更実施することはすべて本発明の技術範囲に包含される。   Hereinafter, the present invention will be described in more detail by way of examples. However, the following examples are not intended to limit the present invention, and all modifications that are made without departing from the spirit of the present application are included in the technical scope of the present invention. The

本発明で用いた実験方法を以下に示す。
(繊維の繊度、引張強度、引張り弾性率、破断伸度)JIS L 1013(1999)に準拠して測定した。
繊度:繊維1mを取り出し、その重量を求めた。ランダムな位置から10点をサンプリングし値を求めその平均値から10000mあたりの重量に換算した値を使用した。
引張強度、弾性率、破断伸度:オリエンテック社製「テンシロン」を用い、試料長200mm,伸長速度50%/分の条件で歪−応力曲線を雰囲気温度20℃、相対湿度65%条件下で測定し、破断点での力と伸びから引張強力(N)、伸度(%)を求めた。この引張強力と繊度から引張強度を求めた。また曲線の原点付近の最大勾配が与える接線から弾性率(cN/dtex)を求めた。なお各値は10回の測定の平均値を使用した。試験時の繊維の滑りを防止するため、試験にはタイヤコード型引張冶具を用いた。
The experimental method used in the present invention is shown below.
(Fine fineness, tensile strength, tensile modulus, elongation at break) Measured according to JIS L 1013 (1999).
Fineness: 1 m of fiber was taken out and its weight was determined. A value obtained by sampling 10 points from a random position to obtain a value and converting the average value to a weight per 10,000 m was used.
Tensile strength, elastic modulus, elongation at break: “Tensilon” manufactured by Orientec Co., Ltd., strain-stress curve under the conditions of sample length 200 mm, elongation rate 50% / min, ambient temperature 20 ° C., relative humidity 65% The tensile strength (N) and elongation (%) were determined from the force and elongation at the breaking point. The tensile strength was determined from the tensile strength and fineness. The elastic modulus (cN / dtex) was determined from the tangent line given by the maximum gradient near the origin of the curve. In addition, each value used the average value of 10 measurements. In order to prevent the fiber from slipping during the test, a tire cord type tension jig was used for the test.

(粒子衝突試験、重量変化)
本願実施例、比較例の条件で作成したサンプルを1辺25mmの四角形状に切り出した後、重量を測定した。この四角形状の中心部分に半径5mmの円を設定し、この円内を狙い、エアブラストガンからアルミナ研削材を毎分2.1g、衝突速度127.4m/secで30分間衝突させた。衝突試験後、重量を測定し、衝突試験前後での重量変化量を計算により求めた。なお、衝突粒子は白色アルミナ研削材WA F220(昭和電工株式会社)で、平均直径11.5ミクロンのものを用いた。サンプル表面とエアブラストガンから発射されるアルミナ研削材の角度は45degとした。6回の衝突試験を行い、重量変化量の平均値を測定結果として採用した。なお、サンプルとして一方向強化複合材料を用いた場合は、エアブラストガンの噴射方向と繊維強化の方向が平行方向で3回、直行方向で3回の評価を行った。
(Particle collision test, weight change)
A sample prepared under the conditions of the examples of the present application and the comparative example was cut into a square shape with a side of 25 mm, and the weight was measured. A circle with a radius of 5 mm was set at the center of this square shape, and an alumina abrasive was hit from the air blast gun at an impact rate of 127.4 m / sec for 30 minutes, aiming within the circle. After the crash test, the weight was measured, and the weight change before and after the crash test was obtained by calculation. The collision particles were white alumina abrasive WA F220 (Showa Denko Co., Ltd.) having an average diameter of 11.5 microns. The angle between the sample surface and the alumina abrasive material fired from the air blast gun was 45 deg. Six collision tests were conducted, and the average value of weight change was adopted as the measurement result. When a unidirectional reinforced composite material was used as a sample, the air blast gun injection direction and the fiber reinforced direction were evaluated three times in the parallel direction and three times in the orthogonal direction.

