JP2010144646A - Windmill blade - Google Patents

Windmill blade Download PDF

Info

Publication number
JP2010144646A
JP2010144646A JP2008323767A JP2008323767A JP2010144646A JP 2010144646 A JP2010144646 A JP 2010144646A JP 2008323767 A JP2008323767 A JP 2008323767A JP 2008323767 A JP2008323767 A JP 2008323767A JP 2010144646 A JP2010144646 A JP 2010144646A
Authority
JP
Japan
Prior art keywords
fiber
dtex
manufactured
wind turbine
composite material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008323767A
Other languages
Japanese (ja)
Inventor
Atsuhiko Yamanaka
淳彦 山中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyobo Co Ltd
Original Assignee
Toyobo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyobo Co Ltd filed Critical Toyobo Co Ltd
Priority to JP2008323767A priority Critical patent/JP2010144646A/en
Publication of JP2010144646A publication Critical patent/JP2010144646A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction

Landscapes

  • Wind Motors (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a highly durable windmill which reduces wear of a windmill blade of the windmill caused by collision of flying particles, and is used in an area where strong wind occurs. <P>SOLUTION: In the windmill including an outer skin 4 forming a blade shape on the outside of a main girder, as the outer skin 4, a fiber reinforced compound material containing at least one kind of a reinforcing fiber of an organic high polymer fiber having 12-60 cN/dtex or less tensile strength, 500-3000 cN/dtex or less tensile elasticity, and 2% or more and 10% or less rupture elongation. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は風力発電などに適用される耐久性に優れた風車翼に関する。   The present invention relates to a wind turbine blade excellent in durability applied to wind power generation and the like.

風力発電はクリーンなエネルギーが得られる次世代発電技術として期待されている。風力発電装置の実用的課題は発電効率の向上であり、その手段としては設置場所の適正な選択と装置の大型化がある。   Wind power generation is expected as a next-generation power generation technology that can produce clean energy. A practical problem of the wind power generation apparatus is to improve the power generation efficiency, and there are appropriate selection of an installation place and an increase in the size of the apparatus as means for that.

風力発電装置の心臓部をなすものは風車であり、風力発電に使われている風車翼は250kW級で長さ約12m程度、400〜500kW級で約18mである。このため、重量増が問題となり、高い力学的強度と軽量化の両立が求められている。この課題を解決するためにこれまで、風車翼の外皮と主桁には、軽量化と高強度化のためにガラス繊維強化複合材料が用いられ、さらなる軽量化のために、外皮をガラス繊維強化複合材料の二重構造化するなどの検討がなされている(特許文献1参照)。   The heart of the wind power generator is a windmill, and the windmill blades used for wind power generation are about 250 m in length and about 12 m long, and about 18 m in the 400 to 500 kW class. For this reason, an increase in weight becomes a problem, and both high mechanical strength and light weight are required. To solve this problem, glass fiber reinforced composite materials have been used for the outer skin and main girders of wind turbine blades to reduce weight and increase strength. To further reduce weight, the outer skin is reinforced with glass fibers. Studies such as making the composite material into a double structure have been made (see Patent Document 1).

また、さらなる発電効率向上のためには、長期間強風が発生する地域など風車の設置場所を適正に選択する必要がある。強風発生地域でしかも障害物のない地域となると、砂漠地域や海岸地方などに限定される。この様な地域では、強風に伴い砂などの飛来粒子の衝突も受けるため、この衝撃磨耗のために風車翼の耐久年数が著しく低下することになる。飛来粒子による外皮破損は、風車翼の内部への水分侵入を引き起こし、重量のアンバランス化、さらには材料の劣化を促進することになるため、耐久性の向上が求められている。
特開平7−279818号公報
In addition, in order to further improve the power generation efficiency, it is necessary to appropriately select a wind turbine installation location such as an area where strong winds are generated for a long period of time. When it is a strong wind generation area and an area without an obstacle, it is limited to a desert area or a coastal area. In such an area, due to the impact of flying particles such as sand due to strong winds, the durability of the wind turbine blades is significantly reduced due to this impact wear. The damage to the outer skin caused by flying particles causes moisture intrusion into the wind turbine blade, which leads to unbalanced weight and further deterioration of the material. Therefore, improvement in durability is required.
Japanese Patent Laid-Open No. 7-279818

本発明は、風車の風車翼の飛来粒子衝突による磨耗を低減し、耐久性に優れた風車翼を提供しようとするものである。   An object of the present invention is to provide a wind turbine blade that is excellent in durability by reducing wear caused by collision of incoming particles on the wind turbine blade of the wind turbine.

本発明者は上記課題を解決するため、鋭意研究した結果到達できたものであり、以下の構成を採用するものである。即ち、本発明は、
・ 主桁の外側に翼形状を形成する外皮を備えた風車翼において、前記外皮として、引張り強度12cN/dtex以上60cN/dtex以下、引張り弾性率500cN/dtex以上3000cN/dtex以下及び引張り破断伸度2%以上10%以下の有機高分子繊維の少なくとも1種類を強化繊維として含有する繊維強化複合材料を用いてなることを特徴とする風車翼、
・ 前記有機高分子繊維が、引張り強度12cN/dtex以上60cN/dtex以下、引張り弾性率500cN/dtex以上2500cN/dtex以下及び引張り破断伸度2%以上10%以下の高強度ポリエチレン繊維である第1記載の風車翼、
・ 前記有機高分子繊維が、引張り強度30cN/dtex以上60cN/dtex以下、引張り弾性率1000cN/dtex以上2500cN/dtex以下及び引張り破断伸度2%以上10%以下の高強度ポリパラフェニレンベンツビスオキサゾール繊維である請求項1記載の風車翼第1記載の風車翼、である。
In order to solve the above-mentioned problems, the present inventor has achieved as a result of earnest research, and adopts the following configuration. That is, the present invention
-In a wind turbine blade provided with an outer skin forming a blade shape outside the main girder, the outer skin has a tensile strength of 12 cN / dtex to 60 cN / dtex, a tensile modulus of 500 cN / dtex to 3000 cN / dtex, and a tensile elongation at break A wind turbine blade comprising a fiber-reinforced composite material containing at least one kind of organic polymer fibers of 2% or more and 10% or less as a reinforcing fiber;
The first organic polymer fiber is a high-strength polyethylene fiber having a tensile strength of 12 cN / dtex to 60 cN / dtex, a tensile modulus of 500 cN / dtex to 2500 cN / dtex, and a tensile elongation at break of 2% to 10%. Windmill wing as described,
The high molecular weight polyparaphenylenebenzbisoxazole having a tensile strength of 30 cN / dtex to 60 cN / dtex, a tensile modulus of 1000 cN / dtex to 2500 cN / dtex, and a tensile elongation at break of 2% to 10%. The wind turbine blade according to claim 1, wherein the wind turbine blade is a fiber.

