WO2018070537A1 - Hardening composition, hardened substance and method for manufacturing same, layered sheet, optical member, lenticular sheet, and three-dimensional structure - Google Patents

Hardening composition, hardened substance and method for manufacturing same, layered sheet, optical member, lenticular sheet, and three-dimensional structure Download PDF

Info

Publication number
WO2018070537A1
WO2018070537A1 PCT/JP2017/037272 JP2017037272W WO2018070537A1 WO 2018070537 A1 WO2018070537 A1 WO 2018070537A1 JP 2017037272 W JP2017037272 W JP 2017037272W WO 2018070537 A1 WO2018070537 A1 WO 2018070537A1
Authority
WO
WIPO (PCT)
Prior art keywords
curable composition
meth
acrylate
mass
cured product
Prior art date
Application number
PCT/JP2017/037272
Other languages
French (fr)
Japanese (ja)
Inventor
橋本 斉和
直之 師岡
貴康 永井
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Priority to JP2018545086A priority Critical patent/JP6755326B2/en
Publication of WO2018070537A1 publication Critical patent/WO2018070537A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F226/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a single or double bond to nitrogen or by a heterocyclic ring containing nitrogen
    • C08F226/06Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a single or double bond to nitrogen or by a heterocyclic ring containing nitrogen by a heterocyclic ring containing nitrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F290/00Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups
    • C08F290/02Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups on to polymers modified by introduction of unsaturated end groups
    • C08F290/06Polymers provided for in subclass C08G
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/04Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of organic materials, e.g. plastics
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • G02B3/02Simple or compound lenses with non-spherical faces
    • G02B3/06Simple or compound lenses with non-spherical faces with cylindrical or toric faces