(粒子衝突試験、物性変化)
本願実施例、比較例の条件で作成したサンプルを15mm×100mmに切り出した。サンプルの中心部分に半径5mmの円を設定し、この円内を狙い、上記粒子衝突と同様の条件で粒子衝突処理を行った。粒子衝突試験前後の資料を用いて曲げ強度を評価した。曲げ試験はJIS K7074に準拠した3点曲げ試験を行った。測定機器は島津製作所製 AG20KNDを用いた。測定条件は、支点距離80mm,クロスヘッドスピード5mm/minで曲げ強度は最大荷重から計算して求めた。同じ条件で作成したサンプルの粒子衝突試験前後での曲げ強度試験結果から保持率を求めた。試験は5回行い、その平均値を測定結果として採用した。なお、サンプルとして一方向強化複合材料を用いた場合は、エアブラストガンの噴射方向と繊維強化の方向が平行方向のサンプルを用いて評価を行った。
曲げ強度保持率は、70%以上が好ましく、80%以上がより好ましく、さらに好ましくは90%以上である。
(Particle collision test, physical property change)
Samples created under the conditions of the examples of the present application and comparative examples were cut into 15 mm × 100 mm. A circle with a radius of 5 mm was set at the center of the sample, and the particle collision treatment was performed under the same conditions as in the particle collision aiming at the inside of the circle. Bending strength was evaluated using data before and after the particle impact test. The bending test was a three-point bending test based on JIS K7074. AG20KND manufactured by Shimadzu Corporation was used as a measuring instrument. The measurement conditions were a fulcrum distance of 80 mm, a crosshead speed of 5 mm / min, and a bending strength calculated from the maximum load. The retention rate was obtained from the bending strength test results before and after the particle collision test of the sample prepared under the same conditions. The test was performed 5 times, and the average value was adopted as the measurement result. When a unidirectional reinforced composite material was used as a sample, evaluation was performed using a sample in which the air blast gun injection direction and the fiber reinforced direction were parallel.
The bending strength retention is preferably 70% or more, more preferably 80% or more, and still more preferably 90% or more.

(断面方向の繊維の存在状態)
本願実施例、比較例の条件で作成したサンプルの繊維の存在位置において、繊維の断面を観察できるように切断し、粒子衝突平面から繊維までの距離が見える位置でSEMによる観測を行った。任意の場所5箇所をSEM写真(50倍)観測し、写真としてプリントアウト後、写真内の粒子衝突平面から繊維までの距離が最も薄いところを樹脂厚みとした。5箇所の平均値を求めた。
(Existence of fibers in the cross-sectional direction)
Samples prepared under the conditions of the examples of the present application and comparative examples were cut so that the cross-section of the fibers could be observed, and observed by SEM at a position where the distance from the particle collision plane to the fibers could be seen. SEM photographs (50 times) were observed at five arbitrary locations, and after printing out as photographs, the resin thickness was defined as the place where the distance from the particle collision plane to the fiber in the photograph was the smallest. The average value of 5 places was calculated | required.

(実施例1)
強化繊維として高強度ポリエチレン繊維;東洋紡績株式会社製ダイニーマ(登録商標)SK60(1320dtex)を、マトリックス樹脂として昭和高分子株式会社製の不飽和ポリエステルを含むリゴラック(登録商標)158BQTN−1を用いた。一層あたりの繊維目付けが83.3g/mとなるよう繊維を一方向に配列させたものを1層とし、これを9層、繊維方向が同一となるように重ねた後、マトリクス樹脂に日油株式会社製パーメック(登録商標)Nを1重量部混合したものを含浸した。これをVacuum assisted Resin Transfer Molding(VaRTM)法で成形した。硬化温度は30℃、時間は24hrとした。得られたサンプルの厚さは2.5mmである。なお繊維体積率は30%であった。
Example 1
High-strength polyethylene fibers as reinforcing fibers; Dyneema (registered trademark) SK60 (1320 dtex) manufactured by Toyobo Co., Ltd., and Rigolac (registered trademark) 158BQTN-1 containing unsaturated polyester manufactured by Showa Polymer Co., Ltd. as a matrix resin were used. . One layer is formed by arranging fibers in one direction so that the fiber basis weight per layer is 83.3 g / m 2 , 9 layers are stacked so that the fiber directions are the same, and then the matrix resin is applied to the matrix resin. The mixture was impregnated with 1 part by weight of Permec (registered trademark) N manufactured by Oil Corporation. This was shape | molded by the Vacuum assisted Resin Transfer Molding (VaRTM) method. The curing temperature was 30 ° C. and the time was 24 hours. The thickness of the obtained sample is 2.5 mm. The fiber volume ratio was 30%.

