WO2018021445A1 - Multilayer sheet, lenticular sheet, curable composition for optical members, optical member, method for producing optical molded body, molded body, and method for producing cured product - Google Patents

Multilayer sheet, lenticular sheet, curable composition for optical members, optical member, method for producing optical molded body, molded body, and method for producing cured product Download PDF

Info

Publication number
WO2018021445A1
WO2018021445A1 PCT/JP2017/027133 JP2017027133W WO2018021445A1 WO 2018021445 A1 WO2018021445 A1 WO 2018021445A1 JP 2017027133 W JP2017027133 W JP 2017027133W WO 2018021445 A1 WO2018021445 A1 WO 2018021445A1
Authority
WO
WIPO (PCT)
Prior art keywords
meth
mass
curable composition
optical
optical member
Prior art date
Application number
PCT/JP2017/027133
Other languages
French (fr)
Japanese (ja)
Inventor
貴康 永井
上平 茂生
直之 師岡
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Priority to JP2018530370A priority Critical patent/JPWO2018021445A1/en
Publication of WO2018021445A1 publication Critical patent/WO2018021445A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C59/00Surface shaping of articles, e.g. embossing; Apparatus therefor
    • B29C59/02Surface shaping of articles, e.g. embossing; Apparatus therefor by mechanical means, e.g. pressing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/16Layered products comprising a layer of synthetic resin specially treated, e.g. irradiated
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F290/00Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups
    • C08F290/02Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups on to polymers modified by introduction of unsaturated end groups
    • C08F290/04Polymers provided for in subclasses C08C or C08F
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses

Definitions

  • the present disclosure relates to a laminated sheet, a lenticular sheet, a curable composition for an optical member, a method for manufacturing an optical molded body, an optical member, a molded body, and a method for manufacturing a cured product.
  • a curable composition contains a polymerizable resin and an initiator, is cured by causing a polymerization reaction by heat or light, and is widely used in various applications.
  • curing a curable composition is utilized widely, such as an optical member, a gas barrier film, a protective film, an optical filter, an antireflection film.
  • the cured product obtained by curing the curable composition is used for various members such as an antireflection film, a transparent pixel, a transparent insulating film, and a planarization film.
  • the optical structure of the optical member is not limited to a flat surface shape, for example, a brightness enhancement lens for a backlight for liquid crystal, a diffusion lens, and a Fresnel used for a screen of a video projection television.
  • a lens, a microlens, etc. are mentioned.
  • a desired geometrical optical performance is obtained mainly by forming a fine structure with a resin material.
  • a lenticular sheet using a lenticular lens in which convex lenses having a semicylindrical surface are arranged in parallel is known as a medium for displaying different images depending on viewing angles.
  • an image sequence group lenticular image
  • a plurality of interlaced images are combined is arranged on the back side of the lenticular lens (the surface opposite to the semi-cylindrical surface of the convex lens).
  • the applications proposed heretofore are mostly used in a two-dimensional form such as a sheet or a film, and are not often applied to a three-dimensional form formed into a three-dimensional shape.
  • an invention relating to an optical screen sheet obtained by molding a resin material for an optical screen has been proposed (see, for example, JP-A-2005-206742).
  • a thermoplastic resin is used for the lens portion to be molded.
  • three-dimensionalization is performed by vacuum molding or the like, It may be difficult to keep the shape stable with heat, and the structure of the lenticular sheet may not be maintained after molding.
  • a technique using a curable composition containing a macromer having a (meth) acryloyl group, an acrylate, a polymerization initiator and the like in the production of an optical waveguide having excellent shape accuracy and the like is disclosed.
  • a curable composition in film applications there is a disclosure relating to a technique for imparting hard coat properties by a composition containing polyfunctional acrylates, silica particles, high molecular weight monomers, etc. No. 287308).
  • a cured product or a laminated sheet having the cured product is produced using a conventionally proposed resin composition having a curing property, and further molded into a three-dimensional structure by vacuum forming or the like, the cured product is obtained. Insufficient adhesion to the base material, the cured product may not only peel from the base material during three-dimensional molding, but the cured product itself may crack during molding by vacuum molding or the like, and the cured product itself may be damaged. .
  • the present disclosure has been made in view of the above circumstances.
  • the problem to be solved by one embodiment of the present invention is that the adhesion with the substrate is good, the film has heat resistance, and is stretchable when molded (preferably at high temperature). It is to provide a laminated sheet and a lenticular sheet.
  • the problem to be solved by other embodiments of the present invention is that excellent adhesion to a substrate is obtained, heat resistance is obtained after curing, and molding (preferably at high temperature) is performed.
  • An object of the present invention is to provide a curable composition for an optical member that is excellent in stretchability when it is shaped.
  • Problems to be solved by other embodiments of the present invention include an optical member having good adhesion to a substrate, heat resistance, and stretchability, and a method for producing an optical molded body And providing a molded body.
  • the problem to be solved by another embodiment of the present invention is to provide a method for producing a cured product having good adhesion to a substrate, heat resistance, and stretchability. .
  • Specific means for achieving the object includes the following aspects.
  • a cured product having at least one skeleton selected from a pyrrolidone skeleton and a caprolactam skeleton.
  • ⁇ 3> Furthermore, it is a laminated sheet as described in ⁇ 1> or ⁇ 2> which has an image on the opposite side to the side which has a hardened
  • ⁇ 4> The laminated sheet according to any one of ⁇ 1> to ⁇ 3>, wherein the cured product is an optical member.
  • ⁇ 5> The laminated sheet according to ⁇ 4>, wherein the optical member is a cylindrical lens and is a lenticular sheet.
  • the content of the (meth) acrylic resin is 5 parts by mass or more and 40 parts by mass or less with respect to the total content of 100 parts by mass, and the content of the polyfunctional (meth) acrylic monomer is 1 part by mass or more. 75 parts by mass or less, a vinyl compound content of 15 parts by mass or more and 50 parts by mass or less, and a radical photopolymerization initiator content of 0.1 parts by mass or more and 5 parts by mass or less, ⁇ 6 > Or ⁇ 7>.
  • ⁇ 9> The curing for optical member according to any one of ⁇ 6> to ⁇ 8>, wherein the vinyl compound is vinylpyrrolidone and the content of the (meth) acrylic resin is 20 parts by mass or more and 40 parts by mass. Composition.
  • the curable composition for optical members according to any one of ⁇ 6> to ⁇ 9> is molded and cured by irradiation with active energy rays, and the optical member is provided on the resin substrate. It is a manufacturing method of the optical molded body which has the process of producing a laminated sheet, and the process of obtaining an optical molded body by solid-molding (preferably thermoforming or vacuum forming) the produced laminated sheet.
  • a molded body which is a thermoformed product or a vacuum formed product of the laminated sheet according to any one of ⁇ 1> to ⁇ 5>.
  • ⁇ 12> The molded product according to ⁇ 11>, which is an optical molded product.
  • ⁇ 13> A method for producing a cured product, comprising a step of preparing the curable composition for optical members according to any one of ⁇ 6> to ⁇ 9>, and a step of curing the curable composition for optical members. It is.
  • ⁇ 14> A laminated sheet having a cured product of the curable composition for optical members according to any one of ⁇ 6> to ⁇ 9>.
  • ⁇ 15> An optical member having a cured product of the curable composition for optical members according to any one of ⁇ 6> to ⁇ 9>.
  • ⁇ 16> A lenticular sheet having a cured product of the curable composition for optical members according to any one of ⁇ 6> to ⁇ 9>.
  • FIG. 1 is a schematic view showing an example of a display body provided with a lenticular sheet.
  • a numerical range expressed using “to” means a range including numerical values described before and after “to” as a lower limit value and an upper limit value.
  • an upper limit value or a lower limit value described in a numerical range may be replaced with an upper limit value or a lower limit value in another numerical range.
  • the upper limit value or the lower limit value described in a certain numerical range may be replaced with the values shown in the examples.
  • the term “process” in this specification is not limited to an independent process, and even if it cannot be clearly distinguished from other processes, the term is used as long as the intended purpose of the process is achieved. included.
  • (meth) acryl is a term used in a concept including both acryl and methacryl
  • (meth) acryloyl is a term used as a concept including both acryloyl and methacryloyl. It is.
  • the laminated sheet of one embodiment of the present invention has a resin base material and a cured product (preferably an optical member (cylindrical lens in the case of a lenticular sheet)) disposed on at least one surface of the resin base material.
  • a cured product preferably an optical member (cylindrical lens in the case of a lenticular sheet)
  • an image is provided on the side opposite to the side having the optical member of the resin base material.
  • the image may be provided on the surface of the resin base opposite to the side having the optical member, or the recording layer may have a recording layer on the side opposite to the side of the resin base having the optical member. It may be provided by a known recording method such as
  • the cured product is preferably an optical member.
  • the laminated sheet according to the present disclosure is suitable as a laminated sheet having a hard coat film, a three-dimensionally laminated sheet, a laminated sheet having a brightness enhancement film, a lenticular sheet, a prism sheet, a microlens sheet, a Fresnel lens sheet, a fly eye lens, and the like. Can be used.
  • the laminated sheet of one embodiment of the present invention is suitably used as a lenticular sheet in which a cylindrical lens as an optical member is disposed on at least one surface of a resin base material.
  • the lenticular sheet may be a lenticular decorative sheet having a configuration in which a recording layer is provided and a lenticular image is attached.