本発明の風車翼は、高弾性率・高強度でかつ破断伸度の高い有機高分子繊維を強化繊維として用いる繊維強化複合材料を外皮に用いるため、飛来粒子による磨耗破壊が低減され、砂漠地方など強風発生地域においても高耐久性を示すことができる。その結果、発電効率の高い風力発電用風車を提供することができる。   The wind turbine blade of the present invention uses a fiber-reinforced composite material that uses organic polymer fibers having high elastic modulus, high strength, and high elongation at break as a reinforcing fiber. High durability can be exhibited even in areas where strong winds occur. As a result, a wind turbine for wind power generation with high power generation efficiency can be provided.

本発明の風車翼は、主桁の外側に翼形状を形成する風車翼の外皮に、引張り強度12cN/dtex以上60cN/dtex以下、好ましくは13cN/dtex以上50cN/dtex以下、引張り弾性率500cN/dtex以上3000cN/dtex以下、好ましくは550cN/dtex以上2800cN/dtex以下、引張り破断伸度2.0%以上10%以下、好ましくは2.3%以上8.5%以下である少なくとも1種類の有機高分子繊維を強化繊維とする繊維強化複合材料を用いてなることを特徴とする。   The wind turbine blade of the present invention has a tensile strength of 12 cN / dtex to 60 cN / dtex, preferably 13 cN / dtex to 50 cN / dtex, and a tensile elastic modulus of 500 cN / dtex or more and 3000 cN / dtex or less, preferably 550 cN / dtex or more and 2800 cN / dtex or less, tensile elongation at break 2.0% or more and 10% or less, preferably 2.3% or more and 8.5% or less It is characterized by using a fiber reinforced composite material using polymer fibers as reinforcing fibers.

本発明の風車翼は、前記繊維強化複合材料を用いてなる外皮により、飛来粒子衝突による磨耗を防ぐことができる。即ち、本発明は前記有機高分子繊維を強化繊維とする繊維強化複合材料によって飛来粒子を受けても、以下の作用によってその衝突磨耗を低減せしめることができる。   The wind turbine blade according to the present invention can prevent wear due to flying particle collisions by the outer skin made of the fiber-reinforced composite material. That is, according to the present invention, even when flying particles are received by a fiber-reinforced composite material using the organic polymer fiber as a reinforcing fiber, the collision wear can be reduced by the following action.

即ち、飛来粒子の衝突エネルギーを、強化繊維である引張り破断伸度2.0%以上10%以下、好ましくは2.3%以上8.5%以下である少なくとも1種類の延性を有する有機高分子繊維の十分な変形によって吸収し、これを停止せしめるものである。無機繊維は脆さを有するため、粒子衝突によるエネルギーを十分に吸収するに足る変形が起こらず破壊が発生する。有機高分子繊維の引張り破断伸度が2%未満では十分に飛来粒子のエネルギーを吸収しきれないうちに繊維が破断し、磨耗破壊が発生する。一方、引張り破断伸度が10%を超えると、有機繊維の変形にマトリックス樹脂が追随せずに界面破壊が発生することになる。   That is, the impact energy of flying particles is at least one type of ductile polymer having a tensile elongation at break of 2.0% to 10%, preferably 2.3% to 8.5%, which is a reinforcing fiber. It is absorbed and stopped by sufficient deformation of the fiber. Since the inorganic fiber has brittleness, it does not deform enough to absorb energy due to particle collision, and breakage occurs. If the tensile breaking elongation of the organic polymer fiber is less than 2%, the fiber breaks before the energy of the flying particles can be sufficiently absorbed, and wear fracture occurs. On the other hand, when the tensile elongation at break exceeds 10%, the matrix resin does not follow the deformation of the organic fiber and interface fracture occurs.

本発明における有機高分子繊維の引張り強度は、12cN/dtex以上60cN/dtex以下、好ましくは13cN/dtex以上50cN/dtex以下である。引張り強度が12cN/dtexに満たない場合は、飛来粒子による衝突エネルギーを十分吸収しきれない状態で繊維が破断し、破壊が生じる。一方、引張り強度が60cN/dtexを超えるとマトリックス樹脂等周辺の破壊が生じる。   The tensile strength of the organic polymer fiber in the present invention is 12 cN / dtex or more and 60 cN / dtex or less, preferably 13 cN / dtex or more and 50 cN / dtex or less. When the tensile strength is less than 12 cN / dtex, the fiber breaks in a state where the collision energy from the flying particles cannot be sufficiently absorbed, and breakage occurs. On the other hand, if the tensile strength exceeds 60 cN / dtex, the surroundings of the matrix resin and the like are broken.

本発明における有機高分子繊維の引張り弾性率は500cN/dtex以上3000cN/dtex以下、好ましくは550cN/dtex以上2800cN/dtex以下である。引張り弾性率が500cN/dtexに満たない場合は、飛来粒子衝突による変形が大きくなり、繊維の破断伸度を越えて破断に至る可能性がある。あるいは繊維/マトリックス間界面の破壊に至る可能性がある。一方、引張り弾性率が3000cN/dtexを超える場合は、飛来粒子衝突による変形に至らぬ状態で繊維の破断が起こる可能性がある。   The tensile elastic modulus of the organic polymer fiber in the present invention is 500 cN / dtex or more and 3000 cN / dtex or less, preferably 550 cN / dtex or more and 2800 cN / dtex or less. When the tensile elastic modulus is less than 500 cN / dtex, the deformation due to the collision of incoming particles becomes large, and there is a possibility that the fiber will break beyond the breaking elongation. Alternatively, the fiber / matrix interface may be destroyed. On the other hand, when the tensile elastic modulus exceeds 3000 cN / dtex, there is a possibility that the fiber breaks in a state where deformation due to flying particle collision does not occur.