(実施例2)
強化繊維として高強度ポリエチレン繊維;東洋紡績株式会社製ダイニーマ(登録商標)SK71(440dtex)を、マトリックス樹脂として昭和高分子株式会社製の不飽和ポリエステルを含むリゴラック(登録商標)158BQTN−1を用いた。繊維目付けが83.3g/mとなるよう繊維を一方向に配列させたものを1層とし、これを10層、繊維方向が1層ごとに90度変更させた積層させた。その後、マトリクス樹脂に日油株式会社製パーメック(登録商標)Nを1重量部混合したものを含浸した。これをVacuum assisted Resin Transfer Molding (VaRTM)法で成形した。硬化温度は30℃、時間は24hrとした。得られたサンプルの厚さは2.5mmである。なお繊維体積率は38%であった。
(Example 2)
High-strength polyethylene fibers as reinforcing fibers; Dyneema (registered trademark) SK71 (440 dtex) manufactured by Toyobo Co., Ltd., and Rigolac (registered trademark) 158BQTN-1 containing unsaturated polyester manufactured by Showa Polymer Co., Ltd. as a matrix resin were used. . One layer was formed by arranging fibers in one direction so that the fiber basis weight was 83.3 g / m 2, and this was laminated with 10 layers and the fiber direction changed 90 degrees for each layer. Thereafter, a matrix resin mixed with 1 part by weight of Parmek (registered trademark) N manufactured by NOF Corporation was impregnated. This was shape | molded by the Vacuum assisted Resin Transfer Molding (VaRTM) method. The curing temperature was 30 ° C. and the time was 24 hours. The thickness of the obtained sample is 2.5 mm. The fiber volume ratio was 38%.

(実施例3)
強化繊維として高強度PBO繊維;東洋紡績株式会社製ザイロン(登録商標)HM(1090dtex)を、マトリックス樹脂として昭和高分子株式会社製の不飽和ポリエステルを含むリゴラック(登録商標)158BQTN−1を用いた。繊維目付けが100.3g/mとなるよう繊維を一方向に配列させたものを1層とし、これを12層、繊維方向が同一となるように積層させた。マトリクス樹脂に日油株式会社製パーメック(登録商標)Nを1重量部混合したものを含浸した。これをVacuum assisted Resin Transfer Molding (VaRTM)法で成形した。硬化温度は30℃、時間は24hrとした。得られたサンプルの厚さは2.5mmである。なお繊維体積率は55%であった。
(Example 3)
Rigolac (registered trademark) 158BQTN-1 containing high-strength PBO fiber as reinforcing fiber; Zylon (registered trademark) HM (1090 dtex) manufactured by Toyobo Co., Ltd., and unsaturated polyester manufactured by Showa Polymer Co., Ltd. as matrix resin was used. . One layer was formed by arranging fibers in one direction so that the fiber basis weight was 100.3 g / m 2, and 12 layers were laminated so that the fiber directions were the same. A matrix resin mixed with 1 part by weight of Parmek (registered trademark) N manufactured by NOF Corporation was impregnated. This was shape | molded by the Vacuum assisted Resin Transfer Molding (VaRTM) method. The curing temperature was 30 ° C. and the time was 24 hours. The thickness of the obtained sample is 2.5 mm. The fiber volume ratio was 55%.

(実施例4)
強化繊維として溶融高強度ポリエチレン繊維;東洋紡績株式会社製ツヌーガ(登録商標)(440dtex)を、マトリックス樹脂として昭和高分子株式会社製の不飽和ポリエステルを含むリゴラック(登録商標)158BQTN−1を用いた。繊維目付けが85.0g/mとなるよう繊維を一方向に配列させたものを1層とし、これを13層、繊維方向が同一となるように重ねた後、マトリクス樹脂に日油株式会社製パーメック(登録商標)Nを1重量部混合したものを含浸した。これをVacuum assisted Resin Transfer Molding (VaRTM)法で成形した。硬化温度は30℃、時間は24hrとした。得られたサンプルの厚さは2.5mmである。なお繊維体積率は45%であった。
Example 4
As a reinforcing fiber, Rigolac (registered trademark) 158BQTN-1 containing Tonobo Co., Ltd. Tunuga (registered trademark) (440 dtex) and Showa Polymer Co., Ltd. unsaturated polyester as a matrix resin was used. . After arranging the fibers arranged in one direction so that the fiber basis weight is 85.0 g / m 2 as one layer, and stacking 13 layers so that the fiber directions are the same, it is applied to the matrix resin by NOF Corporation A mixture of 1 part by weight of Permec (registered trademark) N manufactured by Impregnation was impregnated. This was shape | molded by the Vacuum assisted Resin Transfer Molding (VaRTM) method. The curing temperature was 30 ° C. and the time was 24 hours. The thickness of the obtained sample is 2.5 mm. The fiber volume ratio was 45%.

