JP6961912B2 - Epoxy resin compositions, fiber reinforced composites, moldings and pressure vessels - Google Patents

Epoxy resin compositions, fiber reinforced composites, moldings and pressure vessels Download PDF

Info

Publication number
JP6961912B2
JP6961912B2 JP2016124183A JP2016124183A JP6961912B2 JP 6961912 B2 JP6961912 B2 JP 6961912B2 JP 2016124183 A JP2016124183 A JP 2016124183A JP 2016124183 A JP2016124183 A JP 2016124183A JP 6961912 B2 JP6961912 B2 JP 6961912B2
Authority
JP
Japan
Prior art keywords
epoxy resin
resin composition
fiber
composite material
reinforced composite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016124183A
Other languages
Japanese (ja)
Other versions
JP2017008317A (en
Inventor
亜弓 森
雅幸 三好
啓之 平野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Publication of JP2017008317A publication Critical patent/JP2017008317A/en
Application granted granted Critical
Publication of JP6961912B2 publication Critical patent/JP6961912B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Filling Or Discharging Of Gas Storage Vessels (AREA)
  • Pressure Vessels And Lids Thereof (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)
  • Reinforced Plastic Materials (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Epoxy Resins (AREA)

Description

本発明は、エポキシ樹脂組成物、その硬化物をマトリックス樹脂としてなる繊維強化複合材料、成形品および圧力容器に関するものである。 The present invention relates to an epoxy resin composition, a fiber-reinforced composite material in which a cured product thereof is used as a matrix resin, a molded product, and a pressure vessel.

エポキシ樹脂はその優れた機械的特性を活かし、塗料、接着剤、電気電子情報材料、先端複合材料などの産業分野に広く使用されている。特に炭素繊維、ガラス繊維、アラミド繊維などの強化繊維とマトリックス樹脂からなる繊維強化複合材料では、エポキシ樹脂が多用されている。 Epoxy resins are widely used in industrial fields such as paints, adhesives, electrical and electronic information materials, and advanced composite materials due to their excellent mechanical properties. In particular, epoxy resins are often used in fiber-reinforced composite materials composed of reinforcing fibers such as carbon fibers, glass fibers, and aramid fibers and matrix resins.

繊維強化複合材料の製造方法としては、プリプレグ法、ハンドレイアップ法、フィラメントワインディング法、プルトルージョン法、RTM(Resin Transfer Molding)法等の工法が適宜選択される。これらの工法のうち、液状樹脂を用いるフィラメントワインディング法、プルトルージョン法、RTM法は、圧力容器、電線、自動車などの産業用途への適用が特に活発化している。 As a method for producing the fiber-reinforced composite material, a method such as a prepreg method, a hand lay-up method, a filament winding method, a pull-fusion method, or an RTM (Resin Transfer Molding) method is appropriately selected. Among these construction methods, the filament winding method using a liquid resin, the plutrusion method, and the RTM method are particularly actively applied to industrial applications such as pressure vessels, electric wires, and automobiles.

一般にプリプレグ法により製造された繊維強化複合材料は、強化繊維の配置が精緻に制御されるため、優れた機械特性を示す。一方で近年の環境への関心の高まり、温室効果ガスの排出規制の動きを受け、プリプレグ以外の、液状樹脂を用いた繊維強化複合材料でも、さらなる高強度化が求められている。 In general, a fiber-reinforced composite material produced by the prepreg method exhibits excellent mechanical properties because the arrangement of the reinforcing fibers is precisely controlled. On the other hand, in response to growing interest in the environment in recent years and movements to regulate greenhouse gas emissions, fiber-reinforced composite materials using liquid resins other than prepreg are also required to have higher strength.

特許文献1は、硬化剤に酸無水物を用いた、耐熱性と破壊靱性に優れるトウプリプレグ向けエポキシ樹脂組成物を開示している。 Patent Document 1 discloses an epoxy resin composition for tow prepreg, which uses an acid anhydride as a curing agent and has excellent heat resistance and fracture toughness.

特許文献2は、耐熱性に優れる多官能エポキシ樹脂と、硬化剤に酸無水物を用いた、耐熱性と速硬化性に優れる低粘度のエポキシ樹脂組成物を開示している。 Patent Document 2 discloses a polyfunctional epoxy resin having excellent heat resistance and a low-viscosity epoxy resin composition having excellent heat resistance and quick-curing property using an acid anhydride as a curing agent.

特許文献3は、脂環式エポキシ樹脂を用い、強度、伸度のバランスに優れたRTM向けエポキシ樹脂組成物を開示している。 Patent Document 3 discloses an epoxy resin composition for RTM that uses an alicyclic epoxy resin and has an excellent balance of strength and elongation.

特許文献4は、ゴム状平坦部剛性率が10MPa以下であることを特徴とする、ハニカムコアとの接着性と引張強度に優れるプリプレグを与える、エポキシ樹脂組成物を開示している。 Patent Document 4 discloses an epoxy resin composition that provides a prepreg having excellent adhesiveness to a honeycomb core and tensile strength, which is characterized by having a rubber-like flat portion rigidity of 10 MPa or less.

特開2012−56980号公報Japanese Unexamined Patent Publication No. 2012-56980 特開2015−3938号公報Japanese Unexamined Patent Publication No. 2015-3938 特開2013−1711号公報Japanese Unexamined Patent Publication No. 2013-1711 特開2001−323046号公報Japanese Unexamined Patent Publication No. 2001-323406

特許文献1には、低粘度で耐熱性と破壊靱性に優れる樹脂は開示されているものの、CFRPとしての機械特性は十分とは言えず、引張強度も十分とはいえない。特許文献2および3においても、低粘度で耐熱性を有する樹脂は開示されているものの、CFRPとしての機械特性は十分とはいえない。特許文献4はプリプレグ向けの樹脂設計であり、粘度が高く液状樹脂を用いるプロセスには適用できない。さらに、高い耐熱性を有するものの、繊維強化複合材料の引張強度は十分とはいえなかった。 Although Patent Document 1 discloses a resin having low viscosity and excellent heat resistance and fracture toughness, it cannot be said that the mechanical properties of CFRP are sufficient and the tensile strength is not sufficient. Patent Documents 2 and 3 also disclose resins having low viscosity and heat resistance, but their mechanical properties as CFRP are not sufficient. Patent Document 4 is a resin design for prepregs, which has a high viscosity and cannot be applied to a process using a liquid resin. Further, although it has high heat resistance, it cannot be said that the tensile strength of the fiber-reinforced composite material is sufficient.

そこで、本発明は、耐熱性と引張強度を高いレベルで両立する繊維強化複合材料を得るための、液状エポキシ樹脂組成物を提供することを目的とする。また、このエポキシ樹脂組成物を用いた繊維強化複合材料、その成形品および圧力容器を提供することを目的とする。 Therefore, an object of the present invention is to provide a liquid epoxy resin composition for obtaining a fiber-reinforced composite material having both heat resistance and tensile strength at a high level. Another object of the present invention is to provide a fiber-reinforced composite material using this epoxy resin composition, a molded product thereof, and a pressure vessel.

本発明者らは、前記課題を解決すべく鋭意検討した結果、下記構成からなるエポキシ樹脂組成物を見いだし、本発明を完成させるに至った。すなわち本発明のエポキシ樹脂組成物は、以下の構成からなる。 As a result of diligent studies to solve the above problems, the present inventors have found an epoxy resin composition having the following constitution, and have completed the present invention. That is, the epoxy resin composition of the present invention has the following constitution.

本発明のエポキシ樹脂組成物は、下記構成要素[A]〜[C]を含むエポキシ樹脂組成物であって、構成要素[A]は、構成要素[a1]として、フルオレン構造を有する2官能以上のエポキシ樹脂を含み、該エポキシ樹脂組成物を硬化させた硬化物の動的粘弾性評価におけるゴム状態弾性率が10MPa以下であり、かつ該硬化物のガラス転移温度が95℃以上であることを特徴とする。
[A]芳香環を含む2官能以上のエポキシ樹脂
[B]次の一般式(I)で表される酸無水物
The epoxy resin composition of the present invention is an epoxy resin composition containing the following constituent elements [A] to [C], and the constituent element [A] is bifunctional or higher having a fluorene structure as the constituent element [a1]. the include epoxy resins, the rubbery modulus at dynamic viscoelasticity evaluation of the cured product obtained by curing the epoxy resin composition is not more than 10 MPa, and the glass transition temperature of the cured product is 95 ° C. or higher It is a feature.
[A] Bifunctional or higher functional epoxy resin containing an aromatic ring [B] Acid anhydride represented by the following general formula (I)

Figure 0006961912
Figure 0006961912

(Rは、炭素数が6〜16の直鎖または分岐のアルキル基、炭素数が6〜16の直鎖または分岐のアルケニル基、炭素数が6〜16の直鎖または分岐のアルキニル基のいずれかを示す。)
[C]テトラヒドロ無水フタル酸、メチルテトラヒドロ無水フタル酸、無水メチルナジック酸、ヘキサヒドロ無水フタル酸、メチルヘキサヒドロ無水フタル酸からなる群から選ばれる少なくとも一種の酸無水物。
(R 1 is a linear or branched alkyl group having 6 to 16 carbon atoms, a linear or branched alkenyl group having 6 to 16 carbon atoms, or a linear or branched alkynyl group having 6 to 16 carbon atoms. Indicates either.)
[C] At least one acid anhydride selected from the group consisting of tetrahydrophthalic anhydride, methyltetrahydrophthalic anhydride, methylnadic anhydride, hexahydrophthalic anhydride, and methylhexahydrophthalic anhydride.