  • the lenticular decorative sheet has a lenticular lens in which convex cylindrical lenses (optical members) having a semi-cylindrical surface are arranged on an image suitable for lenticular display, thereby displaying different images depending on the viewing angle. It is a medium (lenticular display body).
  • FIG. 1 is a schematic diagram illustrating an example of a lenticular decorative sheet.
  • the lenticular decorative sheet is an example of an optical decorative sheet.
  • a lenticular decorative sheet 10 shown in FIG. 1 includes a lenticular lens 12 in which a plurality of convex lenses (cylindrical lenses) 12A having a semicylindrical surface are arranged in parallel, and a semicylindrical surface of a convex lens 12A of the lenticular lens 12. And a lenticular image 14 arranged on the opposite side (also referred to as the back side).
  • the x direction indicates the width direction of the lens, and the y direction indicates the longitudinal direction of the lens.
  • thermosetting resins generally have a crosslinked structure.
  • a crosslinked structure is introduced using a thermosetting resin to prevent thermal deformation, and at least one of the pyrrolidone skeleton and the caprolactam skeleton is in a specific quantitative range.
  • the composition is included.
  • the resin base material in one embodiment of the present invention is a base material as a support material, and any resin can be selected according to the purpose and the like.
  • As the resin substrate a sheet-like or film-like substrate can be suitably used.
  • examples of the resin base material include sheets or films of acrylic resin, polyester resin, and the like.
  • the thickness of the resin substrate is not particularly limited and is preferably in the range of 50 ⁇ m to 300 ⁇ m, and more preferably in the range of 50 ⁇ m to 200 ⁇ m from the viewpoint of uniform molding (shaping) at high temperatures.
  • the resin substrate may be used as the resin substrate.
  • an acrylic resin film manufactured by Mitsubishi Rayon Co., Ltd. (Acryprene HBS010P, thickness: 125 ⁇ m)
  • a polyethylene terephthalate resin film manufactured by Toray Industries, Inc. (Lumirror S10, thickness: 100 ⁇ m)
  • polycarbonate resin film (Iupilon H-3000, thickness 125 ⁇ m) manufactured by Teijin Chemicals Ltd. and the like can be used.
  • the cured product in the laminated sheet includes at least a cured resin having a crosslinked structure and at least one skeleton selected from a pyrrolidone skeleton and a caprolactam skeleton, and the total content of the pyrrolidone skeleton and the caprolactam skeleton is an optical member (lenticular sheet).
  • the range is 8% by mass or more with respect to the total mass of the cylindrical lens).
  • the optical member may further contain other components as necessary.
  • the cured product includes optical members such as cylindrical lenses, prisms, hemispherical microlenses, and Fresnel lenses as convex lenses.
  • optical members such as cylindrical lenses, prisms, hemispherical microlenses, and Fresnel lenses as convex lenses.
  • an optical member is preferable, and a lenticular lens in which a plurality of convex lenses (cylindrical lenses) are arranged in parallel is particularly suitable as the optical member.
  • IR infrared absorption spectrum
  • the cured product in the laminated sheet includes a cured resin having a crosslinked structure.
  • the curable resin includes a crosslinked structure formed by polymerization reaction of a polyfunctional (meth) acrylic monomer, and the polyfunctional (meth) acrylic monomer can remain in the resin. Since the polyfunctional (meth) acrylic monomer that undergoes the polymerization reaction under heating, it exhibits thermosetting properties.
  • the cured resin is imparted with a heat resistance effect by including a crosslinked structure.
  • the presence or absence of the crosslinked structure of the cured resin in the cured product can be confirmed by the following method.
  • a cured product for example, a lenticular lens
  • the cured product removed is added to tetrahydrofuran and dissolved, and when the cured product is not dissolved but remains as a filtered product, it is judged to have a crosslinked structure. To do.
  • the cured resin contained in the cured product is a (meth) acrylic resin having a (meth) acryloyl group at the terminal, a bifunctional to tetrafunctional (meth) acrylic monomer, a vinyl compound, and a photo radical.
  • This is a resin cured by forming a crosslinked structure by a polymerization reaction of (meth) acryloyl groups using a curable composition containing a polymerization initiator.
  • the vinyl compound is incorporated in the cured resin.
  • radicals generated from the photo radical polymerization initiator when irradiated with active energy rays act on the (meth) acryloyl group of the (meth) acrylic resin and (meth) acrylic monomer, and (meth) acryloyl The groups are cured by a chain polymerization reaction.
  • (meth) acrylic resin having a (meth) acryloyl group at the terminal a (meth) acrylic monomer having 2 to 4 functionalities, a vinyl compound, and a radical photopolymerization initiator, which is a raw material of the cured resin It will be described later.
  • the content of the cured resin in the cured product is preferably 70% by mass or more and 100% by mass or less with respect to the total mass of the cured product such as an optical member (a cylindrical lens in the case of a lenticular sheet).
  • the cured resin contains a (meth) acrylic resin, a monomer component containing a polyfunctional (meth) acrylic monomer, and a vinyl compound.
  • the cured product contains at least one skeleton selected from a pyrrolidone skeleton and a caprolactam skeleton as a structure derived from at least one vinyl compound selected from vinyl pyrrolidone and vinyl caprolactam.
  • the pyrrolidone skeleton and the caprolactam skeleton derived from the vinyl compound contribute to the improvement of the adhesion to the resin base described above, and improve the stretchability of the cured product (preferably an optical member) at the time of molding.
  • cured material preferably optical member
  • the total content of the pyrrolidone skeleton and caprolactam skeleton with respect to the total mass of the cured product is in the range of 8 mass% or more.
  • the total content of the pyrrolidone skeleton and the caprolactam skeleton is in the above range, the adhesion to the resin base material is further improved, and the stretchability at the time of molding of the optical member which is a cured product is effectively improved.
  • the total content of the pyrrolidone skeleton and the caprolactam skeleton is preferably 15% by mass or more, more preferably 20% by mass or more, and further preferably 30% by mass or more.
  • the content of the vinyl compound is 60% by mass or less, the heat resistance is further improved, the shape retainability of the cured product (preferably the optical member) can be kept good, and the lens shape remains the desired shape. Easy to hold.
  • the contents of the pyrrolidone skeleton and caprolactam skeleton can be determined from an infrared absorption spectrum (IR).
  • Examples of vinyl compounds that give a pyrrolidone skeleton and a caprolactam skeleton include N-vinyl-2-pyrrolidone and the like as an example of vinyl pyrrolidone, and N-vinyl- ⁇ -caprolactam and the like as an example of vinyl caprolactam.
  • vinylpyrrolidone is preferable in that the stretchability at a high temperature at the time of molding is more excellent.
  • the cured product may contain other components such as an organic solvent and inorganic particles as necessary. Details of the organic solvent, inorganic particles and the like will be described later.
  • a lenticular sheet is suitable.
  • the lenticular sheet has a lenticular lens layer in which a plurality of convex lenses (cylindrical lenses) having a semi-cylindrical surface are arranged in parallel, and the width per cylindrical lens is not particularly limited. What is necessary is just to select a pitch width.
  • the width per cylindrical lens is usually often expressed by LPI (Line Per Inch) representing the number of lenses per inch (2.54 cm). For example, 100 LPI indicates that 100 cylindrical lenses (100 rows) per inch are arranged in parallel, and the pitch of the lenses is 254 ⁇ m. The larger the value of the number of lines per inch (number of lenses arranged), the smaller the lens pitch, and the higher the definition.
  • a low-definition lenticular sheet (for example, 60 LPI) is suitable for use in a poster or the like that displays a pattern whose observation position is relatively far.
  • the lenses constituting the lenticular lens layer are arranged in 100 rows or more per 2.54 cm (1 inch).
  • the number of convex lenses constituting the lenticular lens layer is more preferably 200 rows (2.5 LPI) or less per 2.54 cm.
  • the surface of the resin substrate on which the lenticular image is formed may be subjected to surface treatment (for example, corona discharge treatment) from the viewpoint of increasing the adhesive force between the resin substrate and the recording layer.
  • the lenticular image may be formed, for example, by applying a colored liquid (for example, ink) for forming a lenticular image to a resin base material.
  • the application of the coloring liquid (formation of a lenticular image) can be performed by, for example, a printing method such as offset printing, a coating method, an ink jet method, or the like.
  • the coloring liquid preferably contains a solid component and a solvent for forming a lenticular image.
  • the lenticular image preferably contains a resin, and at least a part of the resin is preferably crosslinked with a crosslinking agent. Therefore, the aspect containing resin and a crosslinking agent as a solid component contained in a coloring liquid is preferable.
  • the resin is preferably at least one resin selected from polyester, acrylic resin, and urethane resin, and is particularly advantageous when a parallax image is formed by offset printing.
  • a lenticular image 14 includes display image sequences 14A and 14B for separately displaying two display images, and an interpolated image sequence 14C inserted between adjacent display image sequences 14A and 14B.
  • an image sequence group including Specifically, the display image rows 14A and 14B extracted from each display image in a stripe shape are arranged adjacent to each other at the corresponding convex lens 12A, and the adjacent display image rows 14A and 14A are arranged.
  • the interpolated image sequence 14c is inserted.
  • curable composition for optical members is suitably used for producing a cured product (for example, an optical member such as a cylindrical lens) in a laminated sheet.