(実施例5)
強化繊維としてアラミド繊維:イ― アイ デュポン ドゥ ヌム―ル アンド カンパニ―社製ケブラー(登録商標)49(1060dtex)を繊維目付け120.0 g/mとなるよう繊維を一方向に配列させたものを1層とし、これを9層、繊維方向が同一となるように積層させた。その後、マトリクス樹脂としてはジャパンエポキシレジン社製のエピコート(登録商標)827、日立化成工業株式会社製の酸無水物硬化剤HN5500、ジャパンエポキシレジン株式会社製のエポメート(登録商標)BMI−12を重量比100/85/1で混合したものを用いた。硬化条件は120℃×2時間とした。成形方法はVaRTM法を用いた。得られたサンプルの厚さは2.5mmである。繊維体積率は48%であった。
(Example 5)
Aramid fiber as reinforcing fiber: Kybler (registered trademark) 49 (1060 dtex) manufactured by I DuPont de Nemours and Company, in which fibers are arranged in one direction so as to have a fiber basis weight of 120.0 g / m 2 Was made into one layer, and nine layers were laminated so that the fiber directions were the same. Thereafter, as the matrix resin, Epicoat (registered trademark) 827 manufactured by Japan Epoxy Resin, acid anhydride curing agent HN5500 manufactured by Hitachi Chemical Co., Ltd., and Epomate (registered trademark) BMI-12 manufactured by Japan Epoxy Resin Co., Ltd. are weighted. What mixed by ratio 100/85/1 was used. The curing conditions were 120 ° C. × 2 hours. As a molding method, VaRTM method was used. The thickness of the obtained sample is 2.5 mm. The fiber volume fraction was 48%.

(実施例6)
強化繊維として高強度ポリエチレン繊維;東洋紡績株式会社製ダイニーマ(登録商標)SK60(1320dtex)を上下外層に厚み各0.28mm、中央層に炭素繊維;東レ社株式会社製T−300B(登録商標)を配した。マトリックス樹脂として昭和高分子社製の不飽和ポリエステルを含むリゴラック(登録商標)158BQTN−1を用いた。繊維目付けは上下外層には目付け83.3g/mとなるよう一方向に繊維を配したものを1層とした。これを上下各層用いた。中央層については繊維目付け173.3g/mで炭素繊維を一方向に配したもの1層として、これを7層積層させたものを用いた。全ての積層される層の方向は同一方向である。成形方法はVaRTM法を用いた。得られたサンプルの厚さは2.5mmである。繊維体積率は35%であった。
(Example 6)
High-strength polyethylene fibers as reinforcing fibers; Dyneema (registered trademark) SK60 (1320 dtex) manufactured by Toyobo Co., Ltd., each having a thickness of 0.28 mm for the upper and lower outer layers, carbon fibers for the central layer; T-300B (registered trademark) manufactured by Toray Industries, Inc. Arranged. As a matrix resin, Rigolac (registered trademark) 158BQTN-1 containing unsaturated polyester manufactured by Showa Polymer Co., Ltd. was used. The fiber basis weight is a single layer in which fibers are arranged in one direction so that the upper and lower outer layers have a basis weight of 83.3 g / m 2 . This was used for the upper and lower layers. About the center layer, what laminated | stacked seven layers was used as 1 layer which arranged the carbon fiber in one direction with the fiber fabric weight of 173.3 g / m < 2 >. The direction of all the layers to be stacked is the same direction. As a molding method, VaRTM method was used. The thickness of the obtained sample is 2.5 mm. The fiber volume fraction was 35%.