また、本発明の繊維強化複合材料は、上記エポキシ樹脂組成物の硬化物と強化繊維とからなる。 Further, the fiber-reinforced composite material of the present invention comprises a cured product of the epoxy resin composition and reinforcing fibers.

さらに、本発明の成形品および圧力容器は、上記繊維強化複合材料からなる。 Further, the molded product and the pressure vessel of the present invention are made of the above-mentioned fiber-reinforced composite material.

本発明のエポキシ樹脂組成物を用いることで、耐熱性と引張強度に優れる繊維強化複合材料を提供できる。また、前記繊維強化複合材料からなる成形品および圧力容器を提供できる。 By using the epoxy resin composition of the present invention, a fiber-reinforced composite material having excellent heat resistance and tensile strength can be provided. Further, it is possible to provide a molded product and a pressure vessel made of the fiber-reinforced composite material.

本発明のエポキシ樹脂組成物は、下記構成要素[A]〜[C]を含むエポキシ樹脂組成物であって、構成要素[A]は、構成要素[a1]として、フルオレン構造を有する2官能以上のエポキシ樹脂を含み、該エポキシ樹脂組成物を硬化させた硬化物の動的粘弾性評価におけるゴム状態弾性率が10MPa以下であり、かつ該硬化物のガラス転移温度が95℃以上であることを特徴とする。
[A]芳香環を含む2官能以上のエポキシ樹脂
[B]次の一般式(I)で表される酸無水物
The epoxy resin composition of the present invention is an epoxy resin composition containing the following constituent elements [A] to [C], and the constituent element [A] is bifunctional or higher having a fluorene structure as the constituent element [a1]. the include epoxy resins, the rubbery modulus at dynamic viscoelasticity evaluation of the cured product obtained by curing the epoxy resin composition is not more than 10 MPa, and the glass transition temperature of the cured product is 95 ° C. or higher It is a feature.
[A] Bifunctional or higher functional epoxy resin containing an aromatic ring [B] Acid anhydride represented by the following general formula (I)

Figure 0006961912
Figure 0006961912

(Rは、炭素数が6〜16の直鎖または分岐のアルキル基、炭素数が6〜16の直鎖または分岐のアルケニル基、炭素数が6〜16の直鎖または分岐のアルキニル基のいずれかを示す。)
[C]テトラヒドロ無水フタル酸、メチルテトラヒドロ無水フタル酸、無水メチルナジック酸、ヘキサヒドロ無水フタル酸、メチルヘキサヒドロ無水フタル酸からなる群から選ばれる少なくとも一種の酸無水物。
(R 1 is a linear or branched alkyl group having 6 to 16 carbon atoms, a linear or branched alkenyl group having 6 to 16 carbon atoms, or a linear or branched alkynyl group having 6 to 16 carbon atoms. Indicates either.)
[C] At least one acid anhydride selected from the group consisting of tetrahydrophthalic anhydride, methyltetrahydrophthalic anhydride, methylnadic anhydride, hexahydrophthalic anhydride, and methylhexahydrophthalic anhydride.

本発明の構成要素[A]は、芳香環を含む2官能以上のエポキシ樹脂である。2官能以上のエポキシ樹脂とは、1分子中に2個以上のエポキシ基を有する化合物である。かかるエポキシ樹脂としては、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールS型エポキシ樹脂、ビフェニル型エポキシ樹脂、ナフタレン型エポキシ樹脂、ジシクロペンタジエン骨格を含むエポキシ樹脂、フルオレン型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂などのノボラック型エポキシ樹脂、ビフェニルアラルキル型やザイロック型のエポキシ樹脂、N,N,O−トリグリシジル−m−アミノフェノール、N,N,O−トリグリシジル−p−アミノフェノール、N,N,O−トリグリシジル−4−アミノ−3−メチルフェノール、N,N,N’,N’−テトラグリシジル−4,4’−メチレンジアニリン、N,N,N’,N’−テトラグリシジル−2,2’−ジエチル−4,4’−メチレンジアニリン、N,N,N’,N’−テトラグリシジル−m−キシリレンジアミンなどのグリシジルアミン型エポキシ樹脂などを挙げられる。これらは単独で用いても、複数種を組み合わせても良い。 The component [A] of the present invention is a bifunctional or higher functional epoxy resin containing an aromatic ring. A bifunctional or higher functional epoxy resin is a compound having two or more epoxy groups in one molecule. Examples of such epoxy resins include bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol S type epoxy resin, biphenyl type epoxy resin, naphthalene type epoxy resin, epoxy resin containing a dicyclopentadiene skeleton, fluorene type epoxy resin, and phenol novolac. Novolak type epoxy resin such as type epoxy resin, cresol novolac type epoxy resin, biphenyl aralkyl type and zylock type epoxy resin, N, N, O-triglycidyl-m-aminophenol, N, N, O-triglycidyl-p -Aminophenol, N, N, O-triglycidyl-4-amino-3-methylphenol, N, N, N', N'-tetraglycidyl-4,4'-methylenedianiline, N, N, N' , N'-tetraglycidyl-2,2'-diethyl-4,4'-methylenedianiline, N, N, N', N'-tetraglycidyl-m-glycidylamine type epoxy resin such as xylylene diamine Can be mentioned. These may be used alone or in combination of two or more.

本発明のエポキシ樹脂組成物は、構成要素[A]として、構成要素[a1]であるフルオレン構造を有する2官能以上のエポキシ樹脂を含むことが好ましい。かかるエポキシ樹脂としては、例えば、ビスヒドロキシフェニルフルオレンのジグリシジルエーテルが挙げられる。 The epoxy resin composition of the present invention preferably contains, as the component [A], a bifunctional or higher functional epoxy resin having a fluorene structure, which is the component [a1]. Examples of such an epoxy resin include diglycidyl ether of bishydroxyphenylfluorene.

本発明のエポキシ樹脂組成物には、本発明の効果を損なわない範囲において、構成要素[A]以外のエポキシ樹脂を配合することができる。構成要素[A]以外のエポキシ樹脂は、機械特性、耐熱性、耐衝撃性などのバランスや、粘度などのプロセス適合性を目的に応じて調節することができ、好適に用いられる。 The epoxy resin composition of the present invention may contain an epoxy resin other than the component [A] as long as the effects of the present invention are not impaired. Epoxy resins other than the component [A] can be preferably used because the balance of mechanical properties, heat resistance, impact resistance, etc., and process compatibility such as viscosity can be adjusted according to the purpose.

構成要素[A]以外のエポキシ樹脂としては、例えば、脂環式エポキシ樹脂や脂肪族エポキシ樹脂などが挙げられる。 Examples of the epoxy resin other than the component [A] include an alicyclic epoxy resin and an aliphatic epoxy resin.

本発明の構成要素[B]である一般式(I)で表される酸無水物は、耐熱性と引張強度利用率の両立に必要な成分である。構成要素[B]は、耐熱性の低下を抑えつつ、引張強度利用率を高めるために含有される。また、耐熱性と引張強度利用率の両立させるため、構成要素[B]のRで表される置換基の炭素数は、6〜16の範囲とする必要があり、その中でも8〜12の範囲とすることが好ましい。かかる酸無水物としては、例えば、3−ドデセニル無水コハク酸、オクテニル無水コハク酸などが挙げられる。 The acid anhydride represented by the general formula (I), which is a component [B] of the present invention, is a component necessary for achieving both heat resistance and tensile strength utilization rate. The component [B] is contained in order to increase the utilization rate of tensile strength while suppressing the decrease in heat resistance. Further, in order to achieve both heat resistance and tensile strength utilization, the number of carbon atoms of the substituents represented by R 1 in component [B], it is necessary in the range of 6-16, 8-12 among which It is preferably in the range. Examples of such acid anhydrides include 3-dodecenyl succinic anhydride and octenyl succinic anhydride.

構成要素[C]は、構成要素[B]と組み合わせることで、優れた耐熱性と引張強度利用率を示す。 The component [C] exhibits excellent heat resistance and tensile strength utilization rate when combined with the component [B].