Definitions

  • the present disclosure relates to a curable composition, a cured product and a manufacturing method thereof, a laminated sheet, an optical member, a lenticular sheet, and a three-dimensional structure.
  • a curable composition contains a polymerizable resin and an initiator, is cured by causing a polymerization reaction by heat or light, and is widely used in various applications.
  • curing a curable composition is utilized widely, such as an optical member, a gas barrier film, a protective film, an optical filter, an antireflection film.
  • the cured product obtained by curing the curable composition is used for various members such as an antireflection film, a transparent pixel, a transparent insulating film, and a planarization film.
  • the optical structure of the optical member is not limited to a flat surface shape, for example, and is used for a brightness enhancement lens and a diffusion lens of a backlight for liquid crystal, and a screen of a video projection television.
  • Examples include Fresnel lenses and micro lenses.
  • a desired geometrical optical performance is obtained mainly by forming a fine structure with a resin material.
  • a lenticular sheet using a lenticular lens in which convex lenses having a semi-cylindrical surface are arranged in parallel is known as a medium for displaying different images depending on viewing angles.
  • an image sequence group (lenticular image) in which a plurality of interlaced images are combined is arranged on the back side of the lenticular lens (the surface opposite to the semi-cylindrical surface of the convex lens).
  • the row group is observed through a lenticular lens, one or more images in the image row group can be displayed depending on the viewing angle. Therefore, it is expected to be used in various commercial applications including optical materials and optical screens.
  • the applications proposed heretofore are mostly used in a two-dimensional form such as a sheet or a film, and are not often applied to a three-dimensional form formed into a three-dimensional shape.
  • Examples of conventional curable compositions include the compositions described in Patent Documents 1 to 6.
  • a cured product or a laminated sheet having the cured product is prepared using a conventionally proposed curable composition and further three-dimensionally molded by vacuum molding or the like, the three-dimensional formability of the cured product is reduced. It is not sufficient, and the cured product may be cracked or three-dimensionally molded or the cured product itself may be damaged.
  • the problem to be solved by one embodiment of the present invention is to provide a curable composition that is excellent in the three-dimensional moldability and wear resistance of the resulting cured product.
  • the problem to be solved by another embodiment of the present invention is to provide a cured product excellent in three-dimensional formability and wear resistance and a method for producing the same.
  • Still another embodiment of the present invention is to provide a laminated sheet, an optical member, a lenticular sheet, and a three-dimensional structure having a cured product of the curable composition.
  • Means for solving the above problems include the following aspects. ⁇ 1> Curing elongation at 100 ° C. of the obtained cured product is 6% or more and 80% or less, and a molecular weight between crosslinking points of the obtained cured product is 20 g / mol or more and 2,000 g / mol or less. Composition. ⁇ 2> The curable composition according to the above ⁇ 1>, wherein the obtained cured product has a molecular weight distribution between crosslinking points of 1% or more and 30% or less. ⁇ 3> The curable composition according to the above ⁇ 1> or ⁇ 2>, comprising a polyfunctional (meth) acrylate compound having a ring structure and an N-vinyl compound.
  • ⁇ 4> Curable composition as described in said ⁇ 3> whose content of the polyfunctional (meth) acrylate compound which has the said ring structure is 1 mass% or more and 75 mass% or more with respect to the total mass of a curable composition. object.
  • ⁇ 5> The curable composition according to the above ⁇ 3> or ⁇ 4>, wherein the content of the N-vinyl compound is 8% by mass to 60% by mass with respect to the total mass of the curable composition.
  • ⁇ 6> The method according to any one of ⁇ 3> to ⁇ 5>, wherein the N-vinyl compound is at least one compound selected from the group consisting of N-vinylpyrrolidone and N-vinylcaprolactam. Curable composition.
  • ⁇ 7> The curable composition according to any one of ⁇ 1> to ⁇ 6>, which contains a monofunctional (meth) acrylate compound.
  • ⁇ 8> The curable composition according to ⁇ 7>, wherein the content of the monofunctional (meth) acrylate compound is 1% by mass to 80% by mass with respect to the total mass of the curable composition.
  • ⁇ 9> The curable composition according to any one of the above ⁇ 1> to ⁇ 8>, comprising a photopolymerization initiator.
  • urethane (meth) acrylate compound is not contained or the content of the urethane (meth) acrylate compound is more than 0% by mass and less than 4% by mass with respect to the total mass of the curable composition ⁇
  • ⁇ 11> A step of preparing the curable composition according to any one of ⁇ 1> to ⁇ 10> above, and a temperature unevenness in the range of 0.5 ° C. or more and 10 ° C. or less of the curable composition.
  • cured material including the process hardened
  • ⁇ 12> A laminated sheet having a cured product of the curable composition according to any one of ⁇ 1> to ⁇ 10>.
  • ⁇ 13> An optical member having a cured product of the curable composition according to any one of ⁇ 1> to ⁇ 10>.
  • ⁇ 14> A lenticular sheet having a cured product of the curable composition according to any one of the above items ⁇ 1> to ⁇ 10>.
  • ⁇ 15> A three-dimensional structure which is a three-dimensional molded product of the laminated sheet according to ⁇ 12>.
  • ⁇ 16> A cured product having a breaking elongation at 100 ° C.
  • the present invention it is possible to provide a curable composition excellent in the three-dimensional moldability and wear resistance of the obtained cured product. Moreover, according to other embodiment of this invention, the hardened
  • xx to yy represents a numerical range including xx and yy.
  • (meth) acryl is a term used in a concept including both acryl and methacryl
  • (meth) acryloyl” is a term used as a concept including both acryloyl and methacryloyl. It is.
  • the term “process” in this specification is not limited to an independent process, and even if it cannot be clearly distinguished from other processes, the term is used as long as the intended purpose of the process is achieved. included.
  • hydrocarbon groups such as an alkyl group, an aryl group, an alkylene group, and an arylene group in the present disclosure may have a branch or a ring structure.
  • “mass%” and “wt%” are synonymous, and “part by mass” and “part by weight” are synonymous.
  • a combination of two or more preferred embodiments is a more preferred embodiment.
  • the weight average molecular weight (Mw) and number average molecular weight (Mn) in the present disclosure use columns of TSKgel GMHxL, TSKgel G4000HxL, and TSKgel G2000HxL (both trade names manufactured by Tosoh Corporation) unless otherwise specified.
  • the molecular weight was detected by a gel permeation chromatography (GPC) analyzer using a solvent THF (tetrahydrofuran) and a differential refractometer and converted using polystyrene as a standard substance.
  • GPC gel permeation chromatography
  • the obtained cured product has a breaking elongation at 100 ° C. of 6% or more and 80% or less, and the obtained cured product has a molecular weight between crosslinking points of 20 g / mol or more and 2,000 g. / Mol or less.
  • the curable composition concerning this indication is used suitably as a curable composition for optical member formation, and is more suitably used as a curable composition for lenticular sheet (especially lenticular lens in a lenticular sheet) formation.
  • the resulting cured product is excellent in three-dimensional formability and wear resistance.
  • the strength at 100 ° C. of the obtained cured product is 6% or more and 80% or less, so that the strength of the cured product is increased even when the surface temperature of the cured product is increased by friction.
  • crosslinking points shows the magnitude
  • non-crosslinking molecules for example, monofunctional (meth) acrylate compounds
  • the network By curing, it is presumed that deformation in the obtained cured product is promoted and three-dimensional moldability is improved.
  • the molecular weight between cross-linking points of the obtained cured product is 20 g / mol or more and 2,000 g / mol or less
  • the crosslinking density in the cured product is appropriate, and the balance between flexibility and strength is excellent and obtained. It is estimated that the three-dimensional formability and wear resistance of the cured product can be compatible.
  • the elongation at break of the obtained cured product at 100 ° C. is 6% or more and 80% or less, and 15% from the viewpoint of the three-dimensional moldability and wear resistance of the obtained cured product. It is preferably 70% or less and more preferably 20% or more and 60% or less.
  • the elongation at break in the present disclosure is measured by the following method.
  • the curable composition is sandwiched between two glass plates that have been subjected to a hydrophobic treatment, and heated under the following conditions until ultraviolet (UV) irradiation or thermosetting,
  • the resin cured film (single film) having a film thickness of 50 ⁇ m is prepared by peeling from the plate.
  • the UV irradiation is performed using an ultraviolet (UV) irradiation apparatus (EXECURE 3000, manufactured by HOYA CANDEO OPTRONICS Co., Ltd.) until it is cured under the condition of a UV irradiation amount of 1.0 J / cm 2 .
  • UV ultraviolet
  • a cured resin film (single film) is punched into a size of 50 mm length x 10 mm width to prepare a sample piece, and a tensile test is performed using TENSILON RTC-1225A (manufactured by A & D) under the following conditions.
  • TENSILON RTC-1225A manufactured by A & D
  • Elongation at break (%) 100 ⁇ (length broken by stretching ⁇ distance between chucks) / (distance between chucks) -conditions- ⁇ Distance between chucks: 30mm -Sample piece temperature: 100 ° C ⁇
  • Tensile speed 1 mm / sec
  • the cured product is processed to a size of 50 mm length ⁇ 10 mm width, a sample piece is produced, and the breaking elongation at 100 ° C. is measured by the same method as described above. To do. In this measurement, there is no influence on the elongation at break within the preferable thickness range of the cured film in the present disclosure described below.
  • the thickness of the cured film obtained by curing the curable composition according to the present disclosure into a film shape is preferably 10 ⁇ m to 100 ⁇ m, more preferably 15 ⁇ m to 80 ⁇ m, and still more preferably 20 ⁇ m to 60 ⁇ m. Within the above range, the handleability is excellent and the moldability is excellent.
  • the curable composition in the present disclosure has a molecular weight between cross-linking points of the obtained cured product of 20 g / mol or more and 2,000 g / mol or less. From the viewpoint of the three-dimensional moldability and wear resistance of the obtained cured product, 50 g / Mol to 1,500 g / mol, more preferably 100 g / mol to 1,200 g / mol.
  • the molecular weight between crosslinking points in the present disclosure is measured by the following method.
  • the same sample piece used for the measurement of the elongation at break is prepared, the temperature is raised to the temperature of the rubber region (250 ° C.), and DMA (Dynamic Mechanical Analyzer: Rheogel-E4000HP manufactured by UBM) is used.
  • the storage elastic modulus (E ′) is determined by applying a strain of 0.01% at 10 Hz.
  • the molecular weight (Mc) between crosslinking points is determined using the following formula.
  • Mc 3 ⁇ ⁇ ⁇ R ⁇ T / E ′
  • Mc g / mol
  • ⁇ (density) g / cm 3
  • R (gas constant) J / (mol ⁇ K)
  • T (measured temperature) K
  • E ′ Pa
  • the distribution of molecular weight between crosslink points of the cured product obtained is preferably 1% or more and 30% or less, more preferably 2% or more and 25% or less. % To 20% is more preferable.
  • the distribution is 1% or more, the three-dimensional moldability of the resulting cured product is excellent, and when the distribution is 30% or less, the wear resistance of the resulting cured product is excellent.
  • the distribution of molecular weight between cross-linking points is measured by the following method.
  • the molecular weight between the crosslinking points is measured for 10 sample pieces used for the measurement of the molecular weight between the crosslinking points, and the difference between the maximum value and the minimum value in each value of the molecular weight between the crosslinking points measured with 10 sample pieces. Is divided by the average value, and the value expressed as a percentage is defined as the distribution of molecular weight between cross-linking points.
  • the curable composition in the present disclosure preferably has a glass transition temperature (Tg) of the obtained cured product exceeding 90 ° C. from the viewpoint of the three-dimensional moldability and wear resistance of the obtained cured product, and 95 ° C.
  • the temperature is more preferably 200 ° C. or lower and even more preferably 100 ° C. or higher and 180 ° C. or lower.
  • the glass transition temperature (Tg) of the cured product or resin in the present disclosure is obtained from the measured main maximum peak using a differential scanning calorimeter (Perkin Elmer, Inc .: DSC-7) according to ASTM D3418-8. be able to.
  • the temperature correction of the detection part of this device uses the melting point of indium and zinc, and the correction of heat uses the heat of fusion of indium.
  • an aluminum pan is used, and an empty pan is set as a control.
  • the temperature is raised at a rate of 10 ° C./min, held at 200 ° C. for 5 minutes, cooled from 200 ° C. to 20 ° C. at ⁇ 10 ° C./min using liquid nitrogen, held at 20 ° C. for 5 minutes, and again 20
  • Tg The onset temperature analyzed from the endothermic curve during the second temperature increase obtained by increasing the temperature from 10 ° C. to 200 ° C./min was defined as Tg.
  • Such a cured film is preferably formed and used on a base material.
  • a flat film is formed on the base material without molding, it can be used as a hard coat film.
  • the cured product according to the present disclosure obtained by curing the curable composition according to the present disclosure is excellent in extensibility, it is also preferable that the flat film is three-dimensionally molded.
  • shapes such as an unevenness
  • the saw blade shape as shown in FIG. 4A of 2015/102100 when molded into a semi-cylindrical shape, it can be used as a lenticular lens, when shaped into a triangular prism, it can be used as a prism sheet or a brightness enhancement film, and when molded into a hemispherical shape, it can be used as a microlens sheet.
  • the saw blade shape as shown in FIG. 4A of 2015/102100 is formed concentrically, it can be used as a prism sheet.
  • the curable composition according to the present disclosure preferably contains a polymerizable compound.
  • a polymerizable compound an ethylenically unsaturated compound is preferable.
  • Preferred examples of the ethylenically unsaturated compound include polyfunctional (meth) acrylate compounds having a ring structure and N-vinyl compounds.
  • the curable composition according to the present disclosure may contain a polyfunctional (meth) acrylate compound having a ring structure and an N-vinyl compound from the viewpoint of the three-dimensional moldability and wear resistance of the resulting cured product. preferable.
  • the curable composition which concerns on this indication contains the polyfunctional (meth) acrylate compound which has a ring structure from a viewpoint of the three-dimensional moldability and abrasion resistance of the hardened
  • the ring structure is not particularly limited, but may be an aliphatic hydrocarbon ring structure that may have some heteroatoms as ring members, and an aliphatic that may have some heteroatoms as ring members.
  • a condensed ring structure in which two or more aromatic hydrocarbon rings are condensed is preferred.
  • the aliphatic hydrocarbon ring is preferably a 5-membered ring or a 6-membered ring.
  • the hetero atom examples include a nitrogen atom, an oxygen atom, and a sulfur atom, and a nitrogen atom is particularly preferable.
  • the ring structure is at least selected from the group consisting of an isocyanuric ring structure, a tricyclodecane ring structure, a triazine ring, and a cyclohexane ring structure from the viewpoint of the three-dimensional moldability and wear resistance of the resulting cured product.
  • One ring structure is preferable, an isocyanuric ring structure or a tricyclodecane ring structure is more preferable, and an isocyanuric ring structure is particularly preferable.
  • the polyfunctional (meth) acrylate compound which has a ring structure in this indication does not contain urethane bonds other than an isocyanuric ring structure.
  • the polyfunctional (meth) acrylate compound having the ring structure is not particularly limited as long as it is bifunctional or higher, but is trifunctional to hexafunctional from the viewpoint of three-dimensional moldability and wear resistance of the obtained cured product. Is preferable, trifunctional or tetrafunctional is more preferable, and trifunctional is particularly preferable.
  • polyfunctional (meth) acrylate compound having the ring structure examples include tricyclodecane dimethanol di (meth) acrylate, di (meth) acryloxyalkylated isocyanurate, isocyanuric acid ethylene oxide (hereinafter referred to as ethylene oxide). Also referred to as “EO”.) Modified tri (meth) acrylate, isocyanuric acid ethylene oxide modified di (meth) acrylate, and the like. Among these, isocyanuric acid ethylene oxide-modified tri (meth) acrylate is particularly preferable.
  • the molecular weight of the polyfunctional (meth) acrylate compound having the ring structure is preferably 200 or more and 1,500 or less.
  • the curable composition concerning this indication may contain the polyfunctional (meth) acrylate compound which has a ring structure individually by 1 type, or may contain 2 or more types.
  • the content of the polyfunctional (meth) acrylate compound having a ring structure in the curable composition according to the present disclosure is the total mass of the curable composition from the viewpoint of the three-dimensional moldability and wear resistance of the obtained cured product. On the other hand, 1 mass% or more and 75 mass% or less are preferable, 10 mass% or more and 70 mass% or less are more preferable, and 20 mass% or more and 60 mass% or less are still more preferable.
  • the curable composition according to the present disclosure preferably contains an N-vinyl compound.
  • the N-vinyl compound contributes to the improvement of the adhesion to the base material and improves the stretchability at the time of molding the cured product. Thereby, the cylindrical lens which is a cured product is less likely to be peeled off from the resin base material, and generation of cracks or the like that easily occur during molding is suppressed, and the three-dimensional moldability is excellent.
  • the N-vinyl compound is preferably a monofunctional N-vinyl compound and preferably has a ring structure.
  • the N-vinyl compound is at least one compound selected from the group consisting of N-vinylpyrrolidone and N-vinylcaprolactam from the viewpoint of the three-dimensional moldability and wear resistance of the resulting cured product.
  • N-vinylpyrrolidone is more preferable.
  • examples of N-vinylpyrrolidone include N-vinyl-2-pyrrolidone.
  • Examples of N-vinylcaprolactam include N-vinyl- ⁇ -caprolactam.
  • the curable composition according to the present disclosure may contain one N-vinyl compound alone or two or more kinds.
  • the content of the N-vinyl compound in the curable composition according to the present disclosure includes all of the curable composition from the viewpoint of the three-dimensional moldability and wear resistance of the resulting cured product and the shape retention of the cylindrical lens. 8 mass% or more and 60 mass% or less are preferable with respect to mass, 15 mass% or more and 50 mass% or less are more preferable, 20 mass% or more and 40 mass% or less are still more preferable, and 25 mass% or more and 35 mass% or less are especially preferable. preferable.
  • the curable composition which concerns on this indication contains a monofunctional (meth) acrylate compound from the viewpoint of the three-dimensional moldability and abrasion resistance of the hardened
  • the monofunctional (meth) acrylate compound is a monofunctional (meth) acrylate compound having an aliphatic hydrocarbon ring structure and a (meth) acryloyl at the terminal from the viewpoint of the three-dimensional moldability and wear resistance of the resulting cured product.
  • Preferred is a resin having a group.
  • the curable composition which concerns on this indication contains the monofunctional (meth) acrylate compound which has an aliphatic hydrocarbon ring structure from a viewpoint of the three-dimensional moldability and abrasion resistance of the hardened
  • the aliphatic hydrocarbon ring structure is selected from the group consisting of a tricyclodecane ring structure, a cyclohexane ring structure, a norbornene ring structure, and an adamantane ring structure from the viewpoint of the three-dimensional formability and wear resistance of the resulting cured product. At least one kind of ring structure is preferable, and a tricyclodecane ring structure is more preferable.
  • (meth) acrylate compound having an aliphatic hydrocarbon ring structure specifically, it has a tricyclodecane ring structure such as dicyclopentanyl (meth) acrylate and dicyclopentanyloxyethyl (meth) acrylate.
  • a (meth) acrylate compound having a tricyclodecane ring structure is preferable, and dicyclopentanyl (meth) acrylate is more preferable.
  • the curable composition concerning this indication may contain the monofunctional (meth) acrylate compound which has an aliphatic hydrocarbon ring structure individually by 1 type, or may contain 2 or more types.
  • content of the monofunctional (meth) acrylate compound which has an aliphatic hydrocarbon ring structure in the curable composition which concerns on this indication it is a curable composition from a viewpoint of the three-dimensional moldability and abrasion resistance of the hardened
  • the curable composition according to the present disclosure preferably includes a resin having a (meth) acryloyl group at the terminal. Since the resin has a (meth) acryloyl group at the end of the molecular chain, the crosslink density in the entire curable composition can be increased by using it in combination with other polymerizable compounds, particularly polyfunctional (meth) acrylate compounds. Controlled and excellent in three-dimensional moldability and wear resistance of the resulting cured product.
  • the resin may be a polymer having a (meth) acryloyl group at the terminal, for example, (meth) acrylic resin, polystyrene, polystyrene / methacrylate (MS resin), polystyrene / acrylonitrile (AS resin), polypropylene, polyethylene, Polymers having at least one (meth) acryloyl group at the end of the main chain structure, such as polyethylene terephthalate, glycol-modified polyethylene terephthalate, polyvinyl chloride (PVC), thermoplastic elastomers, copolymers thereof, and cycloolefin polymers Can be mentioned.
  • (meth) acrylic resin polystyrene, polystyrene / methacrylate (MS resin), polystyrene / acrylonitrile (AS resin), polypropylene, polyethylene, Polymers having at least one (meth) acryloyl group at the end of the main chain structure, such as polyethylene
  • a (meth) acrylic resin having a (meth) acryloyl group at the terminal or a polystyrene having a (meth) acryloyl group at the terminal is preferable.
  • a (meth) acrylic resin having a (meth) acryloyl group is more preferable.
  • the (meth) acrylic resin having a (meth) acryloyl group at the terminal is preferably polymethyl methacrylate having a (meth) acryloyl group at the terminal from the viewpoint of wear resistance.
  • the resin having a (meth) acryloyl group at the terminal preferably has a methacryloyl group at the terminal.
  • the resin having a (meth) acryloyl group at the end is preferably a resin having a (meth) acryloyl group at the end of the main chain, and a resin having a (meth) acryloyl group at one end of the main chain. Is more preferable.
  • “main chain” represents a relatively long bond chain in the molecule of the polymer compound constituting the resin
  • “side chain” represents a carbon chain branched from the main chain. .
  • Examples of the resin having a (meth) acryloyl group at the terminal include a macromonomer series manufactured by Toagosei Co., Ltd. (eg, macromonomer AA-6 (polymethyl methacrylate having a methacryloyl group), macromonomer AS-6 or AS -6S (polystyrene having a methacryloyl group), macromonomer AN-6S (polystyrene / acrylonitrile having a methacryloyl group), macromonomer AB-6 (polybutyl methacrylate having a methacryloyl group), and the like can be used.
  • macromonomer series manufactured by Toagosei Co., Ltd. eg, macromonomer AA-6 (polymethyl methacrylate having a methacryloyl group), macromonomer AS-6 or AS -6S (polystyrene having a methacryloyl group), macromonomer
  • the number average molecular weight of the resin having a (meth) acryloyl group at the terminal is preferably 1,000 or more and 10,000 or less, more preferably 3,000 or more and 10,000 or less, from the viewpoint of the three-dimensional moldability of the resulting cured product. Preferably, 5,000 or more and 10,000 or less are more preferable.
  • the resin in the present disclosure preferably has a number average molecular weight of 1,000 or more.
  • the glass transition temperature (Tg) of the resin having a (meth) acryloyl group at the terminal is preferably 50 ° C. or higher, more preferably 80 ° C. or higher, from the viewpoint of wear resistance of the obtained cured product.
  • Tg is preferably less than 250 ° C, and more preferably 200 ° C or less.
  • the curable composition according to the present disclosure may contain one kind of resin having a (meth) acryloyl group at the terminal alone or two or more kinds.
  • the content of the resin having a (meth) acryloyl group at the terminal in the curable composition according to the present disclosure is from the viewpoint of the three-dimensional moldability and wear resistance of the resulting cured product, with respect to the total mass of the curable composition. 0.5 mass% or more and 50 mass% or less is preferable, 10 mass% or more and 45 mass% or less are more preferable, and 20 mass% or more and 40 mass% or less are especially preferable.
  • the curable composition according to the present disclosure may include a monofunctional (meth) acrylate compound (other monofunctional (meth) acrylate compounds) other than the urethane (meth) acrylate described later and other than those described above.
  • monofunctional (meth) acrylate compounds include 2-ethyl-2-butylpropanediol (meth) acrylate, 2-ethylhexyl (meth) acrylate, 2-ethylhexyl carbitol (meth) acrylate, 2-hydroxy Butyl (meth) acrylate, 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 2-methoxyethyl (meth) acrylate, 3-methoxybutyl (meth) acrylate, 4-hydroxybutyl (meth) acrylate Benzyl (meth) acrylate, 1-naphthyl (meth) acrylate, 2-naphthyl (meth) acrylate, butanediol mono (meth) acrylate, butoxyethyl (meth) acrylate, butyl (meth) acrylate, cetyl ( Acrylate),
  • the curable composition concerning this indication may contain other monofunctional (meth) acrylate compounds individually by 1 type, or may contain 2 or more types.
  • the curable composition according to the present disclosure does not contain other monofunctional (meth) acrylate compounds from the viewpoint of wear resistance of the obtained cured product, or the content thereof is the total of the curable composition. It is preferable that it is 20 mass% or less with respect to mass, and it is not contained, or it is more preferable that the content is 10 mass% or less with respect to the total mass of the curable composition, and it does not contain. Or the content thereof is more preferably 5% by mass or less with respect to the total mass of the curable composition, and it is not contained or the content thereof is in the total mass of the curable composition. On the other hand, it is particularly preferably 1% by mass or less.
  • the curable composition concerning this indication may contain the monofunctional (meth) acrylate compound individually by 1 type, or may contain 2 or more types.
  • content of the monofunctional (meth) acrylate compound in the curable composition which concerns on this indication it is 1 with respect to the total mass of a curable composition from a viewpoint of the three-dimensional moldability and abrasion resistance of the hardened
  • the mass% is preferably 80% by mass or less, more preferably 15% by mass or more and 75% by mass or less, and particularly preferably 30% by mass or more and 70% by mass or less.
  • the curable composition according to the present disclosure may include a urethane (meth) acrylate compound.
  • the urethane (meth) acrylate compound in the present disclosure is a compound having one or more urethane bonds and one or more (meth) acryloyl groups.
  • the urethane bond of the urethane (meth) acrylate compound in the present disclosure does not include an isocyanuric ring structure.
  • the urethane (meth) acrylate compound may be monofunctional or polyfunctional, but a bifunctional to 15 functional compound is preferable.
  • the weight average molecular weights of a urethane (meth) acrylate compound are 1,000 or more and 100,000 or less.
  • urethane (meth) acrylate compounds include polyether polyols such as polyethylene glycol and polytetramethyl glycol; succinic acid, adipic acid, azelaic acid, sebacic acid, phthalic acid, tetrahydro (anhydrous) phthalic acid, hexahydro (anhydrous) Reaction of dibasic acids such as phthalic acid with diols such as ethylene glycol, propylene glycol, diethylene glycol, triethylene glycol, tetraethylene glycol, dipropylene glycol, 1,4-butanediol, 1,6-hexanediol, neopentyl glycol Polyester polyol obtained by: Poly ⁇ -caprolactone modified polyol; Polymethylvalerolactone modified polyol; Ethylene glycol, propylene glycol, 1,4-butanedi 1, polyols such as 1,6-hexanediol and neopent
  • urethane (meth) acrylate compounds include the Shigemitsu series manufactured by Nippon Synthetic Chemical Industry Co., Ltd., U-2PPA, U-4HA, U-6HA, U-6LPA manufactured by Shin-Nakamura Chemical Co., Ltd.
  • the curable composition concerning this indication may contain the urethane (meth) acrylate compound individually by 1 type, or may contain 2 or more types. From the viewpoint of the three-dimensional moldability of the resulting cured product, the curable composition according to the present disclosure does not contain a urethane (meth) acrylate compound, or the content thereof is based on the total mass of the curable composition.
  • the content is preferably less than 4% by mass, not contained, or the content thereof is more preferably 2% by mass or less with respect to the total mass of the curable composition.
  • the content is more preferably 1% by mass or less, particularly preferably not contained, with respect to the total mass of the curable composition.
  • the curable composition according to the present disclosure includes a polyfunctional (meth) acrylate compound (another polyfunctional (meth) acrylate compound) other than a polyfunctional (meth) acrylate compound having a ring structure and a urethane (meth) acrylate compound. You may go out.
  • polyfunctional (meth) acrylate compounds include diethylene glycol monoethyl ether di (meth) acrylate, 1,3-butylene glycol di (meth) acrylate, 1,4-butanediol di (meth) acrylate, ethylene Oxide-modified 1,6-hexanediol di (meth) acrylate, ECH-modified 1,6-hexanediol di (meth) acrylate, allyloxy polyethylene glycol (meth) acrylate, 1,9-nonanediol di (meth) acrylate, ECH Modified hexahydrophthalic acid di (meth) acrylate, hydroxypivalic acid neopentyl glycol di (meth) acrylate, neopentyl glycol di (meth) acrylate, EO modified neopentyl glycol di (meth) acrylate, pro Ren oxide (hereinafter also referred to
  • the curable composition concerning this indication may contain other polyfunctional (meth) acrylate compounds individually by 1 type, or may contain 2 or more types.
  • the curable composition according to the present disclosure does not contain other polyfunctional (meth) acrylate compounds from the viewpoint of the three-dimensional moldability of the obtained cured product, or the content thereof is the total of the curable composition. It is preferable that it is 20 mass% or less with respect to mass, and it is not contained, or it is more preferable that the content is 10 mass% or less with respect to the total mass of the curable composition, and it does not contain. Or the content thereof is more preferably 5% by mass or less with respect to the total mass of the curable composition, and it is not contained or the content thereof is in the total mass of the curable composition. On the other hand, it is particularly preferably 1% by mass or less.
  • the curable composition which concerns on this indication may contain other ethylenically unsaturated compounds other than having mentioned above.
  • known polymerizable compounds particularly known ethylenically unsaturated compounds can be used.
  • the curable composition according to the present disclosure preferably includes a polymerization initiator from the viewpoint of curability.
  • a polymerization initiator a known photopolymerization initiator and a known thermal polymerization initiator can be used.
  • a photopolymerization initiator is preferable, and a photoradical polymerization initiator is more preferable.
  • the radical photopolymerization initiator is not particularly limited in structure.
  • 2,4,6-trimethylbenzoyldiphenylphosphine oxide bis (2,4,6-trimethylbenzoyl) phenylphosphine oxide, 2,2 -Dimethoxy-1,2-diphenylethane-1-one, 1-hydroxycyclohexyl phenyl ketone, 1-hydroxycyclohexyl phenyl ketone, 1- [4- (2-hydroxyethoxy) phenyl] -2-hydroxy-2-methyl- 1-propan-1-one, 2-hydroxy-1- ⁇ 4- [4- (2-hydroxy-2-methylpropionyl) benzyl] phenyl ⁇ -2-methylpropan-1-one, 2-methyl-1- (4-methylthiophenyl) -2-morpholinopropan-1-one, etc. Kill.
  • IRGACURE series (example: IRGACURE TPO, IRGACURE 819, IRGACURE 651, IRGACURE 184, IRGACURE 1173 manufactured by BASF) may be used.
  • IRGACURE 2959, IRGACURE 127, IRGACURE 907, etc. may be used.
  • thermal polymerization initiator examples include known azo compounds and known peroxide compounds.
  • azo compound examples include azobis compounds.
  • peroxide compound examples include ketone peroxide, peroxyketal, hydroperoxide, dialkyl peroxide, diacyl peroxide, peroxyester, and peroxydicarbonate.
  • the curable composition concerning this indication may contain the polymerization initiator individually by 1 type, or may contain 2 or more types.
  • content of the polymerization initiator in the curable composition which concerns on this indication it is 0.05 mass% with respect to the total mass of a curable composition from the viewpoint of the three-dimensional moldability and abrasion resistance of the hardened
  • the curable composition according to the present disclosure may contain other components such as an organic solvent and inorganic particles as necessary.
  • the organic solvent include toluene and methyl ethyl ketone. Since the curable composition concerning this indication contains polymerizable compounds, such as the above-mentioned (meth) acrylic compound, a polymerizable compound serves as a solvent and does not need to contain an organic solvent separately.
  • the inorganic particles include so-called filler particles such as silicon dioxide (silica).
  • the inorganic particles include commercially available organosilica sol MEK-ST series (eg, MEK-ST-40, MEK-ST-L, etc.) manufactured by Nissan Chemical Industries.
  • the curable composition according to the present disclosure is preferably a composition that can be cured by active energy rays.
  • Active energy rays are radiation that can give energy to generate polymerization initiation species in the curable composition by irradiation, and include ⁇ rays, ⁇ rays, X rays, ultraviolet rays, visible rays, electron rays, etc. To do. Among these, from the viewpoint of curing sensitivity and device availability, ultraviolet rays and electron beams are preferable, and ultraviolet rays are more preferable.
  • the curable composition according to the present disclosure is preferably an active energy ray-curable curable composition, and more preferably an oil-based curable composition.
  • the curable composition according to the present disclosure preferably contains as little water and volatile solvent as possible, and even if it contains, it is more preferably 5% by mass or less with respect to the total mass of the curable composition.
  • the content is more preferably 1% by mass or less, and particularly preferably 0.5% by mass or less.
  • the cured product according to the present disclosure has a breaking elongation at 100 ° C. of 6% or more and 80% or less, and a molecular weight between crosslinking points of 20 g / mol or more and 2,000 g / mol or less.
  • the cured product according to the present disclosure preferably has a molecular weight distribution between cross-linking points of 1% or more and 30% or less from the viewpoint of the three-dimensional moldability and wear resistance of the obtained cured product.
  • the cured product according to the present disclosure is preferably a cured product obtained by curing the curable composition according to the present disclosure (cured product of the curable composition according to the present disclosure).
  • the cured product according to the present disclosure can be suitably used as an optical member, and a cylindrical lens, a prism, a hemispherical microlens, a Fresnel lens, or the like can be more suitably used as a convex lens, and a plurality of convex lenses It can be particularly suitably used as a lenticular lens in which (cylindrical lenses) are arranged in parallel.
  • the optical member according to the present disclosure includes the cured product according to the present disclosure, and preferably includes the cured product of the curable composition according to the present disclosure.
  • the process of preparing the curable composition which concerns on this indication does not have a restriction
  • the step of preparing the curable composition according to the present disclosure is not particularly limited except for preparing the curable composition according to the present disclosure.
  • the temperature range of the temperature unevenness in the step of curing in the state having the temperature unevenness is 0.7 from the viewpoint of easily adjusting the three-dimensional moldability and wear resistance of the obtained cured product, and the molecular weight distribution between the crosslinking points.
  • the temperature is preferably from 8 ° C to 8 ° C, and more preferably from 1 ° C to 6 ° C.
  • the temperature range of the above temperature unevenness is to divide the substrate surface of the portion to which the curable composition is applied into 3 ⁇ 3 equal parts, measure the temperature of each central part, and measure the maximum temperature. And the difference between the minimum temperature.
  • Examples of the method for forming temperature unevenness include, for example, a method of changing the amount of hot air blown to the curable composition on the substrate surface in the width direction, and a base capable of adjusting the temperature by dividing the surface into a plurality of temperature sections. Examples thereof include a method of imparting a temperature distribution using a material and a method of using a plurality of radiant heat sources having different temperatures.
  • the method of changing the air volume in the width direction can be achieved by, for example, dividing the blowing nozzle and blowing air from a hot air generator set to a plurality of temperatures.
  • As a method of changing the temperature of the substrate it can be achieved by preparing a plurality of panel heaters and changing these set temperatures.
  • a temperature distribution can also be provided by passing a heat medium through the base material and providing a baffle plate in this flow path.
  • the plurality of radiant heat sources can be achieved by changing the temperature of a plurality of radiant heat sources (for example, halogen lamp, IR heater, nichrome wire, etc.) provided above and below the sample.
  • the curing in the step of curing in a state having temperature unevenness may be photocuring (curing by irradiation with active energy rays) or thermal curing, but is preferably photocuring.
  • the laminated sheet according to the present disclosure may be a laminated sheet having a cured product of the curable composition according to the present disclosure.
  • the cured curable composition according to the present disclosure is cured on the base material and the base material. It is preferable to have at least a product.
  • the laminated sheet which concerns on this indication is a laminated sheet which has the hardened
  • the laminated sheet which concerns on this indication has a resin base material and the hardened
  • the laminated sheet according to the present disclosure is suitable as a laminated sheet having a hard coat film, a three-dimensionally laminated sheet, a laminated sheet having a brightness enhancement film, a lenticular sheet, a prism sheet, a microlens sheet, a Fresnel lens sheet, a fly eye lens, and the like. Can be used.
  • the lenticular sheet according to the present disclosure has a cured product of the curable composition according to the present disclosure. Moreover, the lenticular sheet which concerns on this indication has the hardened
  • the cured product in the lenticular sheet according to the present disclosure is preferably a lenticular lens.
  • the lenticular sheet according to the present disclosure preferably includes a resin base material and a cylindrical lens disposed on at least one surface of the resin base material, on the opposite side of the resin base material from the side having the cylindrical lens. It is more preferable to have a recording layer.
  • an image hereinafter also referred to as a decorative image
  • the lenticular sheet according to the present disclosure may be a lenticular decorative sheet having a configuration in which a recording layer is attached and a lenticular image is attached as shown in FIG.
  • the lenticular decorative sheet has a lenticular lens in which convex cylindrical lenses having a semicylindrical surface are arranged on an image suitable for lenticular display, thereby displaying a different image depending on the viewing angle (lenticular display).
  • Body FIG. 1 is a schematic diagram illustrating an example of a lenticular decorative sheet (lenticular sheet).
  • a lenticular decorative sheet 10 shown in FIG. 1 includes a lenticular lens 12 in which a plurality of convex lenses (cylindrical lenses) 12A having a semicylindrical surface are arranged in parallel, and a semicylindrical surface of a convex lens 12A of the lenticular lens 12. And a lenticular image 14 disposed on the opposite side (also referred to as the back side).
  • the x direction indicates the width direction of the lens
  • the y direction indicates the longitudinal direction of the lens.
  • the lenticular sheet according to the present disclosure preferably includes a lenticular lens layer in which a plurality of convex lenses (cylindrical lenses) having a semicylindrical surface are arranged in parallel.
  • the width per cylindrical lens is not particularly limited, and the pitch width of the lenses may be selected depending on the purpose.
  • the width per cylindrical lens is usually often expressed by LPI (Line Per Inch) representing the number of lenses per inch (2.54 cm). For example, 100 LPI indicates that 100 cylindrical lenses (100 rows) per inch are arranged in parallel, and the pitch of the lenses is 254 ⁇ m. The larger the value of the number of lines per inch (number of lenses arranged), the smaller the lens pitch, and the higher the definition.
  • a low-definition lenticular sheet (for example, 60 LPI) is suitable for use in a poster or the like that displays a pattern whose observation position is relatively far.
  • the lenses constituting the lenticular lens layer are arranged in 100 rows or more per 2.54 cm (1 inch).
  • the number of convex lenses constituting the lenticular lens layer is more preferably 200 rows (2.5 LPI) or less per 2.54 cm.
  • the resin component used for the lens portion is generally a thermoplastic resin, and is easily deformed by heat when molded into a three-dimensional shape, and has heat resistance that can maintain the shape. Easy to run out.
  • the thermosetting resin generally has a cross-linked structure and thus tends to have poor stretchability when deformed.
  • the lenticular sheet according to the present disclosure is excellent in three-dimensional moldability by having a lenticular lens formed by curing the curable composition according to the present disclosure.
  • the resin base material used in the present disclosure is a base material as a support material, and any resin can be selected depending on the purpose and the like.
  • a sheet-like or film-like substrate can be suitably used.
  • sheets or films, such as an acrylic resin and a polyester resin are mentioned.
  • limiting in particular in the thickness of a resin base material The range of 50 micrometers or more and 300 micrometers or less is preferable, and the range of 50 micrometers or more and 200 micrometers or less is more preferable from a viewpoint of shape
  • the resin base material is not easily torn, and cracks are hardly generated during handling (for example, during transportation) during molding processing, and are also difficult to crack during three-dimensional molding.
  • acrylic resin film (Acryprene HBS010P, thickness: 125 ⁇ m) manufactured by Mitsubishi Rayon Co., Ltd.
  • polyethylene terephthalate resin film (Lumirror, manufactured by Toray Industries, Inc.) S10, thickness: 100 ⁇ m)
  • polycarbonate resin film (Iupilon H-3000, thickness 125 ⁇ m) manufactured by Teijin Chemicals Ltd.
  • a recording layer for recording an image (lenticular image) displayed in a lenticular manner may be provided on the opposite side of the resin base having the cylindrical lens.
  • the surface on which the recording layer of the resin substrate is provided may be subjected to a surface treatment (for example, corona discharge treatment) from the viewpoint of increasing the adhesive force between the resin substrate and the recording layer.
  • the recording layer may be provided, for example, by applying a preparation liquid for forming the recording layer to the resin substrate.
  • the preparation liquid can be applied, for example, by coating.
  • the preparation liquid preferably contains a solid component and a solvent for forming the recording layer.
  • the recording layer preferably contains a resin, and at least a part of the resin is preferably crosslinked with a crosslinking agent. Therefore, the aspect containing resin and a crosslinking agent as a solid component contained in a preparation liquid is preferable.
  • the resin is preferably at least one resin selected from the group consisting of polyester, acrylic resin and urethane resin, and is particularly advantageous when a parallax image is formed by offset printing.
  • a lenticular image 14 includes display image sequences 14A and 14B for separately displaying two display images, and an interpolated image sequence 14C inserted between adjacent display image sequences 14A and 14B.
  • an image sequence group including Specifically, the display image rows 14A and 14B extracted from each display image in a stripe shape are arranged adjacent to each other at the corresponding convex lens 12A, and the adjacent display image rows 14A and 14A are arranged.
  • the interpolated image sequence 14C is inserted.
  • the three-dimensional structure according to the present disclosure is a three-dimensional molded product (preferably three-dimensionally molded by a technique such as thermoforming or vacuum molding) of the laminated sheet according to the present disclosure.
  • the three-dimensional structure according to the present disclosure is preferably a three-dimensional molded product of the lenticular sheet according to the present disclosure.
  • the three-dimensional structure according to the present disclosure is not particularly limited by the molding method as long as it is manufactured using the laminated sheet according to the present disclosure.
  • a curable composition according to the present disclosure is molded, cured by irradiating active energy rays, and a cylindrical lens is formed on a resin substrate.
  • a process for producing the lenticular sheet (hereinafter also referred to as “lenticular sheet production process”) and three-dimensional molding (preferably vacuum molding or pressure molding) of the produced lenticular sheet to obtain a three-dimensional molded article of lenticular
  • a method including a step (hereinafter, also referred to as “three-dimensional molding step”) is preferable.
  • the said lenticular sheet preparation process includes the process hardened
  • the lenticular sheet according to the present disclosure that is excellent in three-dimensional moldability is used at the time of molding exposed to a relatively high temperature, it is difficult to cause shape deformation by being melted by heat at the time of molding, and extended during molding Occurrence of cracks or the like that tend to occur at the time is also suppressed.
  • the curable composition according to the present disclosure is molded and cured by irradiation with active energy rays to produce a lenticular sheet having a cylindrical lens on a resin substrate.
  • the details of the curable composition according to the present disclosure are as described above, and the preferred embodiments are also the same.
  • the curable composition which concerns on this indication contains radical photopolymerization initiator. Radiation is generated by irradiating active energy rays, and curing occurs by the polymerization reaction of the polymerizable compound. Thereby, a cylindrical lens that is a cured product of the curable composition according to the present disclosure is formed. In molding the cylindrical lens, the curable composition may be cured after the resin substrate is brought into contact with the curable composition in advance before the curable composition is cured.
  • the curable composition is molded into the shape of the target cylindrical lens before curing.
  • the molding is not particularly limited as long as the target shape can be obtained, but from the viewpoint of molding efficiency and molding accuracy, molding using a mold such as a mold or a wooden mold is preferable.
  • a mold processed into a desired lens shape is prepared, the curable composition is poured into the mold, dried as necessary, and then the curable composition is cured. Good. Thereby, the molded object shape
  • light sources for generating active energy rays mercury lamps, metal halide lamps, UV fluorescent lamps, gas lasers, solid lasers, and the like are widely known. Further, a semiconductor ultraviolet light emitting device may be applied as a light source, and an LED (Light Emitting Diode) and an LD (Laser Diode) are also suitable in terms of small size, long life, high efficiency, and low cost.
  • a metal halide lamp, an ultrahigh pressure mercury lamp, a high pressure mercury lamp, a medium pressure mercury lamp, a low pressure mercury lamp, an LED or a blue-violet laser is preferable.
  • an ultra-high pressure mercury lamp capable of irradiating light with a wavelength of 365 nm, 405 nm, or 436 nm a high-pressure mercury lamp capable of irradiating light with a wavelength of 365 nm, 405 nm, or 436 nm, or light irradiation with a wavelength of 355 nm, 365 nm, 385 nm, 395 nm, or 405 nm Is more preferable, and an LED capable of irradiating light with a wavelength of 355 nm, 365 nm, 385 nm, 395 nm, or 405 nm is particularly preferable.
  • the dose of the active energy ray may be appropriately selected depending on the composition and amount of the lenticular lens curable composition, it is preferable to 0.3 J / cm 2 or more 5 J / cm 2 or less.
  • the irradiation with the active energy ray can be performed by selecting a known device including a light source capable of irradiating the active energy ray.
  • a known device including a light source capable of irradiating the active energy ray For example, an ultraviolet (UV) irradiation device such as EXECULE 3000 manufactured by HOYA CANDEO OPTRONICS may be used.
  • UV ultraviolet
  • the lenticular sheet produced in the lenticular sheet production step is three-dimensionally molded.
  • the lenticular sheet can be molded, and the lenticular sheet may be subjected to a molding process using a mold such as a mold.
  • Suitable examples of the three-dimensional molding include thermal molding and vacuum molding.
  • the method of vacuum forming is not particularly limited, but a method of performing three-dimensional molding in a heated state under vacuum is preferable.
  • the vacuum refers to a state in which the room is evacuated to a degree of vacuum of 100 Pa or less.
  • the temperature at the time of three-dimensional molding is preferably 60 ° C. or higher, more preferably 80 ° C. or higher, and even more preferably 100 ° C. or higher.
  • the upper limit of the temperature for three-dimensional molding is preferably 200 ° C.
  • the temperature at the time of three-dimensional molding refers to the temperature of the lenticular sheet subjected to three-dimensional molding, and is measured by attaching a thermocouple to the surface of the lenticular sheet.
  • the above-described vacuum molding can be performed using a vacuum molding technique widely known in the molding field.
  • the vacuum molding may be performed using Formech 508FS manufactured by Nippon Shikki Kogyo Co., Ltd.
  • New Frontier BR-31 EO-modified tribromophenyl acrylate
  • PHE Deniichi Kogyo Seiyaku Co., Ltd.
  • BnA BnA
  • PO-A Second-A
  • N-vinyl compound / N-vinylpyrrolidone NVP, manufactured by Wako Pure Chemical Industries, Ltd.
  • NVC N-vinyl- ⁇ -caprolactam
  • IPPM 1,5,5-trimethyl-1-[(1-methacryloyloxypropan-2-yl) carbamoylmethyl] -3- (1-methacryloyloxypropan-2-yl) carbamoylcyclohexane
  • a urethane (meth) acrylate compound synthesized by the method described in paragraph 0120 of JP-A-2006-249220, which also applies to a polyfunctional (meth) acrylate compound having a ring structure.
  • UA1 (urethane acrylate compound, synthesized by the following method.
  • IK-2 Article resin IK-2 manufactured by Negami Kogyo Co., Ltd., urethane acrylate compound, and also a polyfunctional (meth) acrylate compound having a ring structure
  • 3000A Kyoeisha Chemical Co., Ltd. Epoxy ester 3000A, acrylic acid adduct of bisphenol A diglycidyl ether, and also a polyfunctional (meth) acrylate compound having a ring structure
  • UV irradiation is performed using an ultraviolet (UV) irradiation device (EXECURE 3000, manufactured by HOYA CANDEO OPTRONICS Co., Ltd.), blocking oxygen and curing at 25 ° C. under a UV irradiation amount of 1.0 J / cm 2. Irradiated. In thermosetting, oxygen was shut off and the mixture was heated to 70 ° C. In addition, for the temperature unevenness during curing, the temperature difference (temperature unevenness) described in Tables 1 to 3 is achieved by using a 9-part hot plate as the base material on which the glass plate is placed and providing a temperature difference thereto. did.
  • Elongation at break (%) 100 ⁇ (length broken by stretching ⁇ distance between chucks) / (distance between chucks) -conditions- ⁇ Distance between chucks: 30mm -Sample piece temperature: 100 ° C ⁇
  • Mc 3 ⁇ ⁇ ⁇ R ⁇ T / E ′
  • Mc g / mol
  • ⁇ (density) g / cm 3
  • R (gas constant) J / (mol ⁇ K)
  • T (measured temperature) K
  • E ′ Pa
  • the above-mentioned measurement was performed on 10 samples, and the value obtained by dividing the difference between the maximum value and the minimum value by the average value of 10 points and expressed as a percentage was defined as the distribution of molecular weight between cross-linking points.
  • the calculated values are shown in Tables 1 to 3.
  • Examples 9 to 11 when the content of the N-vinyl compound is 8% by mass or more based on the total mass of the curable composition, the three-dimensional moldability is more excellent.
  • Examples 12 to 14 when the content of the polyfunctional (meth) acrylate compound having the ring structure is 1% by mass or more and 20% by mass or less with respect to the total mass of the curable composition Excellent in three-dimensional formability and wear resistance.
  • Examples 15 and 16 when N-vinylpyrrolidone is used as the N-vinyl compound, the three-dimensional moldability is excellent.
  • Example 17 and Example 18 when a photopolymerization initiator is used as the polymerization initiator, the three-dimensional moldability and wear resistance are superior.
  • Examples 19 to 23 when the distribution of molecular weight between cross-linking points is 0.5% or more and 10% or less, the three-dimensional moldability and the wear resistance are excellent.