(実施例7)
強化繊維として高強度ポリエチレン繊維;東洋紡績株式会社製ダイニーマ(登録商標)SK60(1320dtex)を上下外層に厚み各0.28mm、中央層に日東紡株式会社製、E−ガラス繊維(280dtex)を配し、マトリックス樹脂として昭和高分子株式会社製の不飽和ポリエステルを含むリゴラック(登録商標)158BQTN−1を用いた。繊維目付けは上下外層には目付け83.3g/mとなるよう一方向に繊維を配したものを1層とした。これを上下各層に用いた。中央層については繊維目付け250.0g/mで繊維を一方向に配したもの1層として、これを8層用いた。全ての積層される層の方向は同一方向である。得られたサンプルの厚さは2.5mmである。繊維体積率は36%であった。
(Example 7)
High-strength polyethylene fibers as reinforcing fibers; Dyneema (registered trademark) SK60 (1320 dtex) manufactured by Toyobo Co., Ltd., each having a thickness of 0.28 mm on the upper and lower outer layers, and E-glass fiber (280 dtex) manufactured by Nittobo Co., Ltd. on the central layer Rigolac (registered trademark) 158BQTN-1 containing unsaturated polyester manufactured by Showa Polymer Co., Ltd. was used as the matrix resin. The fiber basis weight is a single layer in which fibers are arranged in one direction so that the upper and lower outer layers have a basis weight of 83.3 g / m 2 . This was used for the upper and lower layers. As for the central layer, eight layers were used as one layer in which fibers were arranged in one direction with a fiber basis weight of 250.0 g / m 2 . The direction of all the layers to be stacked is the same direction. The thickness of the obtained sample is 2.5 mm. The fiber volume fraction was 36%.

(実施例8)
実施例1の繊維、樹脂を用い繊維強化複合材料を成型した。なお、積層枚数を1方向に19層とすることで、厚さ2.5mm、繊維体積率は63%の繊維強化複合材料を得た。
(Example 8)
A fiber-reinforced composite material was molded using the fibers and resin of Example 1. By setting the number of laminated layers to 19 in one direction, a fiber reinforced composite material having a thickness of 2.5 mm and a fiber volume ratio of 63% was obtained.

(実施例9)
実施例1の繊維、樹脂を用い繊維強化複合材料を成型した。なお、積層枚数を1方向に3層とすることで、厚さ2.5mm、繊維体積率は15%の繊維強化複合材料を得た。
Example 9
A fiber-reinforced composite material was molded using the fibers and resin of Example 1. In addition, the fiber reinforced composite material with a thickness of 2.5 mm and a fiber volume ratio of 15% was obtained by setting the number of laminated layers to three in one direction.

(比較例1)
強化繊維として炭素繊維;東レ株式会社製T−300B(登録商標)を、マトリックス樹脂として昭和高分子株式会社製の不飽和ポリエステルを含むリゴラック(登録商標)158BQTN−1を用いた。繊維目付けが173.3g/mとなるよう繊維を一方向に配した層を1層として、これを8層積層させた。全ての繊維方向は同一方向である。マトリックス樹脂に日油株式会社製パーメック(登録商標)Nを1重量部混合したものを含浸した。これをVacuum assisted Resin Transfer Molding(VaRTM)法で成形した。硬化温度は30℃、時間は24hrとした。得られたサンプルの厚さは2.5mmである。なお繊維体積率は38%であった。
(Comparative Example 1)
Carbon fiber: T-300B (registered trademark) manufactured by Toray Industries, Inc. was used as the reinforcing fiber, and Rigolac (registered trademark) 158BQTN-1 containing unsaturated polyester manufactured by Showa Polymer Co., Ltd. was used as the matrix resin. 8 layers were laminated | stacked by making into one layer the layer which distribute | arranged the fiber to one direction so that a fiber fabric weight might be 173.3 g / m < 2 >. All fiber directions are the same direction. A matrix resin mixed with 1 part by weight of Parmek (registered trademark) N manufactured by NOF Corporation was impregnated. This was shape | molded by the Vacuum assisted Resin Transfer Molding (VaRTM) method. The curing temperature was 30 ° C. and the time was 24 hours. The thickness of the obtained sample is 2.5 mm. The fiber volume ratio was 38%.