本発明に用いる有機高分子繊維としては、具体的には高強度ポリエチレン繊維やポリパラフェニレンベンゾビスオキサゾール(PBO)繊維、パラアラミド繊維などが挙げられる。   Specific examples of the organic polymer fiber used in the present invention include high-strength polyethylene fiber, polyparaphenylene benzobisoxazole (PBO) fiber, and para-aramid fiber.

本発明における有機高分子繊維は、単一種類で用いてもよく、複数種類を混合使用してもよい。また上記有機高分子繊維に該当しない有機高分子繊維または無機繊維と混合使用してもよい。ここでいう上記の特定の物性の有機高分子繊維に該当しない有機高分子繊維としては、ポリエステル繊維、ナイロン繊維、セルロース繊維、羊毛、アクリル繊維などの衣料用繊維、またメタアラミド繊維、ポリベンゾイミダゾール繊維などが挙げられる。またここでいう無機繊維としては、炭素繊維、ガラス繊維、アルミナ繊維、ジルコニア繊維、シリカ繊維、シリコンカーバイド繊維、チタニア繊維などが挙げられる。また本発明に用いる繊維自体の形態であるが、長繊維、カットファイバーのいずれでもよい。さらに長繊維としての使用の場合、織物、フィラメント、不織布のいずれでもよい。   The organic polymer fiber in the present invention may be used as a single type, or a plurality of types may be used in combination. Moreover, you may mix and use the organic polymer fiber or inorganic fiber which does not correspond to the said organic polymer fiber. Examples of organic polymer fibers that do not correspond to the organic polymer fibers with the above specific physical properties include polyester fibers, nylon fibers, cellulose fibers, wool, acrylic fibers and other clothing fibers, meta-aramid fibers, and polybenzimidazole fibers. Etc. Examples of the inorganic fiber herein include carbon fiber, glass fiber, alumina fiber, zirconia fiber, silica fiber, silicon carbide fiber, and titania fiber. Moreover, although it is the form of the fiber itself used for this invention, any of a long fiber and a cut fiber may be sufficient. Furthermore, in the case of use as a long fiber, any of a woven fabric, a filament, and a nonwoven fabric may be sufficient.

本発明でいう繊維強化複合材料における繊維の強化形態としては、織物強化、フィラメントワインディング、押出成形、引抜成形、シートワインディングなどが挙げられる。   Examples of the form of fiber reinforcement in the fiber-reinforced composite material referred to in the present invention include textile reinforcement, filament winding, extrusion molding, pultrusion molding, and sheet winding.

本発明における繊維強化複合材料のマトリックス樹脂としては、エポキシ樹脂、ビニルエステル樹脂、ウレタン樹脂、不飽和ポリエステル樹脂、ポリエステル樹脂、ナイロン樹脂、ウレタンアクリレート樹脂が挙げられるが、好ましいのはエポキシ樹脂である。   Examples of the matrix resin of the fiber reinforced composite material in the present invention include epoxy resins, vinyl ester resins, urethane resins, unsaturated polyester resins, polyester resins, nylon resins, and urethane acrylate resins, with epoxy resins being preferred.

本発明における繊維強化複合材料の繊維体積率(Vf)、10%以上90%以下、好ましくは40%以上80%以下である。Vfが10%未満では本発明における繊維の性能が発現せず、一方、Vfが90%以上では繊維間へのマトリックス樹脂の含浸が不十分となり、繊維強化複合材料としての特性を発揮しない。   The fiber volume ratio (Vf) of the fiber-reinforced composite material in the present invention is 10% to 90%, preferably 40% to 80%. If Vf is less than 10%, the performance of the fiber in the present invention is not expressed. On the other hand, if Vf is 90% or more, the impregnation of the matrix resin between the fibers becomes insufficient, and the characteristics as a fiber-reinforced composite material are not exhibited.

本発明における繊維強化複合材料からなる風車翼外皮は、上記繊維強化複合材料単体からなっているものでもよく、また外側に上記繊維強化複合材料を配し、内側にガラス繊維強化複合材料などを配する2重構造としてもよい。また外皮内部にプラスチック発泡体を配してもよい。   The wind turbine blade outer skin made of the fiber reinforced composite material according to the present invention may be made of the fiber reinforced composite material alone, and the fiber reinforced composite material is arranged on the outside and the glass fiber reinforced composite material is arranged on the inside. It is good also as a double structure. A plastic foam may be disposed inside the outer skin.

以下、実施例によって本発明をさらに詳述するが、下記実施例は本発明を制限するものではなく、前・後記の趣旨を逸脱しない範囲で変更実施することはすべて本発明の技術範囲に包含される。   Hereinafter, the present invention will be described in more detail by way of examples. However, the following examples are not intended to limit the present invention, and all modifications may be made within the scope of the present invention without departing from the gist of the preceding and following descriptions. Is done.

本発明で用いた実験方法を以下に示す。
(繊維の引張り強度、弾性率、破断伸度)
オリエンティック社製「テンシロン」を用い、試料長200mm、伸長速度50%/分の条件で歪−応力曲線を雰囲気温度20℃、相対湿度65%条件下で測定し、破断点での応力と伸びから引張り強度(cN/dtex)・伸度(%)を計算して求めた。また曲線の原点付近の最大勾配を与える接線から弾性率(cN/dtex)を計算して求めた。尚、各値は10回の測定値の平均値を使用した。試験時の繊維のすべりを防止するため、試験にはタイヤコード型の引張り治具を用いた。
繊度測定は、単糸約2mを各々取り出し、該単糸1mの重さを測定し10000mに換算して繊度(dtex)とした。
(耐久性の評価)
作製した繊維強化複合材料の板材及び風車翼外皮を鳥取県の海岸(砂丘)に1年間設置し、それぞれの重量変化を測定した。
The experimental method used in the present invention is shown below.
(Tensile strength, elastic modulus, elongation at break)
Using “Tensilon” manufactured by Orientic Co., Ltd., the strain-stress curve was measured under the conditions of a sample length of 200 mm and an elongation rate of 50% / min. Under an ambient temperature of 20 ° C. and a relative humidity of 65%. The tensile strength (cN / dtex) and elongation (%) were calculated from the above. The elastic modulus (cN / dtex) was calculated from the tangent that gives the maximum gradient near the origin of the curve. In addition, each value used the average value of 10 times of measured values. In order to prevent the fiber from slipping during the test, a tire cord type tension jig was used for the test.
In the fineness measurement, about 2 m of each single yarn was taken out, the weight of the single yarn 1 m was measured, and converted to 10000 m to obtain the fineness (dtex).
(Durability evaluation)
The prepared fiber reinforced composite material plate and windmill wing skin were placed on the coast (sand dunes) of Tottori Prefecture for one year, and the weight change of each was measured.