Abstract

Provided is a hardening composition that has a rupture elongation of an obtained hardened substance at 100°C of 6–80%, a molecular weight at cross-linking points of the obtained hardened substance of 20–2,000 g/mol, and a rupture elongation at 100°C of 6–80%. Moreover, the hardened substance has a molecular weight at cross-linking points of 20–2,000 g/mol. Furthermore, provided are a method for manufacturing the hardened substance, and a laminated sheet, an optical member, a lenticular sheet, and a three-dimensional structure that include the hardened substance of the hardening composition.

Description

硬化性組成物、硬化物及びその製造方法、積層シート、光学部材、レンチキュラーシート、並びに、3次元構造物Curable composition, cured product and method for producing the same, laminated sheet, optical member, lenticular sheet, and three-dimensional structure
 本開示は、硬化性組成物、硬化物及びその製造方法、積層シート、光学部材、レンチキュラーシート、並びに、3次元構造物に関する。 The present disclosure relates to a curable composition, a cured product and a manufacturing method thereof, a laminated sheet, an optical member, a lenticular sheet, and a three-dimensional structure.
 従来、硬化性組成物は、重合性樹脂と開始剤とを含有し、熱や光などにより重合反応を起こすことにより硬化し、様々な用途で幅広く用いられている。
 また、硬化性組成物を硬化して得られる硬化物を積層した積層シートは、光学部材、ガスバリアフィルム、保護フィルム、光学フィルタ、反射防止フィルム等、広く利用されている。
 更に、硬化性組成物を硬化して得られる硬化物は、反射防止膜、透明画素、透明絶縁膜、平坦化膜などの種々の部材に用いられる。
 近年、光学部材の種類は多岐にわたり、上記光学部材における光学構造は、例えば、表面形状が平坦なものに限らず、液晶用バックライトの輝度向上レンズや拡散レンズ、ビデオプロジェクションテレビのスクリーンに用いられるフレネルレンズ、マイクロレンズなどが挙げられる。こうしたデバイスでは主に樹脂材料により微細構造をなすことで所望の幾何光学的な性能を得ている。
 また、上記光学構造としては、見る角度によって異なる画像を表示する媒体として、半円筒形の表面を有する凸状レンズが並列したレンチキュラーレンズを用いたレンチキュラーシートが知られている。
 レンチキュラーシートは、一般に、レンチキュラーレンズの裏面側(凸状レンズの半円筒形の表面と反対側の面)に、インターレースされた複数の画像を組合せた画像列群(レンチキュラー画像)が配置され、画像列群をレンチキュラーレンズを通して観察した場合に、観察する角度によって画像列群のうちの1種又は2種以上の画像を表示することができる。
 そのため、光学材料及び光学スクリーン等をはじめ、様々な商業用途での利用が期待されている。ところが、従来から提案されている用途は、シート又はフィルム等の2次元形態での利用がほとんどであり、立体形状に成型された3次元形態への適用は多くない。
 従来の硬化性組成物としては、特許文献1~6に記載された組成物が挙げられる。
Conventionally, a curable composition contains a polymerizable resin and an initiator, is cured by causing a polymerization reaction by heat or light, and is widely used in various applications.
Moreover, the laminated sheet which laminated | stacked the hardened | cured material obtained by hardening | curing a curable composition is utilized widely, such as an optical member, a gas barrier film, a protective film, an optical filter, an antireflection film.
Furthermore, the cured product obtained by curing the curable composition is used for various members such as an antireflection film, a transparent pixel, a transparent insulating film, and a planarization film.
In recent years, there are a wide variety of optical members, and the optical structure of the optical member is not limited to a flat surface shape, for example, and is used for a brightness enhancement lens and a diffusion lens of a backlight for liquid crystal, and a screen of a video projection television. Examples include Fresnel lenses and micro lenses. In such a device, a desired geometrical optical performance is obtained mainly by forming a fine structure with a resin material.
Further, as the optical structure, a lenticular sheet using a lenticular lens in which convex lenses having a semi-cylindrical surface are arranged in parallel is known as a medium for displaying different images depending on viewing angles.
In a lenticular sheet, generally, an image sequence group (lenticular image) in which a plurality of interlaced images are combined is arranged on the back side of the lenticular lens (the surface opposite to the semi-cylindrical surface of the convex lens). When the row group is observed through a lenticular lens, one or more images in the image row group can be displayed depending on the viewing angle.
Therefore, it is expected to be used in various commercial applications including optical materials and optical screens. However, the applications proposed heretofore are mostly used in a two-dimensional form such as a sheet or a film, and are not often applied to a three-dimensional form formed into a three-dimensional shape.
Examples of conventional curable compositions include the compositions described in Patent Documents 1 to 6.
特開2015-182912号公報Japanese Patent Laying-Open No. 2015-182912 特開2005-82639号公報JP 2005-82639 A 特開2006-249220号公報JP 2006-249220 A 特開2005-281406号公報JP 2005-281406 A 特開2004-333902号公報JP 2004-333902 A 特開2009-37204号公報JP 2009-37204 A
 しかしながら、従来より提案されている硬化性組成物を用いて硬化物、又は、上記硬化物を有する積層シートを作製し、更に真空成型等により立体成型しようとすると、上記硬化物の立体形成性が十分ではなく、立体成型時に上記硬化物に亀裂(クラック)が生じたり、硬化物自体が破損する場合がある。 However, when a cured product or a laminated sheet having the cured product is prepared using a conventionally proposed curable composition and further three-dimensionally molded by vacuum molding or the like, the three-dimensional formability of the cured product is reduced. It is not sufficient, and the cured product may be cracked or three-dimensionally molded or the cured product itself may be damaged.
 本発明の一実施形態が解決しようとする課題は、得られる硬化物の立体成型性及び耐摩耗性に優れる硬化性組成物を提供することである。
 本発明の他の実施形態が解決しようとする課題は、立体成型性及び耐摩耗性に優れる硬化物及びその製造方法を提供することである。
 本発明の更に他の実施形態は、上記硬化性組成物の硬化物を有する積層シート、光学部材、レンチキュラーシート、及び、3次元構造物を提供することである。
The problem to be solved by one embodiment of the present invention is to provide a curable composition that is excellent in the three-dimensional moldability and wear resistance of the resulting cured product.
The problem to be solved by another embodiment of the present invention is to provide a cured product excellent in three-dimensional formability and wear resistance and a method for producing the same.
Still another embodiment of the present invention is to provide a laminated sheet, an optical member, a lenticular sheet, and a three-dimensional structure having a cured product of the curable composition.
 上記課題を解決するための手段には、以下の態様が含まれる。
<1> 得られる硬化物の100℃における破断伸度が、6%以上80%以下であり、得られる硬化物の架橋点間分子量が、20g/mol以上2,000g/mol以下である硬化性組成物。
<2> 得られる硬化物の架橋点間分子量の分布が、1%以上30%以下である上記<1>に記載の硬化性組成物。
<3> 環構造を有する多官能(メタ)アクリレート化合物、及び、N-ビニル化合物を含む上記<1>又は<2>に記載の硬化性組成物。
<4> 上記環構造を有する多官能(メタ)アクリレート化合物の含有量が、硬化性組成物の全質量に対し、1質量%以上75質量%以上である上記<3>に記載の硬化性組成物。
<5> 上記N-ビニル化合物の含有量が、硬化性組成物の全質量に対し、8質量%以上60質量%以下である上記<3>又は<4>に記載の硬化性組成物。
<6> 上記N-ビニル化合物が、N-ビニルピロリドン、及び、N-ビニルカプロラクタムよりなる群から選ばれた少なくとも1種の化合物である上記<3>~<5>のいずれか1つに記載の硬化性組成物。
<7> 単官能(メタ)アクリレート化合物を含む上記<1>~<6>のいずれか1つに記載の硬化性組成物。
<8> 上記単官能(メタ)アクリレート化合物の含有量が、硬化性組成物の全質量に対し、1質量%以上80質量%以下である上記<7>に記載の硬化性組成物。
<9> 光重合開始剤を含む上記<1>~<8>のいずれか1つに記載の硬化性組成物。
<10> ウレタン(メタ)アクリレート化合物を含まないか、又は、ウレタン(メタ)アクリレート化合物の含有量が、硬化性組成物の全質量に対し、0質量%を超え4質量%未満である上記<1>~<9>のいずれか1つに記載の硬化性組成物。
<11> 上記<1>~<10>のいずれか1つに記載の硬化性組成物を準備する工程、及び、上記硬化性組成物を0.5℃以上10℃以下の範囲の温度ムラを有する状態で硬化する工程を含む硬化物の製造方法。
<12> 上記<1>~<10>のいずれか1つに記載の硬化性組成物の硬化物を有する積層シート。
<13> 上記<1>~<10>のいずれか1つに記載の硬化性組成物の硬化物を有する光学部材。
<14> 上記<1>~<10>のいずれか1つに記載の硬化性組成物の硬化物を有するレンチキュラーシート。
<15> 上記<12>に記載の積層シートの立体成型物である3次元構造物。
<16> 100℃における破断伸度が、6%以上80%以下であり、架橋点間分子量が、20g/mol以上2,000g/mol以下である硬化物。
<17> 架橋点間分子量の分布が、1%以上30%以下である上記<16>に記載の硬化物。
Means for solving the above problems include the following aspects.
<1> Curing elongation at 100 ° C. of the obtained cured product is 6% or more and 80% or less, and a molecular weight between crosslinking points of the obtained cured product is 20 g / mol or more and 2,000 g / mol or less. Composition.
<2> The curable composition according to the above <1>, wherein the obtained cured product has a molecular weight distribution between crosslinking points of 1% or more and 30% or less.
<3> The curable composition according to the above <1> or <2>, comprising a polyfunctional (meth) acrylate compound having a ring structure and an N-vinyl compound.
<4> Curable composition as described in said <3> whose content of the polyfunctional (meth) acrylate compound which has the said ring structure is 1 mass% or more and 75 mass% or more with respect to the total mass of a curable composition. object.
<5> The curable composition according to the above <3> or <4>, wherein the content of the N-vinyl compound is 8% by mass to 60% by mass with respect to the total mass of the curable composition.
<6> The method according to any one of <3> to <5>, wherein the N-vinyl compound is at least one compound selected from the group consisting of N-vinylpyrrolidone and N-vinylcaprolactam. Curable composition.
<7> The curable composition according to any one of <1> to <6>, which contains a monofunctional (meth) acrylate compound.
<8> The curable composition according to <7>, wherein the content of the monofunctional (meth) acrylate compound is 1% by mass to 80% by mass with respect to the total mass of the curable composition.
<9> The curable composition according to any one of the above <1> to <8>, comprising a photopolymerization initiator.
<10> The above, wherein the urethane (meth) acrylate compound is not contained or the content of the urethane (meth) acrylate compound is more than 0% by mass and less than 4% by mass with respect to the total mass of the curable composition < The curable composition according to any one of 1> to <9>.
<11> A step of preparing the curable composition according to any one of <1> to <10> above, and a temperature unevenness in the range of 0.5 ° C. or more and 10 ° C. or less of the curable composition. The manufacturing method of hardened | cured material including the process hardened | cured in the state which has.
<12> A laminated sheet having a cured product of the curable composition according to any one of <1> to <10>.
<13> An optical member having a cured product of the curable composition according to any one of <1> to <10>.
<14> A lenticular sheet having a cured product of the curable composition according to any one of the above items <1> to <10>.
<15> A three-dimensional structure which is a three-dimensional molded product of the laminated sheet according to <12>.
<16> A cured product having a breaking elongation at 100 ° C. of 6% or more and 80% or less and a molecular weight between crosslinking points of 20 g / mol or more and 2,000 g / mol or less.
<17> The cured product according to <16>, wherein the molecular weight distribution between cross-linking points is 1% or more and 30% or less.
 本発明の一実施形態によれば、得られる硬化物の立体成型性及び耐摩耗性に優れる硬化性組成物を提供することができる。
 また、本発明の他の実施形態によれば、立体成型性及び耐摩耗性に優れる硬化物及びその製造方法を提供することができる。
 更に、本発明の他の実施形態によれば、上記硬化性組成物の硬化物を有する積層シート、光学部材、レンチキュラーシート、及び、3次元構造物を提供することができる。
According to one embodiment of the present invention, it is possible to provide a curable composition excellent in the three-dimensional moldability and wear resistance of the obtained cured product.
Moreover, according to other embodiment of this invention, the hardened | cured material excellent in three-dimensional moldability and abrasion resistance, and its manufacturing method can be provided.
Furthermore, according to other embodiment of this invention, the laminated sheet, optical member, lenticular sheet, and three-dimensional structure which have the hardened | cured material of the said curable composition can be provided.
本開示におけるレンチキュラーシートの一例を示す概略図である。It is the schematic which shows an example of the lenticular sheet in this indication.
 以下、本開示について詳細に説明する。
 なお、本明細書中、「xx~yy」の記載は、xx及びyyを含む数値範囲を表す。
 本明細書において、「(メタ)アクリル」は、アクリル及びメタクリルの両方を包含する概念で用いられる語であり、「(メタ)アクリロイル」は、アクリロイル及びメタクリロイルの両方を包含する概念として用いられる語である。
 また、本明細書中の「工程」の用語は、独立した工程だけではなく、他の工程と明確に区別できない場合であっても、その工程の所期の目的が達成されれば本用語に含まれる。
 本開示におけるアルキル基、アリール基、アルキレン基及びアリーレン基等の炭化水素基は、特に断りのない限り、分岐を有していても、環構造を有していてもよい。
 また、本開示において、「質量%」と「重量%」とは同義であり、「質量部」と「重量部」とは同義である。
 また、本開示において、2以上の好ましい態様の組み合わせは、より好ましい態様である。
 また、本開示における重量平均分子量(Mw)及び数平均分子量(Mn)は、特に断りのない限り、TSKgel GMHxL、TSKgel G4000HxL、TSKgel G2000HxL(何れも東ソー(株)製の商品名)のカラムを使用したゲルパーミエーションクロマトグラフィ(GPC)分析装置により、溶媒THF(テトラヒドロフラン)、示差屈折計により検出し、標準物質としてポリスチレンを用いて換算した分子量である。
Hereinafter, the present disclosure will be described in detail.
In the present specification, the description “xx to yy” represents a numerical range including xx and yy.
In this specification, “(meth) acryl” is a term used in a concept including both acryl and methacryl, and “(meth) acryloyl” is a term used as a concept including both acryloyl and methacryloyl. It is.
In addition, the term “process” in this specification is not limited to an independent process, and even if it cannot be clearly distinguished from other processes, the term is used as long as the intended purpose of the process is achieved. included.
Unless otherwise specified, hydrocarbon groups such as an alkyl group, an aryl group, an alkylene group, and an arylene group in the present disclosure may have a branch or a ring structure.
In the present disclosure, “mass%” and “wt%” are synonymous, and “part by mass” and “part by weight” are synonymous.
In the present disclosure, a combination of two or more preferred embodiments is a more preferred embodiment.
In addition, the weight average molecular weight (Mw) and number average molecular weight (Mn) in the present disclosure use columns of TSKgel GMHxL, TSKgel G4000HxL, and TSKgel G2000HxL (both trade names manufactured by Tosoh Corporation) unless otherwise specified. The molecular weight was detected by a gel permeation chromatography (GPC) analyzer using a solvent THF (tetrahydrofuran) and a differential refractometer and converted using polystyrene as a standard substance.
(硬化性組成物)
 本開示に係る硬化性組成物は、得られる硬化物の100℃における破断伸度が、6%以上80%以下であり、得られる硬化物の架橋点間分子量が、20g/mol以上2,000g/mol以下である。
 本開示に係る硬化性組成物は、光学部材形成用硬化性組成物として好適に用いられ、レンチキュラーシート(特にレンチキュラーシートにおけるレンチキュラーレンズ)形成用硬化性組成物としてより好適に用いられる。
(Curable composition)
In the curable composition according to the present disclosure, the obtained cured product has a breaking elongation at 100 ° C. of 6% or more and 80% or less, and the obtained cured product has a molecular weight between crosslinking points of 20 g / mol or more and 2,000 g. / Mol or less.
The curable composition concerning this indication is used suitably as a curable composition for optical member formation, and is more suitably used as a curable composition for lenticular sheet (especially lenticular lens in a lenticular sheet) formation.
 本発明者らが詳細な検討を行った結果、上記硬化性組成物とすることにより、得られる硬化物の立体成型性及び耐摩耗性に優れることを見出した。
 詳細な機構は不明であるが、得られる硬化物の100℃における破断伸度が、6%以上80%以下であることにより、摩擦により硬化物の表面温度が上昇した状態であっても、強度及び適度な変形性を有するため、得られる硬化物の立体成型性及び耐摩耗性が両立できると推定している。
 また、後述にて測定方法等を詳述するが、架橋点間分子量とは、架橋構造の網目の大きさを示す。
 得られる硬化物の架橋点間分子量が、20g/mol以上2,000g/mol以下であることで、非架橋性の分子(例えば、単官能(メタ)アクリレート化合物)が適度に上記網目をすり抜けて硬化することにより、得られる硬化物における変形を促し、立体成型性が向上すると推定される。
 更に、得られる硬化物の架橋点間分子量が、20g/mol以上2,000g/mol以下であることにより、硬化物における架橋密度が適度であり、柔軟性と強度とのバランスに優れ、得られる硬化物の立体成型性及び耐摩耗性が両立できると推定している。
As a result of detailed studies by the present inventors, it has been found that by using the curable composition, the resulting cured product is excellent in three-dimensional formability and wear resistance.
Although the detailed mechanism is unknown, the strength at 100 ° C. of the obtained cured product is 6% or more and 80% or less, so that the strength of the cured product is increased even when the surface temperature of the cured product is increased by friction. And since it has moderate deformability, it is estimated that the three-dimensional moldability and wear resistance of the obtained cured product can be compatible.
Moreover, although a measuring method etc. are explained in full detail later, molecular weight between bridge | crosslinking points shows the magnitude | size of the network of a crosslinked structure.
When the molecular weight between cross-linking points of the obtained cured product is 20 g / mol or more and 2,000 g / mol or less, non-crosslinking molecules (for example, monofunctional (meth) acrylate compounds) can pass through the network appropriately. By curing, it is presumed that deformation in the obtained cured product is promoted and three-dimensional moldability is improved.
Furthermore, when the molecular weight between cross-linking points of the obtained cured product is 20 g / mol or more and 2,000 g / mol or less, the crosslinking density in the cured product is appropriate, and the balance between flexibility and strength is excellent and obtained. It is estimated that the three-dimensional formability and wear resistance of the cured product can be compatible.
 本開示に係る硬化性組成物は、得られる硬化物の100℃における破断伸度が、6%以上80%以下であり、得られる硬化物の立体成型性及び耐摩耗性の観点から、15%以上70%以下であることが好ましく、20%以上60%以下であることがより好ましい。 In the curable composition according to the present disclosure, the elongation at break of the obtained cured product at 100 ° C. is 6% or more and 80% or less, and 15% from the viewpoint of the three-dimensional moldability and wear resistance of the obtained cured product. It is preferably 70% or less and more preferably 20% or more and 60% or less.
 本開示における破断伸度は、以下の方法により測定するものとする。
 硬化性組成物を入手できる場合は、硬化性組成物を、疎水化処理された2枚のガラス板間に挟み込み、下記条件にて紫外線(UV)照射、又は、熱硬化するまで加熱し、ガラス板から剥がして膜厚50μmの樹脂硬化膜(単膜)を作製する。
 UV照射は、紫外線(UV)照射装置(EXECURE 3000、HOYA CANDEO OPTRONICS(株)製)を用い、UV照射量1.0J/cmの条件にて硬化するまで照射する。
 樹脂硬化膜(単膜)を、長さ50mm×幅10mmの大きさに打ち抜いてサンプル片を作製し、TENSILON RTC-1225A(エー・アンド・デイ社製)を用い、下記の条件にて引張試験を行って下記式で表される破断伸度を測定する。破断伸度を3回測定し、それらの平均値を破断伸度とする。
 破断伸度(%)=100×(延伸で破断した長さ-チャック間距離)/(チャック間距離)
-条件-
・チャック間距離:30mm
・サンプル片の温度:100℃
・引張速度:1mm/秒
The elongation at break in the present disclosure is measured by the following method.
When the curable composition is available, the curable composition is sandwiched between two glass plates that have been subjected to a hydrophobic treatment, and heated under the following conditions until ultraviolet (UV) irradiation or thermosetting, The resin cured film (single film) having a film thickness of 50 μm is prepared by peeling from the plate.
The UV irradiation is performed using an ultraviolet (UV) irradiation apparatus (EXECURE 3000, manufactured by HOYA CANDEO OPTRONICS Co., Ltd.) until it is cured under the condition of a UV irradiation amount of 1.0 J / cm 2 .
A cured resin film (single film) is punched into a size of 50 mm length x 10 mm width to prepare a sample piece, and a tensile test is performed using TENSILON RTC-1225A (manufactured by A & D) under the following conditions. To measure the elongation at break represented by the following formula. The elongation at break is measured three times, and the average value thereof is taken as the elongation at break.
Elongation at break (%) = 100 × (length broken by stretching−distance between chucks) / (distance between chucks)
-conditions-
・ Distance between chucks: 30mm
-Sample piece temperature: 100 ° C
・ Tensile speed: 1 mm / sec
 硬化物から破断伸度を測定する場合は、硬化物を長さ50mm×幅10mmの大きさに加工し、サンプル片を作製して、上記と同様の方法により、100℃における破断伸度を測定する。この測定において、下記の本開示における硬化膜の好ましい厚みの範囲では、厚みの破断伸度への影響はない。
 なお、本開示に係る硬化性組成物を膜状に硬化した硬化膜の厚みは、10μm以上100μm以下が好ましく、15μm以上80μm以下がより好ましく、20μm以上60μm以下が更に好ましい。上記範囲であると、取扱い性に優れるとともに、成型加工性に優れる。
When measuring the breaking elongation from the cured product, the cured product is processed to a size of 50 mm length × 10 mm width, a sample piece is produced, and the breaking elongation at 100 ° C. is measured by the same method as described above. To do. In this measurement, there is no influence on the elongation at break within the preferable thickness range of the cured film in the present disclosure described below.
In addition, the thickness of the cured film obtained by curing the curable composition according to the present disclosure into a film shape is preferably 10 μm to 100 μm, more preferably 15 μm to 80 μm, and still more preferably 20 μm to 60 μm. Within the above range, the handleability is excellent and the moldability is excellent.
 本開示における硬化性組成物は、得られる硬化物の架橋点間分子量が、20g/mol以上2,000g/mol以下であり、得られる硬化物の立体成型性及び耐摩耗性の観点から、50g/mol以上1,500g/mol以下であることが好ましく、100g/mol以上1,200g/mol以下であることがより好ましい。 The curable composition in the present disclosure has a molecular weight between cross-linking points of the obtained cured product of 20 g / mol or more and 2,000 g / mol or less. From the viewpoint of the three-dimensional moldability and wear resistance of the obtained cured product, 50 g / Mol to 1,500 g / mol, more preferably 100 g / mol to 1,200 g / mol.
 本開示における架橋点間分子量は、以下の方法により測定するものとする。
 上記破断伸度の測定に用いるサンプル片と同じものを作製し、ゴム領域となる温度(250℃)まで昇温し、DMA(Dynamic Mechanical Analyzer:(株)ユービーエム製Rheogel-E4000HP)を用い、10Hzで0.01%の歪みを与えて測定し貯蔵弾性率(E’)を求める。
 続いて、下記式を用い、架橋点間分子量(Mc)を求める。
   Mc=3×ρ×R×T/E’
 Mc=g/mol、ρ(密度)=g/cm、R(ガス定数)=J/(mol・K)、T(測定温度)=K、E’=Pa
The molecular weight between crosslinking points in the present disclosure is measured by the following method.
The same sample piece used for the measurement of the elongation at break is prepared, the temperature is raised to the temperature of the rubber region (250 ° C.), and DMA (Dynamic Mechanical Analyzer: Rheogel-E4000HP manufactured by UBM) is used. The storage elastic modulus (E ′) is determined by applying a strain of 0.01% at 10 Hz.
Subsequently, the molecular weight (Mc) between crosslinking points is determined using the following formula.
Mc = 3 × ρ × R × T / E ′
Mc = g / mol, ρ (density) = g / cm 3 , R (gas constant) = J / (mol · K), T (measured temperature) = K, E ′ = Pa
 また、本開示における硬化性組成物は、得られる硬化物の架橋点間分子量の分布が、1%以上30%以下であることが好ましく、2%以上25%以下であることがより好ましく、3%以上20%以下であることが更に好ましい。上記分布が1%以上であると、得られる硬化物の立体成型性により優れ、また、上記分布が30%以下であると、得られる硬化物の耐摩耗性により優れる。 In the curable composition of the present disclosure, the distribution of molecular weight between crosslink points of the cured product obtained is preferably 1% or more and 30% or less, more preferably 2% or more and 25% or less. % To 20% is more preferable. When the distribution is 1% or more, the three-dimensional moldability of the resulting cured product is excellent, and when the distribution is 30% or less, the wear resistance of the resulting cured product is excellent.
 本開示における架橋点間分子量の分布は、以下の方法により測定するものとする。
 上記架橋点間分子量の測定に使用するサンプル片10個について上記架橋点間分子量の測定を行い、10個のサンプル片で測定した架橋点間分子量の各値において、最大値と最小値との差を平均値で割り、百分率で示した値を架橋点間分子量の分布とする。
In the present disclosure, the distribution of molecular weight between cross-linking points is measured by the following method.
The molecular weight between the crosslinking points is measured for 10 sample pieces used for the measurement of the molecular weight between the crosslinking points, and the difference between the maximum value and the minimum value in each value of the molecular weight between the crosslinking points measured with 10 sample pieces. Is divided by the average value, and the value expressed as a percentage is defined as the distribution of molecular weight between cross-linking points.
 また、本開示における硬化性組成物は、得られる硬化物のガラス転移温度(Tg)が、得られる硬化物の立体成型性及び耐摩耗性の観点から、90℃を超えることが好ましく、95℃以上200℃以下であることがより好ましく、100℃以上180℃以下であることが更に好ましい。
 本開示における硬化物や樹脂等のガラス転移温度(Tg)は、ASTMD3418-8に準拠して、示差走査熱量計(パーキンエルマー社製:DSC-7)を用い、測定された主体極大ピークより求めることができる。この装置(DSC-7)の検出部の温度補正はインジウムと亜鉛との融点を用い、熱量の補正にはインジウムの融解熱を用いる。サンプルは、アルミニウム製パンを用い、対照用に空パンをセットする。昇温速度10℃/minで昇温し、200℃で5分間ホールドし、200℃から20℃まで液体窒素を用いて-10℃/分で降温し、20℃で5分間ホールドし、再度20℃から200まで10℃/分で昇温して得られた、2度目の昇温時の吸熱曲線から解析したオンセット温度をTgとした。
Further, the curable composition in the present disclosure preferably has a glass transition temperature (Tg) of the obtained cured product exceeding 90 ° C. from the viewpoint of the three-dimensional moldability and wear resistance of the obtained cured product, and 95 ° C. The temperature is more preferably 200 ° C. or lower and even more preferably 100 ° C. or higher and 180 ° C. or lower.
The glass transition temperature (Tg) of the cured product or resin in the present disclosure is obtained from the measured main maximum peak using a differential scanning calorimeter (Perkin Elmer, Inc .: DSC-7) according to ASTM D3418-8. be able to. The temperature correction of the detection part of this device (DSC-7) uses the melting point of indium and zinc, and the correction of heat uses the heat of fusion of indium. For the sample, an aluminum pan is used, and an empty pan is set as a control. The temperature is raised at a rate of 10 ° C./min, held at 200 ° C. for 5 minutes, cooled from 200 ° C. to 20 ° C. at −10 ° C./min using liquid nitrogen, held at 20 ° C. for 5 minutes, and again 20 The onset temperature analyzed from the endothermic curve during the second temperature increase obtained by increasing the temperature from 10 ° C. to 200 ° C./min was defined as Tg.
 このような硬化膜(硬化樹脂層)は、基材の上に形成して使用することが好ましく、例えば、基材上に成型せずにフラットな膜を形成すると、ハードコート膜として使用できる。また、本開示に係る硬化性組成物を硬化した本開示に係る硬化物は、伸長性に優れるため、フラット膜を立体成型することも好ましい。
 更に、基材上に本開示に係る硬化性組成物を塗布した後、凹凸等の形状を付与することも好ましい。例えば、半円柱状に賦型するとレンチキュラーレンズとして使用でき、三角柱状に賦型するとプリズムシート又は輝度向上膜として使用でき、半球状に多数賦型するとマイクロレンズシートとして使用でき、また、国際公開第2015/102100号の図4Aのようなノコギリ刃状の形状を同心円状に形成するとプリズムシートとして利用できる。
Such a cured film (cured resin layer) is preferably formed and used on a base material. For example, when a flat film is formed on the base material without molding, it can be used as a hard coat film. In addition, since the cured product according to the present disclosure obtained by curing the curable composition according to the present disclosure is excellent in extensibility, it is also preferable that the flat film is three-dimensionally molded.
Furthermore, after applying the curable composition which concerns on this indication on a base material, it is also preferable to provide shapes, such as an unevenness | corrugation. For example, when molded into a semi-cylindrical shape, it can be used as a lenticular lens, when shaped into a triangular prism, it can be used as a prism sheet or a brightness enhancement film, and when molded into a hemispherical shape, it can be used as a microlens sheet. When the saw blade shape as shown in FIG. 4A of 2015/102100 is formed concentrically, it can be used as a prism sheet.
 以下、本開示に係る硬化性組成物に用いられる各成分について、詳述する。これら成分を適宜含有することにより、硬化物において上記破断伸度及び架橋点間分子量を満たす硬化性組成物が得られる。 Hereinafter, each component used in the curable composition according to the present disclosure will be described in detail. By containing these components as appropriate, a curable composition satisfying the breaking elongation and the molecular weight between crosslinking points in the cured product can be obtained.
<重合性化合物>
 本開示に係る硬化性組成物は、重合性化合物を含有することが好ましい。
 重合性化合物としては、エチレン性不飽和化合物が好ましい。
 エチレン性不飽和化合物としては、環構造を有する多官能(メタ)アクリレート化合物、及び、N-ビニル化合物が好ましく挙げられる。
 また、本開示に係る硬化性組成物は、得られる硬化物の立体成型性及び耐摩耗性の観点から、環構造を有する多官能(メタ)アクリレート化合物、及び、N-ビニル化合物を含むことが好ましい。
<Polymerizable compound>
The curable composition according to the present disclosure preferably contains a polymerizable compound.
As the polymerizable compound, an ethylenically unsaturated compound is preferable.
Preferred examples of the ethylenically unsaturated compound include polyfunctional (meth) acrylate compounds having a ring structure and N-vinyl compounds.
Further, the curable composition according to the present disclosure may contain a polyfunctional (meth) acrylate compound having a ring structure and an N-vinyl compound from the viewpoint of the three-dimensional moldability and wear resistance of the resulting cured product. preferable.
<<環構造を有する多官能(メタ)アクリレート化合物>>
 本開示に係る硬化性組成物は、得られる硬化物の立体成型性及び耐摩耗性の観点から、環構造を有する多官能(メタ)アクリレート化合物を含むことが好ましい。
 上記環構造としては、特に制限はないが、ヘテロ原子を環員として一部有していてもよい脂肪族炭化水素環構造、及び、ヘテロ原子を環員として一部有していてもよい脂肪族炭化水素環を2以上縮環した縮合環構造が好ましく挙げられる。また、上記脂肪族炭化水素環は、5員環又は6員環であることが好ましい。
 上記ヘテロ原子としては、窒素原子、酸素原子、及び、硫黄原子が挙げられ、窒素原子が特に好ましい。
 中でも、上記環構造としては、得られる硬化物の立体成型性及び耐摩耗性の観点から、イソシアヌル環構造、トリシクロデカン環構造、トリアジン環、及び、シクロヘキサン環構造よりなる群から選ばれた少なくとも1つの環構造が好ましく、イソシアヌル環構造、又は、トリシクロデカン環構造がより好ましく、イソシアヌル環構造が特に好ましい。
 また、本開示における環構造を有する多官能(メタ)アクリレート化合物は、イソシアヌル環構造以外のウレタン結合を含まないことが好ましい。
<< Polyfunctional (meth) acrylate compound having a ring structure >>
It is preferable that the curable composition which concerns on this indication contains the polyfunctional (meth) acrylate compound which has a ring structure from a viewpoint of the three-dimensional moldability and abrasion resistance of the hardened | cured material obtained.
The ring structure is not particularly limited, but may be an aliphatic hydrocarbon ring structure that may have some heteroatoms as ring members, and an aliphatic that may have some heteroatoms as ring members. A condensed ring structure in which two or more aromatic hydrocarbon rings are condensed is preferred. The aliphatic hydrocarbon ring is preferably a 5-membered ring or a 6-membered ring.
Examples of the hetero atom include a nitrogen atom, an oxygen atom, and a sulfur atom, and a nitrogen atom is particularly preferable.