(比較例2)
強化繊維としてガラス繊維;日東紡株式会社製、E−ガラスを繊維目付けが250.3g/mとなるよう配列し、マトリックス樹脂として昭和高分子社製の不飽和ポリエステルを含むリゴラック(登録商標)158BQTN−1を用いた。繊維を一方向に配列した層を1層として、これを9層積層させた。全ての繊維方向は同一方向である。マトリックス樹脂に日油株式会社製パーメック(登録商標)Nを1重量部混合したものを含浸した。これをVacuum assisted Resin Transfer Molding (VaRTM)法で成形した。硬化温度は30℃、時間は24hrとした。得られたサンプルの厚さは2.5mmである。なお繊維体積率は52%であった。
(Comparative Example 2)
Glass fiber as reinforced fiber; Rigolac (registered trademark) containing Nittobo Co., Ltd., E-glass so that the fiber basis weight is 250.3 g / m 2 and containing unsaturated polyester made by Showa Polymer Co., Ltd. as matrix resin 158BQTN-1 was used. Nine layers were laminated with one layer having fibers arranged in one direction. All fiber directions are the same direction. A matrix resin mixed with 1 part by weight of Parmek (registered trademark) N manufactured by NOF Corporation was impregnated. This was shape | molded by the Vacuum assisted Resin Transfer Molding (VaRTM) method. The curing temperature was 30 ° C. and the time was 24 hours. The thickness of the obtained sample is 2.5 mm. The fiber volume ratio was 52%.

(比較例3)
強化繊維としてアルミナ繊維;住友化学工業株式会社製、アルテックス(登録商標)を目付けが320.0g/mとなる様配列し、マトリックス樹脂とし、昭和高分子株式会社製の不飽和ポリエステルを含むリゴラック(登録商標)158BQTN−1を用いた。繊維を一方向に配列した層を1層として、これを8層積層させたものを用いた。全ての繊維方向は同一方向である。マトリックス樹脂に日油株式会社製パーメック(登録商標)Nを1重量部混合したものを含浸した。これをVacuum assisted Resin Transfer Molding (VaRTM)法で成形した。得られたサンプルの厚さは2.5mmである。硬化温度は30℃、時間は24hrとした。なお繊維体積率は55%であった。
(Comparative Example 3)
Alumina fiber as a reinforcing fiber; Artex (registered trademark) manufactured by Sumitomo Chemical Co., Ltd. is arranged so that the basis weight is 320.0 g / m 2, and the matrix resin includes unsaturated polyester manufactured by Showa Polymer Co., Ltd. Rigolac® 158BQTN-1 was used. A layer in which fibers are arranged in one direction is regarded as one layer, and eight layers are laminated. All fiber directions are the same direction. A matrix resin mixed with 1 part by weight of Parmek (registered trademark) N manufactured by NOF Corporation was impregnated. This was shape | molded by the Vacuum assisted Resin Transfer Molding (VaRTM) method. The thickness of the obtained sample is 2.5 mm. The curing temperature was 30 ° C. and the time was 24 hours. The fiber volume ratio was 55%.

(比較例4)
強化繊維としてPET繊維からなる平織り構成の織物を使用した。使用繊維束は1380dtex、織構造は縦に15本/インチ、横に14本/インチで繊維目付け160.1g/mのものを1層とし、これを14層積層させた。マトリクス樹脂にはジャパンエポキシレジン株式会社製のエピコート(登録商標)827、日立化成工業株式会社製の酸無水物硬化剤HN5500、ジャパンエポキシレジン株式会社製のエポメート(登録商標)BMI−12を重量比100/85/1で混合したものを用い、硬化条件は120℃×2時間とした。得られたサンプルの厚さは2.5mmである。なお繊維体積率は50%であった。
(Comparative Example 4)
A plain weave fabric made of PET fibers was used as the reinforcing fiber. The used fiber bundle was 1380 dtex, the woven structure was 15 fibers / inch vertically, 14 fibers / inch horizontally, and a fiber basis weight of 160.1 g / m 2 was used as one layer, and 14 layers were laminated. The matrix resin contains Epicoat (registered trademark) 827 manufactured by Japan Epoxy Resin Co., Ltd., acid anhydride curing agent HN5500 manufactured by Hitachi Chemical Co., Ltd., and Epomate (registered trademark) BMI-12 manufactured by Japan Epoxy Resin Co., Ltd. A mixture of 100/85/1 was used, and the curing conditions were 120 ° C. × 2 hours. The thickness of the obtained sample is 2.5 mm. The fiber volume ratio was 50%.