(実施例1)
強化繊維として高強度ポリエチレン繊維;東洋紡社製ダイニーマ(登録商標)SK60からなる平織り構成の織物を使用した。使用繊維束の繊度は1320dtex、織密度は経15本/インチ、緯14本/インチのものを用いた。マトリックス樹脂としてはエピコート827(ジャパンエポキシレジン社製)、酸無水物硬化剤HN5500(日立化成社製)、エポメートBMI−12(ジャパンエポキシレジン社製)を重量比100/85/1で混合したものを用い、前記強化繊維織物に含浸してプリプレグとした。これを用いて縦1m、横1m、厚み1cm、繊維体積率を55%の繊維強化複合材料の板材を得た(図1)。硬化条件は120℃×2時間とした。また、板厚4mm、翼長13m、翼幅1.2mの風車翼外皮も作製した(図2)。それぞれの耐久性評価結果を表1に示す。
Example 1
A woven fabric having a plain weave structure made of high-strength polyethylene fiber as reinforcing fiber; Dyneema (registered trademark) SK60 manufactured by Toyobo Co., Ltd. was used. The fiber bundle used had a fineness of 1320 dtex, a weave density of 15 warps / inch and 14 wefts / inch. As a matrix resin, Epicoat 827 (manufactured by Japan Epoxy Resin Co., Ltd.), acid anhydride curing agent HN5500 (manufactured by Hitachi Chemical Co., Ltd.), and Epomate BMI-12 (manufactured by Japan Epoxy Resin Co., Ltd.) at a weight ratio of 100/85/1 are mixed. The reinforced fiber fabric was impregnated to make a prepreg. Using this, a fiber reinforced composite material plate having a length of 1 m, a width of 1 m, a thickness of 1 cm, and a fiber volume ratio of 55% was obtained (FIG. 1). The curing conditions were 120 ° C. × 2 hours. In addition, a windmill blade skin having a plate thickness of 4 mm, a blade length of 13 m, and a blade width of 1.2 m was also produced (FIG. 2). Each durability evaluation result is shown in Table 1.

(実施例2)
強化繊維として高強度ポリエチレン繊維;東洋紡社製ダイニーマ(登録商標)SK71からなる平織り構成の織物を使用した。使用繊維束の繊度は1320dtex、織密度は経15本/インチ、緯14本/インチのものを用いた。マトリックス樹脂としてはエピコート1001(ジャパンエポキシレジン社製)、エピコート828(ジャパンエポキシレジン社製)、エピコート154(ジャパンエポキシレジン社製)、ジシアンジアミド、ジクロルフェニルジメチルウレア(保土ヶ谷化学社)を重量比40/10/50/4/4で混合したものを用いた。実施例1と同様にして、繊維強化複合材料の板材と風車翼外皮を作製し、実施例1と同様に評価した。その結果を表1に示す。
(Example 2)
A plain weave fabric made of high-strength polyethylene fiber as reinforcing fiber; Dyneema (registered trademark) SK71 manufactured by Toyobo Co., Ltd. was used. The fiber bundle used had a fineness of 1320 dtex, a weave density of 15 warps / inch and 14 wefts / inch. As a matrix resin, Epicoat 1001 (manufactured by Japan Epoxy Resin Co., Ltd.), Epicoat 828 (manufactured by Japan Epoxy Resin Co., Ltd.), Epicoat 154 (manufactured by Japan Epoxy Resin Co., Ltd.), dicyandiamide and dichlorophenyldimethylurea (Hodogaya Chemical Co., Ltd.) are used in a weight ratio of 40. What was mixed at / 10/50/4/4 was used. In the same manner as in Example 1, a plate material of a fiber reinforced composite material and a wind turbine blade outer skin were prepared and evaluated in the same manner as in Example 1. The results are shown in Table 1.

(実施例3)
強化繊維として高強度PBO繊維;東洋紡社製ザイロン(登録商標)HMからなる平織り構成の織物を使用した。使用繊維束の繊度は1060dtex、織密度は経15本/インチ、緯14本/インチのものを用いた。マトリックス樹脂としてはエピコート827(ジャパンエポキシレジン社製)、酸無水物硬化剤HN5500(日立化成社製)、エポメートBMI−12(ジャパンエポキシレジン社製)を重量比100/85/1で混合したものを用いた。実施例1と同様にして、繊維強化複合材料の板材と風車翼外皮を作製し、実施例1と同様に評価した。その結果を表1に示す。
Example 3
A plain weave fabric composed of high-strength PBO fiber; Zylon (registered trademark) HM manufactured by Toyobo Co., Ltd. was used as the reinforcing fiber. The fiber bundle used had a fineness of 1060 dtex, a weave density of 15 warps / inch and 14 wefts / inch. As a matrix resin, Epicoat 827 (manufactured by Japan Epoxy Resin Co., Ltd.), acid anhydride curing agent HN5500 (manufactured by Hitachi Chemical Co., Ltd.), and Epomate BMI-12 (manufactured by Japan Epoxy Resin Co., Ltd.) at a weight ratio of 100/85/1 are mixed. Was used. In the same manner as in Example 1, a plate material of a fiber reinforced composite material and a wind turbine blade outer skin were prepared and evaluated in the same manner as in Example 1. The results are shown in Table 1.