構成要素[C]は、テトラヒドロ無水フタル酸、メチルテトラヒドロ無水フタル酸、無水メチルナジック酸、ヘキサヒドロ無水フタル酸、メチルヘキサヒドロ無水フタル酸からなる群から選ばれる少なくとも一種の酸無水物である。 The component [C] is at least one acid anhydride selected from the group consisting of tetrahydrophthalic anhydride, methyltetrahydrophthalic anhydride, methylnadic anhydride, hexahydrophthalic anhydride, and methylhexahydrophthalic anhydride.

構成要素[B]および構成要素[C]の総量は、エポキシ樹脂組成物に含まれる全エポキシ樹脂成分のエポキシ基に対し、酸無水物当量が0.6〜1.2当量の範囲とすることが好ましい。この範囲とすることにより、耐熱性と機械特性のバランスに優れた繊維強化複合材料を与える樹脂硬化物が得られやすくなる。 The total amount of the component [B] and the component [C] shall be such that the acid anhydride equivalent is in the range of 0.6 to 1.2 equivalent with respect to the epoxy group of all the epoxy resin components contained in the epoxy resin composition. Is preferable. Within this range, it becomes easy to obtain a cured resin product that gives a fiber-reinforced composite material having an excellent balance between heat resistance and mechanical properties.

酸無水物を硬化剤として使用する場合は、一般に硬化促進剤を併用する。硬化促進剤としては、イミダゾール系硬化促進剤、DBU塩、三級アミン、ルイス酸などが用いられる。 When an acid anhydride is used as a curing agent, a curing accelerator is generally used in combination. As the curing accelerator, an imidazole-based curing accelerator, DBU salt, tertiary amine, Lewis acid and the like are used.

本発明のエポキシ樹脂組成物は、構成要素[B]と構成要素[C]との質量部の合計に対する構成要素[B]の質量部の割合が、0.3〜0.6であることが好ましい。構成要素[B]の含有割合を当該範囲とすることで、ゴム状態弾性率とガラス転移温度のバランスに優れた硬化物を与える、エポキシ樹脂組成物が得られやすくなる。 In the epoxy resin composition of the present invention, the ratio of the mass part of the component [B] to the total mass part of the component [B] and the component [C] is 0.3 to 0.6. preferable. By setting the content ratio of the component [B] to the above range, it becomes easy to obtain an epoxy resin composition that gives a cured product having an excellent balance between the elastic modulus in the rubber state and the glass transition temperature.

本発明のエポキシ樹脂組成物は、フィラメントワインディング法やプルトルージョン法などの液状プロセスに製造される繊維強化複合材料に好適に用いられる。該エポキシ樹脂組成物は強化繊維束への含浸性を向上させるため、液状であることが好ましい。具体的には、25℃における粘度が2000mPa・s以下であることが好ましい。粘度がこの範囲にあることで、樹脂槽に特段の加温機構や、有機溶剤などによる希釈を必要とせず、エポキシ樹脂組成物を強化繊維束に含浸させることができる。 The epoxy resin composition of the present invention is suitably used for a fiber-reinforced composite material produced in a liquid process such as a filament winding method or a plutrusion method. The epoxy resin composition is preferably liquid in order to improve the impregnation property into the reinforcing fiber bundle. Specifically, the viscosity at 25 ° C. is preferably 2000 mPa · s or less. When the viscosity is in this range, the reinforcing fiber bundle can be impregnated with the epoxy resin composition without requiring a special heating mechanism or dilution with an organic solvent in the resin tank.

本発明のエポキシ樹脂組成物には、本発明の効果を失わない範囲において、熱可塑性樹脂を配合することができる。熱可塑性樹脂としては、エポキシ樹脂に可溶な熱可塑性樹脂や、ゴム粒子および熱可塑性樹脂粒子等の有機粒子等を配合することができる。 The epoxy resin composition of the present invention may contain a thermoplastic resin as long as the effects of the present invention are not lost. As the thermoplastic resin, a thermoplastic resin soluble in an epoxy resin, organic particles such as rubber particles and thermoplastic resin particles, and the like can be blended.

エポキシ樹脂に可溶な熱可塑性樹脂としては、例えばポリビニルホルマールやポリビニルブチラールなどのポリビニルアセタール樹脂、ポリビニルアルコール、フェノキシ樹脂、ポリアミド、ポリイミド、ポリビニルピロリドン、ポリスルホンを挙げることができる。 Examples of the thermoplastic resin soluble in the epoxy resin include polyvinyl acetal resins such as polyvinyl formal and polyvinyl butyral, polyvinyl alcohol, phenoxy resin, polyamide, polyimide, polyvinylpyrrolidone, and polysulfone.

ゴム粒子としては、架橋ゴム粒子、および架橋ゴム粒子の表面に異種ポリマーをグラフト重合したコアシェルゴム粒子を挙げることができる。 Examples of the rubber particles include crosslinked rubber particles and core-shell rubber particles obtained by graft-polymerizing a dissimilar polymer on the surface of the crosslinked rubber particles.

本発明のエポキシ樹脂組成物を硬化させた硬化物の動的粘弾性評価により得られるゴム状態弾性率は10MPa以下であり、かつ該硬化物のガラス転移温度は95℃以上である。ゴム状態弾性率とガラス転移温度を該範囲とすることで、得られる繊維強化複合材料が、優れた耐熱性と引張強度利用率を示す。 The elastic modulus in the rubber state obtained by the dynamic viscoelasticity evaluation of the cured product obtained by curing the epoxy resin composition of the present invention is 10 MPa or less, and the glass transition temperature of the cured product is 95 ° C. or higher. By setting the elastic modulus in the rubber state and the glass transition temperature in the above ranges, the obtained fiber-reinforced composite material exhibits excellent heat resistance and tensile strength utilization rate.

なお、本発明において、繊維強化複合材料の耐熱性は、繊維強化複合材料のガラス転移温度で評価する。また、繊維強化複合材料の引張強度は、引張強度利用率により評価する。引張強度利用率は、繊維強化複合材料が、強化繊維の強度をどれだけ活用しているかの指標である。引張強度利用率が高い繊維強化複合材料は、同じ種類と量の強化繊維を用いた場合、より高い強度が得られる。 In the present invention, the heat resistance of the fiber-reinforced composite material is evaluated by the glass transition temperature of the fiber-reinforced composite material. Further, the tensile strength of the fiber-reinforced composite material is evaluated by the tensile strength utilization rate. The tensile strength utilization rate is an index of how much the fiber-reinforced composite material utilizes the strength of the reinforcing fiber. A fiber-reinforced composite material having a high tensile strength utilization rate can obtain higher strength when the same type and amount of reinforcing fibers are used.

本発明のエポキシ樹脂組成物を硬化させた硬化物の動的粘弾性評価により得られるゴム状態弾性率を10MPa以下とすることで、引張強度利用率に優れる、すなわち引張強度に優れる繊維強化複合材料が得られる。ここで、ゴム状態弾性率とは、架橋密度と相関がある指標であり、一般的に架橋密度が低いほど、ゴム状態弾性率も低くなる。引張強度利用率は、繊維強化複合材料の引張強度/(強化繊維のストランド強度×繊維体積含有率)×100で示され、この数値が高いことは強化繊維の性能をより高く引き出していることを表し、軽量化効果が大きいといえる。 A fiber-reinforced composite material having excellent tensile strength utilization rate, that is, excellent tensile strength, by setting the elastic modulus in a rubber state obtained by dynamic viscoelasticity evaluation of a cured product obtained by curing the epoxy resin composition of the present invention to 10 MPa or less. Is obtained. Here, the elastic modulus in the rubber state is an index that correlates with the crosslink density. Generally, the lower the crosslink density, the lower the elastic modulus in the rubber state. The tensile strength utilization rate is indicated by the tensile strength of the fiber-reinforced composite material / (strand strength of the reinforcing fiber x fiber volume content) x 100, and a high value indicates that the performance of the reinforcing fiber is brought out higher. It can be said that the weight reduction effect is great.

また、エポキシ樹脂組成物を硬化した硬化物のガラス転移温度を95℃以上とすることで、繊維強化複合材料に発生するゆがみや、変形が原因となる力学特性の低下を抑制でき、耐環境性に優れた繊維強化複合材料が得られる。本発明のエポキシ樹脂組成物を硬化する条件は特に規定されず、硬化剤の特性に応じて適宜選択される。 Further, by setting the glass transition temperature of the cured product obtained by curing the epoxy resin composition to 95 ° C. or higher, it is possible to suppress distortion and deterioration of mechanical properties caused by deformation of the fiber-reinforced composite material, and environmental resistance. Excellent fiber reinforced composite material can be obtained. The conditions for curing the epoxy resin composition of the present invention are not particularly specified, and are appropriately selected according to the characteristics of the curing agent.