表に示す様に本発明により粒子衝突耐久性に優れた繊維強化複合材料が得られた。 As shown in the table, a fiber-reinforced composite material having excellent particle collision durability was obtained by the present invention.

本発明の繊維強化複合材料は、飛来粒子衝突による磨耗に対する耐久性が向上したものであり、高耐久性の飛行機の胴体、翼、高速列車の外装用構造材料を提供することができる。 The fiber-reinforced composite material of the present invention has improved durability against abrasion caused by flying particle collisions, and can provide a highly durable aircraft fuselage, wing, and exterior structural material for high-speed trains.

Claims (5)

樹脂内に繊維が包埋された繊維強化複合材料において、引張り強度12cN/dtex以上、60cN/dtex以下、引張り弾性率が500cN/dtex以上、3000cN/dtex以下、破断伸度2.0%以上10.0%以下である少なくとも一部の繊維が、樹脂の表面から0.001〜0.40mmの範囲に存在していることを特徴とする繊維強化複合材料。   In a fiber reinforced composite material in which fibers are embedded in a resin, the tensile strength is 12 cN / dtex or more, 60 cN / dtex or less, the tensile elastic modulus is 500 cN / dtex or more, 3000 cN / dtex or less, and the elongation at break is 2.0% or more 10 A fiber-reinforced composite material, wherein at least a part of fibers of 0.0% or less are present in a range of 0.001 to 0.40 mm from the surface of the resin. 繊維強化複合材料中の繊維の体積率が10〜90%であることを特徴とする、請求項1記載の繊維強化複合材料。   The fiber-reinforced composite material according to claim 1, wherein the volume ratio of fibers in the fiber-reinforced composite material is 10 to 90%. 多数本の繊維の長軸が一方向に並べられた層を有し、この層が2〜15層積層されて構成されていることを特徴とする請求項1,2いずれかに記載の繊維強化複合材料。   The fiber reinforcement according to any one of claims 1 and 2, comprising a layer in which major axes of a plurality of fibers are arranged in one direction, and the layers are laminated by 2 to 15 layers. Composite material. 繊維が高強度ポリエチレン繊維であることを特徴とする請求項1〜3、いずれか1項に記載の繊維強化複合材料。   The fiber-reinforced composite material according to any one of claims 1 to 3, wherein the fiber is a high-strength polyethylene fiber. 繊維が高強度ポリパラフェニレンベンツビスオキサゾール繊維であることを特徴とする請求項1〜3、いずれか1項に記載の繊維強化複合材料。   The fiber-reinforced composite material according to any one of claims 1 to 3, wherein the fiber is a high-strength polyparaphenylenebenzbisoxazole fiber.
JP2012049297A 2012-03-06 2012-03-06 Fiber-reinforced composite material Pending JP2013185003A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012049297A JP2013185003A (en) 2012-03-06 2012-03-06 Fiber-reinforced composite material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012049297A JP2013185003A (en) 2012-03-06 2012-03-06 Fiber-reinforced composite material

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2016170622A Division JP2016204671A (en) 2016-09-01 2016-09-01 Fiber-reinforced composite material

Publications (1)

Publication Number Publication Date
JP2013185003A true JP2013185003A (en) 2013-09-19

Family

ID=49386749

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012049297A Pending JP2013185003A (en) 2012-03-06 2012-03-06 Fiber-reinforced composite material

Country Status (1)

Country Link
JP (1) JP2013185003A (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08189797A (en) * 1995-01-13 1996-07-23 Toyobo Co Ltd Protective material
JP2002266172A (en) * 2001-03-06 2002-09-18 Mitsubishi Rayon Co Ltd Carbon fiber, precursor fiber for carbon fiber, method for manufacturing these fibers and prepreg
JP2002273841A (en) * 2001-03-16 2002-09-25 Hiraoka & Co Ltd Soft polyolefinic resin laminated sheet
JP2004269861A (en) * 2003-02-18 2004-09-30 Toray Ind Inc Prepreg, fiber reinforced composite material and tubular product made from the fiber reinforced composite material
JPWO2004068059A1 (en) * 2003-01-30 2006-05-18 日鉄コンポジット株式会社 Impact resistant fiber reinforced composite
JP2008254437A (en) * 2007-03-13 2008-10-23 Du Pont Toray Co Ltd Manufacturing method of fiber reinforced resin composite material
JP2010144646A (en) * 2008-12-19 2010-07-01 Toyobo Co Ltd Windmill blade
JP2011089060A (en) * 2009-10-23 2011-05-06 Teijin Techno Products Ltd Fiber-reinforced resin composite material