(実施例4)
強化繊維として溶融高強度ポリエチレン繊維;東洋紡社製ツヌーガ(登録商標)からなる平織り構成の織物を使用した。使用繊維束の繊度は440dtex、織密度は経15本/インチ、緯14本/インチのものを用いた。マトリックス樹脂としてはエピコート827(ジャパンエポキシレジン社製)、酸無水物硬化剤HN5500(日立化成社製)、エポメートBMI−12(ジャパンエポキシレジン社)を重量比100/85/1で混合したものを用いた。実施例1と同様にして、繊維強化複合材料の板材と風車翼外皮を作製し、実施例1と同様に評価した。その結果を表1に示す。
Example 4
A plain high-woven fabric made of melted high-strength polyethylene fiber as a reinforcing fiber; Tunuga (registered trademark) manufactured by Toyobo Co., Ltd. was used. The fiber bundle used had a fineness of 440 dtex, a weave density of 15 warps / inch and 14 wefts / inch. As the matrix resin, a mixture of Epicoat 827 (manufactured by Japan Epoxy Resin Co., Ltd.), acid anhydride curing agent HN5500 (manufactured by Hitachi Chemical Co., Ltd.), and Epomate BMI-12 (Japan Epoxy Resin Co., Ltd.) at a weight ratio of 100/85/1. Using. In the same manner as in Example 1, a plate material of a fiber reinforced composite material and a wind turbine blade outer skin were prepared and evaluated in the same manner as in Example 1. The results are shown in Table 1.

(実施例5)
強化繊維としてアラミド繊維:ケブラー(登録商標)49からなる平織り構成の織物を使用した。使用繊維束の繊度は1060dtex、織密度は経15本/インチ、緯14本/インチのものを用いた。マトリックス樹脂としてはエピコート827(ジャパンエポキシレジン社製)、酸無水物硬化剤HN5500(日立化成社製)、エポメートBMI−12(ジャパンエポキシレジン社製)を重量比100/85/1で混合したものを用いた。実施例1と同様にして、繊維強化複合材料の板材と風車翼外皮を作製し、実施例1と同様に評価した。その結果を表1に示す。
(Example 5)
A plain weave fabric composed of aramid fiber: Kevlar (registered trademark) 49 was used as the reinforcing fiber. The fiber bundle used had a fineness of 1060 dtex, a weave density of 15 warps / inch and 14 wefts / inch. As a matrix resin, Epicoat 827 (manufactured by Japan Epoxy Resin Co., Ltd.), acid anhydride curing agent HN5500 (manufactured by Hitachi Chemical Co., Ltd.), and Epomate BMI-12 (manufactured by Japan Epoxy Resin Co., Ltd.) are mixed at a weight ratio of 100/85/1. Was used. In the same manner as in Example 1, a plate material of a fiber reinforced composite material and a wind turbine blade outer skin were prepared and evaluated in the same manner as in Example 1. The results are shown in Table 1.

(実施例6)
強化繊維として高強度ポリエチレン繊維平織り織物を使用した部分とガラス繊維平織り織物を使用した部分からなるサンドイッチ構造の繊維強化複合材料と2層構造の繊維強化複合材料を作製した。
すなわち、高強度ポリエチレン繊維としては東洋紡社製ダイニーマ(登録商標)SK60で繊度1320dtexのものを用い、織密度は経15本/インチ、緯14本/インチの平織り織物とした。ガラス繊維としては日東紡社製E−ガラス繊維織物のIPC7628、目付け209g/mを用いた。マトリックス樹脂としてはエピコート1001(ジャパンエポキシレジン社製)、エピコート828(ジャパンエポキシレジン社製)、エピコート154(ジャパンエポキシレジン社製)、ジシアンジアミド、ジクロルフェニルジメチルウレア(保土ヶ谷化学社製)を重量比40/10/50/4/4で混合したものを用い、上記各強化繊維織物を重ね合わせたものに含浸してプリプレグとした。
これを用いて実施例1と同様にして、高強度ポリエチレン繊維強化複合材料/ガラス繊維強化複合材料/高強度ポリエチレン繊維強化複合材料の積層構成で厚みが各々2mm/6mm/2mmの構成の繊維強化複合材料の板材を得た(図3)。
また、風車翼外皮は、板厚4mm、翼長13m、翼幅1.2mとし、高強度ポリエチレン繊維強化複合材料/ガラス繊維強化複合材料(1.6mm/2.4mm)の2層構造とした(図4)。
実施例1と同様に評価した結果を表1に示す。
(Example 6)
A fiber reinforced composite material having a sandwich structure and a fiber reinforced composite material having a two-layer structure including a portion using a high-strength polyethylene fiber plain weave fabric and a portion using a glass fiber plain weave fabric as reinforcing fibers were prepared.
That is, as the high-strength polyethylene fiber, a Dyneema (registered trademark) SK60 manufactured by Toyobo Co., Ltd. having a fineness of 1320 dtex was used, and a plain weave fabric having a warp density of 15 / inch and a weft of 14 / inch was used. As the glass fiber, Nittobo E-glass fiber IPC7628 having a basis weight of 209 g / m 2 was used. As a matrix resin, Epicoat 1001 (manufactured by Japan Epoxy Resin), Epicoat 828 (manufactured by Japan Epoxy Resin), Epicoat 154 (manufactured by Japan Epoxy Resin), dicyandiamide, dichlorophenyldimethylurea (manufactured by Hodogaya Chemical Co., Ltd.) What was mixed at 40/10/50/4/4 was impregnated into a laminate of the above reinforcing fiber fabrics to obtain a prepreg.
Using this, in the same manner as in Example 1, fiber reinforced with a laminated structure of high strength polyethylene fiber reinforced composite material / glass fiber reinforced composite material / high strength polyethylene fiber reinforced composite material each having a thickness of 2 mm / 6 mm / 2 mm A composite plate was obtained (FIG. 3).
In addition, the wind turbine blade outer skin has a plate thickness of 4 mm, a blade length of 13 m, a blade width of 1.2 m, and a two-layer structure of high-strength polyethylene fiber reinforced composite material / glass fiber reinforced composite material (1.6 mm / 2.4 mm). (FIG. 4).
The results evaluated in the same manner as in Example 1 are shown in Table 1.