ゴム状態弾性率とガラス転移温度は、いずれもエポキシ樹脂硬化物の架橋密度と関連する指標である。ゴム状態弾性率が高いと架橋密度が高くなり、ガラス転移温度が上昇する。一方、ゴム状態弾性率が低いと架橋密度が低くなり、ガラス転移温度が低下する。本発明では、ゴム状態弾性率が低い、すなわち架橋密度が低いほど繊維強化複合材料の引張強度が向上することを見出した。また、同時に、耐熱性が低下する問題も克服した。 The elastic modulus in the rubber state and the glass transition temperature are both indicators related to the crosslink density of the cured epoxy resin. When the elastic modulus in the rubber state is high, the crosslink density becomes high and the glass transition temperature rises. On the other hand, when the elastic modulus in the rubber state is low, the crosslink density is low and the glass transition temperature is lowered. In the present invention, it has been found that the lower the elastic modulus in the rubber state, that is, the lower the crosslink density, the higher the tensile strength of the fiber-reinforced composite material. At the same time, it also overcomes the problem of reduced heat resistance.

すなわち、一般に低いゴム状態弾性率と高いガラス転移温度はトレードオフの関係にあるが、本発明のエポキシ樹脂組成物は、このトレードオフを打破し、優れた耐熱性と引張強度を両立した繊維強化複合材料を与える、液状のエポキシ樹脂組成物である。 That is, in general, a low elastic modulus in a rubber state and a high glass transition temperature are in a trade-off relationship, but the epoxy resin composition of the present invention overcomes this trade-off and is fiber-reinforced with both excellent heat resistance and tensile strength. A liquid epoxy resin composition that provides a composite material.

本発明のエポキシ樹脂組成物が、耐熱性と引張強度利用率を両立できる理由、言い換えると耐熱性と低いゴム状態弾性率を両立できる理由は定かではないが、以下のように推測している。構成要素[B]の置換基部分、つまり式(I)中のRで表される部分の可撓性により、ゴム状態弾性率が低下すると同時に、構成要素[B]のRと構成要素[C]のシクロアルカンまたはシクロアルケン部分が干渉し、分子鎖の運動を制限するためと推測している。つまり、構成要素[B]および構成要素[C]の組み合わせにより硬化されたエポキシ樹脂硬化物は、低いゴム状態弾性率と優れた耐熱性を両立できる。さらに、該エポキシ樹脂組成物をマトリックス樹脂として用いることで、耐熱性と引張強度利用率に優れる繊維強化複合材料を得ることができる。 The reason why the epoxy resin composition of the present invention can achieve both heat resistance and tensile strength utilization rate, in other words, the reason why both heat resistance and low elastic modulus in the rubber state can be achieved is not clear, but it is presumed as follows. The flexibility of the substituent portion of the component [B], that is, the portion represented by R 1 in the formula (I) reduces the elastic modulus in the rubber state, and at the same time, R 1 of the component [B] and the component. It is speculated that the cycloalkane or cycloalkene moiety of [C] interferes and limits the movement of the molecular chain. That is, the epoxy resin cured product cured by the combination of the component [B] and the component [C] can achieve both a low elastic modulus in a rubber state and excellent heat resistance. Further, by using the epoxy resin composition as a matrix resin, a fiber-reinforced composite material having excellent heat resistance and tensile strength utilization rate can be obtained.

構成要素[A]が構成要素[a1]を含むことで、この効果はさらに大きくなる。 This effect is further enhanced by the inclusion of the component [A] with the component [a1].

エポキシ樹脂組成物の硬化物中で、構成要素[a1]のフルオレン環は、立体障害として構成要素[B]のRや構成要素[C]のシクロアルカンまたはシクロアルケン部分と干渉し、分子鎖の運動を制限する。その結果、共有結合に由来する架橋密度が低くとも、高い耐熱性を示す。また、構成要素[a1]は、固形であるため、エポキシ樹脂組成物の粘度上昇の要因となるため、通常低粘度樹脂が要求されるフィラメントワインディング法やプルトルージョン法での適用は困難である。しかし、本発明では、硬化剤として用いる構成要素[B]および構成要素[C]が非常に低粘度であるため、構成要素[a1]のような固形成分を含んでも十分に低粘度なエポキシ樹脂組成物を得ることができる。 In cured product of the epoxy resin composition, fluorene ring component [a1] interferes with the cycloalkane or cycloalkene moiety of R 1 and component elements as sterically hindered [B] [C], the molecular chain Restrict exercise. As a result, even if the crosslink density derived from the covalent bond is low, it exhibits high heat resistance. Further, since the component [a1] is solid, it causes an increase in the viscosity of the epoxy resin composition, so that it is difficult to apply it to the filament winding method or the pull-fusion method, which usually requires a low-viscosity resin. However, in the present invention, since the component [B] and the component [C] used as the curing agent have a very low viscosity, the epoxy resin having a sufficiently low viscosity even if it contains a solid component such as the component [a1]. The composition can be obtained.

本発明のエポキシ樹脂組成物の調製には、例えばプラネタリーミキサー、メカニカルスターラーといった機械を用いて混練しても良いし、ビーカーとスパチュラなどを用い、手で混ぜても良い。 The epoxy resin composition of the present invention may be kneaded using a machine such as a planetary mixer or a mechanical stirrer, or may be mixed by hand using a beaker and a spatula.

本発明の繊維強化複合材料は、本発明のエポキシ樹脂組成物の硬化物と強化繊維とからなる。本発明の繊維強化複合材料は、耐熱性と引張強度利用率を高いレベルで両立できるため好ましい。 The fiber-reinforced composite material of the present invention comprises a cured product of the epoxy resin composition of the present invention and reinforcing fibers. The fiber-reinforced composite material of the present invention is preferable because it can achieve both heat resistance and tensile strength utilization at a high level.

上記方法で調製された本発明のエポキシ樹脂組成物を、強化繊維と複合一体化した後、硬化させることにより、本発明のエポキシ樹脂組成物の硬化物をマトリックス樹脂として含む繊維強化複合材料を得ることができる。 The epoxy resin composition of the present invention prepared by the above method is compositely integrated with a reinforcing fiber and then cured to obtain a fiber-reinforced composite material containing a cured product of the epoxy resin composition of the present invention as a matrix resin. be able to.

本発明に用いられる強化繊維は特に限定されるものではなく、ガラス繊維、炭素繊維、アラミド繊維、ボロン繊維、アルミナ繊維、炭化ケイ素繊維などが用いられる。これらの繊維を2種以上混合して用いても構わない。この中で、軽量かつ高剛性な繊維強化複合材料が得られる炭素繊維を用いることが好ましい。 The reinforcing fiber used in the present invention is not particularly limited, and glass fiber, carbon fiber, aramid fiber, boron fiber, alumina fiber, silicon carbide fiber and the like are used. Two or more of these fibers may be mixed and used. Among these, it is preferable to use carbon fiber which can obtain a lightweight and highly rigid fiber-reinforced composite material.

本発明のエポキシ樹脂組成物は、フィラメントワインディング法、プルトルージョン法に好適に使用できる。フィラメントワインディング法は、マンドレルまたはライナーに、強化繊維に樹脂を付着させながら巻きつけ、硬化させて成形品を得る成形法である。プルトルージョン法は、強化繊維のロービングに樹脂を付着させ、金型を通過させながら樹脂を連続的に硬化させて成形品を得る成形法である。本発明のエポキシ樹脂組成物は、いずれの工法においても、調製後に樹脂槽に投入して用いることができる。 The epoxy resin composition of the present invention can be suitably used for the filament winding method and the plutrusion method. The filament winding method is a molding method in which a resin is wound around a mandrel or a liner while adhering a resin to the reinforcing fibers and cured to obtain a molded product. The plutorosion method is a molding method in which a resin is attached to the roving of reinforcing fibers and the resin is continuously cured while passing through a mold to obtain a molded product. The epoxy resin composition of the present invention can be put into a resin tank after preparation and used in any of the construction methods.

本発明のエポキシ樹脂組成物を用いた繊維強化複合材料は、圧力容器、プロペラシャフト、ドライブシャフト、電線ケーブルコア材、自動車、船舶および鉄道車両などの移動体の構造体、ケーブル用途に好ましく用いられる。なかでも、フィラメントワインディング法による圧力容器の製造に、好適に用いられる。 The fiber-reinforced composite material using the epoxy resin composition of the present invention is preferably used for pressure vessels, propeller shafts, drive shafts, electric wire cable core materials, structures of moving bodies such as automobiles, ships and railroad vehicles, and cable applications. .. Among them, it is preferably used for manufacturing a pressure vessel by a filament winding method.