Among them, the ring structure is at least selected from the group consisting of an isocyanuric ring structure, a tricyclodecane ring structure, a triazine ring, and a cyclohexane ring structure from the viewpoint of the three-dimensional moldability and wear resistance of the resulting cured product. One ring structure is preferable, an isocyanuric ring structure or a tricyclodecane ring structure is more preferable, and an isocyanuric ring structure is particularly preferable.
Moreover, it is preferable that the polyfunctional (meth) acrylate compound which has a ring structure in this indication does not contain urethane bonds other than an isocyanuric ring structure.
 上記環構造を有する多官能(メタ)アクリレート化合物は、2官能以上であれば特に制限はないが、得られる硬化物の立体成型性及び耐摩耗性の観点から、3官能~6官能であることが好ましく、3官能又は4官能であることがより好ましく、3官能であることが特に好ましい。 The polyfunctional (meth) acrylate compound having the ring structure is not particularly limited as long as it is bifunctional or higher, but is trifunctional to hexafunctional from the viewpoint of three-dimensional moldability and wear resistance of the obtained cured product. Is preferable, trifunctional or tetrafunctional is more preferable, and trifunctional is particularly preferable.
 上記環構造を有する多官能(メタ)アクリレート化合物として具体的には、トリシクロデカンジメタノールジ(メタ)アクリレート、ジ(メタ)アクリロキシアルキル化イソシアヌレート、イソシアヌル酸エチレンオキサイド(以下、エチレンオキサイドを「EO」ともいう。)変性トリ(メタ)アクリレート、イソシアヌル酸エチレンオキサイド変性ジ(メタ)アクリレート等が挙げられる。
 中でも、イソシアヌル酸エチレンオキサイド変性トリ(メタ)アクリレートが特に好ましい。
Specific examples of the polyfunctional (meth) acrylate compound having the ring structure include tricyclodecane dimethanol di (meth) acrylate, di (meth) acryloxyalkylated isocyanurate, isocyanuric acid ethylene oxide (hereinafter referred to as ethylene oxide). Also referred to as “EO”.) Modified tri (meth) acrylate, isocyanuric acid ethylene oxide modified di (meth) acrylate, and the like.
Among these, isocyanuric acid ethylene oxide-modified tri (meth) acrylate is particularly preferable.
 上記環構造を有する多官能(メタ)アクリレート化合物の分子量は、200以上1,500以下であることが好ましい。
 本開示に係る硬化性組成物は、環構造を有する多官能(メタ)アクリレート化合物を、1種単独で含んでいても、2種以上を含んでいてもよい。
 本開示に係る硬化性組成物における環構造を有する多官能(メタ)アクリレート化合物の含有量としては、得られる硬化物の立体成型性及び耐摩耗性の観点から、硬化性組成物の全質量に対して、1質量%以上75質量%以下が好ましく、10質量%以上70質量%以下がより好ましく、20質量%以上60質量%以下が更に好ましい。
The molecular weight of the polyfunctional (meth) acrylate compound having the ring structure is preferably 200 or more and 1,500 or less.
The curable composition concerning this indication may contain the polyfunctional (meth) acrylate compound which has a ring structure individually by 1 type, or may contain 2 or more types.
The content of the polyfunctional (meth) acrylate compound having a ring structure in the curable composition according to the present disclosure is the total mass of the curable composition from the viewpoint of the three-dimensional moldability and wear resistance of the obtained cured product. On the other hand, 1 mass% or more and 75 mass% or less are preferable, 10 mass% or more and 70 mass% or less are more preferable, and 20 mass% or more and 60 mass% or less are still more preferable.
<<N-ビニル化合物>>
 本開示に係る硬化性組成物は、N-ビニル化合物を含むことが好ましい。N-ビニル化合物は、基材との密着性の向上に寄与し、かつ、硬化物の成型時における延伸性を向上させる。
 これにより、硬化物であるシリンドリカルレンズは、樹脂基材から剥がれにくく、成型時に生じやすい亀裂(クラック)等の発生が抑制され、立体成型性に優れる。
 上記N-ビニル化合物としては、単官能N-ビニル化合物であることが好ましく、また、環構造を有することが好ましい。
 中でも、N-ビニル化合物としては、得られる硬化物の立体成型性及び耐摩耗性の観点から、N-ビニルピロリドン、及び、N-ビニルカプロラクタムよりなる群から選ばれた少なくとも1種の化合物であることが好ましく、N-ビニルピロリドンがより好ましい。
 N-ビニル化合物のうち、N-ビニルピロリドンの例としては、N-ビニル-2-ピロリドン等が挙げられる。また、N-ビニルカプロラクタムの例としては、N-ビニル-ε-カプロラクタム等が挙げられる。
<< N-vinyl compound >>
The curable composition according to the present disclosure preferably contains an N-vinyl compound. The N-vinyl compound contributes to the improvement of the adhesion to the base material and improves the stretchability at the time of molding the cured product.
Thereby, the cylindrical lens which is a cured product is less likely to be peeled off from the resin base material, and generation of cracks or the like that easily occur during molding is suppressed, and the three-dimensional moldability is excellent.
The N-vinyl compound is preferably a monofunctional N-vinyl compound and preferably has a ring structure.
Among them, the N-vinyl compound is at least one compound selected from the group consisting of N-vinylpyrrolidone and N-vinylcaprolactam from the viewpoint of the three-dimensional moldability and wear resistance of the resulting cured product. N-vinylpyrrolidone is more preferable.
Among N-vinyl compounds, examples of N-vinylpyrrolidone include N-vinyl-2-pyrrolidone. Examples of N-vinylcaprolactam include N-vinyl-ε-caprolactam.
 本開示に係る硬化性組成物は、N-ビニル化合物を、1種単独で含んでいても、2種以上を含んでいてもよい。
 本開示に係る硬化性組成物におけるN-ビニル化合物の含有量としては、得られる硬化物の立体成型性及び耐摩耗性、並びに、シリンドリカルレンズの形状保持性の観点から、硬化性組成物の全質量に対して、8質量%以上60質量%以下が好ましく、15質量%以上50質量%以下がより好ましく、20質量%以上40質量%以下が更に好ましく、25質量%以上35質量%以下が特に好ましい。
The curable composition according to the present disclosure may contain one N-vinyl compound alone or two or more kinds.
The content of the N-vinyl compound in the curable composition according to the present disclosure includes all of the curable composition from the viewpoint of the three-dimensional moldability and wear resistance of the resulting cured product and the shape retention of the cylindrical lens. 8 mass% or more and 60 mass% or less are preferable with respect to mass, 15 mass% or more and 50 mass% or less are more preferable, 20 mass% or more and 40 mass% or less are still more preferable, and 25 mass% or more and 35 mass% or less are especially preferable. preferable.
<<単官能(メタ)アクリレート化合物>>
 本開示に係る硬化性組成物は、得られる硬化物の立体成型性及び耐摩耗性の観点から、単官能(メタ)アクリレート化合物を含むことが好ましい。
 単官能(メタ)アクリレート化合物としては、得られる硬化物の立体成型性及び耐摩耗性の観点から、脂肪族炭化水素環構造を有する単官能(メタ)アクリレート化合物、及び、末端に(メタ)アクリロイル基を有する樹脂が好ましく挙げられる。
<< Monofunctional (meth) acrylate compound >>
It is preferable that the curable composition which concerns on this indication contains a monofunctional (meth) acrylate compound from the viewpoint of the three-dimensional moldability and abrasion resistance of the hardened | cured material obtained.
The monofunctional (meth) acrylate compound is a monofunctional (meth) acrylate compound having an aliphatic hydrocarbon ring structure and a (meth) acryloyl at the terminal from the viewpoint of the three-dimensional moldability and wear resistance of the resulting cured product. Preferred is a resin having a group.
-脂肪族炭化水素環構造を有する単官能(メタ)アクリレート化合物-
 本開示に係る硬化性組成物は、得られる硬化物の立体成型性及び耐摩耗性の観点から、脂肪族炭化水素環構造を有する単官能(メタ)アクリレート化合物を含むことが好ましい。
 上記脂肪族炭化水素環構造としては、得られる硬化物の立体成型性及び耐摩耗性の観点から、トリシクロデカン環構造、シクロヘキサン環構造、ノルボルネン環構造、及び、アダマンタン環構造よりなる群から選ばれた少なくとも1種の環構造が好ましく、トリシクロデカン環構造がより好ましい。
-Monofunctional (meth) acrylate compounds having an aliphatic hydrocarbon ring structure-
It is preferable that the curable composition which concerns on this indication contains the monofunctional (meth) acrylate compound which has an aliphatic hydrocarbon ring structure from a viewpoint of the three-dimensional moldability and abrasion resistance of the hardened | cured material obtained.
The aliphatic hydrocarbon ring structure is selected from the group consisting of a tricyclodecane ring structure, a cyclohexane ring structure, a norbornene ring structure, and an adamantane ring structure from the viewpoint of the three-dimensional formability and wear resistance of the resulting cured product. At least one kind of ring structure is preferable, and a tricyclodecane ring structure is more preferable.
 脂肪族炭化水素環構造を有する単官能(メタ)アクリレート化合物として、具体的には、ジシクロペンタニル(メタ)アクリレート、ジシクロペンタニルオキシエチル(メタ)アクリレートなどのトリシクロデカン環構造を有する(メタ)アクリレート化合物、シクロヘキシル(メタ)アクリレートなどのシクロヘキサン環構造を有する(メタ)アクリレート化合物、イソボロニル(メタ)アクリレートなどのノルボルネン環構造を有する(メタ)アクリレート化合物、1-アダマンチル(メタ)アクリレートなどのアダマンタン環構造を有する(メタ)アクリレート化合物等が挙げられる。
 中でも、得られる硬化物の立体成型性及び耐摩耗性の観点から、トリシクロデカン環構造を有する(メタ)アクリレート化合物が好ましく、ジシクロペンタニル(メタ)アクリレートがより好ましい。
As a monofunctional (meth) acrylate compound having an aliphatic hydrocarbon ring structure, specifically, it has a tricyclodecane ring structure such as dicyclopentanyl (meth) acrylate and dicyclopentanyloxyethyl (meth) acrylate. (Meth) acrylate compounds, (meth) acrylate compounds having a cyclohexane ring structure such as cyclohexyl (meth) acrylate, (meth) acrylate compounds having a norbornene ring structure such as isobornyl (meth) acrylate, 1-adamantyl (meth) acrylate, etc. And (meth) acrylate compounds having an adamantane ring structure.
Among these, from the viewpoint of three-dimensional moldability and wear resistance of the obtained cured product, a (meth) acrylate compound having a tricyclodecane ring structure is preferable, and dicyclopentanyl (meth) acrylate is more preferable.
 本開示に係る硬化性組成物は、脂肪族炭化水素環構造を有する単官能(メタ)アクリレート化合物を、1種単独で含んでいても、2種以上を含んでいてもよい。
 本開示に係る硬化性組成物における脂肪族炭化水素環構造を有する単官能(メタ)アクリレート化合物の含有量としては、得られる硬化物の立体成型性及び耐摩耗性の観点から、硬化性組成物の全質量に対して、0.5質量%以上50質量%以下が好ましく、10質量%以上45質量%以下がより好ましく、20質量%以上40質量%以下が特に好ましい。
The curable composition concerning this indication may contain the monofunctional (meth) acrylate compound which has an aliphatic hydrocarbon ring structure individually by 1 type, or may contain 2 or more types.
As content of the monofunctional (meth) acrylate compound which has an aliphatic hydrocarbon ring structure in the curable composition which concerns on this indication, it is a curable composition from a viewpoint of the three-dimensional moldability and abrasion resistance of the hardened | cured material obtained. Is preferably 0.5% by mass or more and 50% by mass or less, more preferably 10% by mass or more and 45% by mass or less, and particularly preferably 20% by mass or more and 40% by mass or less.
-末端に(メタ)アクリロイル基を有する樹脂-
 本開示に係る硬化性組成物は、末端に(メタ)アクリロイル基を有する樹脂を含むことが好ましい。上記樹脂は、分子鎖の末端に(メタ)アクリロイル基を有しているため、他の重合性化合物、特に多官能(メタ)アクリレート化合物と併用することで、硬化性組成物全体における架橋密度を制御し、得られる硬化物の立体成型性及び耐摩耗性に優れる。
-Resin with (meth) acryloyl group at the end-
The curable composition according to the present disclosure preferably includes a resin having a (meth) acryloyl group at the terminal. Since the resin has a (meth) acryloyl group at the end of the molecular chain, the crosslink density in the entire curable composition can be increased by using it in combination with other polymerizable compounds, particularly polyfunctional (meth) acrylate compounds. Controlled and excellent in three-dimensional moldability and wear resistance of the resulting cured product.
 上記樹脂としては、末端に(メタ)アクリロイル基を有するポリマーであればよく、例えば、(メタ)アクリル樹脂、ポリスチレン、ポリスチレン・メタクリレート(MS樹脂)、ポリスチレン・アクリロニトリル(AS樹脂)、ポリプロピレン、ポリエチレン、ポリエチレンテレフタレート、グリコール変性ポリエチレンテレフタレート、ポリ塩化ビニル(PVC)、熱可塑性エラストマー、又は、これらの共重合体、シクロオレフィンポリマー等の、主鎖構造の末端に(メタ)アクリロイル基を少なくとも1つ有するポリマーを挙げることができる。中でも、得られる硬化物の立体成型性及び耐磨耗性の観点から、末端に(メタ)アクリロイル基を有する(メタ)アクリル樹脂、又は、末端に(メタ)アクリロイル基を有するポリスチレンが好ましく、末端に(メタ)アクリロイル基を有する(メタ)アクリル樹脂がより好ましい。
 また、末端に(メタ)アクリロイル基を有する(メタ)アクリル樹脂としては、耐摩耗性の観点から、末端に(メタ)アクリロイル基を有するポリメチルメタクリレートが好ましい。
 更に、末端に(メタ)アクリロイル基を有する樹脂は、末端にメタクリロイル基を有することが好ましい。
 また、末端に(メタ)アクリロイル基を有する樹脂は、主鎖の末端に(メタ)アクリロイル基を有する樹脂であることが好ましく、主鎖の片末端に(メタ)アクリロイル基を有する樹脂であることがより好ましい。
 なお、本開示において、「主鎖」とは樹脂を構成する高分子化合物の分子中で相対的に最も長い結合鎖を表し、「側鎖」とは主鎖から枝分かれしている炭素鎖を表す。
The resin may be a polymer having a (meth) acryloyl group at the terminal, for example, (meth) acrylic resin, polystyrene, polystyrene / methacrylate (MS resin), polystyrene / acrylonitrile (AS resin), polypropylene, polyethylene, Polymers having at least one (meth) acryloyl group at the end of the main chain structure, such as polyethylene terephthalate, glycol-modified polyethylene terephthalate, polyvinyl chloride (PVC), thermoplastic elastomers, copolymers thereof, and cycloolefin polymers Can be mentioned. Among these, from the viewpoint of the three-dimensional moldability and wear resistance of the resulting cured product, a (meth) acrylic resin having a (meth) acryloyl group at the terminal or a polystyrene having a (meth) acryloyl group at the terminal is preferable. A (meth) acrylic resin having a (meth) acryloyl group is more preferable.
The (meth) acrylic resin having a (meth) acryloyl group at the terminal is preferably polymethyl methacrylate having a (meth) acryloyl group at the terminal from the viewpoint of wear resistance.
Furthermore, the resin having a (meth) acryloyl group at the terminal preferably has a methacryloyl group at the terminal.
The resin having a (meth) acryloyl group at the end is preferably a resin having a (meth) acryloyl group at the end of the main chain, and a resin having a (meth) acryloyl group at one end of the main chain. Is more preferable.
In the present disclosure, “main chain” represents a relatively long bond chain in the molecule of the polymer compound constituting the resin, and “side chain” represents a carbon chain branched from the main chain. .
 末端に(メタ)アクリロイル基を有する樹脂としては、例えば、東亞合成(株)製のマクロモノマーシリーズ(例:マクロモノマーAA-6(メタクリロイル基を有するポリメチルメタクリレート)、マクロモノマーAS-6又はAS-6S(メタクリロイル基を有するポリスチレン)、マクロモノマーAN-6S(メタクリロイル基を有するポリスチレン・アクリロニトリル)、マクロモノマーAB-6(メタクリロイル基を有するポリブチルメタクリレート)等を用いることができる。 Examples of the resin having a (meth) acryloyl group at the terminal include a macromonomer series manufactured by Toagosei Co., Ltd. (eg, macromonomer AA-6 (polymethyl methacrylate having a methacryloyl group), macromonomer AS-6 or AS -6S (polystyrene having a methacryloyl group), macromonomer AN-6S (polystyrene / acrylonitrile having a methacryloyl group), macromonomer AB-6 (polybutyl methacrylate having a methacryloyl group), and the like can be used.
 末端に(メタ)アクリロイル基を有する樹脂の数平均分子量としては、得られる硬化物の立体成型性の観点から、1,000以上10,000以下が好ましく、3,000以上10,000以下がより好ましく、5,000以上10,000以下が更に好ましい。
 なお、本開示における樹脂は、数平均分子量1,000以上のものであることが好ましい。
The number average molecular weight of the resin having a (meth) acryloyl group at the terminal is preferably 1,000 or more and 10,000 or less, more preferably 3,000 or more and 10,000 or less, from the viewpoint of the three-dimensional moldability of the resulting cured product. Preferably, 5,000 or more and 10,000 or less are more preferable.
The resin in the present disclosure preferably has a number average molecular weight of 1,000 or more.
 末端に(メタ)アクリロイル基を有する樹脂のガラス転移温度(Tg)としては、得られる硬化物の耐摩耗性の観点から、50℃以上が好ましく、80℃以上がより好ましい。また、得られる硬化物の樹脂基材への密着性及び立体成型性の観点から、Tgは250℃未満が好ましく、200℃以下がより好ましい。 The glass transition temperature (Tg) of the resin having a (meth) acryloyl group at the terminal is preferably 50 ° C. or higher, more preferably 80 ° C. or higher, from the viewpoint of wear resistance of the obtained cured product. In addition, from the viewpoints of adhesion of the obtained cured product to the resin base material and three-dimensional moldability, Tg is preferably less than 250 ° C, and more preferably 200 ° C or less.
 本開示に係る硬化性組成物は、末端に(メタ)アクリロイル基を有する樹脂を、1種単独で含んでいても、2種以上を含んでいてもよい。
 本開示に係る硬化性組成物における末端に(メタ)アクリロイル基を有する樹脂の含有量としては、得られる硬化物の立体成型性及び耐摩耗性の観点から、硬化性組成物の全質量に対して、0.5質量%以上50質量%以下が好ましく、10質量%以上45質量%以下がより好ましく、20質量%以上40質量%以下が特に好ましい。
The curable composition according to the present disclosure may contain one kind of resin having a (meth) acryloyl group at the terminal alone or two or more kinds.
The content of the resin having a (meth) acryloyl group at the terminal in the curable composition according to the present disclosure is from the viewpoint of the three-dimensional moldability and wear resistance of the resulting cured product, with respect to the total mass of the curable composition. 0.5 mass% or more and 50 mass% or less is preferable, 10 mass% or more and 45 mass% or less are more preferable, and 20 mass% or more and 40 mass% or less are especially preferable.
-他の単官能(メタ)アクリレート化合物-
 本開示に係る硬化性組成物は、上述した以外かつ後述するウレタン(メタ)アクリレート以外の単官能(メタ)アクリレート化合物(他の単官能(メタ)アクリレート化合物)を含んでいてもよい。
 他の単官能(メタ)アクリレート化合物の具体例としては、2-エチル-2-ブチルプロパンジオール(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、2-エチルヘキシルカルビトール(メタ)アクリレート、2-ヒドロキシブチル(メタ)アクリレート、2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、2-メトキシエチル(メタ)アクリレート、3-メトキシブチル(メタ)アクリレート、4-ヒドロキシブチル(メタ)アクリレート、ベンジル(メタ)アクリレート、1-ナフチル(メタ)アクリレート、2-ナフチル(メタ)アクリレート、ブタンジオールモノ(メタ)アクリレート、ブトキシエチル(メタ)アクリレート、ブチル(メタ)アクリレート、セチル(メタ)アクリレート、EO変性クレゾール(メタ)アクリレート、ジプロピレングリコール(メタ)アクリレート、エトキシ化フェニル(メタ)アクリレート、エチル(メタ)アクリレート、イソアミル(メタ)アクリレート、イソブチル(メタ)アクリレート、イソオクチル(メタ)アクリレート、イソミリスチル(メタ)アクリレート、ラウリル(メタ)アクリレート、メトキシジプロピレングリコール(メタ)アクリレート、メトキシトリプロピレングリコール(メタ)アクリレート、メトキシポリエチレングリコール(メタ)アクリレート、メトキシトリエチレングリコール(メタ)アクリレート、メチル(メタ)アクリレート、ネオペンチルグリコールベンゾエート(メタ)アクリレート、ノニルフェノキシポリエチレングリコール(メタ)アクリレート、ノニルフェノキシポリプロピレングリコール(メタ)アクリレート、オクチル(メタ)アクリレート、パラクミルフェノキシエチレングリコール(メタ)アクリレート、エピクロロヒドリン(以下、「ECH」ともいう。)変性フェノキシ(メタ)アクリレート、フェノキシエチル(メタ)アクリレート、フェノキシジエチレングリコール(メタ)アクリレート、フェノキシヘキサエチレングリコール(メタ)アクリレート、フェノキシテトラエチレングリコール(メタ)アクリレート、ステアリル(メタ)アクリレート、EO変性コハク酸(メタ)アクリレート、tert-ブチル(メタ)アクリレート、トリブロモフェニル(メタ)アクリレート、EO変性トリブロモフェニル(メタ)アクリレート、ドデシル(メタ)アクリレート等が挙げられる。
-Other monofunctional (meth) acrylate compounds-
The curable composition according to the present disclosure may include a monofunctional (meth) acrylate compound (other monofunctional (meth) acrylate compounds) other than the urethane (meth) acrylate described later and other than those described above.
Specific examples of other monofunctional (meth) acrylate compounds include 2-ethyl-2-butylpropanediol (meth) acrylate, 2-ethylhexyl (meth) acrylate, 2-ethylhexyl carbitol (meth) acrylate, 2-hydroxy Butyl (meth) acrylate, 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 2-methoxyethyl (meth) acrylate, 3-methoxybutyl (meth) acrylate, 4-hydroxybutyl (meth) acrylate Benzyl (meth) acrylate, 1-naphthyl (meth) acrylate, 2-naphthyl (meth) acrylate, butanediol mono (meth) acrylate, butoxyethyl (meth) acrylate, butyl (meth) acrylate, cetyl ( Acrylate), EO-modified cresol (meth) acrylate, dipropylene glycol (meth) acrylate, ethoxylated phenyl (meth) acrylate, ethyl (meth) acrylate, isoamyl (meth) acrylate, isobutyl (meth) acrylate, isooctyl (meth) Acrylate, isomyristyl (meth) acrylate, lauryl (meth) acrylate, methoxydipropylene glycol (meth) acrylate, methoxytripropylene glycol (meth) acrylate, methoxypolyethylene glycol (meth) acrylate, methoxytriethylene glycol (meth) acrylate, Methyl (meth) acrylate, neopentyl glycol benzoate (meth) acrylate, nonylphenoxypolyethyleneglycol (Meth) acrylate, nonylphenoxy polypropylene glycol (meth) acrylate, octyl (meth) acrylate, paracumylphenoxyethylene glycol (meth) acrylate, epichlorohydrin (hereinafter also referred to as “ECH”) modified phenoxy (meth) acrylate , Phenoxyethyl (meth) acrylate, phenoxydiethylene glycol (meth) acrylate, phenoxyhexaethylene glycol (meth) acrylate, phenoxytetraethylene glycol (meth) acrylate, stearyl (meth) acrylate, EO-modified succinic acid (meth) acrylate, tert- Butyl (meth) acrylate, tribromophenyl (meth) acrylate, EO-modified tribromophenyl (meth) acrylate, dodecyl ( And (meth) acrylate.
 本開示に係る硬化性組成物は、他の単官能(メタ)アクリレート化合物を、1種単独で含んでいても、2種以上を含んでいてもよい。
 本開示に係る硬化性組成物は、得られる硬化物の耐摩耗性の観点から、他の単官能(メタ)アクリレート化合物を、含有しないか、又は、その含有量が、硬化性組成物の全質量に対して、20質量%以下であることが好ましく、含有しないか、又は、その含有量が、硬化性組成物の全質量に対して、10質量%以下であることがより好ましく、含有しないか、又は、その含有量が、硬化性組成物の全質量に対して、5質量%以下であることが更に好ましく、含有しないか、又は、その含有量が、硬化性組成物の全質量に対して、1質量%以下であることが特に好ましい。
The curable composition concerning this indication may contain other monofunctional (meth) acrylate compounds individually by 1 type, or may contain 2 or more types.
The curable composition according to the present disclosure does not contain other monofunctional (meth) acrylate compounds from the viewpoint of wear resistance of the obtained cured product, or the content thereof is the total of the curable composition. It is preferable that it is 20 mass% or less with respect to mass, and it is not contained, or it is more preferable that the content is 10 mass% or less with respect to the total mass of the curable composition, and it does not contain. Or the content thereof is more preferably 5% by mass or less with respect to the total mass of the curable composition, and it is not contained or the content thereof is in the total mass of the curable composition. On the other hand, it is particularly preferably 1% by mass or less.
 本開示に係る硬化性組成物は、単官能(メタ)アクリレート化合物を、1種単独で含んでいても、2種以上を含んでいてもよい。
 本開示に係る硬化性組成物における単官能(メタ)アクリレート化合物の含有量としては、得られる硬化物の立体成型性及び耐摩耗性の観点から、硬化性組成物の全質量に対して、1質量%以上80質量%以下が好ましく、15質量%以上75質量%以下がより好ましく、30質量%以上70質量%以下が特に好ましい。
The curable composition concerning this indication may contain the monofunctional (meth) acrylate compound individually by 1 type, or may contain 2 or more types.
As content of the monofunctional (meth) acrylate compound in the curable composition which concerns on this indication, it is 1 with respect to the total mass of a curable composition from a viewpoint of the three-dimensional moldability and abrasion resistance of the hardened | cured material obtained. The mass% is preferably 80% by mass or less, more preferably 15% by mass or more and 75% by mass or less, and particularly preferably 30% by mass or more and 70% by mass or less.
<<ウレタン(メタ)アクリレート化合物>>
 本開示に係る硬化性組成物は、ウレタン(メタ)アクリレート化合物を含んでいてもよい。
 本開示におけるウレタン(メタ)アクリレート化合物は、1以上のウレタン結合及び1以上の(メタ)アクリロイル基を有する化合物であるものとする。ただし、本開示におけるウレタン(メタ)アクリレート化合物のウレタン結合には、イソシアヌル環構造を含まないものとする。
 ウレタン(メタ)アクリレート化合物は、単官能であっても、多官能であってもよいが、2官能~15官能のものが好ましく挙げられる。
 また、ウレタン(メタ)アクリレート化合物の重量平均分子量は、1,000以上100,000以下であることが好ましい。
<< Urethane (meth) acrylate compound >>
The curable composition according to the present disclosure may include a urethane (meth) acrylate compound.
The urethane (meth) acrylate compound in the present disclosure is a compound having one or more urethane bonds and one or more (meth) acryloyl groups. However, the urethane bond of the urethane (meth) acrylate compound in the present disclosure does not include an isocyanuric ring structure.
The urethane (meth) acrylate compound may be monofunctional or polyfunctional, but a bifunctional to 15 functional compound is preferable.
Moreover, it is preferable that the weight average molecular weights of a urethane (meth) acrylate compound are 1,000 or more and 100,000 or less.
 ウレタン(メタ)アクリレート化合物としては、例えば、ポリエチレングリコール、ポリテトラメチルグリコール等のポリエーテルポリオール;コハク酸、アジピン酸、アゼライン酸、セバシン酸、フタル酸、テトラヒドロ(無水)フタル酸、ヘキサヒドロ(無水)フタル酸等の二塩基酸とエチレングリコール、プロピレングリコール、ジエチレングリコール、トリエチレングリコール、テトラエチレングリコール、ジプロピレングリコール、1,4-ブタンジオール、1,6-ヘキサンジオール、ネオペンチルグリコール等のジオールの反応によって得られるポリエステルポリオール;ポリε-カプロラクトン変性ポリオール;ポリメチルバレロラクトン変性ポリオール;エチレングリコール、プロピレングリコール、1,4-ブタンジオール、1,6-ヘキサンジオール、ネオペンチルグリコール等のアルキルポリオール;エチレンオキシド付加ビスフェノールA、プロピレンオキシド付加ビスフェノールA等のビスフェノールA骨格アルキレンオキシド変性ポリオール;エチレンオキシド付加ビスフェノールF、プロピレンオキシド付加ビスフェノールF等のビスフェノールF骨格アルキレンオキシド変性ポリオール、又はそれらの混合物とトリレンジイソシアネート、イソホロンジイソシアネート、ヘキサメチレンジイソシアネート、ジフェニルメタンジイソシアネート、キシリレンジイソシアネート等の有機ポリイソシアネートと2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート等のヒドロキシ基含有(メタ)アクリレートから製造されるウレタン(メタ)アクリレート化合物、1,5,5-トリメチル-1-[(1-メタクリロイルオキシプロパン-2-イル)カルバモイルメチル]-3-(1-メタクリロイルオキシプロパン-2-イル)カルバモイルシクロヘキサン、1,5,5-トリメチル-1-[(2-メタクリロイルオキシエチル)カルバモイルメチル]-3-(2-メタクリロイルオキシエチル)カルバモイルシクロヘキサン等が挙げられる。 Examples of urethane (meth) acrylate compounds include polyether polyols such as polyethylene glycol and polytetramethyl glycol; succinic acid, adipic acid, azelaic acid, sebacic acid, phthalic acid, tetrahydro (anhydrous) phthalic acid, hexahydro (anhydrous) Reaction of dibasic acids such as phthalic acid with diols such as ethylene glycol, propylene glycol, diethylene glycol, triethylene glycol, tetraethylene glycol, dipropylene glycol, 1,4-butanediol, 1,6-hexanediol, neopentyl glycol Polyester polyol obtained by: Poly ε-caprolactone modified polyol; Polymethylvalerolactone modified polyol; Ethylene glycol, propylene glycol, 1,4-butanedi 1, polyols such as 1,6-hexanediol and neopentyl glycol; bisphenol A skeleton alkylene oxide-modified polyols such as ethylene oxide-added bisphenol A and propylene oxide-added bisphenol A; ethylene oxide-added bisphenol F and propylene oxide-added bisphenol F Bisphenol F skeleton alkylene oxide modified polyol, or a mixture thereof and organic polyisocyanates such as tolylene diisocyanate, isophorone diisocyanate, hexamethylene diisocyanate, diphenylmethane diisocyanate, xylylene diisocyanate, 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl ( Hydroxy group-containing (meth) acrylate such as (meth) acrylate 1,5,5-trimethyl-1-[(1-methacryloyloxypropan-2-yl) carbamoylmethyl] -3- (1-methacryloyloxypropan-2-yl) And carbamoylcyclohexane, 1,5,5-trimethyl-1-[(2-methacryloyloxyethyl) carbamoylmethyl] -3- (2-methacryloyloxyethyl) carbamoylcyclohexane, and the like.
 また、ウレタン(メタ)アクリレート化合物の市販品としては、日本合成化学工業(株)製の紫光シリーズ、新中村化学工業(株)製のU-2PPA、U-4HA、U-6HA、U-6LPA、U-15HA、U-324A、UA-122P、UA5201、UA-512等;サートマー・ジャパン(株)製のCN964A85、CN964、CN959、CN962、CN963J85、CN965、CN982B88、CN981、CN983、CN996、CN9002、CN9007、CN9009、CN9010、CN9011、CN9178、CN9788、CN9893、ダイセル・サイテック(株)製のEB204、EB230、EB244、EB245、EB270、EB284、EB285、EB810、EB4830、EB4835、EB4858、EB1290、EB210、EB215、EB4827、EB4830、EB4849、EB6700、EB204、EB8402、EB8804、EB8800-20R等が挙げられる。 In addition, commercially available urethane (meth) acrylate compounds include the Shigemitsu series manufactured by Nippon Synthetic Chemical Industry Co., Ltd., U-2PPA, U-4HA, U-6HA, U-6LPA manufactured by Shin-Nakamura Chemical Co., Ltd. , U-15HA, U-324A, UA-122P, UA5201, UA-512, etc .; CN964A85, CN964, CN959, CN962, CN963J85, CN965, CN982B88, CN981, CN983, CN996, 9006C, manufactured by Sartomer Japan CN9007, CN9009, CN9010, CN9011, CN9178, CN9788, CN9873, EB204, EB230, EB244, EB245, EB270, EB284, EB285, EB810, EB483 manufactured by Daicel Cytec Co., Ltd. , EB4835, EB4858, EB1290, EB210, EB215, EB4827, EB4830, EB4849, EB6700, EB204, EB8402, EB8804, it includes EB8800-20R like.
 本開示に係る硬化性組成物は、ウレタン(メタ)アクリレート化合物を、1種単独で含んでいても、2種以上を含んでいてもよい。
 本開示に係る硬化性組成物は、得られる硬化物の立体成型性の観点から、ウレタン(メタ)アクリレート化合物を、含有しないか、又は、その含有量が、硬化性組成物の全質量に対して、4質量%未満であることが好ましく、含有しないか、又は、その含有量が、硬化性組成物の全質量に対して、2質量%以下であることがより好ましく、含有しないか、又は、その含有量が、硬化性組成物の全質量に対して、1質量%以下であることが更に好ましく、含有しないことが特に好ましい。
 ウレタン(メタ)アクリレート化合物を含有すると、架橋点間分子量が大きくなりやすい。
The curable composition concerning this indication may contain the urethane (meth) acrylate compound individually by 1 type, or may contain 2 or more types.
From the viewpoint of the three-dimensional moldability of the resulting cured product, the curable composition according to the present disclosure does not contain a urethane (meth) acrylate compound, or the content thereof is based on the total mass of the curable composition. The content is preferably less than 4% by mass, not contained, or the content thereof is more preferably 2% by mass or less with respect to the total mass of the curable composition. The content is more preferably 1% by mass or less, particularly preferably not contained, with respect to the total mass of the curable composition.
When a urethane (meth) acrylate compound is contained, the molecular weight between crosslinking points tends to increase.
<<他の多官能(メタ)アクリレート化合物>>
 本開示に係る硬化性組成物は、環構造を有する多官能(メタ)アクリレート化合物及びウレタン(メタ)アクリレート化合物以外の多官能(メタ)アクリレート化合物(他の多官能(メタ)アクリレート化合物)を含んでいてもよい。
<< Other polyfunctional (meth) acrylate compounds >>
The curable composition according to the present disclosure includes a polyfunctional (meth) acrylate compound (another polyfunctional (meth) acrylate compound) other than a polyfunctional (meth) acrylate compound having a ring structure and a urethane (meth) acrylate compound. You may go out.