  • a composition having photocurability It is suitably used for producing the laminated sheet of the present disclosure described above.
  • the curable composition for an optical member according to the present disclosure includes a (meth) acrylic resin having a (meth) acryloyl group at a terminal and a polyfunctional (meth) acrylic monomer containing two or more and four (meth) acryloyl groups.
  • a body hereinafter also referred to as “bifunctional to tetrafunctional (meth) acrylic monomer”
  • at least one vinyl compound selected from vinylpyrrolidone and vinylcaprolactam and a radical photopolymerization initiator.
  • content of a vinyl compound shall be the range which exceeds 10 mass% with respect to the total mass of the curable composition for optical members.
  • the curable composition for optical members of the present disclosure may further contain other components such as an organic solvent and inorganic particles as necessary.
  • the curable composition for an optical member of the present disclosure contains a bifunctional to tetrafunctional (meth) acrylic monomer and a radical photopolymerization initiator, thereby forming a crosslinked structure and contributing to heat resistance.
  • a (meth) acrylic resin having a (meth) acryloyl group at the terminal and a specific amount of a specific vinyl compound it is extended during molding (shaping). Occurrence of cracks or the like that tend to occur is suppressed, and adhesion to the resin base material is improved. That is, the curable composition for an optical member of the present disclosure is excellent in stretchability at the time of molding and excellent in adhesion to a resin substrate while maintaining excellent heat resistance by photocuring.
  • the curable composition for optical members contains at least one (meth) acrylic resin having a (meth) acryloyl group at the terminal. Since the (meth) acrylic resin has a (meth) acryloyl group at the end of the molecular chain, it is used in combination with the later-described (meth) acrylic monomer to control the crosslink density in the entire composition and to obtain a cured product. It is suitable for coexistence of heat resistance at the time of forming and stretchability at the time of molding.
  • the main chain structure is not particularly limited as long as it is a polymer having a (meth) acryloyl group at the terminal.
  • polymethyl methacrylate (PMMA) polystyrene, polystyrene / methacrylate (MS resin), polystyrene -At the end of the main chain structure such as acrylonitrile (AS resin), polypropylene, polyethylene, polyethylene terephthalate, glycol-modified polyethylene terephthalate, polyvinyl chloride (PVC), thermoplastic elastomers, copolymers thereof, cycloolefin polymers ( Mention may be made of polymers having at least one (meth) acryloyl group. Among these, from the viewpoint of heat resistance, polymethyl methacrylate having a (meth) acryloyl group at the terminal and polystyrene having a (meth) acryloyl group at the terminal are preferable.
  • the (meth) acrylic resin a commercially available product may be used.
  • a macromonomer series manufactured by Toagosei Co., Ltd. (Example: Macromonomer AA-6 (polymethyl methacrylate having a methacryloyl group) , Macromonomer AS-6 or AS-6S (polystyrene having a methacryloyl group), macromonomer AN-6S (polystyrene / acrylonitrile having a methacryloyl group), macromonomer AB-6 (polybutyl methacrylate having a methacryloyl group), or the like is used. be able to.
  • the number average molecular weight of the (meth) acrylic resin is preferably in the range of 1000 or more and 10,000 or less, more preferably in the range of 3000 or more and 10,000 or less, and more preferably in the range of 5000 or more and 10,000 from the viewpoint of the balance of the composition viscosity that contributes to imparting stretchability.
  • the following ranges are more preferable.
  • the number average molecular weight is a value measured by gel permeation chromatography (GPC).
  • GPC uses HLC (registered trademark) -8220GPC (manufactured by Tosoh Corporation) as a measuring device, and 3 columns of TSKgel, Super Multipore HZ-H (manufactured by Tosoh Corporation, 4.6 mm ID ⁇ 15 cm) as a column. This is carried out using THF (tetrahydrofuran) as an eluent.
  • THF tetrahydrofuran
  • the sample concentration is 0.45 mass%
  • the flow rate is 0.35 ml / min
  • the sample injection amount is 10 ⁇ l
  • the measurement temperature is 40 ° C.
  • the suggestive refractometer (RI) detector is used.
  • the calibration curve is “Standard sample TSK standard, polystyrene” manufactured by Tosoh Corporation: “F-40”, “F-20”, “F-4”, “F-1”, “A-5000”, “ It is prepared from 8 samples of “A-2500”, “A-1000” and “n-propylbenzene”.
  • the glass transition temperature (Tg) of the (meth) acrylic resin is preferably 50 ° C. or higher. When Tg is 50 ° C. or higher, the heat resistance is excellent. Tg is preferably 80 ° C. or higher from the same viewpoint. Further, from the viewpoint of adhesion to the resin substrate and stretchability at the time of molding, Tg is preferably less than 250 ° C, and more preferably 200 ° C or less.
  • Tg is a peak that appears in the temperature range of 20 ° C. to 250 ° C. by preparing a sample containing (meth) acrylic resin by differential scanning calorimetry (DSC), cooling the sample to 20 ° C. with liquid nitrogen, It is requested from.
  • DSC differential scanning calorimetry
  • the (meth) acrylic resin having a (meth) acryloyl group at the terminal may be used alone or in combination of two or more.
  • content in the curable composition for optical members of the (meth) acrylic resin which has a (meth) acryloyl group at the terminal it is 5 mass with respect to 100 mass parts of total content of the curable composition for optical members.
  • the content of the (meth) acrylic resin is within the above range, the heat resistance and the stretchability at the time of molding are excellent.
  • the content of the (meth) acrylic resin contributes to an increase or decrease in the viscosity of the curable composition for optical members, and when the content of the (meth) acrylic resin is within the above range, an optical member (for example, a lenticular lens). It is easy to ensure the height seen from the surface of the resin substrate.
  • the content of the (meth) acrylic resin is 5% by mass or more, the stretchability at the time of molding becomes good, and the occurrence of cracks (cracks) after molding is further suppressed.
  • the content of the (meth) acrylic resin is 40% by mass or less, the heat resistance is excellent and the shape retention is excellent.
  • the curable composition for optical members is at least a polyfunctional (meth) acrylic monomer having 2 to 4 (meth) acryloyl groups (a bifunctional to tetrafunctional (meth) acrylic monomer).
  • 1 type is contained and you may contain a monofunctional (meth) acryl monomer in addition to a polyfunctional (meth) acryl monomer. Since it contains a monomer (monomer) having a plurality of (meth) acryloyl groups, the (meth) acryloyl group undergoes a polymerization reaction to form a crosslinked structure, which contributes to an improvement in heat resistance due to the formation of the crosslinked structure.
  • the curable composition for optical members contains a polyfunctional (meth) acrylic monomer having 2 to 4 (meth) acryloyl groups contained in one molecule as the (meth) acrylic monomer.
  • a crosslinked structure cannot be formed. Therefore, a crosslinked structure can be obtained by setting the number of (meth) acryloyl groups in the molecule to two or more. , Heat resistance is improved.
  • the number of (meth) acryloyl groups in the molecule is 4 or less, the uniformity of the crosslinking density is high and the crosslinking is not excessively locally. It also has excellent adhesion.
  • a bifunctional or trifunctional (meth) acrylic monomer is preferable from the same viewpoint as described above.
  • EO ethylene oxide
  • A-DCP tricyclodecane methanol diacrylate
  • A-HD-N 1,9-nonanediol di (Meth) acrylate
  • trifunctional (meth) acrylic monomers having three acryloyl groups in the molecule include isocyanuric acid EO-modified triacrylate, ECH-modified glycerol tri (meth) acrylate, EO-modified glycerol tri (meth) acrylate, PO Modified glycerol tri (meth) acrylate, pentaerythritol tri (meth) acrylate, EO modified phosphate tri (meth) acrylate, trimethylolpropane tri (meth) acrylate, caprolactone modified trimethylolpropane tri (meth) acrylate, EO modified trimethylol Examples include propane tri (meth) acrylate, PO-modified trimethylolpropane tri (meth) acrylate, and the like.
  • Examples of commercially available products include M-315 (isocyanuric acid EO-modified triacrylate) manufactured by Toagosei Co., Ltd., A-TMPT (trimethylolpropane tri (meth) acrylate) manufactured by Shin-Nakamura Chemical Co., Ltd. Can be used.
  • tetrafunctional (meth) acrylic monomers having four acryloyl groups in the molecule include pentaerythritol tetra (meth) acrylate, ditrimethylolpropane tetra (meth) acrylate, and ethoxylated pentaerythritol tetra (meth) acrylate. And diglycerin EO-modified tetra (meth) acrylate.
  • Examples of commercially available products are A-TMMT pentaerythritol tetraacrylate manufactured by Shin-Nakamura Chemical Co., Ltd., AD-TMP (ditrimethylolpropane tetra (meth) acrylate) manufactured by Shin-Nakamura Chemical Co., Ltd., etc. Can do.
  • the bifunctional or tetrafunctional (meth) acrylic monomer may be used alone or in combination of two or more.
  • the content of the bifunctional to tetrafunctional (meth) acrylic monomer in the curable composition for optical members is 1 mass relative to 100 parts by mass of the total content of the curable composition for optical members. Part or more and 75 parts by mass or less are preferable, 10 parts by mass or more and 70 parts by mass or less are more preferable, and 20 parts by mass or more and 60 parts by mass or less are more preferable.