本発明の成形品は、本発明の繊維強化複合材料からなる。本発明の圧力容器は、フィラメントワインディング法により好ましく製造される。フィラメントワインディング法は、ライナーに、強化繊維に熱硬化性樹脂組成物を付着させながら巻きつけた後、硬化させることで、ライナーと、ライナーを被覆する、熱硬化性樹脂組成物の硬化剤と強化繊維から成る繊維強化複合材料により構成される繊維強化複合材料層を備える成形品を得る成形法である。圧力容器の製造には、金属製やポリエチレンやポリアミドなどの樹脂製のライナーが用いられ、所望の素材を適宜選択できる。また、ライナー形状においても、所望の形状に合わせ適宜選択できる。 The molded article of the present invention comprises the fiber-reinforced composite material of the present invention. The pressure vessel of the present invention is preferably manufactured by the filament winding method. In the filament winding method, a thermosetting resin composition is wound around a liner while being attached to a reinforcing fiber, and then cured to coat the liner and the liner with a curing agent and a strengthening of the thermosetting resin composition. This is a molding method for obtaining a molded product including a fiber-reinforced composite material layer composed of a fiber-reinforced composite material composed of fibers. A metal liner or a resin liner such as polyethylene or polyamide is used for manufacturing the pressure vessel, and a desired material can be appropriately selected. Further, the liner shape can be appropriately selected according to the desired shape.

以下に実施例を示し、本発明をさらに具体的に説明するが、本発明はこれら実施例の記載に限定されるものではない。なお、実施例1、2、5、6、9および10はそれぞれ参考例1、2、3、4、5および6と読み替えるものとする。 Examples will be shown below and the present invention will be described in more detail, but the present invention is not limited to the description of these examples. In addition, Examples 1, 2, 5, 6, 9 and 10 shall be read as Reference Examples 1, 2, 3, 4, 5 and 6, respectively.

本実施例で用いる構成要素は以下の通りである。 The components used in this embodiment are as follows.

<使用した材料>
・構成要素[A]:芳香環を含む2官能以上のエポキシ樹脂
[A]−1 “jER(登録商標)”828(液状ビスフェノールA型エポキシ樹脂、三菱化学(株)製)
[A]−2 “jER(登録商標)”825(液状ビスフェノールA型エポキシ樹脂、三菱化学(株)製)
[A]−3 “jER(登録商標)”830(液状ビスフェノールF型エポキシ樹脂、三菱化学(株)製)
[A]−4 “エポトート(登録商標)”YDF2001(固形ビスフェノールF型エポキシ樹脂、新日鉄住金化学(株)製)
[A]−5 GAN(N,N’−ジグリシジルアニリン、日本化薬(株)製)
[A]−6 “スミエポキシ(登録商標)”ELM−434(N,N,N’,N’−テトラグリシジル−4,4’−ジアミノジフェニルメタン、住友化学(株)製)
[A]−7 “ARALDITE(登録商標)”MY721(N,N,N’,N’−テトラグリシジル−4,4’−ジアミノジフェニルメタン、ハンツマン・ジャパン(株)製)
[A]−8 “ARALDITE(登録商標)”MY0510(アミノフェノール型エポキシ樹脂、ハンツマン・ジャパン(株)製)
[A]−9 “ARALDITE(登録商標)”PY307−1(フェノールノボラック型エポキシ樹脂、ハンツマン・ジャパン(株)製)
[A]−10 “jER(登録商標)”YX4000H(ビフェニル型エポキシ、三菱化学(株)製)。
<Material used>
-Component [A]: Bifunctional or higher functional epoxy resin containing an aromatic ring [A] -1 "jER (registered trademark)" 828 (liquid bisphenol A type epoxy resin, manufactured by Mitsubishi Chemical Corporation)
[A] -2 "jER (registered trademark)" 825 (liquid bisphenol A type epoxy resin, manufactured by Mitsubishi Chemical Corporation)
[A] -3 "jER (registered trademark)" 830 (liquid bisphenol F type epoxy resin, manufactured by Mitsubishi Chemical Corporation)
[A] -4 "Epototo (registered trademark)" YDF2001 (solid bisphenol F type epoxy resin, manufactured by Nippon Steel & Sumikin Chemical Co., Ltd.)
[A] -5 GAN (N, N'-diglycidylaniline, manufactured by Nippon Kayaku Co., Ltd.)
[A] -6 "Sumiepoxy (registered trademark)" ELM-434 (N, N, N', N'-tetraglycidyl-4,4'-diaminodiphenylmethane, manufactured by Sumitomo Chemical Co., Ltd.)
[A] -7 "ARALDITE®" MY721 (N, N, N', N'-tetraglycidyl-4,4'-diaminodiphenylmethane, manufactured by Huntsman Japan Corporation)
[A] -8 "ARALDITE (registered trademark)" MY0510 (aminophenol type epoxy resin, manufactured by Huntsman Japan Corporation)
[A] -9 "ARALDITE (registered trademark)" PY307-1 (phenol novolac type epoxy resin, manufactured by Huntsman Japan Corporation)
[A] -10 "jER (registered trademark)" YX4000H (biphenyl type epoxy, manufactured by Mitsubishi Chemical Corporation).

(芳香環を含む2官能以上のエポキシ樹脂であり、かつフルオレン構造を有するエポキシ樹脂)
[a1]−1 “オグソール(登録商標)”PG−100(フルオレン型エポキシ樹脂、大阪ガスケミカル(株)製)
[a1]−2 “オグソール(登録商標)”EG−200(フルオレン型エポキシ樹脂、大阪ガスケミカル(株)製)。
(A bifunctional or higher functional epoxy resin containing an aromatic ring and an epoxy resin having a fluorene structure)
[A1] -1 "Ogsol (registered trademark)" PG-100 (fluorene type epoxy resin, manufactured by Osaka Gas Chemical Co., Ltd.)
[A1] -2 "Ogsol (registered trademark)" EG-200 (fluorene type epoxy resin, manufactured by Osaka Gas Chemical Co., Ltd.).

・構成要素[A]以外のエポキシ樹脂
[A’]−1 “セロキサイド(登録商標)”2021P(脂環式エポキシ樹脂、(株)ダイセル製)
[A’]−2 “エポトート(登録商標)”YH−300(脂肪族ポリグリシジルエーテル、新日鉄住金化学(株)製)。
-Epoxy resin other than the component [A] [A']-1 "Celoxide (registered trademark)" 2021P (alicyclic epoxy resin, manufactured by Daicel Corporation)
[A']-2 "Epototo (registered trademark)" YH-300 (aliphatic polyglycidyl ether, manufactured by Nippon Steel & Sumikin Chemical Co., Ltd.).

・構成要素[B]:
[B]−1 “リカシッド(登録商標)”DDSA(3−ドデセニル無水コハク酸、新日本理化(株)製)。
-Component [B]:
[B] -1 "Recasid (registered trademark)" DDSA (3-dodecenyl succinic anhydride, manufactured by Shin Nihon Rika Co., Ltd.).

・構成要素[C]:
[C]−1 HN2200(メチルテトラヒドロ無水フタル酸、日立化成(株)製)
[C]−2 “KAYAHARD(登録商標)”MCD(無水メチルナジック酸、日本化薬(株)製)。
-Component [C]:
[C] -1 HN2200 (Methyltetrahydrophthalic anhydride, manufactured by Hitachi Kasei Co., Ltd.)
[C] -2 "KAYAHARD (registered trademark)" MCD (methylnadic anhydride, manufactured by Nippon Kayaku Co., Ltd.).

・構成要素[B]・[C]以外のエポキシ硬化剤[D]
[D]−1 3,3’−ジアミノジフェニルスルホン(和歌山精化工業(株)製)。
-Epoxy curing agent [D] other than the components [B] and [C]
[D] -1 3,3'-diaminodiphenyl sulfone (manufactured by Wakayama Seika Kogyo Co., Ltd.).

・硬化促進剤[E]:
[E]−1 DY070(イミダゾール、ハンツマン・ジャパン(株)製)
[E]−2 “キュアゾール(登録商標)”1B2MZ(イミダゾール、四国化成工業(株)製)
[E]−4 “カオーライザー(登録商標)”No.20(N,N−ジメチルベンジルアミン、花王(株)製)
[E]−5 “U−CAT(登録商標)”SA102(DBU−オクチル酸塩、サンアプロ(株)製)。
-Curing accelerator [E]:
[E] -1 DY070 (imidazole, manufactured by Huntsman Japan Corporation)
[E] -2 "Curesol (registered trademark)" 1B2MZ (imidazole, manufactured by Shikoku Chemicals Corporation)
[E] -4 "Kao Riser (registered trademark)" No. 20 (N, N-dimethylbenzylamine, manufactured by Kao Corporation)
[E] -5 "U-CAT (registered trademark)" SA102 (DBU-octylate, manufactured by San-Apro Co., Ltd.).