(実施例7)
強化繊維用織物として経糸に高強度ポリエチレン繊維;ダイニーマ(登録商標)SK60、緯糸にガラス繊維(日東紡社;E−ガラス(登録商標))を用いた平織り構成の織物を使用した。織密度は経方向にダイニーマ(登録商標)SK60の2640dtexを15本/インチ、緯方向にガラス繊維1320dtexを44本/インチとした。マトリックス樹脂にはエピコート827(ジャパンエポキシレジン社製)、酸無水物硬化剤HN5500(日立化成社製)、エポメートBMI−12(ジャパンエポキシレジン社製)を重量比100/85/1で混合したものを用いた。実施例1と同様にして、繊維強化複合材料の板材と風車翼外皮を作製し、実施例1と同様に評価した。その結果を表1に示す。
(Example 7)
A plain weave fabric using high-strength polyethylene fiber as the warp yarn; Dyneema (registered trademark) SK60 and glass fiber (Nittobo Co., Ltd .; E-glass (registered trademark)) as the weft yarn was used as the reinforcing fiber fabric. The weave density was 15 / inch for 2640 dtex of Dyneema (registered trademark) SK60 in the warp direction and 44 / inch for glass fiber 1320 dtex in the weft direction. The matrix resin is a mixture of Epicoat 827 (manufactured by Japan Epoxy Resin Co., Ltd.), acid anhydride curing agent HN5500 (manufactured by Hitachi Chemical Co., Ltd.) and Epomate BMI-12 (manufactured by Japan Epoxy Resin Co., Ltd.) at a weight ratio of 100/85/1. Was used. In the same manner as in Example 1, a plate material of a fiber reinforced composite material and a wind turbine blade outer skin were prepared and evaluated in the same manner as in Example 1. The results are shown in Table 1.

(実施例8)
強化繊維用織物として経糸に高強度ポリエチレン繊維(東洋紡社製ダイニーマ(登録商標)SK60、緯糸にポリエチレンテレフタレート(PET)繊維を用いた平織り構成の織物を使用した。織密度はダイニーマSK60の2640dtexを経15本/インチ、PET繊維1320dtexを緯44本/インチとした。マトリックス樹脂にはエピコート827(ジャパンエポキシレジン社製)、酸無水物硬化剤HN5500(日立化成社製)、エポメートBMI−12(ジャパンエポキシレジン社製)を重量比100/85/1で混合したものを用いた。実施例1と同様にして、繊維強化複合材料の板材と風車翼外皮を作製し、実施例1と同様に評価した。その結果を表1に示す。
(Example 8)
High-strength polyethylene fibers (Dyneema (registered trademark) SK60 manufactured by Toyobo Co., Ltd.) and plain weave fabrics using polyethylene terephthalate (PET) fibers as wefts were used as reinforcing fiber fabrics. The weave density was 2640 dtex of Dyneema SK60. 15 / inch, PET fiber 1320 dtex at 44 / inch, matrix resin includes Epicoat 827 (manufactured by Japan Epoxy Resin Co., Ltd.), acid anhydride curing agent HN5500 (manufactured by Hitachi Chemical Co., Ltd.), Epomate BMI-12 (Japan) (Epoxy Resin Co., Ltd.) mixed at a weight ratio of 100/85/1 was used, and a fiber reinforced composite material plate and windmill blade skin were prepared in the same manner as in Example 1 and evaluated in the same manner as in Example 1. The results are shown in Table 1.

(実施例9)
強化繊維用織物として高強度PBO繊維;東洋紡社製ザイロン(登録商標)AMからなる2/1綾織構成の織物を使用した。使用繊維束はザイロン(登録商標)AMで繊度は1670dtex、織密度は経15本/インチ、緯15本/インチのものを用いた。マトリックス樹脂にはエピコート827(ジャパンエポキシレジン社製)、酸無水物硬化剤HN5500(日立化成社製)、エポメートBMI−12(ジャパンエポキシレジン社製)を重量比100/85/1で混合したものを用いた。実施例1と同様にして、繊維強化複合材料の板材と風車翼外皮を作製し、実施例1と同様に評価した。その結果を表1に示す。
Example 9
A woven fabric having a 2/1 twill structure composed of high-strength PBO fiber; The fiber bundle used was Zylon (registered trademark) AM having a fineness of 1670 dtex, a weave density of 15 warps / inch, and 15 wefts / inch. The matrix resin is a mixture of Epicoat 827 (manufactured by Japan Epoxy Resin Co., Ltd.), acid anhydride curing agent HN5500 (manufactured by Hitachi Chemical Co., Ltd.), and Epomate BMI-12 (manufactured by Japan Epoxy Resin Co., Ltd.) at a weight ratio of 100/85/1. Was used. In the same manner as in Example 1, a plate material of a fiber reinforced composite material and a wind turbine blade outer skin were prepared and evaluated in the same manner as in Example 1. The results are shown in Table 1.

(比較例1)
強化繊維としてガラス繊維からなる平織り構成の織物を使用した。使用繊維束の繊度は1000dtex、織密度は経糸15本/インチ、緯糸14本/インチのものを用いた。マトリックス樹脂としてはエピコート1001(ジャパンエポキシレジン社製)、エピコート828(ジャパンエポキシレジン社製)、エピコート154(ジャパンエポキシレジン社)、ジシアンジアミド、ジクロルフェニルジメチルウレア(保土ヶ谷化学社製)を重量比40/10/50/4/4で混合したものを用いた。実施例1と同様にして、繊維強化複合材料の板材と風車翼外皮を作製し、実施例1と同様に評価した。その結果を表1に示す。
(Comparative Example 1)
A plain woven fabric made of glass fiber was used as the reinforcing fiber. The fiber bundle used had a fineness of 1000 dtex, a weave density of 15 warps / inch and 14 wefts / inch. As the matrix resin, Epicoat 1001 (manufactured by Japan Epoxy Resin), Epicoat 828 (manufactured by Japan Epoxy Resin), Epicoat 154 (Japan Epoxy Resin), dicyandiamide, dichlorophenyldimethylurea (manufactured by Hodogaya Chemical Co., Ltd.) in a weight ratio of 40. What was mixed at / 10/50/4/4 was used. In the same manner as in Example 1, a plate material of a fiber reinforced composite material and a wind turbine blade outer skin were prepared and evaluated in the same manner as in Example 1. The results are shown in Table 1.