  • the content of the bifunctional to tetrafunctional (meth) acrylic monomer is 1 part by mass or more, the heat resistance is excellent and the shape retention is excellent.
  • the content of the bifunctional to tetrafunctional (meth) acrylic monomer is 75 parts by mass or less, the stretchability at the time of molding is improved, and the occurrence of cracks after the molding is more likely. It can be suppressed.
  • the curable composition for optical members includes a monofunctional (meth) acrylic monomer as a (meth) acrylic monomer, in addition to the bifunctional to tetrafunctional (meth) acrylic monomer. You may contain. When a monofunctional (meth) acrylic monomer is used in combination with a bifunctional to tetrafunctional (meth) acrylic monomer, the bifunctional to tetrafunctional (meth) acrylic monomer is used. It is possible to further improve characteristics, particularly stretchability and adhesion.
  • monofunctional (meth) acrylic monomers include adamantyl (meth) acrylate compounds such as 1-adamantyl (meth) acrylate, norbornyl (meth) acrylate compounds such as isobornyl (meth) acrylate, and dicyclopentanyl.
  • Tricyclodecane (meth) acrylate compounds such as methacrylate, 2-ethyl-2-butylpropanediol (meth) acrylate, 2-ethylhexyl (meth) acrylate, 2-ethylhexyl carbitol (meth) acrylate, 2-hydroxybutyl (meth) ) Acrylate, 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 2-methoxyethyl (meth) acrylate, 3-methoxybutyl (meth) acrylate, 4-hydroxy Chill (meth) acrylate, benzyl (meth) acrylate, 1- or 2-naphthyl (meth) acrylate, butanediol mono (meth) acrylate, butoxyethyl (meth) acrylate, butyl (meth) acrylate, cetyl (meth) acrylate, Ethy
  • Examples of commercially available products are FA-513AS (dicyclopentanyl acrylate) manufactured by Hitachi Chemical Co., Ltd., Light acrylate IB-XA (isoboronyl acrylate) manufactured by Kyoeisha Chemical Co., Ltd. Can do.
  • the content of the monofunctional (meth) acrylic monomer in the curable composition for an optical member may be in a range that does not impair the effects in the embodiment of the present invention. Although it depends on the content of the acrylic monomer, for example, it can be in the range of 1 part by mass to 50 parts by mass with respect to 100 parts by mass of the total content of the curable composition for optical members.
  • the curable composition for optical members contains at least one vinyl compound selected from vinyl pyrrolidone and vinyl caprolactam.
  • a vinyl compound contributes to the improvement of adhesiveness with the above-mentioned resin base material, and improves the stretchability at the time of shaping
  • Content with respect to the total mass of the curable composition for optical members of a vinyl compound shall be the range exceeding 10 mass%.
  • the content of the vinyl compound is within the above range, the adhesiveness to the resin base material is further improved, and the stretchability when the cured product (optical member) is obtained is improved.
  • content of a vinyl compound 15 to 60 mass% is preferable.
  • the lower limit of the content of the vinyl compound is more preferably 20% by mass or more, further preferably 25% by mass or more, and further preferably 30% by mass or more.
  • about the upper limit of content of a vinyl compound 40 mass% or less is more preferable.
  • the content of the vinyl compound is 60% by mass or less, the heat resistance is further improved, the shape retaining property of the optical member that is a cured product can be maintained well, and the lens shape is maintained in a desired shape.
  • Cheap the content of the vinyl compound is 60% by mass or less, the heat resistance is further improved, the shape retaining property of the optical member that is a cured product can be maintained well,
  • examples of vinyl pyrrolidone include N-vinyl-2-pyrrolidone.
  • examples of vinyl caprolactam include N-vinyl- ⁇ -caprolactam.
  • vinyl pyrrolidone is preferable because it is more excellent in stretchability at a high temperature during molding.
  • the curable composition for optical members contains at least one kind of radical photopolymerization initiator.
  • a photoradical polymerization initiator is a compound that generates a radical as an active species that initiates a polymerization reaction of a (meth) acryloyl group when exposed to light.
  • the radical photopolymerization initiator is not particularly limited in structure.
  • 2,4,6-trimethylbenzoyl-diphenyl-phosphine oxide bis (2,4,6-trimethylbenzoyl) -phenylphosphine oxide, 2,2-dimethoxy-1,2-diphenylethane-1-one, 1-hydroxy-cyclohexyl-phenyl-ketone, 1-hydroxy-cyclohexyl-phenyl-ketone, 1- [4- (2-hydroxyethoxy) -phenyl ] -2-Hydroxy-2-methyl-1-propan-1-one, 2-hydroxy-1- ⁇ 4- [4- (2-hydroxy-2-methyl-propionyl) -benzyl] phenyl ⁇ -2-methyl -Propan-1-one, 2-methyl-1- (4-methylthiophenyl) -2-morpholinopropa 1-one and the like.
  • the radical photopolymerization initiator may be used alone or in combination of two or more.
  • the content of the radical photopolymerization initiator with respect to the total mass of the curable composition for optical members is preferably in the range of 0.1 parts by mass or more and 5 parts by mass or less.
  • the content of the radical photopolymerization initiator is 0.1 parts by mass or more, the polymerization reaction proceeds favorably, and a cured product having better heat resistance is obtained.
  • the effect corresponding to content cannot be anticipated even if it contains a radical photopolymerization initiator in the range which content contains more than 5 mass parts, it is preferable that it is 5 mass parts or less.
  • the content of the photo radical polymerization initiator is more preferably 0.5 parts by mass or more and 3 parts by mass or less, and further preferably 1 part by mass or more and 3 parts by mass or less.
  • the total content of the curable composition for optical members of 100 mass from the viewpoint of the effects (heat resistance, stretchability and adhesion) in the embodiments of the present invention.
  • the content of the (meth) acrylic resin is 5 parts by mass or more and 40 parts by mass or less
  • the content of the polyfunctional (meth) acrylic monomer is 1 part by mass or more and 75 parts by mass or less
  • vinyl It is preferable to prepare a composition having a compound content of 15 parts by mass or more and 50 parts by mass or less and a radical photopolymerization initiator content of 0.1 parts by mass or more and 5 parts by mass or less.
  • the curable composition for optical members of one embodiment of the present invention from the viewpoint of the effect (heat resistance, stretchability and adhesion) in the embodiment of the present invention, in particular, vinylpyrrolidone is contained as a vinyl compound, And it is more preferable to prepare to the composition which content of the (meth) acrylic resin which has a (meth) acryloyl group at the terminal was 20 mass parts or more and 40 mass parts.
  • the cured product may contain other components such as an organic solvent and inorganic particles as necessary.
  • the organic solvent include toluene and methyl ethyl ketone.
  • the (meth) acrylic monomer since the (meth) acrylic monomer is included, the (meth) acrylic monomer also serves as a solvent and does not need to contain an organic solvent separately.
  • the inorganic particles include so-called filler particles such as silicon dioxide (silica).
  • examples of inorganic particles include commercially available organosilica sol MEK-ST series (eg, MEK-ST-40, MEK-ST-L, etc.) manufactured by Nissan Chemical Industries.
  • the cured product according to the present disclosure is at least one selected from a (meth) acrylic resin having a (meth) acryloyl group at a terminal, a (meth) acrylic monomer having 2 to 4 functionalities, vinylpyrrolidone, and vinylcaprolactam.
  • a curable composition containing a vinyl compound and a radical photopolymerization initiator, wherein the content of the vinyl compound exceeds 10% by mass relative to the total mass of the curable composition for optical members. Is a cured product (cured product of the curable composition according to the present disclosure).
  • the cured product according to the present disclosure can be suitably used as an optical member, and a cylindrical lens, a prism, a hemispherical microlens, a Fresnel lens, or the like can be more suitably used as a convex lens, and a plurality of convex lenses It can be particularly suitably used as a lenticular lens in which (cylindrical lenses) are arranged in parallel.
  • the optical member which concerns on this indication has the hardened
  • cured material which concerns on this indication does not have a restriction
  • the curing of the curable composition according to the present disclosure may be photocuring (curing by irradiation with active energy rays) or heat curing, but is preferably photocuring.
  • the molded body of the present disclosure is a three-dimensional molded body that is a thermoformed product or a vacuum molded product produced by molding the laminated sheet of the present disclosure described above (preferably by a technique such as thermoforming or vacuum forming). .
  • the molded body of the present disclosure may be a molded product having a three-dimensional shape, and includes an optical molded body.
  • the molded body of the present disclosure is not particularly limited to a molding method as long as it is a method using the above-described laminated sheet.
  • the molded body of the present disclosure is preferably a step of forming a curable composition for an optical member and curing it by irradiation with an active energy ray to produce a laminated sheet having an optical member on a resin substrate (hereinafter referred to as “a laminated sheet”).
  • laminated sheet manufacturing step Also referred to as “laminated sheet manufacturing step”
  • a step of obtaining an optical molded body by three-dimensionally molding (preferably vacuum forming) the prepared laminated sheet hereinafter also referred to as “three-dimensional molding step”
  • three-dimensional molding step The manufacturing method of the optical molded object of one Embodiment of this invention.
  • an optical molded body is manufactured as the molded body.
  • the laminated sheet according to one embodiment of the present invention described above is used for molding that is exposed to a relatively high temperature, it is difficult to cause shape deformation by melting with heat during molding, and is extended during molding. Occurrence of cracks or the like that are likely to occur during the process is also suppressed.