 他の多官能(メタ)アクリレート化合物の具体例としては、ジエチレングリコールモノエチルエーテルジ(メタ)アクリレート、1,3-ブチレングリコールジ(メタ)アクリレート、1,4-ブタンジオールジ(メタ)アクリレート、エチレンオキサイド変性1,6-ヘキサンジオールジ(メタ)アクリレート、ECH変性1,6-ヘキサンジオールジ(メタ)アクリレート、アリロキシポリエチレングリコール(メタ)アクリレート、1,9-ノナンジオールジ(メタ)アクリレート、ECH変性ヘキサヒドロフタル酸ジ(メタ)アクリレート、ヒドロキシピバリン酸ネオペンチルグリコールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、EO変性ネオペンチルグリコールジ(メタ)アクリレート、プロピレンオキサイド(以下、「PO」ともいう。)変性ネオペンチルグリコールジ(メタ)アクリレート、ステアリン酸変性ペンタエリスリトールジ(メタ)アクリレート、ECH変性フタル酸ジ(メタ)アクリレート、ECH変性プロピレングリコールジ(メタ)アクリレート、シリコーンジ(メタ)アクリレート、トリエチレングリコールジ(メタ)アクリレート、テトラエチレングリコールジ(メタ)アクリレート、ネオペンチルグリコール変性トリメチロールプロパンジ(メタ)アクリレート、トリプロピレングリコールジ(メタ)アクリレート、EO変性トリプロピレングリコールジ(メタ)アクリレート、トリグリセロールジ(メタ)アクリレート、ジプロピレングリコールジ(メタ)アクリレート、ECH変性グリセロールトリ(メタ)アクリレート、EO変性グリセロールトリ(メタ)アクリレート、PO変性グリセロールトリ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、EO変性リン酸トリ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、カプロラクトン変性トリメチロールプロパントリ(メタ)アクリレート、EO変性トリメチロールプロパントリ(メタ)アクリレート、PO変性トリメチロールプロパントリ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ジトリメチロールプロパンテトラ(メタ)アクリレート、エトキシ化ペンタエリスリトールテトラ(メタ)アクリレート、ジグリセリンエチレンオキサイド(EO)変性(メタ)アクリレート等が挙げられる。 Specific examples of other polyfunctional (meth) acrylate compounds include diethylene glycol monoethyl ether di (meth) acrylate, 1,3-butylene glycol di (meth) acrylate, 1,4-butanediol di (meth) acrylate, ethylene Oxide-modified 1,6-hexanediol di (meth) acrylate, ECH-modified 1,6-hexanediol di (meth) acrylate, allyloxy polyethylene glycol (meth) acrylate, 1,9-nonanediol di (meth) acrylate, ECH Modified hexahydrophthalic acid di (meth) acrylate, hydroxypivalic acid neopentyl glycol di (meth) acrylate, neopentyl glycol di (meth) acrylate, EO modified neopentyl glycol di (meth) acrylate, pro Ren oxide (hereinafter also referred to as “PO”) modified neopentyl glycol di (meth) acrylate, stearic acid modified pentaerythritol di (meth) acrylate, ECH modified phthalic acid di (meth) acrylate, ECH modified propylene glycol di (meth) ) Acrylate, silicone di (meth) acrylate, triethylene glycol di (meth) acrylate, tetraethylene glycol di (meth) acrylate, neopentyl glycol modified trimethylolpropane di (meth) acrylate, tripropylene glycol di (meth) acrylate, EO modified tripropylene glycol di (meth) acrylate, triglycerol di (meth) acrylate, dipropylene glycol di (meth) acrylate, ECH modified glycerol tri (Meth) acrylate, EO-modified glycerol tri (meth) acrylate, PO-modified glycerol tri (meth) acrylate, pentaerythritol tri (meth) acrylate, EO modified tri (meth) acrylate phosphate, trimethylolpropane tri (meth) acrylate, caprolactone Modified trimethylolpropane tri (meth) acrylate, EO modified trimethylolpropane tri (meth) acrylate, PO modified trimethylolpropane tri (meth) acrylate, pentaerythritol tetra (meth) acrylate, ditrimethylolpropane tetra (meth) acrylate, ethoxy Pentaerythritol tetra (meth) acrylate, diglycerin ethylene oxide (EO) modified (meth) acrylate, and the like.
 本開示に係る硬化性組成物は、他の多官能(メタ)アクリレート化合物を、1種単独で含んでいても、2種以上を含んでいてもよい。
 本開示に係る硬化性組成物は、得られる硬化物の立体成型性の観点から、他の多官能(メタ)アクリレート化合物を、含有しないか、又は、その含有量が、硬化性組成物の全質量に対して、20質量%以下であることが好ましく、含有しないか、又は、その含有量が、硬化性組成物の全質量に対して、10質量%以下であることがより好ましく、含有しないか、又は、その含有量が、硬化性組成物の全質量に対して、5質量%以下であることが更に好ましく、含有しないか、又は、その含有量が、硬化性組成物の全質量に対して、1質量%以下であることが特に好ましい。
The curable composition concerning this indication may contain other polyfunctional (meth) acrylate compounds individually by 1 type, or may contain 2 or more types.
The curable composition according to the present disclosure does not contain other polyfunctional (meth) acrylate compounds from the viewpoint of the three-dimensional moldability of the obtained cured product, or the content thereof is the total of the curable composition. It is preferable that it is 20 mass% or less with respect to mass, and it is not contained, or it is more preferable that the content is 10 mass% or less with respect to the total mass of the curable composition, and it does not contain. Or the content thereof is more preferably 5% by mass or less with respect to the total mass of the curable composition, and it is not contained or the content thereof is in the total mass of the curable composition. On the other hand, it is particularly preferably 1% by mass or less.
 また、本開示に係る硬化性組成物は、上述した以外のその他のエチレン性不飽和化合物を含んでいてもよい。
 その他のエチレン性不飽和化合物としては、公知の重合性化合物、特に公知のエチレン性不飽和化合物を用いることができる。
Moreover, the curable composition which concerns on this indication may contain other ethylenically unsaturated compounds other than having mentioned above.
As other ethylenically unsaturated compounds, known polymerizable compounds, particularly known ethylenically unsaturated compounds can be used.
<重合開始剤>
 本開示に係る硬化性組成物は、硬化性の観点から、重合開始剤を含むことが好ましい。
 重合開始剤としては、公知の光重合開始剤、及び、公知の熱重合開始剤を用いることができる。
 中でも、得られる硬化物の立体成型性及び耐摩耗性の観点から、光重合開始剤が好ましく、光ラジカル重合開始剤がより好ましい。
<Polymerization initiator>
The curable composition according to the present disclosure preferably includes a polymerization initiator from the viewpoint of curability.
As the polymerization initiator, a known photopolymerization initiator and a known thermal polymerization initiator can be used.
Among these, from the viewpoint of three-dimensional moldability and wear resistance of the obtained cured product, a photopolymerization initiator is preferable, and a photoradical polymerization initiator is more preferable.
 光ラジカル重合開始剤としては、構造上の制限は特になく、例えば、2,4,6-トリメチルベンゾイルジフェニルフォスフィンオキサイド、ビス(2,4,6-トリメチルベンゾイル)フェニルフォスフィンオキサイド、2,2-ジメトキシ-1,2-ジフェニルエタン-1-オン、1-ヒドロキシシクロヘキシルフェニルケトン、1-ヒドロキシシクロヘキシルフェニルケトン、1-[4-(2-ヒドロキシエトキシ)フェニル]-2-ヒドロキシ-2-メチル-1-プロパン-1-オン、2-ヒドロキシ-1-{4-[4-(2-ヒドロキシ-2-メチルプロピオニル)ベンジル]フェニル}-2-メチルプロパン-1-オン、2-メチル-1-(4-メチルチオフェニル)-2-モルフォリノプロパン-1-オン等を挙げることができる。 The radical photopolymerization initiator is not particularly limited in structure. For example, 2,4,6-trimethylbenzoyldiphenylphosphine oxide, bis (2,4,6-trimethylbenzoyl) phenylphosphine oxide, 2,2 -Dimethoxy-1,2-diphenylethane-1-one, 1-hydroxycyclohexyl phenyl ketone, 1-hydroxycyclohexyl phenyl ketone, 1- [4- (2-hydroxyethoxy) phenyl] -2-hydroxy-2-methyl- 1-propan-1-one, 2-hydroxy-1- {4- [4- (2-hydroxy-2-methylpropionyl) benzyl] phenyl} -2-methylpropan-1-one, 2-methyl-1- (4-methylthiophenyl) -2-morpholinopropan-1-one, etc. Kill.
 光ラジカル重合開始剤は、上市されている市販品を用いてもよく、市販品の具体例として、BASF社製のイルガキュアシリーズ(例:IRGACURE TPO、IRGACURE 819、IRGACURE 651、IRGACURE 184、IRGACURE 1173、IRGACURE 2959、IRGACURE 127、IRGACURE 907等)が挙げられる。 Commercially available products that are commercially available may be used as the photoradical polymerization initiator. As specific examples of commercially available products, IRGACURE series (example: IRGACURE TPO, IRGACURE 819, IRGACURE 651, IRGACURE 184, IRGACURE 1173 manufactured by BASF) may be used. IRGACURE 2959, IRGACURE 127, IRGACURE 907, etc.).
 熱重合開始剤としては、公知のアゾ系化合物、公知の過酸化物系化合物等が挙げられる。上記アゾ系化合物としては、アゾビス系化合物を挙げることができる。また、上記過酸化物系化合物としては、ケトンパーオキサイド、パーオキシケタール、ハイドロパーオキサイド、ジアルキルパーオキサイド、ジアシルパーオキサイド、パーオキシエステル、パーオキシジカーボネート等を挙げることができる。 Examples of the thermal polymerization initiator include known azo compounds and known peroxide compounds. Examples of the azo compound include azobis compounds. Examples of the peroxide compound include ketone peroxide, peroxyketal, hydroperoxide, dialkyl peroxide, diacyl peroxide, peroxyester, and peroxydicarbonate.
 本開示に係る硬化性組成物は、重合開始剤を、1種単独で含んでいても、2種以上を含んでいてもよい。
 本開示に係る硬化性組成物における重合開始剤の含有量としては、得られる硬化物の立体成型性及び耐摩耗性の観点から、硬化性組成物の全質量に対して、0.05質量%以上10質量%以下が好ましく、0.1質量%以上10質量%以下がより好ましく、0.1質量%以上5質量%以下が更に好ましく、0.5質量%以上3質量%以下が特に好ましい。
The curable composition concerning this indication may contain the polymerization initiator individually by 1 type, or may contain 2 or more types.
As content of the polymerization initiator in the curable composition which concerns on this indication, it is 0.05 mass% with respect to the total mass of a curable composition from the viewpoint of the three-dimensional moldability and abrasion resistance of the hardened | cured material obtained. It is preferably 10% by mass or less, more preferably 0.1% by mass or more and 10% by mass or less, still more preferably 0.1% by mass or more and 5% by mass or less, and particularly preferably 0.5% by mass or more and 3% by mass or less.
-他の成分-
 本開示に係る硬化性組成物は、上記の成分以外に、必要に応じて、有機溶剤、無機粒子等の他の成分が含まれていてもよい。
 有機溶剤としては、トルエン、メチルエチルケトン等が挙げられる。本開示に係る硬化性組成物は、上記の(メタ)アクリル化合物等の重合性化合物を含むため、重合性化合物が溶剤としての機能を兼ね、別途有機溶剤を含有していなくてもよい。
 無機粒子としては、二酸化珪素(シリカ)等のいわゆるフィラーと称される粒子が挙げられる。無機粒子の例として、上市されている市販品として日産化学工業(株)製のオルガノシリカゾルMEK-STシリーズ(例:MEK-ST-40、MEK-ST-L等)が挙げられる。
-Other ingredients-
In addition to the above components, the curable composition according to the present disclosure may contain other components such as an organic solvent and inorganic particles as necessary.
Examples of the organic solvent include toluene and methyl ethyl ketone. Since the curable composition concerning this indication contains polymerizable compounds, such as the above-mentioned (meth) acrylic compound, a polymerizable compound serves as a solvent and does not need to contain an organic solvent separately.
Examples of the inorganic particles include so-called filler particles such as silicon dioxide (silica). Examples of the inorganic particles include commercially available organosilica sol MEK-ST series (eg, MEK-ST-40, MEK-ST-L, etc.) manufactured by Nissan Chemical Industries.
 本開示に係る硬化性組成物は、活性エネルギー線により硬化可能な組成物であることが好ましい。「活性エネルギー線」とは、その照射により硬化性組成物中に重合開始種を発生させるエネルギーを付与できる放射線であり、α線、γ線、X線、紫外線、可視光線、電子線などを包含する。中でも、硬化感度及び装置の入手容易性の観点から、紫外線及び電子線が好ましく、紫外線がより好ましい。
 また、本開示に係る硬化性組成物は、活性エネルギー線硬化型の硬化性組成物であることが好ましく、油性硬化性組成物であることがより好ましい。本開示に係る硬化性組成物は、水及び揮発性溶剤をできるだけ含有しないことが好ましく、含有していたとしても、硬化性組成物の全質量に対し、5質量%以下であることがより好ましく、1質量%以下であることが更に好ましく、0.5質量%以下であることが特に好ましい。
The curable composition according to the present disclosure is preferably a composition that can be cured by active energy rays. “Active energy rays” are radiation that can give energy to generate polymerization initiation species in the curable composition by irradiation, and include α rays, γ rays, X rays, ultraviolet rays, visible rays, electron rays, etc. To do. Among these, from the viewpoint of curing sensitivity and device availability, ultraviolet rays and electron beams are preferable, and ultraviolet rays are more preferable.
The curable composition according to the present disclosure is preferably an active energy ray-curable curable composition, and more preferably an oil-based curable composition. The curable composition according to the present disclosure preferably contains as little water and volatile solvent as possible, and even if it contains, it is more preferably 5% by mass or less with respect to the total mass of the curable composition. The content is more preferably 1% by mass or less, and particularly preferably 0.5% by mass or less.
(硬化物、及び、光学部材)
 本開示に係る硬化物は、100℃における破断伸度が、6%以上80%以下であり、架橋点間分子量が、20g/mol以上2,000g/mol以下である。
 また、本開示に係る硬化物は、架橋点間分子量の分布が、得られる硬化物の立体成型性及び耐摩耗性の観点から、1%以上30%以下であることが好ましい。
 更に、本開示に係る硬化物は、本開示に係る硬化性組成物を硬化してなる硬化物(本開示に係る硬化性組成物の硬化物)であることが好ましい。
 本開示に係る硬化物における100℃における破断伸度、架橋点間分子量及びその分布等における好ましい範囲及び好ましい態様は、上述した本開示に係る硬化性組成物における好ましい範囲及び好ましい態様と同様である。
 本開示に係る硬化物は、光学部材として好適に用いることができ、凸状レンズとしてシリンドリカルレンズ、プリズム、半球状のマイクロレンズ、フレネルレンズなどがより好適に用いることができ、複数の凸状レンズ(シリンドリカルレンズ)が並列したレンチキュラーレンズとして特に好適に用いることができる。
 また、本開示に係る光学部材は、本開示に係る硬化物を有するものであり、本開示に係る硬化性組成物の硬化物を有することが好ましい。
(Cured product and optical member)
The cured product according to the present disclosure has a breaking elongation at 100 ° C. of 6% or more and 80% or less, and a molecular weight between crosslinking points of 20 g / mol or more and 2,000 g / mol or less.
In addition, the cured product according to the present disclosure preferably has a molecular weight distribution between cross-linking points of 1% or more and 30% or less from the viewpoint of the three-dimensional moldability and wear resistance of the obtained cured product.
Furthermore, the cured product according to the present disclosure is preferably a cured product obtained by curing the curable composition according to the present disclosure (cured product of the curable composition according to the present disclosure).
Preferred ranges and preferred embodiments of the cured product according to the present disclosure at 100 ° C. in breaking elongation, molecular weight between crosslinking points, and distribution thereof are the same as the preferred ranges and preferred embodiments of the curable composition according to the present disclosure described above. .
The cured product according to the present disclosure can be suitably used as an optical member, and a cylindrical lens, a prism, a hemispherical microlens, a Fresnel lens, or the like can be more suitably used as a convex lens, and a plurality of convex lenses It can be particularly suitably used as a lenticular lens in which (cylindrical lenses) are arranged in parallel.
Moreover, the optical member according to the present disclosure includes the cured product according to the present disclosure, and preferably includes the cured product of the curable composition according to the present disclosure.
(硬化物の製造方法)
 本開示に係る硬化物の製造方法は、特に制限はないが、本開示に係る硬化性組成物を準備する工程、及び、上記硬化性組成物を0.5℃以上10℃以下の範囲の温度ムラを有する状態で硬化する工程を含む製造方法であることが好ましい。
 上記範囲の温度ムラを有する状態で硬化することにより、硬化物において、架橋点間分子量の分布を容易に1%以上30%以下とすることができる。
 本開示に係る硬化性組成物を準備する工程は、本開示に係る硬化性組成物を準備する以外に特に制限はない。
 上記温度ムラを有する状態で硬化する工程における温度ムラの温度範囲は、得られる硬化物の立体成型性及び耐摩耗性、並びに、架橋点間分子量の分布を容易に調整する観点から、0.7℃以上8℃以下であることが好ましく、1℃以上6℃以下であることがより好ましい。
 上記温度ムラの温度範囲は、硬化性組成物を硬化する際、硬化性組成物が付与された部分の基材表面を3×3の9等分し、各中央部の温度を測り、最高温度と最低温度との差で示す。
 温度ムラの形成方法としては、例えば、基材表面における硬化性組成物への温風の吹き出し風量を幅方向に変える方法や、表面を複数の温度区分に分けて温度調節することが可能な基材を用いて温度分布を付与する方法や温度の異なる複数の放射熱源を用いる方法等が挙げられる。
1:風量を幅方向に変える方法としては、例えば吹き出しノズルを分割し、これに複数の温度に設定した熱風発生機から送風することで達成できる。
2:基材の温度を変える方法としては、複数のパネルヒーターを用意しこれらの設定温度を変えることで達成できる。また基材に熱媒を通し、この流路に邪魔板を設ける事で温度分布を付与することもできる。
3:複数の放射熱源としては、サンプルの上部や下部に複数設けた輻射熱源(例えばハロゲンランプ、IRヒーターやニクロム線等)の温度を変えることによっても達成できる。
 また、上記温度ムラを有する状態で硬化する工程における硬化は、光硬化(活性エネルギー線の照射による硬化)であっても、熱硬化であってもよいが、光硬化であることが好ましい。
(Method for producing cured product)
Although the manufacturing method of the hardened | cured material which concerns on this indication does not have a restriction | limiting in particular, The process of preparing the curable composition which concerns on this indication, and the temperature of the range of 0.5 degreeC or more and 10 degrees C or less of the said curable composition It is preferable that it is a manufacturing method including the process hardened | cured in the state which has nonuniformity.
By curing in a state having temperature unevenness in the above range, the molecular weight distribution between cross-linking points can be easily set to 1% or more and 30% or less in the cured product.
The step of preparing the curable composition according to the present disclosure is not particularly limited except for preparing the curable composition according to the present disclosure.
The temperature range of the temperature unevenness in the step of curing in the state having the temperature unevenness is 0.7 from the viewpoint of easily adjusting the three-dimensional moldability and wear resistance of the obtained cured product, and the molecular weight distribution between the crosslinking points. The temperature is preferably from 8 ° C to 8 ° C, and more preferably from 1 ° C to 6 ° C.
When curing the curable composition, the temperature range of the above temperature unevenness is to divide the substrate surface of the portion to which the curable composition is applied into 3 × 3 equal parts, measure the temperature of each central part, and measure the maximum temperature. And the difference between the minimum temperature.
Examples of the method for forming temperature unevenness include, for example, a method of changing the amount of hot air blown to the curable composition on the substrate surface in the width direction, and a base capable of adjusting the temperature by dividing the surface into a plurality of temperature sections. Examples thereof include a method of imparting a temperature distribution using a material and a method of using a plurality of radiant heat sources having different temperatures.
1: The method of changing the air volume in the width direction can be achieved by, for example, dividing the blowing nozzle and blowing air from a hot air generator set to a plurality of temperatures.
2: As a method of changing the temperature of the substrate, it can be achieved by preparing a plurality of panel heaters and changing these set temperatures. Moreover, a temperature distribution can also be provided by passing a heat medium through the base material and providing a baffle plate in this flow path.
3: The plurality of radiant heat sources can be achieved by changing the temperature of a plurality of radiant heat sources (for example, halogen lamp, IR heater, nichrome wire, etc.) provided above and below the sample.
Further, the curing in the step of curing in a state having temperature unevenness may be photocuring (curing by irradiation with active energy rays) or thermal curing, but is preferably photocuring.
(積層シート、及び、レンチキュラーシート)
 本開示に係る積層シートは、本開示に係る硬化性組成物の硬化物を有する積層シートであればよく、具体的には、基材及び基材上に本開示に係る硬化性組成物の硬化物を少なくとも有するものであることが好ましい。
 また、本開示に係る積層シートは、本開示に係る硬化物を有する積層シートである。
 中でも、本開示に係る積層シートは、樹脂基材と、上記樹脂基材の少なくとも一方の面に設けられた本開示に係る硬化性組成物の硬化物とを有することが好ましい。
 本開示に係る積層シートが有する本開示に係る硬化性組成物の硬化物の形状は、特に制限はなく、所望の形状であればよく、膜状であっても、後述するシリンドリカルレンズのような半円柱状のものが並んだ形状であっても、マイクロレンズのように半球状のものが並んだ形状であってもよい。
 本開示に係る積層シートは、ハードコート膜を有する積層シート、立体成型用積層シート、輝度向上膜を有する積層シート、レンチキュラーシート、プリズムシート、マイクロレンズシート、フレネルレンズシート、フライアイレンズ等として好適に用いることができる。
(Laminated sheet and lenticular sheet)
The laminated sheet according to the present disclosure may be a laminated sheet having a cured product of the curable composition according to the present disclosure. Specifically, the cured curable composition according to the present disclosure is cured on the base material and the base material. It is preferable to have at least a product.
Moreover, the laminated sheet which concerns on this indication is a laminated sheet which has the hardened | cured material which concerns on this indication.
Especially, it is preferable that the laminated sheet which concerns on this indication has a resin base material and the hardened | cured material of the curable composition which concerns on this indication provided in the at least one surface of the said resin base material.
There is no restriction | limiting in particular in the shape of the hardened | cured material of the curable composition which concerns on this indication which the lamination sheet which concerns on this indication has, Even if it is a desired shape, it is like a cylindrical lens mentioned later. It may be a shape in which semi-cylindrical objects are arranged, or a shape in which hemispherical objects are arranged like a microlens.
The laminated sheet according to the present disclosure is suitable as a laminated sheet having a hard coat film, a three-dimensionally laminated sheet, a laminated sheet having a brightness enhancement film, a lenticular sheet, a prism sheet, a microlens sheet, a Fresnel lens sheet, a fly eye lens, and the like. Can be used.
 本開示に係るレンチキュラーシートは、本開示に係る硬化性組成物の硬化物を有する。
 また、本開示に係るレンチキュラーシートは、本開示に係る硬化物を有する。
 本開示に係るレンチキュラーシートにおける上記硬化物は、レンチキュラーレンズであることが好ましい。
 また、本開示に係るレンチキュラーシートは、樹脂基材と、樹脂基材の少なくとも一方面に配置されたシリンドリカルレンズと、を有することが好ましく、上記樹脂基材のシリンドリカルレンズを有する側の反対側に記録層を有することがより好ましい。また、記録層に例えばインクジェット法等の公知の記録方法により画像(以下、加飾画像ともいう。)を付与することができる態様が好ましい。
The lenticular sheet according to the present disclosure has a cured product of the curable composition according to the present disclosure.
Moreover, the lenticular sheet which concerns on this indication has the hardened | cured material which concerns on this indication.
The cured product in the lenticular sheet according to the present disclosure is preferably a lenticular lens.
In addition, the lenticular sheet according to the present disclosure preferably includes a resin base material and a cylindrical lens disposed on at least one surface of the resin base material, on the opposite side of the resin base material from the side having the cylindrical lens. It is more preferable to have a recording layer. In addition, an embodiment in which an image (hereinafter also referred to as a decorative image) can be imparted to the recording layer by a known recording method such as an inkjet method is preferable.
 本開示に係るレンチキュラーシートは、例えば図1に示すように、記録層を付設してレンチキュラー画像が付される構成のレンチキュラー加飾シートであってもよい。レンチキュラー加飾シートは、レンチキュラー表示に適した画像上に、半円筒形の表面を有する凸状のシリンドリカルレンズが並列したレンチキュラーレンズを有することにより、見る角度によって異なる画像を表示する表示媒体(レンチキュラー表示体)である。図1は、レンチキュラー加飾シート(レンチキュラーシート)の一例を示す概略図である。 The lenticular sheet according to the present disclosure may be a lenticular decorative sheet having a configuration in which a recording layer is attached and a lenticular image is attached as shown in FIG. The lenticular decorative sheet has a lenticular lens in which convex cylindrical lenses having a semicylindrical surface are arranged on an image suitable for lenticular display, thereby displaying a different image depending on the viewing angle (lenticular display). Body). FIG. 1 is a schematic diagram illustrating an example of a lenticular decorative sheet (lenticular sheet).
 図1に示すレンチキュラー加飾シート10は、半円筒形状の表面を有する複数の凸状レンズ(シリンドリカルレンズ)12Aが並列したレンチキュラーレンズ12と、レンチキュラーレンズ12の凸状レンズ12Aの半円筒形状の表面とは反対側(裏面側ともいう。)に配置されたレンチキュラー画像14と、を有している。
 なお、x方向は、レンズの幅方向を示し、y方向は、レンズの長手方向を示している。
A lenticular decorative sheet 10 shown in FIG. 1 includes a lenticular lens 12 in which a plurality of convex lenses (cylindrical lenses) 12A having a semicylindrical surface are arranged in parallel, and a semicylindrical surface of a convex lens 12A of the lenticular lens 12. And a lenticular image 14 disposed on the opposite side (also referred to as the back side).
The x direction indicates the width direction of the lens, and the y direction indicates the longitudinal direction of the lens.
 本開示に係るレンチキュラーシートは、半円筒形状の表面を有する複数の凸状レンズ(シリンドリカルレンズ)が並列したレンチキュラーレンズ層を有していることが好ましい。シリンドリカルレンズ1本当たりの幅は、特に限定されず、目的によってレンズのピッチ幅を選択すればよい。シリンドリカルレンズ1本当たりの幅は、通常、1インチ(2.54cm)当たりのレンズ数を表すLPI(Line Per Inch)で表されることが多い。例えば100LPIは、1インチ当たり100本(100列)のシリンドリカルレンズが並列することを示しており、レンズのピッチは254μmである。1インチ当たりの線数(レンズの配列数)は、値が大きいほどレンズのピッチは小さくなり、精細度が向上する。
 精細度の低いレンチキュラーシート(例えば60LPIなど)は、観察位置が比較的遠い図柄を表示するポスターなどに使うには適している。名刺など小さい文字情報を読ませることを目的とする場合は、レンチキュラーレンズ層を構成するレンズが、2.54cm(1インチ)当たり100列以上並列していることが好ましい。一方、レンチキュラー画像の解像度の観点から、レンチキュラーレンズ層を構成する凸状レンズの配列数は、2.54cm当たり200列(200LPI)以下であることがより好ましい。
The lenticular sheet according to the present disclosure preferably includes a lenticular lens layer in which a plurality of convex lenses (cylindrical lenses) having a semicylindrical surface are arranged in parallel. The width per cylindrical lens is not particularly limited, and the pitch width of the lenses may be selected depending on the purpose. The width per cylindrical lens is usually often expressed by LPI (Line Per Inch) representing the number of lenses per inch (2.54 cm). For example, 100 LPI indicates that 100 cylindrical lenses (100 rows) per inch are arranged in parallel, and the pitch of the lenses is 254 μm. The larger the value of the number of lines per inch (number of lenses arranged), the smaller the lens pitch, and the higher the definition.
A low-definition lenticular sheet (for example, 60 LPI) is suitable for use in a poster or the like that displays a pattern whose observation position is relatively far. For the purpose of reading small text information such as a business card, it is preferable that the lenses constituting the lenticular lens layer are arranged in 100 rows or more per 2.54 cm (1 inch). On the other hand, from the viewpoint of the resolution of the lenticular image, the number of convex lenses constituting the lenticular lens layer is more preferably 200 rows (2.5 LPI) or less per 2.54 cm.
 従来、レンチキュラー材料は、シート又はフィルム等の形態で用いられることが多く、立体形状にして用いる試みは少ない。ところが、従来のレンチキュラーシートは、例えばレンズ部分に用いられる樹脂成分は熱可塑性樹脂であることが一般的であり、立体形状に成型する場合の熱で変形しやすく、形状を維持し得る耐熱性が不足しやすい。一方、樹脂成分として熱硬化性樹脂を用いる技術も提案されているが、熱硬化性樹脂は一般に、架橋構造を有するために変形させる場合の延伸性が乏しい傾向にある。そのため、立体成型時において高温に曝された場合の熱変形こそ生じにくいが、立体成型時に延ばされた際に亀裂(クラック)等を招来しやすい懸念がある。
 本開示に係るレンチキュラーシートは、本開示に係る硬化性組成物を硬化してなるレンチキュラーレンズを有することにより、立体成型性に優れる。
Conventionally, lenticular materials are often used in the form of sheets or films, and there are few attempts to use them in a three-dimensional shape. However, in conventional lenticular sheets, for example, the resin component used for the lens portion is generally a thermoplastic resin, and is easily deformed by heat when molded into a three-dimensional shape, and has heat resistance that can maintain the shape. Easy to run out. On the other hand, although a technique using a thermosetting resin as a resin component has been proposed, the thermosetting resin generally has a cross-linked structure and thus tends to have poor stretchability when deformed. For this reason, thermal deformation is hardly caused when exposed to a high temperature during three-dimensional molding, but there is a concern that cracks or the like are likely to occur when the three-dimensional molding is extended.
The lenticular sheet according to the present disclosure is excellent in three-dimensional moldability by having a lenticular lens formed by curing the curable composition according to the present disclosure.
<樹脂基材>
 本開示に用いられる樹脂基材は、支持材としての基材であり、任意の樹脂を目的等に応じて選択することができる。樹脂基材は、シート状又はフィルム状の基材を好適に用いることができる。
 樹脂基材の例としては、アクリル樹脂、ポリエステル樹脂等のシート又はフィルムが挙げられる。
 樹脂基材の厚みは、特に制限はなく、50μm以上300μm以下の範囲が好ましく、高温で均一に成型(賦形)する観点から、50μm以上200μm以下の範囲がより好ましい。上記範囲であると、樹脂基材が破れにくく、成型加工時における取扱い中(例えば、運搬中)に割れが発生しにくく、3次元成型時にも割れにくい。
<Resin substrate>
The resin base material used in the present disclosure is a base material as a support material, and any resin can be selected depending on the purpose and the like. As the resin substrate, a sheet-like or film-like substrate can be suitably used.
As an example of a resin base material, sheets or films, such as an acrylic resin and a polyester resin, are mentioned.
There is no restriction | limiting in particular in the thickness of a resin base material, The range of 50 micrometers or more and 300 micrometers or less is preferable, and the range of 50 micrometers or more and 200 micrometers or less is more preferable from a viewpoint of shape | molding (shaping) uniformly at high temperature. When it is in the above range, the resin base material is not easily torn, and cracks are hardly generated during handling (for example, during transportation) during molding processing, and are also difficult to crack during three-dimensional molding.
 樹脂基材は、上市されている市販品を用いてもよく、例えば、三菱レイヨン(株)製のアクリル樹脂フィルム(アクリプレンHBS010P、厚み:125μm)、東レ(株)製のポリエチレンテレフタレート樹脂フィルム(ルミラーS10、厚み:100μm)、帝人化成(株)製のポリカーボネート樹脂フィルム(ユーピロンH-3000、厚み125μm)等を用いることができる。 Commercially available products may be used as the resin base material. For example, acrylic resin film (Acryprene HBS010P, thickness: 125 μm) manufactured by Mitsubishi Rayon Co., Ltd., polyethylene terephthalate resin film (Lumirror, manufactured by Toray Industries, Inc.) S10, thickness: 100 μm), polycarbonate resin film (Iupilon H-3000, thickness 125 μm) manufactured by Teijin Chemicals Ltd. can be used.
<記録層>
 本開示に係るレンチキュラーシートにおいて、樹脂基材のシリンドリカルレンズを有する側の反対側には、レンチキュラー表示される画像(レンチキュラー画像)を記録するための記録層を有していてもよい。
 樹脂基材の記録層が設けられる面は、樹脂基材と記録層との接着力を高める観点から、表面処理(例えばコロナ放電処理等)が施されてもよい。記録層は、例えば、記録層を形成するための調製液を樹脂基材に付与することにより設けられてもよい。
 調製液の付与は、例えば、塗布により行うことができる。
 調製液は、記録層を形成するための固形成分と溶媒とを含むことが好ましい。記録層は、樹脂を含むことが好ましく、樹脂の少なくとも一部は架橋剤で架橋されていることが好ましい。したがって、調製液に含まれる固形成分として樹脂及び架橋剤を含む態様が好ましい。
 樹脂としては、ポリエステル、アクリル樹脂及びウレタン樹脂よりなる群から選択された少なくとも1種の樹脂であることが好ましく、特にオフセット印刷により視差画像を形成する場合に有利である。
<Recording layer>
In the lenticular sheet according to the present disclosure, a recording layer for recording an image (lenticular image) displayed in a lenticular manner may be provided on the opposite side of the resin base having the cylindrical lens.
The surface on which the recording layer of the resin substrate is provided may be subjected to a surface treatment (for example, corona discharge treatment) from the viewpoint of increasing the adhesive force between the resin substrate and the recording layer. The recording layer may be provided, for example, by applying a preparation liquid for forming the recording layer to the resin substrate.
The preparation liquid can be applied, for example, by coating.
The preparation liquid preferably contains a solid component and a solvent for forming the recording layer. The recording layer preferably contains a resin, and at least a part of the resin is preferably crosslinked with a crosslinking agent. Therefore, the aspect containing resin and a crosslinking agent as a solid component contained in a preparation liquid is preferable.
The resin is preferably at least one resin selected from the group consisting of polyester, acrylic resin and urethane resin, and is particularly advantageous when a parallax image is formed by offset printing.
 図1では、レンチキュラー画像14は、2つの表示用画像をそれぞれ別々に表示するための表示用画像列14A,14Bと、隣接する表示用画像列14A,14Bの間に挿入された補間画像列14Cと、を含む画像列群から構成されている。
 具体的には、各表示用画像からストライプ状に抽出された表示用画像列14A,14Bが対応する位置の凸状レンズ12Aごとに隣接して配列されており、隣接する表示用画像列14A,14Bの間に、隣接する表示用画像列14A,14Bの色が互いに異なる位置において、隣接する表示用画像列14A,14Bの一方の色と他方の色との間にある色(補間色)を有する補間画像列14Cが挿入されている。
In FIG. 1, a lenticular image 14 includes display image sequences 14A and 14B for separately displaying two display images, and an interpolated image sequence 14C inserted between adjacent display image sequences 14A and 14B. And an image sequence group including