・その他の成分[F]:
[F]−1 ビスフェノールS(小西化学(株)製)
[F]−2 Victrex100P(ポリエーテルスルホン、住友化学(株)製)
[F]−3 “テクポリマ(登録商標)”MBX−20(架橋PMMA微粒子、積水化成品工業(株)製)
[F]−4 “カネエース(登録商標)”MX−113(コアシェルポリマー33wt%配合マスターバッチ(液状ビスフェノールA型エポキシ樹脂を含む)、(株)カネカ製)。
・ Other ingredients [F]:
[F] -1 Bisphenol S (manufactured by Konishi Chemical Industry Co., Ltd.)
[F] -2 Victorex100P (polyester sulfone, manufactured by Sumitomo Chemical Co., Ltd.)
[F] -3 "Techpolima (registered trademark)" MBX-20 (crosslinked PMMA fine particles, manufactured by Sekisui Plastics Co., Ltd.)
[F] -4 "Kane Ace (registered trademark)" MX-113 (master batch containing 33 wt% core-shell polymer (including liquid bisphenol A type epoxy resin), manufactured by Kaneka Corporation).

・強化繊維
“トレカ(登録商標)”T700SC−12K−50C(引張強度:4.9GPa、東レ(株)製)。
-Reinforcing fiber "Trading Card (registered trademark)" T700SC-12K-50C (tensile strength: 4.9 GPa, manufactured by Toray Industries, Inc.).

<エポキシ樹脂組成物の調製方法>
ビーカー中に、構成要素[A]のエポキシ樹脂を投入し、80℃の温度まで昇温させ30分加熱混練を行った。その後、混練を続けたまま30℃以下の温度まで降温させ、構成要素[B]および[C]の酸無水物や硬化促進剤を加えて10分間撹拌させ、エポキシ樹脂組成物を得た。
<Preparation method of epoxy resin composition>
The epoxy resin of the component [A] was put into a beaker, the temperature was raised to 80 ° C., and heat kneading was performed for 30 minutes. Then, the temperature was lowered to 30 ° C. or lower while continuing the kneading, and the acid anhydrides and the curing accelerators of the components [B] and [C] were added and stirred for 10 minutes to obtain an epoxy resin composition.

各実施例および比較例の成分配合比について表1および2に示した。 Tables 1 and 2 show the component compounding ratios of each Example and Comparative Example.

<エポキシ樹脂組成物の粘度測定>
上記<エポキシ樹脂組成物の調製方法>に従い調製したエポキシ樹脂組成物の粘度を、JIS Z8803(2011)における「円すい−平板形回転粘度計による粘度測定方法」に従い、標準コーンローター(1°34’×R24)を装着したE型粘度計(東機産業(株)製、TVE−30H)を使用して、回転速度10回転/分で測定した。なお、エポキシ樹脂組成物を調製後、25℃に設定した装置に投入し、1分後の粘度を測定した。
<Viscosity measurement of epoxy resin composition>
The viscosity of the epoxy resin composition prepared according to the above <Method for preparing the epoxy resin composition> is adjusted to the standard cone rotor (1 ° 34') according to the "conical-viscosity measurement method using a flat plate type rotational viscometer" in JIS Z8803 (2011). Using an E-type viscometer (TVE-30H, manufactured by Toki Sangyo Co., Ltd.) equipped with × R24), the measurement was performed at a rotation speed of 10 rotations / minute. After preparing the epoxy resin composition, the epoxy resin composition was put into an apparatus set at 25 ° C., and the viscosity after 1 minute was measured.

<繊維強化複合材料の作製方法>
上記<エポキシ樹脂組成物の調製方法>に従い調製したエポキシ樹脂組成物を、一方向に引き揃えたシート状にした炭素繊維“トレカ(登録商標)”T700S−12K−50C(東レ(株)製、目付150g/m)に含浸させ、エポキシ樹脂含浸炭素繊維シートを得た。得られたシートを繊維方向が同じになるよう8枚重ねた後、金属製スペーサーにより厚み1mmになるよう設定した金型に挟み、その金型を100℃に加熱したプレス機で2時間加熱硬化を実施した。その後、プレス機から金型を取り出し、さらに150℃に加熱したオーブンで4時間加熱硬化し、繊維強化複合材料を得た。
<Method of manufacturing fiber reinforced composite material>
Carbon fiber "Treca (registered trademark)" T700S-12K-50C (manufactured by Toray Industries, Inc.) in which the epoxy resin composition prepared according to the above <preparation method of epoxy resin composition> is formed into a sheet in which the epoxy resin composition is aligned in one direction. A carbon fiber sheet impregnated with an epoxy resin was obtained by impregnating with a grain of 150 g / m 2). Eight of the obtained sheets were stacked so that the fiber directions were the same, sandwiched between dies set to a thickness of 1 mm with metal spacers, and the dies were heat-cured for 2 hours in a press machine heated to 100 ° C. Was carried out. Then, the die was taken out from the press machine and further heat-cured in an oven heated to 150 ° C. for 4 hours to obtain a fiber-reinforced composite material.

<樹脂硬化物の特性評価方法>
エポキシ樹脂組成物を真空中で脱泡した後、2mm厚の“テフロン(登録商標)”製スペーサーにより厚み2mmになるように設定したモールド中で、100℃の温度で2時間硬化させた後、さらに150℃の温度で4時間硬化させ、厚さ2mmの板状の樹脂硬化物を得た。得られた樹脂硬化物から、幅12.7mm、長さ45mmの試験片を切り出し、粘弾性測定装置(ARES、ティー・エイ・インスツルメント社製)を用い、ねじり振動周波数1.0Hz、昇温速度5.0℃/分の条件下で、30〜250℃の温度範囲でDMA測定を行い、ガラス転移温度およびゴム状態弾性率を読み取った。ガラス転移温度は、貯蔵弾性率G’曲線において、ガラス状態での接線と転移状態での接線との交点における温度とした。また、ゴム状態弾性率は、ガラス転移温度を上回る温度領域で、貯蔵弾性率が平坦になった領域での貯蔵弾性率であり、ここではガラス転移温度から40℃上の温度での貯蔵弾性率とした。
<Characteristic evaluation method for cured resin>
After defoaming the epoxy resin composition in vacuum, it was cured at a temperature of 100 ° C. for 2 hours in a mold set to a thickness of 2 mm with a 2 mm thick "Teflon (registered trademark)" spacer, and then cured. Further, it was cured at a temperature of 150 ° C. for 4 hours to obtain a plate-shaped resin cured product having a thickness of 2 mm. A test piece having a width of 12.7 mm and a length of 45 mm was cut out from the obtained cured resin product, and a viscoelasticity measuring device (ARES, manufactured by TA Instruments Co., Ltd.) was used to increase the torsional vibration frequency to 1.0 Hz. Under the condition of a temperature rate of 5.0 ° C./min, DMA measurement was performed in a temperature range of 30 to 250 ° C., and the glass transition temperature and the elastic modulus in the rubber state were read. The glass transition temperature was defined as the temperature at the intersection of the tangent in the glass state and the tangent in the transition state on the storage elastic modulus G'curve. The rubber state elastic modulus is the storage elastic modulus in the region where the storage elastic modulus is flat in the temperature region higher than the glass transition temperature, and here, the storage elastic modulus at a temperature 40 ° C. above the glass transition temperature. And said.

<繊維強化複合材料の引張強度測定>
上記<繊維強化複合材料の作製方法>に従い作製した繊維強化複合材料から、幅12.7mm、長さ229mmになるように切り出し、両端に1.2mm、長さ50mmのガラス繊維強化プラスチック製タブを接着した試験片を用い、ASTM D 3039に準拠して、インストロン万能試験機(インストロン社製)を用いてクロスヘッドスピード1.27mm/分で引張強度を測定した。サンプル数n=6で測定した値の平均値を引張強度とした。
<Measurement of tensile strength of fiber reinforced composite material>
From the fiber-reinforced composite material produced according to the above <Method for producing fiber-reinforced composite material>, cut out to a width of 12.7 mm and a length of 229 mm, and put 1.2 mm and 50 mm long glass fiber-reinforced plastic tabs on both ends. Using the adhered test piece, the tensile strength was measured at a crosshead speed of 1.27 mm / min using an Instron universal testing machine (manufactured by Instron) in accordance with ASTM D 3039. The average value of the values measured when the number of samples n = 6 was taken as the tensile strength.

引張強度利用率は、繊維強化複合材料の引張強度/(強化繊維のストランド強度×繊維体積含有率)×100により算出した。 The tensile strength utilization rate was calculated by the tensile strength of the fiber-reinforced composite material / (strand strength of the reinforcing fiber × fiber volume content) × 100.

なお、繊維体積含有率は、ASTM D 3171に準拠し、測定した値を用いた。 The fiber volume content was measured in accordance with ASTM D 3171.