  • the curable composition for an optical member is molded and cured by irradiation with active energy rays to produce a laminated sheet having an optical member on a resin substrate.
  • the details of the curable composition for optical members are as described above, and the preferred embodiments are also the same.
  • the curable composition for optical members contains a radical photopolymerization initiator, radicals are generated when irradiated with active energy rays, and a (meth) acrylic resin and a bifunctional to tetrafunctional (meth) acrylic. It hardens
  • the curable composition for an optical member is three-dimensionally formed into the shape of the target optical member before curing.
  • Molding is not particularly limited as long as the desired shape can be obtained, but molding using a mold such as a mold or a wooden mold is preferable from the viewpoint of molding efficiency and molding accuracy.
  • a mold processed into a desired lens shape is prepared, and the curable composition for an optical member is poured into the mold and dried as necessary, and then the curable composition for an optical member.
  • the object may be cured. Thereby, the molded object shape
  • Active energy rays include ⁇ rays, ⁇ rays, electron beams, ultraviolet rays, visible rays, and the like.
  • light sources for generating active energy rays mercury lamps, metal halide lamps, UV fluorescent lamps, gas lasers, solid lasers, and the like are widely known.
  • a semiconductor ultraviolet light emitting device may be applied as a light source, and an LED (Light Emitting Diode) and an LD (Laser Diode) are also suitable in terms of small size, long life, high efficiency, and low cost.
  • a metal halide lamp an ultra high pressure mercury lamp, a high pressure mercury lamp, a medium pressure mercury lamp, a low pressure mercury lamp, an LED, or a blue-violet laser is preferable.
  • an ultra-high pressure mercury lamp capable of irradiating light with a wavelength of 365 nm, 405 nm or 436 nm a high-pressure mercury lamp capable of irradiating light with a wavelength of 365 nm, 405 nm or 436 nm, or light irradiation with a wavelength of 355 nm, 365 nm, 385 nm, 395 nm or 405 nm
  • an LED capable of irradiating light with a wavelength of 355 nm, 365 nm, 385 nm, 395 nm, or 405 nm is most preferable.
  • the dose of the active energy ray may be appropriately selected depending on the composition and amount of the optical member for the curable composition, for example, be a 0.3 J / cm 2 or more 5 J / cm 2 or less.
  • the irradiation with the active energy ray can be performed by selecting a known device including a light source capable of irradiating the active energy ray.
  • a known device including a light source capable of irradiating the active energy ray For example, an ultraviolet (UV) irradiation device such as EXECULE 3000 manufactured by HOYA CANDEO OPTRONICS may be used.
  • UV ultraviolet
  • the laminated sheet produced in the laminated sheet producing step is three-dimensionally formed.
  • the laminated sheet it is sufficient that the laminated sheet can be formed, and the laminated sheet may be subjected to a forming process using a mold such as a mold.
  • Suitable examples of the three-dimensional molding include thermoforming and vacuum forming.
  • the method for vacuum forming is not particularly limited, but the effect of forming by the method for producing an optical molded body according to an embodiment of the present invention when three-dimensional molding is performed in a heated state under vacuum. Appears prominently.
  • the vacuum refers to a state in which the room is evacuated to a degree of vacuum of 100 Pa or less.
  • the temperature during three-dimensional molding is preferably a high temperature range of 60 ° C. or higher, more preferably a temperature range of 80 ° C. or higher, and even more preferably a temperature range of 100 ° C. or higher.
  • the upper limit of the temperature for three-dimensional molding is preferably 200 ° C.
  • the temperature at the time of three-dimensional molding refers to the temperature of the laminated sheet subjected to molding, and is measured by attaching a thermocouple to the surface of the laminated sheet.
  • the above-described vacuum forming can be performed by using a vacuum forming technique widely known in the forming field.
  • the vacuum forming may be performed using Formech 508FS manufactured by Nippon Shikki Kogyo Co., Ltd.
  • Example 1 Preparation of curable composition-
  • the components in the composition shown below were mixed to prepare a cured composition (cured composition for optical member) for producing a cylindrical lens as an optical member.
  • a cured composition Polymethylmethacrylate (PMMA) 20 parts (AA-6, manufactured by Toagosei Co., Ltd .; methacrylic resin having a methacryloyl group at the end)
  • FIG. 1 the shape of a lenticular lens in which a plurality of convex cylindrical lenses having a semi-cylindrical surface are arranged in parallel [height 60 ⁇ m, length 80 mm in the longitudinal direction y, one lens width (lens pitch ) 100 LPI (Line Per Inch)] was poured into a mold (width 100 mm ⁇ depth 100 mm), and 2 g of the curable composition was poured into the mold, and an acrylic resin film (Acryprene HBS010P, thickness: 125 ⁇ m, Mitsubishi Rayon Co., Ltd. resin base material) was placed and fixed.
  • an acrylic resin film Acryprene HBS010P, thickness: 125 ⁇ m, Mitsubishi Rayon Co., Ltd. resin base material
  • UV irradiation was performed using an ultraviolet (UV) irradiation apparatus (EXECURE 3000, manufactured by HOYA CANDEO OPTRONICS) until curing was performed under the condition of a UV irradiation amount of 1.0 J / cm 2 .
  • UV irradiation the curable composition irradiated with UV was demolded to obtain a lenticular lens sheet. Since lenticular lenses use N-vinyl-2-pyrrolidone, the lenticular lenses contain a pyrrolidone skeleton. Further, since the lenticular lens is a cured product that is cured by polymerizing a bifunctional acrylate, the lenticular lens has a cross-linked structure.
  • Example 1 a curable composition was prepared in the same manner as in Example 1 except that the composition of the curable composition for producing a cylindrical lens or the resin base material was changed as shown in Table 1 below. Further, a lenticular lens sheet and a single film were produced. Since lenticular lenses use N-vinyl-2-pyrrolidone or N-vinyl- ⁇ -caprolactam, the lenticular lenses contain a pyrrolidone skeleton or a caprolactam skeleton. Since the lenticular lens is a cured product that is cured by polymerizing a bifunctional acrylate or a hexafunctional acrylate, the lenticular lens has a crosslinked structure.
  • Example 9 Using the same cured composition as in Example 1, a film laminate was produced by the following method. -Production of film laminate- The above curable composition is sandwiched between a hydrophobized glass plate and an acrylic resin film having a thickness of 50 m, which is a resin base material, irradiated with UV under the same conditions as described above, and peeled off from the glass plate after irradiation. did. Thus, the film laminated body (laminated sheet) which consists of a 50-micrometer-thick resin cured film and an acrylic resin film was produced.
  • PET Polyethylene terephthalate (Lumirror, manufactured by Toray Industries, Inc .; base material) AS-6: manufactured by Toagosei Co., Ltd., polystyrene having a methacryloyl group at the terminal ((meth) acrylic resin having a (meth) acryloyl group at the terminal)
  • AN-6S manufactured by Toagosei Co., Ltd., solid content: 51% by mass, polystyrene acrylonitrile having a methacryloyl group at the terminal ((meth) acrylic resin having a (meth) acryloyl group at the terminal) -Kayrad DPHA: manufactured by Nippon Kayaku Co., Ltd., a hexafunctional acrylic monomer having an acryloyl group (hexafunctional acrylate) ⁇ N-vinyl- ⁇ -caprolactam (manufactured by Tokyo Chemical Industry Co., Ltd.
  • Heat resistance (shape retention)- The shape of the lenticular lens sheet or film laminate after being left in an environment at a temperature of 80 ° C. for 1000 hours was observed and evaluated according to the following evaluation criteria.
  • C The rate of change of the lens height or the height (thickness) of the cured product of the film laminate is 10% or more.
  • High temperature stretchability A sample piece is made by punching a cured resin film (single film) into a size of 50 mm length x 10 mm width, and a tensile test using TENSILON RTC-1225A (manufactured by A & D) under the following conditions. And the elongation at break was measured. The measurement was performed three times, and the average value of the three measurements was taken as the breaking elongation. Using the measured value of elongation at break as an index for evaluating the extensibility at a high temperature during molding, the extensibility was evaluated based on the following evaluation criteria. The standard of elongation is 30 mm of the distance between chucks.
  • the range of AA to B is a practically acceptable range.
  • ⁇ Condition> ⁇ Distance between chucks: 30mm -Sample piece temperature: 100 ° C ⁇
  • C The elongation at break is less than 10%.
  • a cellophane adhesive tape (CT-24, manufactured by Nichiban Co., Ltd.) is applied to the surface of each film partitioned in a grid, and then the cellophane adhesive tape is gripped and pulled in a direction perpendicular to the surface direction. The presence or absence of the peeled part was confirmed visually.
  • Evaluation was performed according to the following evaluation criteria. ⁇ Evaluation criteria> A: There is no peeling part. B: The ratio of the peeled portion to the entire surface is more than 0% and less than 15%. C: The ratio of the peeled portion to the entire surface is 15% or more.
  • a polyfunctional (meth) acrylic monomer is used, a crosslinked structure is formed to impart heat resistance, and a specific skeleton structure, that is, a pyrrolidone skeleton or a caprolactam skeleton is in a specific amount range.
  • a specific skeleton structure that is, a pyrrolidone skeleton or a caprolactam skeleton is in a specific amount range.
  • the stretchability at high temperature was excellent, and the adhesion to the resin substrate was also good.