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08189797A (en) * 1995-01-13 1996-07-23 Toyobo Co Ltd Protective material
JP2002266172A (en) * 2001-03-06 2002-09-18 Mitsubishi Rayon Co Ltd Carbon fiber, precursor fiber for carbon fiber, method for manufacturing these fibers and prepreg
JP2002273841A (en) * 2001-03-16 2002-09-25 Hiraoka & Co Ltd Soft polyolefinic resin laminated sheet
JPWO2004068059A1 (en) * 2003-01-30 2006-05-18 日鉄コンポジット株式会社 Impact resistant fiber reinforced composite
JP2004269861A (en) * 2003-02-18 2004-09-30 Toray Ind Inc Prepreg, fiber reinforced composite material and tubular product made from the fiber reinforced composite material
JP2008254437A (en) * 2007-03-13 2008-10-23 Du Pont Toray Co Ltd Manufacturing method of fiber reinforced resin composite material
JP2010144646A (en) * 2008-12-19 2010-07-01 Toyobo Co Ltd Windmill blade
JP2011089060A (en) * 2009-10-23 2011-05-06 Teijin Techno Products Ltd Fiber-reinforced resin composite material

Similar Documents

Publication Publication Date Title
Prashanth et al. Fiber reinforced composites-a review
JP3648743B2 (en) &#34;Resin composition for fiber reinforced composite material and its manufacturing method, prepreg, fiber reinforced composite material, honeycomb structure&#34;
White et al. Delamination toughness of fiber-reinforced composites containing a carbon nanotube/polyamide-12 epoxy thin film interlayer
Park et al. Element and processing
US20140023513A1 (en) Agglomerated particle cloud network coated fiber bundle
US10357939B2 (en) High performance light weight carbon fiber fabric-electrospun carbon nanofibers hybrid polymer composites
Hu et al. Comparison of impact resistance of carbon fibre composites with multiple ultra-thin CNT, aramid pulp, PBO and graphene interlayers
Abd El‐baky et al. Experimental study on the improvement of mechanical properties of GLARE using nanofillers
Tehrani-Dehkordi et al. Effects of plies stacking sequence and fiber volume ratio on flexural properties of basalt/nylon-epoxy hybrid composites
CN109334177A (en) A kind of bulletproof composite material and preparation method thereof
CN109373818A (en) A kind of armour and its manufacturing method
Shinde et al. Effect of TEOS electrospun nanofiber modified resin on interlaminar shear strength of glass fiber/epoxy composite
JP2018039115A (en) Fiber-reinforced resin composite structure and high-pressure container, and method for producing them
KR101561207B1 (en) Method of manufacturting bulletproof materials comprising cnt or graphene and bulletproof materials manufactured by using the same
Zhong et al. Environmental durability of glass fiber epoxy composites filled with core–shell polymer particles
JP2000238154A (en) Honeycomb sandwich panel
JP2016204671A (en) Fiber-reinforced composite material
JP2013185003A (en) Fiber-reinforced composite material
JP2010144646A (en) Windmill blade
Ferreira et al. Impact response of nano reinforced mat glass/epoxy laminates
Shinde et al. Flexural behavior of fiberglass polymer composite with and without TEOS electrospun nanofibers
Randjbaran et al. Experimental Study of the Influence of Stacking Order of the Fibrous Layers on Laminated Hybrid Composite Plates Subjected to Compression Loading
Ergün et al. Investigation of effect of nanoparticle reinforcement woven composite materials on fatigue behaviors
JPH05208465A (en) Sandwich panel
EP2874961A2 (en) Agglomerated particle cloud network coated fiber bundle

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150109

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20151210

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151215

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160705

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160901

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20170207