<繊維強化複合材料のガラス転移温度測定>
上記<繊維強化複合材料の作製方法>に従い作製した繊維強化複合材料から、小片(5〜10mg)を採取し、JIS K7121(1987)に従い、中間点ガラス転移温度(Tmg)を測定した。測定には示差走査熱量計DSC Q2000(ティー・エイ・インスツルメント社製)を用い、窒素ガス雰囲気下においてModulatedモード、昇温速度5℃/分で測定した。
<Measurement of glass transition temperature of fiber reinforced composite material>
Small pieces (5 to 10 mg) were collected from the fiber-reinforced composite material prepared according to the above <Method for producing fiber-reinforced composite material>, and the intermediate point glass transition temperature (Tmg) was measured according to JIS K7121 (1987). A differential scanning calorimeter DSC Q2000 (manufactured by TA Instruments) was used for the measurement, and the measurement was performed in a modulated mode in a nitrogen gas atmosphere at a heating rate of 5 ° C./min.

(実施例1)
構成要素[A]として“jER(登録商標)”828を100質量部、構成要素[B]として“リカシッド(登録商標)”DDSAを18質量部、構成要素[C]としてHN2200を72質量部、硬化促進剤として“U−CAT(登録商標)”SA102を2質量部用い、上記<エポキシ樹脂組成物の調製方法>に従ってエポキシ樹脂組成物を調製した。
(Example 1)
100 parts by mass of "jER®" 828 as component [A], 18 parts by mass of "Epoxy" DDSA as component [B], 72 parts by mass of HN2200 as component [C], An epoxy resin composition was prepared according to the above <Method for preparing an epoxy resin composition> using 2 parts by mass of "U-CAT (registered trademark)" SA102 as a curing accelerator.

このエポキシ樹脂組成物を上記方法で硬化して硬化物を作製し、動的粘弾性評価を行ったところ、ガラス転移温度は129℃、ゴム状態弾性率は10.0MPaであり、耐熱性とゴム状態弾性率は良好であった。 This epoxy resin composition was cured by the above method to prepare a cured product, and a dynamic viscoelasticity evaluation was performed. As a result, the glass transition temperature was 129 ° C. and the elastic modulus in the rubber state was 10.0 MPa. The state elastic modulus was good.

得られたエポキシ樹脂組成物から、<繊維強化複合材料の作製方法>に従って繊維強化複合材料を作製し、繊維体積含有率が65%の繊維強化複合材料を得た。得られた繊維強化複合材料の引張強度を上記方法で測定し、引張強度利用率を算出したところ、75%であった。また、得られた繊維強化複合材料のガラス転移温度は、130℃であった。 From the obtained epoxy resin composition, a fiber-reinforced composite material was produced according to <Method for producing fiber-reinforced composite material> to obtain a fiber-reinforced composite material having a fiber volume content of 65%. The tensile strength of the obtained fiber-reinforced composite material was measured by the above method, and the tensile strength utilization rate was calculated to be 75%. The glass transition temperature of the obtained fiber-reinforced composite material was 130 ° C.

(実施例2〜10)
樹脂組成をそれぞれ表1に示したように変更した以外は、実施例1と同じ方法でエポキシ樹脂組成物、エポキシ樹脂硬化物、および繊維強化複合材料を作製した。評価結果は表1に示した。得られたエポキシ樹脂硬化物は、いずれも良好な耐熱性、ゴム状態弾性率を示した。得られた繊維強化複合材料の引張強度利用率および耐熱性も良好であった。
(Examples 2 to 10)
An epoxy resin composition, an epoxy resin cured product, and a fiber-reinforced composite material were prepared in the same manner as in Example 1 except that the resin compositions were changed as shown in Table 1. The evaluation results are shown in Table 1. All of the obtained cured epoxy resin products showed good heat resistance and elastic modulus in a rubber state. The tensile strength utilization rate and heat resistance of the obtained fiber-reinforced composite material were also good.

(比較例1)
構成要素[B]を添加しなかった以外は、実施例1と同じ方法でエポキシ樹脂組成物および樹脂硬化物を作製した。樹脂組成および評価結果は表2に示した。ガラス転移温度は134℃と良好であったが、ゴム状態弾性率が12.1MPaと高い値を示した。その結果、繊維強化複合材料の引張強度利用率は71%と、不十分であった。
(Comparative Example 1)
An epoxy resin composition and a cured resin product were prepared in the same manner as in Example 1 except that the component [B] was not added. The resin composition and evaluation results are shown in Table 2. The glass transition temperature was as good as 134 ° C., but the elastic modulus in the rubber state was as high as 12.1 MPa. As a result, the tensile strength utilization rate of the fiber-reinforced composite material was 71%, which was insufficient.

(比較例2)
構成要素[C]を添加しなかった以外は、実施例1と同じ方法でエポキシ樹脂組成物および樹脂硬化物を作製した。樹脂組成および評価結果は表2に示した。ゴム状態弾性率は4.0MPaと良好であったが、ガラス転移温度が73℃であった。その結果、繊維強化複合材料のガラス転移温度が75℃と、耐熱性が不十分であった。
(Comparative Example 2)
An epoxy resin composition and a cured resin product were prepared in the same manner as in Example 1 except that the component [C] was not added. The resin composition and evaluation results are shown in Table 2. The elastic modulus in the rubber state was as good as 4.0 MPa, but the glass transition temperature was 73 ° C. As a result, the glass transition temperature of the fiber-reinforced composite material was 75 ° C., and the heat resistance was insufficient.

(比較例3)
特許文献1(特開2012−56980号公報)の実施例4に記載の方法に従い、エポキシ樹脂組成物を作製した。得られた樹脂硬化物のガラス転移温度は128℃と良好であったが、ゴム状態弾性率が13.2MPaと高い値を示した。(表2)その結果、繊維強化複合材料の引張強度利用率は70%と、不十分であった。
(Comparative Example 3)
An epoxy resin composition was prepared according to the method described in Example 4 of Patent Document 1 (Japanese Unexamined Patent Publication No. 2012-56980). The glass transition temperature of the obtained cured resin product was as good as 128 ° C., but the elastic modulus in the rubber state was as high as 13.2 MPa. (Table 2) As a result, the tensile strength utilization rate of the fiber-reinforced composite material was 70%, which was insufficient.

(比較例4)
特許文献2(特開2015−3938号公報)の実施例7に記載の方法に従い、エポキシ樹脂組成物を作製した。得られた樹脂硬化物のガラス転移温度は184℃と高かったが、ゴム状態弾性率が18.8MPaと非常に高い値を示した。(表2)その結果、繊維強化複合材料の引張強度利用率は65%と、不十分であった。
(Comparative Example 4)
An epoxy resin composition was prepared according to the method described in Example 7 of Patent Document 2 (Japanese Unexamined Patent Publication No. 2015-3938). The glass transition temperature of the obtained cured resin product was as high as 184 ° C., but the elastic modulus in the rubber state was as high as 18.8 MPa. (Table 2) As a result, the tensile strength utilization rate of the fiber-reinforced composite material was 65%, which was insufficient.

(比較例5)
特許文献3(特開2013−1711号公報)の実施例2に記載の方法に従い、エポキシ樹脂組成物を作製した。得られた樹脂硬化物のガラス転移温度は121℃と良好であったが、ゴム状態弾性率が13.0MPaと高い値を示した。(表2)その結果、繊維強化複合材料の引張強度利用率は70%と、不十分であった。
(Comparative Example 5)
An epoxy resin composition was prepared according to the method described in Example 2 of Patent Document 3 (Japanese Unexamined Patent Publication No. 2013-1711). The glass transition temperature of the obtained cured resin product was as good as 121 ° C., but the elastic modulus in the rubber state was as high as 13.0 MPa. (Table 2) As a result, the tensile strength utilization rate of the fiber-reinforced composite material was 70%, which was insufficient.

(比較例6)
特許文献4(特開2001−323046号公報)の実施例6に記載の方法に従い、エポキシ樹脂組成物を作製した。これを硬化させて得られた樹脂硬化物のガラス転移温度は173℃と高かったが、ゴム状態弾性率は18.0MPaと非常に高い値を示した(表2)。上記<繊維強化複合材料の作製方法>では樹脂が繊維に含浸せず、エポキシ樹脂含浸炭素繊維シートが作製できなかった。そこで、エポキシ樹脂組成物をアセトンに溶解し、液状とせしめた後に炭素繊維に含浸させ、その後減圧乾燥してアセトンを留去することで、エポキシ樹脂含浸炭素繊維シートを作製した。以降は上記<繊維強化複合材料の作製方法>と同様にして、繊維強化複合材料を得た。得られた繊維強化複合材料の引張強度利用率は63%と、不十分であった。
(Comparative Example 6)
An epoxy resin composition was prepared according to the method described in Example 6 of Patent Document 4 (Japanese Unexamined Patent Publication No. 2001-323406). The glass transition temperature of the cured resin product obtained by curing this was as high as 173 ° C., but the elastic modulus in the rubber state was as high as 18.0 MPa (Table 2). In the above <method for producing a fiber-reinforced composite material>, the resin did not impregnate the fibers, and the epoxy resin-impregnated carbon fiber sheet could not be produced. Therefore, the epoxy resin composition was dissolved in acetone, liquefied, impregnated with carbon fibers, and then dried under reduced pressure to distill off acetone to prepare an epoxy resin-impregnated carbon fiber sheet. After that, a fiber-reinforced composite material was obtained in the same manner as in the above <Method for producing a fiber-reinforced composite material>. The tensile strength utilization rate of the obtained fiber-reinforced composite material was 63%, which was insufficient.