  • better results were obtained when vinylpyrrolidone (pyrrolidone skeleton) was included and the content of the (meth) acrylic resin was 20 to 40 parts by mass.
  • Comparative Example 1 in which the content of the pyrrolidone skeleton derived from the vinyl compound N-vinyl-2-pyrrolidone was 10% by mass was inferior in adhesion to the resin substrate. Furthermore, in Comparative Example 4 which does not contain a vinyl compound (pyrrolidone skeleton and caprolactam skeleton), the shape having a desired lens height is remarkably inferior in adhesion and stretchability at high temperature, and the content of (meth) acrylic resin is small. Was not obtained.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Medicinal Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Optics & Photonics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Physics & Mathematics (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Laminated Bodies (AREA)
  • Polymerisation Methods In General (AREA)

Abstract

One embodiment of the present invention provides: a multilayer sheet, a lenticular sheet and applications thereof, each of which comprises a resin base and a cured product arranged on at least one surface of the resin base, said cured product containing a cured resin having a crosslinked structure and at least one skeleton selected from among a pyrrolidone skeleton and a caprolactam skeleton in a total content of 8% by mass or more relative to the total mass of the cured product.

Description

積層シート、レンチキュラーシート、光学部材用硬化性組成物、光学部材、光学成形体の製造方法、成形体、及び硬化物の製造方法Laminated sheet, lenticular sheet, curable composition for optical member, optical member, method for producing optical molded body, molded body, and method for producing cured product
 本開示は、積層シート、レンチキュラーシート、光学部材用硬化性組成物、光学成形体の製造方法、光学部材、成形体、及び硬化物の製造方法に関する。 The present disclosure relates to a laminated sheet, a lenticular sheet, a curable composition for an optical member, a method for manufacturing an optical molded body, an optical member, a molded body, and a method for manufacturing a cured product.
 従来、硬化性組成物は、重合性樹脂と開始剤とを含有し、熱や光などにより重合反応を起こすことにより硬化し、様々な用途で幅広く用いられている。また、硬化性組成物を硬化して得られる硬化物を積層した積層シートは、光学部材、ガスバリアフィルム、保護フィルム、光学フィルタ、反射防止フィルム等、広く利用されている。
 更に、硬化性組成物を硬化して得られる硬化物は、反射防止膜、透明画素、透明絶縁膜、平坦化膜などの種々の部材に用いられる。
 近年、光学部材の種類は多岐にわたり、光学部材における光学構造は、例えば、表面形状が平坦なものに限らず、液晶用バックライトの輝度向上レンズや拡散レンズ、ビデオプロジェクションテレビのスクリーンに用いられるフレネルレンズ、マイクロレンズなどが挙げられる。こうしたデバイスでは、主に樹脂材料により微細構造をなすことで、所望の幾何光学的な性能を得ている。
Conventionally, a curable composition contains a polymerizable resin and an initiator, is cured by causing a polymerization reaction by heat or light, and is widely used in various applications. Moreover, the laminated sheet which laminated | stacked the hardened | cured material obtained by hardening | curing a curable composition is utilized widely, such as an optical member, a gas barrier film, a protective film, an optical filter, an antireflection film.
Furthermore, the cured product obtained by curing the curable composition is used for various members such as an antireflection film, a transparent pixel, a transparent insulating film, and a planarization film.
In recent years, there are a wide variety of optical members, and the optical structure of the optical member is not limited to a flat surface shape, for example, a brightness enhancement lens for a backlight for liquid crystal, a diffusion lens, and a Fresnel used for a screen of a video projection television. A lens, a microlens, etc. are mentioned. In such a device, a desired geometrical optical performance is obtained mainly by forming a fine structure with a resin material.
 光学構造としては、見る角度によって異なる画像を表示する媒体として、半円筒形の表面を有する凸状レンズが並列したレンチキュラーレンズを用いたレンチキュラーシートが知られている。
 レンチキュラーシートは、一般に、レンチキュラーレンズの裏面側(凸状レンズの半円筒形の表面と反対側の面)に、インターレースされた複数の画像を組合せた画像列群(レンチキュラー画像)が配置され、画像列群をレンチキュラーレンズを通して観察した場合に、観察する角度によって画像列群のうちの1種又は2種以上の画像を表示することができる。
As an optical structure, a lenticular sheet using a lenticular lens in which convex lenses having a semicylindrical surface are arranged in parallel is known as a medium for displaying different images depending on viewing angles.
In a lenticular sheet, generally, an image sequence group (lenticular image) in which a plurality of interlaced images are combined is arranged on the back side of the lenticular lens (the surface opposite to the semi-cylindrical surface of the convex lens). When the row group is observed through a lenticular lens, one or more images in the image row group can be displayed depending on the viewing angle.
 そのため、光学材料及び光学スクリーン等をはじめ、様々な商業用途での利用が期待されている。ところが、従来から提案されている用途は、シート又はフィルム等の2次元形態での利用がほとんどであり、立体形状に成形された3次元形態への適用は多くない。 Therefore, it is expected to be used in various commercial applications including optical materials and optical screens. However, the applications proposed heretofore are mostly used in a two-dimensional form such as a sheet or a film, and are not often applied to a three-dimensional form formed into a three-dimensional shape.
 3次元形態への適用が試みられた技術としては、例えば、光学スクリーン用樹脂材料を成型した光学スクリーン用シートに係る発明が提案されている(例えば、特開2005-206742号公報参照)。しかしながら、特開2005-206742号公報に記載の発明では、成型に供されるレンズ部分には熱可塑性樹脂が使用されているため、例えば真空成形等を施して立体化する場合において、成形時の熱で形状を安定的に保ちにくく、成形後にレンチキュラーシートの構造を維持できない場合がある。
 一方、光学用途の例として、形状精度等に優れた光導波路の作製において、(メタ)アクリロイル基を有するマクロマー、アクリレート、及び重合開始剤等を含有する硬化性組成物を用いる技術が開示されている(例えば、特開2008-116971号公報参照)。また、フィルム用途において硬化性組成物を適用する例として、多官能アクリレート、シリカ粒子、及び高分子量モノマー等を含有する組成によりハードコート性を付与する技術に関する開示がある(例えば、特開2001-287308号公報参照)。
As a technique attempted to be applied to a three-dimensional form, for example, an invention relating to an optical screen sheet obtained by molding a resin material for an optical screen has been proposed (see, for example, JP-A-2005-206742). However, in the invention described in Japanese Patent Application Laid-Open No. 2005-206742, a thermoplastic resin is used for the lens portion to be molded. For example, when three-dimensionalization is performed by vacuum molding or the like, It may be difficult to keep the shape stable with heat, and the structure of the lenticular sheet may not be maintained after molding.
On the other hand, as an example of optical applications, a technique using a curable composition containing a macromer having a (meth) acryloyl group, an acrylate, a polymerization initiator and the like in the production of an optical waveguide having excellent shape accuracy and the like is disclosed. (For example, refer to JP 2008-116971 A). Further, as an example of applying a curable composition in film applications, there is a disclosure relating to a technique for imparting hard coat properties by a composition containing polyfunctional acrylates, silica particles, high molecular weight monomers, etc. No. 287308).
 しかしながら、従来より提案されている硬化性を有する樹脂組成物を用いて、硬化物、又は上記硬化物を有する積層シートを作製し、さらに真空成形等により立体構造に成形加工しようとすると、硬化物の基材への密着が不足し、立体成型時に硬化物が基材から剥離するばかりか、真空成形等による成形時に硬化物自体に亀裂(クラック)が入り、硬化物自体が破損する場合がある。 However, if a cured product or a laminated sheet having the cured product is produced using a conventionally proposed resin composition having a curing property, and further molded into a three-dimensional structure by vacuum forming or the like, the cured product is obtained. Insufficient adhesion to the base material, the cured product may not only peel from the base material during three-dimensional molding, but the cured product itself may crack during molding by vacuum molding or the like, and the cured product itself may be damaged. .
 本開示は、上記の事情に鑑みなされたものである。
 本発明の一実施形態が解決しようとする課題は、基材との密着性が良好であり、耐熱性を有し、かつ、(好ましくは高温下で)成形(賦形)した場合の延伸性をそなえた積層シート及びレンチキュラーシートを提供することにある。
 本発明の他の実施形態が解決しようとする課題は、基材との間で優れた密着性が得られ、硬化後において耐熱性を有し、かつ、(好ましくは高温下で)成形(賦形)した場合の延伸性に優れた光学部材用硬化性組成物を提供することにある。
 本発明の他の実施形態が解決しようとする課題は、基材との密着性が良好であり、耐熱性を有し、かつ、延伸性をそなえた光学部材、並びに、光学成形体の製造方法及び成形体を提供することにある。
 本発明の他の実施形態が解決しようとする課題は、基材との密着性が良好であり、耐熱性を有し、かつ、延伸性をそなえた硬化物の製造方法を提供することにある。
The present disclosure has been made in view of the above circumstances.
The problem to be solved by one embodiment of the present invention is that the adhesion with the substrate is good, the film has heat resistance, and is stretchable when molded (preferably at high temperature). It is to provide a laminated sheet and a lenticular sheet.
The problem to be solved by other embodiments of the present invention is that excellent adhesion to a substrate is obtained, heat resistance is obtained after curing, and molding (preferably at high temperature) is performed. An object of the present invention is to provide a curable composition for an optical member that is excellent in stretchability when it is shaped.