(比較例2)
強化繊維として炭素繊維からなる平織り構成の織物を使用した。使用繊維束はPAN系炭素繊維で繊度は1000dtex、織密度は経15本/インチ、緯14本/インチのものを用いた。マトリックス樹脂としてはエピコート1001(ジャパンエポキシレジン社製)、エピコート828(ジャパンエポキシレジン社製)、エピコート154(ジャパンエポキシレジン社製)、ジシアンジアミド、ジクロルフェニルジメチルウレア(保土ヶ谷化学社製)を重量比40/10/50/4/4で混合したものを用いた。実施例1と同様にして、繊維強化複合材料の板材と風車翼外皮を作製し、実施例1と同様に評価した。その結果を表1に示す。
(Comparative Example 2)
A plain woven fabric made of carbon fiber was used as the reinforcing fiber. The fiber bundle used was a PAN-based carbon fiber with a fineness of 1000 dtex, a weave density of 15 warps / inch and 14 wefts / inch. As a matrix resin, Epicoat 1001 (manufactured by Japan Epoxy Resin), Epicoat 828 (manufactured by Japan Epoxy Resin), Epicoat 154 (manufactured by Japan Epoxy Resin), dicyandiamide, dichlorophenyldimethylurea (manufactured by Hodogaya Chemical Co., Ltd.) What was mixed at 40/10/50/4/4 was used. In the same manner as in Example 1, a plate material of a fiber reinforced composite material and a wind turbine blade outer skin were prepared and evaluated in the same manner as in Example 1. The results are shown in Table 1.

(比較例3)
強化繊維としてアルミナからなる平織り構成の織物を使用した。使用繊維束の繊度は550dtex、織密度は経糸15本/インチ、緯糸14本/インチのものを用いた。マトリックス樹脂としてはエピコート1001(ジャパンエポキシレジン社製)、エピコート828(ジャパンエポキシレジン社製)、エピコート154(ジャパンエポキシレジン社製)、ジシアンジアミド、ジクロルフェニルジメチルウレア(保土ヶ谷化学社製)を重量比40/10/50/4/4で混合したものを用いた。実施例1と同様にして、繊維強化複合材料の板材と風車翼外皮を作製し、実施例1と同様に評価した。その結果を表1に示す。
(Comparative Example 3)
A plain weave fabric made of alumina was used as the reinforcing fiber. The fiber bundle used had a fineness of 550 dtex, a weave density of 15 warps / inch and 14 wefts / inch. As a matrix resin, Epicoat 1001 (manufactured by Japan Epoxy Resin), Epicoat 828 (manufactured by Japan Epoxy Resin), Epicoat 154 (manufactured by Japan Epoxy Resin), dicyandiamide, dichlorophenyldimethylurea (manufactured by Hodogaya Chemical Co., Ltd.) What was mixed at 40/10/50/4/4 was used. In the same manner as in Example 1, a plate material of a fiber reinforced composite material and a wind turbine blade outer skin were prepared and evaluated in the same manner as in Example 1. The results are shown in Table 1.

(比較例4)
強化繊維としてPET繊維からなる平織り構成の織物を使用した。使用繊維束の繊度は1380dtex、織密度は経15本/インチ、緯14本/インチのものを用いた。マトリックス樹脂にはエピコート827(ジャパンエポキシレジン社製)、酸無水物硬化剤HN5500(日立化成社製)、エポメートBMI−12(ジャパンエポキシレジン社製)を重量比100/85/1で混合したものを用いた。実施例1と同様にして、繊維強化複合材料の板材と風車翼外皮を作製し、実施例1と同様に評価した。その結果を表1に示す。
(Comparative Example 4)
A plain weave fabric made of PET fibers was used as the reinforcing fiber. The fiber bundle used had a fineness of 1380 dtex, a weave density of 15 warps / inch and 14 wefts / inch. The matrix resin is a mixture of Epicoat 827 (manufactured by Japan Epoxy Resin Co., Ltd.), acid anhydride curing agent HN5500 (manufactured by Hitachi Chemical Co., Ltd.), and Epomate BMI-12 (manufactured by Japan Epoxy Resin Co., Ltd.) at a weight ratio of 100/85/1. Was used. In the same manner as in Example 1, a plate material of a fiber reinforced composite material and a wind turbine blade outer skin were prepared and evaluated in the same manner as in Example 1. The results are shown in Table 1.

(比較例5)
強化繊維を用いずマトリックス樹脂のみとした。樹脂にはエピコート827(ジャパンエポキシレジン社製)、酸無水物硬化剤HN5500(日立化成社製)、エポメートBMI−12(ジャパンエポキシレジン社製)を重量比100/85/1で混合したものを用いた。板材と風車翼外皮を作製し、実施例1と同様に評価した。その結果を表1に示す。
(Comparative Example 5)
Only matrix resin was used without using reinforcing fibers. The resin is a mixture of Epicoat 827 (manufactured by Japan Epoxy Resin Co., Ltd.), acid anhydride curing agent HN5500 (manufactured by Hitachi Chemical Co., Ltd.), and Epomate BMI-12 (manufactured by Japan Epoxy Resin Co., Ltd.) at a weight ratio of 100/85/1. Using. A plate material and a wind turbine blade outer skin were prepared and evaluated in the same manner as in Example 1. The results are shown in Table 1.

表1から、本発明の風車翼は、著しく耐久性が向上していることが分かる。   From Table 1, it can be seen that the wind turbine blade of the present invention has significantly improved durability.

本発明の風車翼は、飛来粒子衝突による磨耗に対する耐久性が向上しており、強風地域においても風力発電に長期間使用することが可能となった。これにより低コストで高効率の風力発電が可能となり、産業界に寄与すること大である。   The wind turbine blade of the present invention has improved durability against wear caused by flying particle collision, and can be used for wind power generation for a long time even in a strong wind region. This enables low-cost and high-efficiency wind power generation and contributes to the industry.

繊維強化複合材料板材の外観形状を模式的に示す概略図である。It is the schematic which shows typically the external appearance shape of a fiber reinforced composite material board | plate material. 風車翼断面の形状を模式的に示す概略図である。It is the schematic which shows the shape of a windmill blade cross section typically. サンドイッチ式繊維強化複合材料の構成を模式的に示す概略図である。It is the schematic which shows the structure of a sandwich type fiber reinforced composite material typically. 2層構造の風車翼外皮を構成する繊維強化複合材料部分を示す概略説明図である。It is a schematic explanatory drawing which shows the fiber reinforced composite material part which comprises the windmill blade outer skin of a two-layer structure.