Figure 0006961912
Figure 0006961912

Figure 0006961912
Figure 0006961912

本発明のエポキシ樹脂組成物は、耐熱性と引張強度利用率を高いレベルで両立する繊維強化複合材料を作製するために好適に用いられる。また、本発明のエポキシ樹脂組成物および繊維強化複合材料は、スポーツ用途、一般産業用途および航空宇宙用途に好ましく用いられる。 The epoxy resin composition of the present invention is suitably used for producing a fiber-reinforced composite material having both heat resistance and tensile strength utilization rate at a high level. Further, the epoxy resin composition and the fiber-reinforced composite material of the present invention are preferably used for sports applications, general industrial applications and aerospace applications.

Claims (6)

少なくとも次の構成要素[A]〜[C]を含むエポキシ樹脂組成物であって、構成要素[A]は、構成要素[a1]として、フルオレン構造を有する2官能以上のエポキシ樹脂を含み、該エポキシ樹脂組成物を硬化させた硬化物の動的粘弾性評価におけるゴム状態弾性率が10MPa以下であり、かつ該硬化物のガラス転移温度が95℃以上であることを特徴とする、エポキシ樹脂組成物。
[A]芳香環を含む2官能以上のエポキシ樹脂
[B]次の一般式(I)で表される酸無水物
Figure 0006961912
(Rは、炭素数が6〜16の直鎖または分岐のアルキル基、炭素数が6〜16の直鎖または分岐のアルケニル基、炭素数が6〜16の直鎖または分岐のアルキニル基のいずれかを示す。)
[C]テトラヒドロ無水フタル酸、メチルテトラヒドロ無水フタル酸、無水メチルナジック酸、ヘキサヒドロ無水フタル酸、メチルヘキサヒドロ無水フタル酸からなる群から選ばれる少なくとも一種の酸無水物
An epoxy resin composition containing at least the following components [A] to [C], wherein the component [A] contains a bifunctional or higher functional epoxy resin having a fluorene structure as the component [a1]. The epoxy resin composition is characterized in that the rubber state elastic coefficient in the dynamic viscoelasticity evaluation of the cured product obtained by curing the epoxy resin composition is 10 MPa or less, and the glass transition temperature of the cured product is 95 ° C. or higher. thing.
[A] Bifunctional or higher functional epoxy resin containing an aromatic ring [B] Acid anhydride represented by the following general formula (I)
Figure 0006961912
(R 1 is a linear or branched alkyl group having 6 to 16 carbon atoms, a linear or branched alkenyl group having 6 to 16 carbon atoms, or a linear or branched alkynyl group having 6 to 16 carbon atoms. Indicates either.)
[C] At least one acid anhydride selected from the group consisting of tetrahydrophthalic anhydride, methyltetrahydrophthalic anhydride, methylnadic anhydride, hexahydrophthalic anhydride, and methylhexahydrophthalic anhydride.
構成要素[B]の質量部の割合が、構成要素[B]と[C]の質量部の合計に対して0.3〜0.6の範囲にある、請求項1に記載のエポキシ樹脂組成物。 The epoxy resin composition according to claim 1, wherein the proportion of parts by mass of the component [B] is in the range of 0.3 to 0.6 with respect to the total of the parts by mass of the components [B] and [C]. thing. 25℃における粘度が2,000mPa・s以下であることを特徴とする請求項1または2に記載のエポキシ樹脂組成物。 The epoxy resin composition according to claim 1 or 2, wherein the viscosity at 25 ° C. is 2,000 mPa · s or less. 請求項1〜3のいずれかに記載のエポキシ樹脂組成物の硬化物と強化繊維とからなる繊維強化複合材料。 A fiber-reinforced composite material comprising a cured product of the epoxy resin composition according to any one of claims 1 to 3 and reinforcing fibers. 請求項4に記載の繊維強化複合材料からなる成形品。 A molded product made of the fiber-reinforced composite material according to claim 4. 請求項4に記載の繊維強化複合材料からなる圧力容器。
A pressure vessel made of the fiber-reinforced composite material according to claim 4.
JP2016124183A 2015-06-25 2016-06-23 Epoxy resin compositions, fiber reinforced composites, moldings and pressure vessels Active JP6961912B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015127392 2015-06-25
JP2015127392 2015-06-25

Publications (2)

Publication Number Publication Date
JP2017008317A JP2017008317A (en) 2017-01-12
JP6961912B2 true JP6961912B2 (en) 2021-11-05

Family

ID=57762726

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016124183A Active JP6961912B2 (en) 2015-06-25 2016-06-23 Epoxy resin compositions, fiber reinforced composites, moldings and pressure vessels

Country Status (1)

Country Link
JP (1) JP6961912B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6859136B2 (en) * 2017-03-03 2021-04-14 日東電工株式会社 A method for manufacturing a photosensitive epoxy resin composition for forming an optical waveguide core, a photosensitive film for forming an optical waveguide core, an optical waveguide, a photoelectric mixed substrate, and an optical waveguide.
CN111655766B (en) 2018-01-31 2022-11-22 东丽株式会社 Fiber-reinforced molded article and method for producing same

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5487799A (en) * 1977-12-26 1979-07-12 Hitachi Chem Co Ltd Epoxy resin composition
JPH0520918A (en) * 1991-07-14 1993-01-29 Sony Chem Corp Conductive paste
JPH1041435A (en) * 1996-07-18 1998-02-13 Shinko Electric Ind Co Ltd Structure-manufacturing wiring body substrate and manufacture thereof
JPH11279262A (en) * 1998-03-30 1999-10-12 Hitachi Chem Co Ltd Production of epoxy resin composition and electrical equipment
JP5571730B2 (en) * 2012-04-11 2014-08-13 パナソニック株式会社 Thermosetting resin composition and semiconductor device
US9080007B2 (en) * 2013-02-28 2015-07-14 Air Products And Chemicals, Inc. Anhydride accelerators for epoxy resin systems
JP6790492B2 (en) * 2015-06-25 2020-11-25 東レ株式会社 Epoxy resin compositions, fiber reinforced composites, moldings and pressure vessels
CN111154072B (en) * 2015-06-25 2022-09-30 东丽株式会社 Epoxy resin composition, fiber-reinforced composite material, molded article, and pressure vessel
JP6812672B2 (en) * 2015-06-25 2021-01-13 東レ株式会社 Epoxy resin compositions, fiber reinforced composites, moldings and pressure vessels

Also Published As

Publication number Publication date
JP2017008317A (en) 2017-01-12

Similar Documents

Publication Publication Date Title
JP6812671B2 (en) Fiber reinforced composites, moldings and pressure vessels
JP6812672B2 (en) Epoxy resin compositions, fiber reinforced composites, moldings and pressure vessels
JP6790492B2 (en) Epoxy resin compositions, fiber reinforced composites, moldings and pressure vessels
KR102374995B1 (en) Epoxy resin composition and fiber-reinforced composite material
JP7135270B2 (en) Epoxy resin composition, fiber reinforced composite material and molding
WO2017110919A1 (en) Epoxy resin composition, fiber-reinforced composite material, molded article, and pressure vessel
JP7135271B2 (en) Epoxy resin compositions, fiber reinforced composites, moldings and pressure vessels
JP7139572B2 (en) Epoxy resin compositions, fiber reinforced composites, moldings and pressure vessels
JP6961912B2 (en) Epoxy resin compositions, fiber reinforced composites, moldings and pressure vessels
TW202000786A (en) Epoxy resin composition, prepreg, and fiber-reinforced composite material
KR20230154376A (en) Epoxy Resin Composition for Tow Prepreg and Tow Prepreg Prepared Therefrom
JP2019218540A (en) Epoxy resin composition, prepreg, and fiber reinforced composite material
JP2019218541A (en) Epoxy resin composition, prepreg, and fiber reinforced composite material
JP2020204026A (en) Epoxy resin composition, prepreg and fiber-reinforced composite material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190619

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200629

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200721

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200909

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210302

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210412

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210914

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210927

R151 Written notification of patent or utility model registration

Ref document number: 6961912

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151