Problems to be solved by other embodiments of the present invention include an optical member having good adhesion to a substrate, heat resistance, and stretchability, and a method for producing an optical molded body And providing a molded body.
The problem to be solved by another embodiment of the present invention is to provide a method for producing a cured product having good adhesion to a substrate, heat resistance, and stretchability. .
 課題を達成するための具体的手段には、以下の態様が含まれる。
 <1> 樹脂基材と、樹脂基材の少なくとも一方面に配置された硬化物であって、架橋構造を有する硬化樹脂、並びに、硬化物の全質量に対する総含有量が8質量%以上の、ピロリドン骨格及びカプロラクタム骨格から選ばれる少なくとも一方の骨格を有する硬化物と、を有する積層シートである。
 <2> ピロリドン骨格及びカプロラクタム骨格の総含有量が、硬化物の全質量に対して、15質量%以上60質量%以下である<1>に記載の積層シートである。
 <3> 更に、樹脂基材の硬化物を有する側と反対側に画像を有する<1>又は<2>に記載の積層シートである。
 <4> 硬化物が、光学部材である<1>~<3>のいずれか1つに記載の積層シートである。
 <5> 光学部材がシリンドリカルレンズであり、レンチキュラーシートである<4>に記載の積層シートである。
 <6> 末端に(メタ)アクリロイル基を有する(メタ)アクリル樹脂と、2つ以上4つ以下の(メタ)アクリロイル基を含む多官能(メタ)アクリル単量体と、組成物全質量に対する含有量が10質量%を超える、ビニルピロリドン及びビニルカプロラクタムから選ばれる少なくとも一方のビニル化合物と、光ラジカル重合開始剤と、を含有し、
 積層シート用光学部材の作製に用いられる、光学部材用硬化性組成物である。
 <7> 更に、単官能の(メタ)アクリル単量体を含有する<6>に記載の光学部材用硬化性組成物である。
 <8> 総含有量100質量部に対して、(メタ)アクリル樹脂の含有量が5質量部以上40質量部以下であり、多官能(メタ)アクリル単量体の含有量が1質量部以上75質量部以下であり、ビニル化合物の含有量が15質量部以上50質量部以下であり、かつ、光ラジカル重合開始剤の含有量が0.1質量部以上5質量部以下である、<6>又は<7>に記載の光学部材用硬化性組成物である。
 <9> ビニル化合物がビニルピロリドンであり、かつ、(メタ)アクリル樹脂の含有量が20質量部以上40質量部である<6>~<8>のいずれか1つに記載の光学部材用硬化性組成物である。
Specific means for achieving the object includes the following aspects.
<1> A resin base material and a cured product disposed on at least one surface of the resin base material, the cured resin having a crosslinked structure, and a total content of 8% by mass or more based on the total mass of the cured product, And a cured product having at least one skeleton selected from a pyrrolidone skeleton and a caprolactam skeleton.
<2> The laminated sheet according to <1>, wherein the total content of the pyrrolidone skeleton and the caprolactam skeleton is 15% by mass to 60% by mass with respect to the total mass of the cured product.
<3> Furthermore, it is a laminated sheet as described in <1> or <2> which has an image on the opposite side to the side which has a hardened | cured material of a resin base material.
<4> The laminated sheet according to any one of <1> to <3>, wherein the cured product is an optical member.
<5> The laminated sheet according to <4>, wherein the optical member is a cylindrical lens and is a lenticular sheet.
<6> A (meth) acrylic resin having a (meth) acryloyl group at the terminal, a polyfunctional (meth) acrylic monomer containing 2 or more and 4 or less (meth) acryloyl groups, and content relative to the total mass of the composition Containing at least one vinyl compound selected from vinyl pyrrolidone and vinyl caprolactam, the amount of which exceeds 10% by mass, and a radical photopolymerization initiator,
It is a curable composition for optical members used for preparation of the optical member for laminated sheets.
<7> The curable composition for optical members according to <6>, further comprising a monofunctional (meth) acrylic monomer.
<8> The content of the (meth) acrylic resin is 5 parts by mass or more and 40 parts by mass or less with respect to the total content of 100 parts by mass, and the content of the polyfunctional (meth) acrylic monomer is 1 part by mass or more. 75 parts by mass or less, a vinyl compound content of 15 parts by mass or more and 50 parts by mass or less, and a radical photopolymerization initiator content of 0.1 parts by mass or more and 5 parts by mass or less, <6 > Or <7>. The curable composition for optical members according to <7>.
<9> The curing for optical member according to any one of <6> to <8>, wherein the vinyl compound is vinylpyrrolidone and the content of the (meth) acrylic resin is 20 parts by mass or more and 40 parts by mass. Composition.
 <10> <6>~<9>のいずれか1つに記載の光学部材用硬化性組成物を成形し、かつ、活性エネルギー線を照射して硬化させ、樹脂基材上に光学部材を有する積層シートを作製する工程と、作製された積層シートを立体成形(好ましくは熱成形又は真空成形)することで光学成形体を得る工程と、を有する光学成形体の製造方法である。
 <11> <1>~<5>のいずれか1つに記載の積層シートの熱成形物又は真空成形物である成形体である。
 <12> 光学成形体である<11>に記載の成形体である。
 <13> <6>~<9>のいずれか1つに記載の光学部材用硬化性組成物を準備する工程、及び光学部材用硬化性組成物を硬化する工程を含む、硬化物の製造方法である。
 <14> <6>~<9>のいずれか1つに記載の光学部材用硬化性組成物の硬化物を有する積層シートである。
 <15> <6>~<9>のいずれか1つに記載の光学部材用硬化性組成物の硬化物を有する光学部材である。
 <16> <6>~<9>のいずれか1つに記載の光学部材用硬化性組成物の硬化物を有するレンチキュラーシートである。
<10> The curable composition for optical members according to any one of <6> to <9> is molded and cured by irradiation with active energy rays, and the optical member is provided on the resin substrate. It is a manufacturing method of the optical molded body which has the process of producing a laminated sheet, and the process of obtaining an optical molded body by solid-molding (preferably thermoforming or vacuum forming) the produced laminated sheet.
<11> A molded body which is a thermoformed product or a vacuum formed product of the laminated sheet according to any one of <1> to <5>.
<12> The molded product according to <11>, which is an optical molded product.
<13> A method for producing a cured product, comprising a step of preparing the curable composition for optical members according to any one of <6> to <9>, and a step of curing the curable composition for optical members. It is.
<14> A laminated sheet having a cured product of the curable composition for optical members according to any one of <6> to <9>.
<15> An optical member having a cured product of the curable composition for optical members according to any one of <6> to <9>.
<16> A lenticular sheet having a cured product of the curable composition for optical members according to any one of <6> to <9>.
 本発明の一実施形態によれば、基材との密着性が良好であり、耐熱性を有し、かつ、(好ましくは高温下で)成形(賦形)した場合の延伸性をそなえた積層シート及びレンチキュラーシートが提供される。
 本発明の他の実施形態によれば、基材との間で優れた密着性が得られ、硬化後において耐熱性を有し、かつ、(好ましくは高温下で)成形(賦形)した場合の延伸性に優れた光学部材用硬化性組成物が提供される。
 本発明の他の実施形態によれば、基材との密着性が良好であり、耐熱性を有し、かつ、延伸性をそなえた光学部材、並びに、光学成形体の製造方法及び成形体が提供される。
 本発明の他の実施形態によれば、基材との密着性が良好であり、耐熱性を有し、かつ、延伸性をそなえた硬化物の製造方法が提供される。
According to one embodiment of the present invention, a laminate having good adhesion to a substrate, heat resistance, and stretchability when molded (shaped) (preferably at a high temperature). Sheets and lenticular sheets are provided.
According to another embodiment of the present invention, excellent adhesion to a substrate is obtained, heat resistance is obtained after curing, and (preferably under high temperature) is molded (shaped) A curable composition for an optical member having excellent stretchability is provided.
According to another embodiment of the present invention, an optical member having good adhesion to a substrate, heat resistance, and stretchability, and an optical molded body manufacturing method and molded body are provided. Provided.
According to another embodiment of the present invention, there is provided a method for producing a cured product that has good adhesion to a substrate, has heat resistance, and has stretchability.
図1は、レンチキュラーシートを備えた表示体の一例を示す概略図である。FIG. 1 is a schematic view showing an example of a display body provided with a lenticular sheet.
 以下、本発明の一実施形態に係る積層シート、レンチキュラーシート、光学部材用硬化性組成物、光学部材、成形体、光学成形体の製造方法、及び硬化物の製造方法について、詳細に説明する。 Hereinafter, a laminated sheet, a lenticular sheet, a curable composition for optical members, an optical member, a molded body, a method for manufacturing an optical molded body, and a method for manufacturing a cured product according to an embodiment of the present invention will be described in detail.