符号の説明Explanation of symbols

1:繊維強化複合材料の板材
2:風車翼外皮
3:風車翼主桁
4:高強度ポリエチレン繊維強化複合材料
5:ガラス繊維強化複合材料
6:飛来粒子
1: Plate material of fiber reinforced composite material 2: Wind turbine blade outer shell 3: Wind turbine blade main girder 4: High-strength polyethylene fiber reinforced composite material 5: Glass fiber reinforced composite material 6: Airborne particles

Claims (3)

主桁の外側に翼形状を形成する外皮を備えた風車翼において、前記外皮として、引張り強度12cN/dtex以上60cN/dtex以下、引張り弾性率500cN/dtex以上3000cN/dtex以下及び引張り破断伸度2%以上10%以下の有機高分子繊維の少なくとも1種類を強化繊維として含有する繊維強化複合材料を用いてなることを特徴とする風車翼。   In a wind turbine blade provided with an outer skin that forms a blade shape outside the main girder, the outer skin has a tensile strength of 12 cN / dtex to 60 cN / dtex, a tensile modulus of 500 cN / dtex to 3000 cN / dtex, and a tensile breaking elongation of 2 A wind turbine blade comprising a fiber reinforced composite material containing at least one kind of organic polymer fibers of 10% to 10% as reinforcing fibers. 前記有機高分子繊維が、引張り強度12cN/dtex以上60cN/dtex以下、引張り弾性率500cN/dtex以上2500cN/dtex以下及び引張り破断伸度2%以上10%以下の高強度ポリエチレン繊維である請求項1記載の風車翼。   The organic polymer fiber is a high-strength polyethylene fiber having a tensile strength of 12 cN / dtex to 60 cN / dtex, a tensile modulus of 500 cN / dtex to 2500 cN / dtex and a tensile elongation at break of 2% to 10%. The windmill wing described. 前記有機高分子繊維が、引張り強度30cN/dtex以上60cN/dtex以下、引張り弾性率1000cN/dtex以上2500cN/dtex以下及び引張り破断伸度2%以上10%以下の高強度ポリパラフェニレンベンツビスオキサゾール繊維である請求項1記載の風車翼。   The organic polymer fiber is a high-strength polyparaphenylenebenzbisoxazole fiber having a tensile strength of 30 cN / dtex to 60 cN / dtex, a tensile modulus of 1000 cN / dtex to 2500 cN / dtex, and a tensile elongation at break of 2% to 10%. The wind turbine blade according to claim 1.
JP2008323767A 2008-12-19 2008-12-19 Windmill blade Pending JP2010144646A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008323767A JP2010144646A (en) 2008-12-19 2008-12-19 Windmill blade

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008323767A JP2010144646A (en) 2008-12-19 2008-12-19 Windmill blade

Publications (1)

Publication Number Publication Date
JP2010144646A true JP2010144646A (en) 2010-07-01

Family

ID=42565326

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008323767A Pending JP2010144646A (en) 2008-12-19 2008-12-19 Windmill blade

Country Status (1)

Country Link
JP (1) JP2010144646A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013185003A (en) * 2012-03-06 2013-09-19 Toyobo Co Ltd Fiber-reinforced composite material
JP2015194141A (en) * 2014-03-31 2015-11-05 積水化成品工業株式会社 Blade for windmill
JP2016204671A (en) * 2016-09-01 2016-12-08 東洋紡株式会社 Fiber-reinforced composite material
KR20190010609A (en) * 2016-05-18 2019-01-30 엠에이치아이 베스타스 오프쇼어 윈드 에이/에스 Edge protection of wind turbine blades

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013185003A (en) * 2012-03-06 2013-09-19 Toyobo Co Ltd Fiber-reinforced composite material
JP2015194141A (en) * 2014-03-31 2015-11-05 積水化成品工業株式会社 Blade for windmill
KR20190010609A (en) * 2016-05-18 2019-01-30 엠에이치아이 베스타스 오프쇼어 윈드 에이/에스 Edge protection of wind turbine blades
JP2019518161A (en) * 2016-05-18 2019-06-27 エムエイチアイ ヴェスタス オフショア ウィンド エー/エス Wind turbine blade leading edge protection
KR102326966B1 (en) 2016-05-18 2021-11-17 베스타스 오프쇼어 윈드 에이/에스 Leading edge protection of wind turbine blades
JP2016204671A (en) * 2016-09-01 2016-12-08 東洋紡株式会社 Fiber-reinforced composite material

Similar Documents

Publication Publication Date Title
JP2007321757A (en) Turbine engine fan casing, containment covering, and method for containing separated fan blade fragment in turbine engine
JP2010144646A (en) Windmill blade
Dharmavarapu et al. Aramid fibre as potential reinforcement for polymer matrix composites: a review
EP1417364B1 (en) Flexible wall material for use in an inflatable structure
Tehrani-Dehkordi et al. Effects of plies stacking sequence and fiber volume ratio on flexural properties of basalt/nylon-epoxy hybrid composites
JP2002137307A (en) Blade structure of windmill made of fiber-reinforced resin
KR101561207B1 (en) Method of manufacturting bulletproof materials comprising cnt or graphene and bulletproof materials manufactured by using the same
CN201756633U (en) Single axial warp braided fabric
Chang Aramid fibers
CN204644591U (en) A kind of shuffling uniaxially woven cloth
JP3136869B2 (en) Sandwich structural materials
JP2012241183A (en) Fiber composite material and sandwich material using the same
JP4813803B2 (en) Fiber reinforced sheet
JP2006226045A (en) Dry hybrid reinforced fiber tendon
JP2009107233A (en) Fiber-reinforced resin composite material and molding formed by molding the same
JPWO2019013091A1 (en) Core-sheath composite yarn for fiber-reinforced resin and fiber-reinforced resin using the same
JP2003112318A (en) Hybrid continuous fiber reinforced composite material using pbo fibers
CN107557969A (en) Three axial direction fibre fabrics and its manufacture method containing drawing and extruding bar
JP5385734B2 (en) Impact resistant composite
JP6364798B2 (en) Reinforcing fiber fabric and method for producing the same
JPH11311101A (en) Fiber reinforced plastic blade structure
JP5580035B2 (en) Head protection
JP2008013886A (en) Reinforcing fiber fabric
CN212077451U (en) Self-cleaning film structure
JP2006257573A (en) Carbon fiber fabric