Specifically, the display image rows 14A and 14B extracted from each display image in a stripe shape are arranged adjacent to each other at the corresponding convex lens 12A, and the adjacent display image rows 14A and 14A are arranged. A color (interpolation color) between one color and the other color of the adjacent display image rows 14A and 14B at a position where the colors of the adjacent display image rows 14A and 14B are different from each other during 14B. The interpolated image sequence 14C is inserted.
(3次元構造物)
 本開示に係る3次元構造物は、本開示に係る積層シートの(好ましくは、熱成型又は真空成型などの手法により立体成型した)立体成型物である。
 また、本開示に係る3次元構造物は、本開示に係るレンチキュラーシートの立体成型物であることが好ましい。
 本開示に係る3次元構造物は、本開示に係る積層シートを用いて製造されたものであれば、成型方法に特に制限されるものではない。
 本開示に係るレンチキュラーシートを用いる3次元構造物の製造方法としては、例えば、本開示に係る硬化性組成物を成型し、活性エネルギー線を照射して硬化させ、樹脂基材上にシリンドリカルレンズを有するレンチキュラーシートを作製する工程(以下、「レンチキュラーシート作製工程」ともいう。)と、作製されたレンチキュラーシートを立体成型(好ましくは真空成型或いは加圧成型)することでレンチキュラーの立体成型体を得る工程(以下、「立体成型工程」ともいう。)とを含む方法が好ましく挙げられる。
 また、上記レンチキュラーシート作製工程において、上述した温度ムラを有する状態で硬化する工程を含むことが好ましい。
(3D structure)
The three-dimensional structure according to the present disclosure is a three-dimensional molded product (preferably three-dimensionally molded by a technique such as thermoforming or vacuum molding) of the laminated sheet according to the present disclosure.
The three-dimensional structure according to the present disclosure is preferably a three-dimensional molded product of the lenticular sheet according to the present disclosure.
The three-dimensional structure according to the present disclosure is not particularly limited by the molding method as long as it is manufactured using the laminated sheet according to the present disclosure.
As a method for producing a three-dimensional structure using the lenticular sheet according to the present disclosure, for example, a curable composition according to the present disclosure is molded, cured by irradiating active energy rays, and a cylindrical lens is formed on a resin substrate. A process for producing the lenticular sheet (hereinafter also referred to as “lenticular sheet production process”) and three-dimensional molding (preferably vacuum molding or pressure molding) of the produced lenticular sheet to obtain a three-dimensional molded article of lenticular A method including a step (hereinafter, also referred to as “three-dimensional molding step”) is preferable.
Moreover, it is preferable that the said lenticular sheet preparation process includes the process hardened | cured in the state which has the temperature nonuniformity mentioned above.
 比較的高い温度に曝される成型に際して、立体成型性に優れる本開示に係るレンチキュラーシートが用いられるので、成型の際の熱で溶融して形状変形を生じにくく、かつ、成型時に延ばされた際に生じやすい亀裂(クラック)等の発生も抑えられる。 Since the lenticular sheet according to the present disclosure that is excellent in three-dimensional moldability is used at the time of molding exposed to a relatively high temperature, it is difficult to cause shape deformation by being melted by heat at the time of molding, and extended during molding Occurrence of cracks or the like that tend to occur at the time is also suppressed.
-レンチキュラーシート作製工程-
 上記レンチキュラーシート作製工程では、本開示に係る硬化性組成物を成型し、活性エネルギー線を照射して硬化させ、樹脂基材上にシリンドリカルレンズを有するレンチキュラーシートを作製する。
 本開示に係る硬化性組成物の詳細については、既述の通りであり、好ましい態様も同様である。
-Lenticular sheet manufacturing process-
In the lenticular sheet production step, the curable composition according to the present disclosure is molded and cured by irradiation with active energy rays to produce a lenticular sheet having a cylindrical lens on a resin substrate.
The details of the curable composition according to the present disclosure are as described above, and the preferred embodiments are also the same.
 また、本開示に係る硬化性組成物は、光ラジカル重合開始剤を含有することが好ましい。活性エネルギー線が照射されることでラジカルが発生し、重合性化合物の重合反応が進行することによって硬化する。これにより、本開示に係る硬化性組成物の硬化物であるシリンドリカルレンズが形成される。
 シリンドリカルレンズの成型に当たり、硬化性組成物を硬化させる前にあらかじめ樹脂基材を硬化性組成物と接触させた後、硬化性組成物の硬化を行うようにしてもよい。樹脂基材と硬化性組成物とを接触させた状態で硬化させることで、硬化収縮による密着性の向上がより期待でき、組成に由来する密着効果に加え、樹脂基材に対する密着性の向上がより効果的に図られる。
 シリンドリカルレンズの樹脂基材に対する密着の観点から、樹脂基材に接触された硬化性組成物を硬化させることで、密着性により優れたシリンドリカルレンズを有するレンチキュラーシートが得られる。
Moreover, it is preferable that the curable composition which concerns on this indication contains radical photopolymerization initiator. Radiation is generated by irradiating active energy rays, and curing occurs by the polymerization reaction of the polymerizable compound. Thereby, a cylindrical lens that is a cured product of the curable composition according to the present disclosure is formed.
In molding the cylindrical lens, the curable composition may be cured after the resin substrate is brought into contact with the curable composition in advance before the curable composition is cured. By curing in a state where the resin base material and the curable composition are in contact with each other, an improvement in adhesion due to curing shrinkage can be expected, and in addition to the adhesion effect derived from the composition, the improvement in the adhesion to the resin base material is achieved. More effective.
From the viewpoint of adhesion of the cylindrical lens to the resin base material, a lenticular sheet having a cylindrical lens having superior adhesion can be obtained by curing the curable composition in contact with the resin base material.
 本工程では、硬化前にまず、硬化性組成物を、目的とするシリンドリカルレンズの形状に成型する。成型は、目的とする形状が得られる方法であれば特に制限されないが、成型効率及び成型精度の観点から、金型又は木型等の型を用いた成型が好ましい。
 具体的には、例えば、所望とするレンズ形状に加工された金型を用意し、金型に硬化性組成物を流し込み、必要に応じて乾燥させた後、硬化性組成物を硬化させてもよい。これにより、目的とする形状に成型された成型物が安定的に得られる。
In this step, first, the curable composition is molded into the shape of the target cylindrical lens before curing. The molding is not particularly limited as long as the target shape can be obtained, but from the viewpoint of molding efficiency and molding accuracy, molding using a mold such as a mold or a wooden mold is preferable.
Specifically, for example, a mold processed into a desired lens shape is prepared, the curable composition is poured into the mold, dried as necessary, and then the curable composition is cured. Good. Thereby, the molded object shape | molded by the target shape is obtained stably.
 活性エネルギー線を発生させるための光源としては、水銀ランプ、メタルハライドランプ、UV蛍光灯、ガスレーザー、固体レーザー等が広く知られている。また、光源として半導体紫外発光デバイスを適用してもよく、小型、高寿命、高効率、及び低コストの点で、LED(Light Emitting Diode)及びLD(Laser Diode)も好適である。
 光源としては、メタルハライドランプ、超高圧水銀ランプ、高圧水銀ランプ、中圧水銀ランプ、低圧水銀ランプ、LED又は青紫レーザーが好ましい。中でも、波長365nm、405nm若しくは436nmの光照射が可能な超高圧水銀ランプ、波長365nm、405nm若しくは436nmの光照射が可能な高圧水銀ランプ、又は、波長355nm、365nm、385nm、395nm若しくは405nmの光照射が可能なLEDがより好ましく、波長355nm、365nm、385nm、395nm又は405nmの光照射が可能なLEDが特に好ましい。
As light sources for generating active energy rays, mercury lamps, metal halide lamps, UV fluorescent lamps, gas lasers, solid lasers, and the like are widely known. Further, a semiconductor ultraviolet light emitting device may be applied as a light source, and an LED (Light Emitting Diode) and an LD (Laser Diode) are also suitable in terms of small size, long life, high efficiency, and low cost.
As the light source, a metal halide lamp, an ultrahigh pressure mercury lamp, a high pressure mercury lamp, a medium pressure mercury lamp, a low pressure mercury lamp, an LED or a blue-violet laser is preferable. Among them, an ultra-high pressure mercury lamp capable of irradiating light with a wavelength of 365 nm, 405 nm, or 436 nm, a high-pressure mercury lamp capable of irradiating light with a wavelength of 365 nm, 405 nm, or 436 nm, or light irradiation with a wavelength of 355 nm, 365 nm, 385 nm, 395 nm, or 405 nm Is more preferable, and an LED capable of irradiating light with a wavelength of 355 nm, 365 nm, 385 nm, 395 nm, or 405 nm is particularly preferable.
 活性エネルギー線の照射量は、レンチキュラーレンズ用硬化性組成物の組成及び使用量により適宜選択すればよく、0.3J/cm以上5J/cm以下とすることが好ましい。 The dose of the active energy ray may be appropriately selected depending on the composition and amount of the lenticular lens curable composition, it is preferable to 0.3 J / cm 2 or more 5 J / cm 2 or less.
 活性エネルギー線の照射には、上記の活性エネルギー線を照射可能な光源を備えた公知の装置を選択して行うことができる。例えば、HOYA CANDEO OPTRONICS(株)製のEXECURE 3000等の紫外線(UV)照射装置を用いてもよい。 The irradiation with the active energy ray can be performed by selecting a known device including a light source capable of irradiating the active energy ray. For example, an ultraviolet (UV) irradiation device such as EXECULE 3000 manufactured by HOYA CANDEO OPTRONICS may be used.
-立体成型工程-
 上記立体成型工程では、レンチキュラーシート作製工程で作製されたレンチキュラーシートを立体成型する。本工程では、レンチキュラーシートを成型できればよく、金型等の型を用いた成型加工に供されてもよい。
-Solid molding process-
In the three-dimensional molding step, the lenticular sheet produced in the lenticular sheet production step is three-dimensionally molded. In this step, it is sufficient that the lenticular sheet can be molded, and the lenticular sheet may be subjected to a molding process using a mold such as a mold.
 立体成型は、熱成型又は真空成型などが好適に挙げられる。
 真空成型する方法としては、特に制限されるものではないが、立体成型を、真空下の加熱した状態で行う方法が好ましい。
 真空とは、室内を真空引きし、100Pa以下の真空度とした状態を指す。
 立体成型する際の温度は、60℃以上の温度域が好ましく、80℃以上の温度域がより好ましく、100℃以上の温度域が更に好ましい。立体成型する際の温度の上限は、200℃が好ましい。
 立体成型する際の温度とは、立体成型に供されるレンチキュラーシートの温度を指し、レンチキュラーシートの表面に熱電対を付すことで測定される。
Suitable examples of the three-dimensional molding include thermal molding and vacuum molding.
The method of vacuum forming is not particularly limited, but a method of performing three-dimensional molding in a heated state under vacuum is preferable.
The vacuum refers to a state in which the room is evacuated to a degree of vacuum of 100 Pa or less.
The temperature at the time of three-dimensional molding is preferably 60 ° C. or higher, more preferably 80 ° C. or higher, and even more preferably 100 ° C. or higher. The upper limit of the temperature for three-dimensional molding is preferably 200 ° C.
The temperature at the time of three-dimensional molding refers to the temperature of the lenticular sheet subjected to three-dimensional molding, and is measured by attaching a thermocouple to the surface of the lenticular sheet.
 上記の真空成型は、成型分野で広く知られている真空成型技術を利用して行うことができ、例えば、日本製図器工業(株)製のFormech508FSを用いて真空成型してもよい。 The above-described vacuum molding can be performed using a vacuum molding technique widely known in the molding field. For example, the vacuum molding may be performed using Formech 508FS manufactured by Nippon Shikki Kogyo Co., Ltd.
 以下、本発明の実施形態を実施例により更に具体的に説明するが、本開示はその主旨を越えない限り、以下の実施例に限定されるものではない。なお、特に断りのない限り、「部」は質量基準である。 Hereinafter, the embodiments of the present invention will be described more specifically by way of examples. However, the present disclosure is not limited to the following examples unless it exceeds the gist thereof. Unless otherwise specified, “part” is based on mass.
 以下に本実施例で使用した化合物を示す。 The compounds used in this example are shown below.
(1)環構造を有する多官能(メタ)アクリレート化合物
・A-DCP(新中村化学工業(株)製:トリシクロデカンジメタノールジアクリレート
・M-315(東亞合成(株)製:イソシアヌル酸EO変性トリアクリレート(イソシアヌル環構造を有する3官能アクリレート化合物)
・KUA-4I(ケーエスエム(株)製:4官能ウレタン(メタ)アクリレート(シクロヘキシル環を有する4官能ウレタンアクリレート)
・KUA-6I(ケーエスエム(株)製:シクロヘキシル環を含む6官能ウレタンアクリレート)
(1) Polyfunctional (meth) acrylate compound having a ring structure A-DCP (manufactured by Shin-Nakamura Chemical Co., Ltd .: tricyclodecane dimethanol diacrylate M-315 (manufactured by Toagosei Co., Ltd .: isocyanuric acid EO) Modified triacrylate (trifunctional acrylate compound having isocyanuric ring structure)
・ KUA-4I (manufactured by KS Corporation: tetrafunctional urethane (meth) acrylate (tetrafunctional urethane acrylate having a cyclohexyl ring)
・ KUA-6I (manufactured by KS Corporation: 6-functional urethane acrylate containing a cyclohexyl ring)
(2)単官能(メタ)アクリレート化合物
・AA6(東亞合成(株)製AA-6:末端にメタクリロイル基を有するメタクリル樹脂(ポリメチルメタクリレート))
・ファンクリルFA513AS(FA513AS、日立化成(株)製:ジシクロペンタニルアクリレート)
・MMm(三井化学(株)製MMA:メチルメタクリレート)
・PO(共栄社化学(株)製ライトエステルPO、フェノキシエチルメタクリレート)
・BR-31(第一製薬工業(株)製ニューフロンティアBR-31、EO変性トリブロモフェニルアクリレート)
・PHE(第一工業製薬(株)製ニューフロンティアPHE、フェノキシエチルアクリレート)
・BnA(大阪有機化学工業(株)製ビスコート#160、ベンジルアクリレート)
・PO-A(共栄社化学(株)製ライトアクリレートPO-A、フェノキシエチルアクリレート)
(2) Monofunctional (meth) acrylate compound AA6 (AA-6 manufactured by Toagosei Co., Ltd .: Methacryloyl group-containing methacrylic resin (polymethyl methacrylate))
・ Fancryl FA513AS (FA513AS, manufactured by Hitachi Chemical Co., Ltd .: dicyclopentanyl acrylate)
MMm (Mitsui Chemicals Co., Ltd. MMA: methyl methacrylate)
・ PO (Kyoeisha Chemical Co., Ltd. light ester PO, phenoxyethyl methacrylate)
BR-31 (Daiichi Pharmaceutical Industry Co., Ltd. New Frontier BR-31, EO-modified tribromophenyl acrylate)
・ PHE (Daiichi Kogyo Seiyaku Co., Ltd. New Frontier PHE, phenoxyethyl acrylate)
・ BnA (Biscoat # 160, benzyl acrylate, manufactured by Osaka Organic Chemical Industry Co., Ltd.)
・ PO-A (Kyoeisha Chemical Co., Ltd. light acrylate PO-A, phenoxyethyl acrylate)
(3)N-ビニル化合物
・N-ビニルピロリドン(NVP、和光純薬工業(株)製)
・N-ビニル-ε-カプロラクタム(NVC、東京化成工業(株)製)
(3) N-vinyl compound / N-vinylpyrrolidone (NVP, manufactured by Wako Pure Chemical Industries, Ltd.)
・ N-vinyl-ε-caprolactam (NVC, manufactured by Tokyo Chemical Industry Co., Ltd.)
(4)重合開始剤
<光重合開始剤>
・イルガキュア184(BASF社製:1-ヒドロキシシクロヘキシルフェニルケトン)
・イルガキュアTPO(BASF社製:2,4,6-トリメチルベンゾイルジフェニルホスフィンオキサイド)
<熱重合開始剤>
・AIBN(和光純薬工業(株)製:2,2’-Azobis(isobutyronitrile、分解開始温度:70℃)
(4) Polymerization initiator <photopolymerization initiator>
・ Irgacure 184 (manufactured by BASF: 1-hydroxycyclohexyl phenyl ketone)
・ Irgacure TPO (BASF: 2,4,6-trimethylbenzoyldiphenylphosphine oxide)
<Thermal polymerization initiator>
AIBN (manufactured by Wako Pure Chemical Industries, Ltd .: 2,2′-Azobis (isobutyronitrile, decomposition start temperature: 70 ° C.)
(5)環構造を有しない多官能(メタ)アクリレート化合物
・A-TMPT(東京化成工業(株)製:トリメチロールプロパントリアクリレート/3官能アクリレート化合物/環状構造含まず)
(5) Polyfunctional (meth) acrylate compound having no ring structure A-TMPT (Tokyo Chemical Industry Co., Ltd .: trimethylolpropane triacrylate / 3-functional acrylate compound / not including cyclic structure)
(6)他の成分
・IPPM(1,5,5-トリメチル-1-[(1-メタクリロイルオキシプロパン-2-イル)カルバモイルメチル]-3-(1-メタクリロイルオキシプロパン-2-イル)カルバモイルシクロヘキサン、ウレタン(メタ)アクリレート化合物、特開2006-249220号公報の段落0120に記載された方法により合成した。なお、環構造を有する多官能(メタ)アクリレート化合物にも該当する。)
・UA1(ウレタンアクリレート化合物、以下の方法により合成した。なお、環構造を有する多官能(メタ)アクリレート化合物にも該当する。)
・VR-90(昭和電工(株)製リポキシVR-90、ビスフェノールAエポキシアクリレート)
・ACMO(KJケミカルズ(株)製:アクリロイルモルホリン)
・UA2(ウレタンアクリレート化合物、以下の方法により合成した。なお、環構造を有する多官能(メタ)アクリレート化合物にも該当する。)
・IK-2(根上工業(株)製アートレジンIK-2、ウレタンアクリレート化合物、なお、環構造を有する多官能(メタ)アクリレート化合物にも該当する。)
・3000A(共栄社化学(株)製エポキシエステル3000A、ビスフェノールAジグリシジルエーテルのアクリル酸付加物、なお、環構造を有する多官能(メタ)アクリレート化合物にも該当する。)
(6) Other components IPPM (1,5,5-trimethyl-1-[(1-methacryloyloxypropan-2-yl) carbamoylmethyl] -3- (1-methacryloyloxypropan-2-yl) carbamoylcyclohexane And a urethane (meth) acrylate compound, synthesized by the method described in paragraph 0120 of JP-A-2006-249220, which also applies to a polyfunctional (meth) acrylate compound having a ring structure.
UA1 (urethane acrylate compound, synthesized by the following method. Note that this also applies to a polyfunctional (meth) acrylate compound having a ring structure.)
・ VR-90 (Lipoxy VR-90 manufactured by Showa Denko KK, bisphenol A epoxy acrylate)
・ ACMO (KJ Chemicals Co., Ltd .: acryloylmorpholine)
UA2 (urethane acrylate compound, synthesized by the following method. Note that this also applies to a polyfunctional (meth) acrylate compound having a ring structure.)
IK-2 (Art resin IK-2 manufactured by Negami Kogyo Co., Ltd., urethane acrylate compound, and also a polyfunctional (meth) acrylate compound having a ring structure)
3000A (Kyoeisha Chemical Co., Ltd. Epoxy ester 3000A, acrylic acid adduct of bisphenol A diglycidyl ether, and also a polyfunctional (meth) acrylate compound having a ring structure)
<UA1の合成>
 撹拌機を備えた反応容器に2,4-トリレンジイソシアネート35.47質量%、ジラウリル酸ジ-n-ブチル錫0.08質量%、2,6-ジ-t-ブチル-p-クレゾール0.02質量%を仕込んだ。撹拌しながら温度が30℃以下に保たれるように2-ヒドロキシエチルアクリレート23.65質量%を滴下した。滴下終了後、30℃で1時間反応させた。次に、ビスフェノールAエチレンオキサイド付加ジオール(エチレンオキシド構造単位の数=4;平均分子量=400)を40.77質量%加え、50℃~70℃で2時間反応を続けた。残留イソシアネートが0.1質量%以下になった時を反応終了とした。
<Synthesis of UA1>
In a reaction vessel equipped with a stirrer, 35.47% by mass of 2,4-tolylene diisocyanate, 0.08% by mass of di-n-butyltin dilaurate, 2,6-di-t-butyl-p-cresol 02% by mass was charged. While stirring, 23.65% by mass of 2-hydroxyethyl acrylate was added dropwise so that the temperature was kept at 30 ° C. or lower. After completion of the dropwise addition, the mixture was reacted at 30 ° C. for 1 hour. Next, 40.77% by mass of bisphenol A ethylene oxide addition diol (number of ethylene oxide structural units = 4; average molecular weight = 400) was added, and the reaction was continued at 50 ° C. to 70 ° C. for 2 hours. The reaction was terminated when the residual isocyanate was 0.1% by mass or less.
<UA2の合成>
 撹拌機を備えた反応容器に2,4-トリレンジイソシアネート20.14質量%、ジラウリル酸ジ-n-ブチル錫0.08質量%、2,6-ジ-t-ブチル-p-クレゾール0.02質量%を仕込んだ。撹拌しながら温度が30℃以下に保たれるように2-ヒドロキシ-3-フェニルオキシプロピルアクリレート12.85質量%を滴下した。滴下終了後、30℃で1時間反応させた。次に、ビスフェノールAポリ(重合度:平均値としてn=10)プロポキシグリコールを66.90質量%加え、50℃~70℃で2時間反応を続けた。残留イソシアネートが0.1質量%以下になった時を反応終了とした。
<Synthesis of UA2>
In a reaction vessel equipped with a stirrer, 20.14% by mass of 2,4-tolylene diisocyanate, 0.08% by mass of di-n-butyltin dilaurate, 2,6-di-t-butyl-p-cresol 02% by mass was charged. While stirring, 12.85% by mass of 2-hydroxy-3-phenyloxypropyl acrylate was added dropwise so that the temperature was maintained at 30 ° C. or lower. After completion of the dropwise addition, the mixture was reacted at 30 ° C. for 1 hour. Next, 66.90 mass% of bisphenol A poly (degree of polymerization: n = 10 as an average value) propoxyglycol was added, and the reaction was continued at 50 ° C. to 70 ° C. for 2 hours. The reaction was terminated when the residual isocyanate was 0.1% by mass or less.
(実施例1~28、及び、比較例1~8)
1.硬化性組成物の調製
 表1~表3に示す各成分を混合し、各硬化性組成物をそれぞれ調製した。
(Examples 1 to 28 and Comparative Examples 1 to 8)
1. Preparation of Curable Composition Each component shown in Tables 1 to 3 was mixed to prepare each curable composition.
2.硬化膜の作製
 上記の硬化性組成物を、疎水化処理された2枚のガラス板間に挟み込み、下記条件にて紫外線(UV)照射又は熱硬化を行い、ガラス板から剥がして膜厚50μmの樹脂硬化膜(単膜)を作製した。
 UV照射は、紫外線(UV)照射装置(EXECURE 3000、HOYA CANDEO OPTRONICS(株)製)を用い、酸素を遮断して、25℃においてUV照射量1.0J/cmの条件にて硬化するまで照射した。
 熱硬化は、酸素を遮断して、70℃に加熱した。
 また、硬化時における温度ムラは、上記ガラス板を設置する基材に9分割したホットプレートを用い、これに温度差を設けることで表1~表3に記載の温度差(温度ムラ)を達成した。
2. Preparation of cured film The above curable composition is sandwiched between two glass plates that have been subjected to a hydrophobic treatment, irradiated with ultraviolet rays (UV) or thermally cured under the following conditions, and peeled off from the glass plate to a film thickness of 50 μm. A cured resin film (single film) was produced.
UV irradiation is performed using an ultraviolet (UV) irradiation device (EXECURE 3000, manufactured by HOYA CANDEO OPTRONICS Co., Ltd.), blocking oxygen and curing at 25 ° C. under a UV irradiation amount of 1.0 J / cm 2. Irradiated.
In thermosetting, oxygen was shut off and the mixture was heated to 70 ° C.
In addition, for the temperature unevenness during curing, the temperature difference (temperature unevenness) described in Tables 1 to 3 is achieved by using a 9-part hot plate as the base material on which the glass plate is placed and providing a temperature difference thereto. did.
<100℃における破断伸度の測定>
 得られた樹脂硬化膜(単膜)を、長さ50mm×幅10mmの大きさに打ち抜いてサンプル片を作製し、TENSILON RTC-1225A((株)エー・アンド・デイ製)を用い、下記の条件にて引張試験を行って下記式で表される破断伸度を測定した。破断伸度を3回測定し、それらの平均値を破断伸度とした。測定結果を表1又は表2に示す。
 破断伸度(%)=100×(延伸で破断した長さ-チャック間距離)/(チャック間距離)
-条件-
・チャック間距離:30mm
・サンプル片の温度:100℃
・引張速度:1mm/秒
<Measurement of elongation at break at 100 ° C.>
The obtained resin cured film (single film) was punched into a size of 50 mm length × 10 mm width to prepare a sample piece, and using TENSILON RTC-1225A (manufactured by A & D Co., Ltd.), the following A tensile test was performed under the conditions, and the elongation at break represented by the following formula was measured. The breaking elongation was measured three times, and the average value thereof was taken as the breaking elongation. The measurement results are shown in Table 1 or Table 2.
Elongation at break (%) = 100 × (length broken by stretching−distance between chucks) / (distance between chucks)
-conditions-
・ Distance between chucks: 30mm
-Sample piece temperature: 100 ° C
・ Tensile speed: 1 mm / sec
<架橋点間分子量の測定、及び、架橋点間分子量の分布の測定>
 硬化性組成物がゴム領域となる温度(250℃)まで昇温し、DMA(Dynamic Mechanikal Analyzer:ユービーエム社製Rheogel-E4000HP)を用い10Hzで0.01%の歪みを与えて測定し貯蔵弾性率(E’)を求めた。
 求めた貯蔵弾性率(E’)より、下記式を用い、架橋点間分子量(Mc)を求めた。
   Mc=3×ρ×R×T/E’
 Mc=g/mol、ρ(密度)=g/cm、R(ガス定数)=J/(mol・K)、
 T(測定温度)=K、E’=Pa
 10本のサンプルについて上記測定を行い、最大値と最小値との差を10点の平均値で割り百分率で示した値を、架橋点間分子量の分布とした。
 各算出値を表1~表3に示す。
<Measurement of molecular weight between cross-linking points and measurement of molecular weight distribution between cross-linking points>
The temperature was raised to a temperature (250 ° C.) at which the curable composition became a rubber region, and measured by applying a strain of 0.01% at 10 Hz using DMA (Dynamic Mechanical Analyzer: Rheogel-E4000HP manufactured by UBM), and storage elasticity. The rate (E ′) was determined.
From the obtained storage elastic modulus (E ′), the molecular weight (Mc) between crosslinking points was obtained using the following formula.
Mc = 3 × ρ × R × T / E ′
Mc = g / mol, ρ (density) = g / cm 3 , R (gas constant) = J / (mol · K),
T (measured temperature) = K, E ′ = Pa
The above-mentioned measurement was performed on 10 samples, and the value obtained by dividing the difference between the maximum value and the minimum value by the average value of 10 points and expressed as a percentage was defined as the distribution of molecular weight between cross-linking points.
The calculated values are shown in Tables 1 to 3.
3.積層シートの作製
(1)レンチキュラーシートの作製(半円柱の賦型、実施例1~23及び25~28、並びに、比較例1~8)
 基材であるアクリル樹脂フィルム(アクリプレンHBS010P、フィルム厚125μm、三菱レイヨン(株)製)上に上記硬化性組成物を下記レンズ高さになるように塗布した後、図1に示すように半円筒形状の表面を有する複数本の凸レンズ部12Aを持つシリンドリカルレンズ12が並列したレンチキュラーレンズの形状〔高さ33μm、長手方向yの長さ80mm、1本のレンズ幅(レンズのピッチ)200LPI(Line Per Inch)〕に加工された金型(幅100mm×奥行100mm)を押し付け、塗布された上記硬化性組成物を成型しながら、アクリル樹脂フィルムを通して紫外線(UV)を、UV照射装置(EXECURE 3000、HOYA CANDEO OPTRONICS(株)製)を用いて、UV照射量1.0J/cmにて照射した。照射後、脱型して、レンチキュラーシートを作製した。
 なお、実施例18においては、上記UV照射は行わず、70℃の加熱を行った。
3. Production of laminated sheet (1) Production of lenticular sheet (molding of semi-cylinder, Examples 1 to 23 and 25 to 28, and Comparative Examples 1 to 8)
After applying the curable composition to the following lens height on an acrylic resin film (Acryprene HBS010P, film thickness 125 μm, manufactured by Mitsubishi Rayon Co., Ltd.) as a base material, a half cylinder as shown in FIG. Shape of a lenticular lens in which cylindrical lenses 12 having a plurality of convex lens portions 12A having a shape surface are arranged in parallel [height 33 .mu.m, length y in the longitudinal direction 80 mm, one lens width (lens pitch) 200 LPI (Line Per) Inch)] is pressed into a mold (width 100 mm × depth 100 mm), and while the applied curable composition is molded, ultraviolet rays (UV) are passed through the acrylic resin film, and UV irradiation apparatus (EXECURE 3000, HOYA). CANDEO OPTRONICS Co., Ltd.), UV irradiation amount 1 It was irradiated at 0J / cm 2. After irradiation, the mold was removed to prepare a lenticular sheet.
In Example 18, the UV irradiation was not performed, and heating at 70 ° C. was performed.
(2)平板状の積層シートの作製(賦型せず、実施例24)
 上記(1)において、レンズ幅に加工された金型を用いず、平滑なロールを押し当てて作製した。これ以外は上記(1)と同様に実施し、平板状の積層シートを作製した。
(2) Production of flat laminated sheet (without shaping, Example 24)
In the above (1), a smooth roll was pressed against a lens processed into a lens width. Except this, it carried out similarly to said (1), and produced the flat laminated sheet.
<立体成型性の評価>
 10mm~200mmの間で5mm間隔の直径を有する半球をそれぞれ用意した。
 これらを用いて、硬化性組成物の硬化物のガラス転移温度において、得られたレンチキュラーシートを上記半球形に真空成型し、表面に割れが発生した最小直径を、立体成型性の指標とした。なお、小さな直径まで割れが生じないほど立体成型性が高い。
 評価結果を表1~表3に示す。
<Evaluation of three-dimensional moldability>
A hemisphere having a diameter of 5 mm between 10 mm and 200 mm was prepared.
Using these, at the glass transition temperature of the cured product of the curable composition, the obtained lenticular sheet was vacuum-molded into the above hemispherical shape, and the minimum diameter at which cracks occurred on the surface was used as an index of three-dimensional moldability. Note that the three-dimensional formability is so high that cracking does not occur up to a small diameter.
The evaluation results are shown in Tables 1 to 3.
<耐摩耗性の評価>
 JIS K5600-5-10:1999(耐摩擦性)に準じ、得られたレンチキュラーシートの表面をシリコンカーバイド研磨紙で擦り、1往復あたりの摩耗量(mg/DS)で評価した。ただし、シリコンカーバイド研磨紙は、p180に代えて#1500を使用した。
 評価結果を表1~表3に示す。
<Evaluation of wear resistance>
According to JIS K5600-5-10: 1999 (friction resistance), the surface of the obtained lenticular sheet was rubbed with silicon carbide abrasive paper and evaluated by the amount of wear (mg / DS) per round trip. However, silicon carbide abrasive paper # 1500 was used instead of p180.
The evaluation results are shown in Tables 1 to 3.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 表1~表3の結果から明らかなように、本開示に係る硬化性組成物を用いた場合、得られる硬化物の立体成型性及び耐摩耗性に優れていることが分かる。
 また、実施例1~実施例4に示すように、3~6官能の上記環構造を有する多官能(メタ)アクリレート化合物を使用した場合、耐摩耗性により優れる。
 実施例5~実施例8に示すように、上記環構造を有する多官能(メタ)アクリレート化合物の含有量が、硬化性組成物の全質量に対し、10質量%以上70質量%以下である場合、立体成型性及び耐摩耗性により優れる。
 実施例9~実施例11に示すように、N-ビニル化合物の含有量が、硬化性組成物の全質量に対し、8質量%以上であると、立体成型性により優れる。
 実施例12~実施例14に示すように、上記環構造を有する多官能(メタ)アクリレート化合物の含有量が、硬化性組成物の全質量に対し、1質量%以上20質量%以下である場合、立体成型性及び耐摩耗性により優れる。
 実施例15及び実施例16に示すように、N-ビニル化合物として、N-ビニルピロリドンを用いた場合、立体成型性により優れる。
 実施例17及び実施例18に示すように、重合開始剤として、光重合開始剤を用いた場合、立体成型性及び耐摩耗性により優れる。
 実施例19~実施例23に示すように、架橋点間分子量の分布が、0.5%以上10%以下である場合、立体成型性及び耐摩耗性により優れる。
As is apparent from the results of Tables 1 to 3, it can be seen that when the curable composition according to the present disclosure is used, the resulting cured product is excellent in three-dimensional formability and wear resistance.
Further, as shown in Examples 1 to 4, when a polyfunctional (meth) acrylate compound having the above-mentioned ring structure having 3 to 6 functions is used, the wear resistance is more excellent.
As shown in Example 5 to Example 8, when the content of the polyfunctional (meth) acrylate compound having the ring structure is 10% by mass or more and 70% by mass or less with respect to the total mass of the curable composition Excellent in three-dimensional formability and wear resistance.
As shown in Examples 9 to 11, when the content of the N-vinyl compound is 8% by mass or more based on the total mass of the curable composition, the three-dimensional moldability is more excellent.
As shown in Examples 12 to 14, when the content of the polyfunctional (meth) acrylate compound having the ring structure is 1% by mass or more and 20% by mass or less with respect to the total mass of the curable composition Excellent in three-dimensional formability and wear resistance.
As shown in Examples 15 and 16, when N-vinylpyrrolidone is used as the N-vinyl compound, the three-dimensional moldability is excellent.
As shown in Example 17 and Example 18, when a photopolymerization initiator is used as the polymerization initiator, the three-dimensional moldability and wear resistance are superior.
As shown in Examples 19 to 23, when the distribution of molecular weight between cross-linking points is 0.5% or more and 10% or less, the three-dimensional moldability and the wear resistance are excellent.
 2016年10月13日に出願された日本国特許出願第2016-201891号、及び、2017年2月13日に出願された日本国特許出願第2017-024371号の開示は、その全体が参照により本明細書に取り込まれる。
 本明細書に記載された全ての文献、特許出願、及び、技術規格は、個々の文献、特許出願、及び、技術規格が参照により取り込まれることが具体的かつ個々に記された場合と同程度に、本明細書中に参照により取り込まれる。
The disclosures of Japanese Patent Application No. 2016-201891 filed on October 13, 2016 and Japanese Patent Application No. 2017-024371 filed on February 13, 2017 are hereby incorporated by reference in their entirety. Incorporated herein.
All documents, patent applications, and technical standards described in this specification are the same as if each document, patent application, and technical standard were specifically and individually stated to be incorporated by reference. Which is incorporated herein by reference.
10・・・レンチキュラー加飾シート(レンチキュラーシート)
12・・・レンチキュラーレンズ
12A・・・凸状レンズ
14・・・レンチキュラー画像
14A,14B・・・表示用画像列
14C・・・補間画像列
x・・・レンズの幅方向
y・・・レンズの長手方向
10 ... Lenticular decorative sheet (lenticular sheet)
12 ... Lenticular lens 12A ... Convex lens 14 ... Lenticular images 14A and 14B ... Display image row 14C ... Interpolated image row x ... Lens width direction y ... Lens of lens Longitudinal direction

Claims (17)

  1.  得られる硬化物の100℃における破断伸度が、6%以上80%以下であり、
     得られる硬化物の架橋点間分子量が、20g/mol以上2,000g/mol以下である
     硬化性組成物。
    The breaking elongation at 100 ° C. of the obtained cured product is 6% or more and 80% or less,
    The curable composition whose molecular weight between crosslinking points of the hardened | cured material obtained is 20 g / mol or more and 2,000 g / mol or less.
  2.  得られる硬化物の架橋点間分子量の分布が、1%以上30%以下である請求項1に記載の硬化性組成物。 The curable composition according to claim 1, wherein the molecular weight distribution between cross-linking points of the obtained cured product is 1% or more and 30% or less.
  3.  環構造を有する多官能(メタ)アクリレート化合物、及び、N-ビニル化合物を含む請求項1又は請求項2に記載の硬化性組成物。 The curable composition according to claim 1 or 2, comprising a polyfunctional (meth) acrylate compound having a ring structure and an N-vinyl compound.
  4.  前記環構造を有する多官能(メタ)アクリレート化合物の含有量が、硬化性組成物の全質量に対し、1質量%以上75質量%以上である請求項3に記載の硬化性組成物。 The curable composition according to claim 3, wherein the content of the polyfunctional (meth) acrylate compound having a ring structure is 1% by mass or more and 75% by mass or more with respect to the total mass of the curable composition.
  5.  前記N-ビニル化合物の含有量が、硬化性組成物の全質量に対し、8質量%以上60質量%以下である請求項3又は請求項4に記載の硬化性組成物。 The curable composition according to claim 3 or 4, wherein the content of the N-vinyl compound is 8% by mass or more and 60% by mass or less based on the total mass of the curable composition.
  6.  前記N-ビニル化合物が、N-ビニルピロリドン、及び、N-ビニルカプロラクタムよりなる群から選ばれた少なくとも1種の化合物である請求項3~請求項5のいずれか1項に記載の硬化性組成物。 The curable composition according to any one of claims 3 to 5, wherein the N-vinyl compound is at least one compound selected from the group consisting of N-vinyl pyrrolidone and N-vinyl caprolactam. object.
  7.  単官能(メタ)アクリレート化合物を含む請求項1~請求項6のいずれか1項に記載の硬化性組成物。 The curable composition according to any one of claims 1 to 6, comprising a monofunctional (meth) acrylate compound.
  8.  前記単官能(メタ)アクリレート化合物の含有量が、硬化性組成物の全質量に対し、1質量%以上80質量%以下である請求項7に記載の硬化性組成物。 The curable composition according to claim 7, wherein the content of the monofunctional (meth) acrylate compound is 1% by mass or more and 80% by mass or less based on the total mass of the curable composition.
  9.  光重合開始剤を含む請求項1~請求項8のいずれか1項に記載の硬化性組成物。 The curable composition according to any one of claims 1 to 8, comprising a photopolymerization initiator.
  10.  ウレタン(メタ)アクリレート化合物を含まないか、又は、ウレタン(メタ)アクリレート化合物の含有量が、硬化性組成物の全質量に対し、0質量%を超え4質量%未満である請求項1~請求項9のいずれか1項に記載の硬化性組成物。 The urethane (meth) acrylate compound is not contained, or the content of the urethane (meth) acrylate compound is more than 0% by mass and less than 4% by mass with respect to the total mass of the curable composition. Item 10. The curable composition according to any one of Items 9.
  11.  請求項1~請求項10のいずれか1項に記載の硬化性組成物を準備する工程、及び、
     前記硬化性組成物を0.5℃以上10℃以下の範囲の温度ムラを有する状態で硬化する工程を含む
     硬化物の製造方法。
    Preparing the curable composition according to any one of claims 1 to 10, and
    The manufacturing method of hardened | cured material including the process of hardening | curing the said curable composition in the state which has the temperature nonuniformity of the range of 0.5 to 10 degreeC.
  12.  請求項1~請求項10のいずれか1項に記載の硬化性組成物の硬化物を有する積層シート。 A laminated sheet having a cured product of the curable composition according to any one of claims 1 to 10.
  13.  請求項1~請求項10のいずれか1項に記載の硬化性組成物の硬化物を有する光学部材。 An optical member having a cured product of the curable composition according to any one of claims 1 to 10.
  14.  請求項1~請求項10のいずれか1項に記載の硬化性組成物の硬化物を有するレンチキュラーシート。 A lenticular sheet having a cured product of the curable composition according to any one of claims 1 to 10.
  15.  請求項12に記載の積層シートの立体成型物である3次元構造物。 A three-dimensional structure which is a three-dimensional molded product of the laminated sheet according to claim 12.
  16.  100℃における破断伸度が、6%以上80%以下であり、
     架橋点間分子量が、20g/mol以上2,000g/mol以下である
     硬化物。
    The elongation at break at 100 ° C. is 6% or more and 80% or less,
    Cured product having a molecular weight between crosslinking points of 20 g / mol or more and 2,000 g / mol or less.
  17.  架橋点間分子量の分布が、1%以上30%以下である請求項16に記載の硬化物。 The cured product according to claim 16, wherein the distribution of molecular weight between crosslinking points is 1% or more and 30% or less.
PCT/JP2017/037272 2016-10-13 2017-10-13 Hardening composition, hardened substance and method for manufacturing same, layered sheet, optical member, lenticular sheet, and three-dimensional structure WO2018070537A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018545086A JP6755326B2 (en) 2016-10-13 2017-10-13 Curable composition, cured product and its manufacturing method, laminated sheet, optical member, lenticular sheet, and three-dimensional structure

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2016201891 2016-10-13
JP2016-201891 2016-10-13
JP2017024371 2017-02-13
JP2017-024371 2017-10-31

Publications (1)

Publication Number Publication Date
WO2018070537A1 true WO2018070537A1 (en) 2018-04-19

Family

ID=61905614

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/037272 WO2018070537A1 (en) 2016-10-13 2017-10-13 Hardening composition, hardened substance and method for manufacturing same, layered sheet, optical member, lenticular sheet, and three-dimensional structure

Country Status (2)

Country Link
JP (1) JP6755326B2 (en)
WO (1) WO2018070537A1 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6327518A (en) * 1986-07-21 1988-02-05 Yokohama Rubber Co Ltd:The Ultraviolet curing type resin composition
JPS63270719A (en) * 1987-04-30 1988-11-08 Yokohama Rubber Co Ltd:The Ultraviolet-curable resin composition
JPH09316111A (en) * 1996-05-30 1997-12-09 Japan Synthetic Rubber Co Ltd Photocurable composition and production of mold made of resin
JP2006274110A (en) * 2005-03-30 2006-10-12 Toray Ind Inc Prepreg and fiber-reinforced composite material
JP2006308792A (en) * 2005-04-27 2006-11-09 Canon Inc Photosetting resin composition, and optical element, diffractive optical element and optical system formed with the photosetting resin composition
JP2006342254A (en) * 2005-06-09 2006-12-21 Canon Inc Method for producing photo-setting resin composition
JP2009134000A (en) * 2007-11-29 2009-06-18 Jsr Corp Film-like optical waveguide
JP2015071704A (en) * 2013-10-03 2015-04-16 東洋インキScホールディングス株式会社 Resin composition, active energy ray-polymerizable adhesive, and laminate

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6327518A (en) * 1986-07-21 1988-02-05 Yokohama Rubber Co Ltd:The Ultraviolet curing type resin composition
JPS63270719A (en) * 1987-04-30 1988-11-08 Yokohama Rubber Co Ltd:The Ultraviolet-curable resin composition
JPH09316111A (en) * 1996-05-30 1997-12-09 Japan Synthetic Rubber Co Ltd Photocurable composition and production of mold made of resin
JP2006274110A (en) * 2005-03-30 2006-10-12 Toray Ind Inc Prepreg and fiber-reinforced composite material
JP2006308792A (en) * 2005-04-27 2006-11-09 Canon Inc Photosetting resin composition, and optical element, diffractive optical element and optical system formed with the photosetting resin composition
JP2006342254A (en) * 2005-06-09 2006-12-21 Canon Inc Method for producing photo-setting resin composition
JP2009134000A (en) * 2007-11-29 2009-06-18 Jsr Corp Film-like optical waveguide
JP2015071704A (en) * 2013-10-03 2015-04-16 東洋インキScホールディングス株式会社 Resin composition, active energy ray-polymerizable adhesive, and laminate

Also Published As

Publication number Publication date
JPWO2018070537A1 (en) 2019-06-27
JP6755326B2 (en) 2020-09-16

Similar Documents

Publication Publication Date Title
US10030159B2 (en) Active-energy-ray-curable composition, active-energy-ray-curable ink, two-dimensional or three-dimensional image forming method, two-dimensional or three-dimensional image forming apparatus, and cured material
JP5665509B2 (en) Prism sheet, active energy ray-curable resin composition for optical member, surface light source device, and liquid crystal display device
KR102190726B1 (en) Uv-curing acrylic resin compositions for thermoformable hardcoat applications
WO2012153733A1 (en) Acrylic resin composition, acrylic resin sheet, acrylic resin laminate, and manufacturing method for same
US9469789B2 (en) Laminated film
TW201350325A (en) Surface protective sheet, electronic device, and method for manufacturing electronic device component
JP6840215B1 (en) Method for manufacturing active energy ray-curable composition for antiglare hard coat and antiglare hard coat film
WO2018070537A1 (en) Hardening composition, hardened substance and method for manufacturing same, layered sheet, optical member, lenticular sheet, and three-dimensional structure
JP2017015812A (en) Antidazzling sheet
JP4467243B2 (en) Resin composition and optical element
WO2018147242A1 (en) Curable composition, cured product, method for producing cured product, laminate sheet, optical member, lenticular sheet, and three-dimensional structure
WO2018070538A1 (en) Curable composition, cured product and production method therefor, laminated sheet, optical member, lenticular sheet, and three-dimensional structure
JP6782843B2 (en) Laminated sheet and its manufacturing method, and three-dimensional structure and its manufacturing method
JP2018112687A (en) Method for producing optical member and method for producing three-dimensional structure
WO2018021445A1 (en) Multilayer sheet, lenticular sheet, curable composition for optical members, optical member, method for producing optical molded body, molded body, and method for producing cured product
WO2018207846A1 (en) Method for producing cured product, method for producing multilayer sheet, and method for producing three-dimensional model
JP6708754B2 (en) Laminate for forming optical member, optical member sheet and manufacturing method thereof, and three-dimensional structure and manufacturing method thereof
JP2019019276A (en) Curable composition for sheet used for three-dimensional molding, laminate sheet for three-dimensional molding and manufacturing method therefor, and three-dimensional structure and manufacturing method therefor
JPWO2018070228A1 (en) Lenticular sheet
JP6390817B2 (en) Active energy ray-curable resin composition for optical articles, cured product, and optical sheet
JP2018111276A (en) Method for manufacturing three-dimensional optical member molded article
JP2012003074A (en) Optical film and optical device using the same
JP2018112686A (en) Method for producing optical member and method for producing three-dimensional structure
JP2008280456A (en) Active energy beam curable resin composition
JP2014223735A (en) Resin laminate sheet and front face protective sheet of flat panel display

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17861055

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018545086

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17861055

Country of ref document: EP

Kind code of ref document: A1