 本明細書において、「~」を用いて表される数値範囲は、「~」の前後に記載される数値を下限値及び上限値として含む範囲を意味する。本開示に段階的に記載されている数値範囲において、ある数値範囲で記載された上限値又は下限値は、他の段階的な記載の数値範囲の上限値又は下限値に置き換えてもよい。また、本開示に記載されている数値範囲において、ある数値範囲で記載された上限値又は下限値は、実施例に示されている値に置き換えてもよい。
 また、本明細書中の「工程」の用語は、独立した工程だけではなく、他の工程と明確に区別できない場合であっても、その工程の所期の目的が達成されれば本用語に含まれる。
In the present specification, a numerical range expressed using “to” means a range including numerical values described before and after “to” as a lower limit value and an upper limit value. In a numerical range described in stages in the present disclosure, an upper limit value or a lower limit value described in a numerical range may be replaced with an upper limit value or a lower limit value in another numerical range. Further, in the numerical ranges described in the present disclosure, the upper limit value or the lower limit value described in a certain numerical range may be replaced with the values shown in the examples.
In addition, the term “process” in this specification is not limited to an independent process, and even if it cannot be clearly distinguished from other processes, the term is used as long as the intended purpose of the process is achieved. included.
 本明細書において、「(メタ)アクリル」は、アクリル及びメタクリルの両方を包含する概念で用いられる語であり、「(メタ)アクリロイル」は、アクリロイル及びメタクリロイルの両方を包含する概念として用いられる語である。 In this specification, “(meth) acryl” is a term used in a concept including both acryl and methacryl, and “(meth) acryloyl” is a term used as a concept including both acryloyl and methacryloyl. It is.
<積層シート、レンチキュラーシート>
 本発明の一実施形態の積層シートは、樹脂基材と、樹脂基材の少なくとも一方面に配置された硬化物(好ましくは光学部材(レンチキュラーシートの場合はシリンドリカルレンズ))と、を有しており、好ましくは、樹脂基材の光学部材を有する側の反対側に画像(以下、加飾画像ともいう。)を有する。画像は、樹脂基材の光学部材を有する側の反対側の表面に設けられてもよいし、樹脂基材の光学部材を有する側の反対側に記録層を有し、記録層に例えばインクジェット法等の公知の記録方法により設けられてもよい。
 硬化物は、光学部材であることが好ましい。
<Laminated sheet, lenticular sheet>
The laminated sheet of one embodiment of the present invention has a resin base material and a cured product (preferably an optical member (cylindrical lens in the case of a lenticular sheet)) disposed on at least one surface of the resin base material. Preferably, an image (hereinafter also referred to as a decorative image) is provided on the side opposite to the side having the optical member of the resin base material. The image may be provided on the surface of the resin base opposite to the side having the optical member, or the recording layer may have a recording layer on the side opposite to the side of the resin base having the optical member. It may be provided by a known recording method such as
The cured product is preferably an optical member.
 本開示に係る積層シートは、ハードコート膜を有する積層シート、立体成型用積層シート、輝度向上膜を有する積層シート、レンチキュラーシート、プリズムシート、マイクロレンズシート、フレネルレンズシート、フライアイレンズ等として好適に用いることができる。 The laminated sheet according to the present disclosure is suitable as a laminated sheet having a hard coat film, a three-dimensionally laminated sheet, a laminated sheet having a brightness enhancement film, a lenticular sheet, a prism sheet, a microlens sheet, a Fresnel lens sheet, a fly eye lens, and the like. Can be used.
 本発明の一実施形態の積層シートは、樹脂基材の少なくとも一方面に光学部材であるシリンドリカルレンズが配置されたレンチキュラーシートとして好適に用いられる。
 レンチキュラーシートは、例えば図1に示すように、記録層を付設してレンチキュラー画像が付された構成のレンチキュラー加飾シートであってもよい。レンチキュラー加飾シートは、レンチキュラー表示に適した画像上に、半円筒形の表面を有する凸状のシリンドリカルレンズ(光学部材)が並列したレンチキュラーレンズを有することにより、見る角度によって異なる画像を表示する表示媒体(レンチキュラー表示体)である。図1は、レンチキュラー加飾シートの一例を示す概略図である。
The laminated sheet of one embodiment of the present invention is suitably used as a lenticular sheet in which a cylindrical lens as an optical member is disposed on at least one surface of a resin base material.
As shown in FIG. 1, for example, the lenticular sheet may be a lenticular decorative sheet having a configuration in which a recording layer is provided and a lenticular image is attached. The lenticular decorative sheet has a lenticular lens in which convex cylindrical lenses (optical members) having a semi-cylindrical surface are arranged on an image suitable for lenticular display, thereby displaying different images depending on the viewing angle. It is a medium (lenticular display body). FIG. 1 is a schematic diagram illustrating an example of a lenticular decorative sheet.
 レンチキュラー加飾シートは、光学加飾シートの一例である。
 図1に示すレンチキュラー加飾シート10は、半円筒形状の表面を有する複数の凸状レンズ(シリンドリカルレンズ)12Aが並列したレンチキュラーレンズ12と、レンチキュラーレンズ12の凸状レンズ12Aの半円筒形状の表面とは反対側(裏面側ともいう)に配置されたレンチキュラー画像14と、を有している。
 なお、x方向は、レンズの幅方向を示し、y方向は、レンズの長手方向を示している。
The lenticular decorative sheet is an example of an optical decorative sheet.
A lenticular decorative sheet 10 shown in FIG. 1 includes a lenticular lens 12 in which a plurality of convex lenses (cylindrical lenses) 12A having a semicylindrical surface are arranged in parallel, and a semicylindrical surface of a convex lens 12A of the lenticular lens 12. And a lenticular image 14 arranged on the opposite side (also referred to as the back side).
The x direction indicates the width direction of the lens, and the y direction indicates the longitudinal direction of the lens.
 従来、レンチキュラー材料等の積層シートは、シート又はフィルム等の形態で用いられることが多く、立体形状にして用いる試みは少ない。ところが、従来の積層シートは、例えば特開2005-206742号公報のように、レンズ部分に用いられる樹脂成分は熱可塑性樹脂であることが一般的であり、立体形状に成形する場合の熱で変形しやすく、形状を維持し得る耐熱性が不足しやすい。一方、特開2008-116971号公報及び特開2001-287308号公報のように、樹脂成分として熱硬化性樹脂を用いる技術も提案されているが、熱硬化性樹脂は一般に、架橋構造を有するために変形させる場合の延伸性が乏しい傾向にある。そのため、成形時において高温に曝された場合の熱変形こそ生じにくいが、成形時に延ばされた際に亀裂(クラック)等を招来しやすい懸念がある。
 そのため、本発明の一実施形態である光学部材においては、熱変形を防ぐために熱硬化性樹脂を用いて架橋構造を導入し、かつ、ピロリドン骨格及びカプロラクタム骨格の少なくとも一方を特定の量的範囲で含めた組成とする。これにより、架橋密度を制御しつつ、真空成形等の成形時に与えられる熱及び外力に耐える耐熱性と延伸性とを兼ね備えることができる。また、ビニル化合物は、樹脂基材に対する親和性の向上に寄与するため、光学部材の樹脂基材に対する密着性の改善効果も得られる。
Conventionally, laminated sheets such as lenticular materials are often used in the form of sheets or films, and there are few attempts to use them in a three-dimensional shape. However, in conventional laminated sheets, for example, as disclosed in Japanese Patent Application Laid-Open No. 2005-206742, a resin component used for a lens portion is generally a thermoplastic resin, and is deformed by heat when it is molded into a three-dimensional shape. And heat resistance that can maintain the shape tends to be insufficient. On the other hand, a technique using a thermosetting resin as a resin component has been proposed as disclosed in JP-A-2008-116971 and JP-A-2001-287308. However, thermosetting resins generally have a crosslinked structure. When it is deformed, the stretchability tends to be poor. For this reason, thermal deformation when exposed to a high temperature during molding is less likely to occur, but there is a concern that cracks or the like are likely to occur when extended during molding.
Therefore, in the optical member according to one embodiment of the present invention, a crosslinked structure is introduced using a thermosetting resin to prevent thermal deformation, and at least one of the pyrrolidone skeleton and the caprolactam skeleton is in a specific quantitative range. The composition is included. Thereby, it is possible to have both heat resistance and stretchability that can withstand heat and external force applied during forming such as vacuum forming while controlling the crosslinking density. Moreover, since a vinyl compound contributes to the improvement of the affinity with respect to a resin base material, the improvement effect of the adhesiveness with respect to the resin base material of an optical member is also acquired.
(樹脂基材)
 本発明の一実施形態における樹脂基材は、支持材としての基材であり、任意の樹脂を目的等に応じて選択することができる。樹脂基材は、シート状又はフィルム状の基材を好適に用いることができる。
(Resin base material)
The resin base material in one embodiment of the present invention is a base material as a support material, and any resin can be selected according to the purpose and the like. As the resin substrate, a sheet-like or film-like substrate can be suitably used.
 本発明の一実施形態では、樹脂基材の例としては、アクリル樹脂、ポリエステル樹脂等のシート又はフィルムが挙げられる。 In one embodiment of the present invention, examples of the resin base material include sheets or films of acrylic resin, polyester resin, and the like.
 樹脂基材の厚みは、特に制限はなく、50μm以上300μm以下の範囲が好ましく、高温で均一に成形(賦形)する観点から、50μm以上200μm以下の範囲がより好ましい。 The thickness of the resin substrate is not particularly limited and is preferably in the range of 50 μm to 300 μm, and more preferably in the range of 50 μm to 200 μm from the viewpoint of uniform molding (shaping) at high temperatures.
 樹脂基材は、上市されている市販品を用いてもよく、例えば、三菱レイヨン社製のアクリル樹脂フィルム(アクリプレンHBS010P、厚み:125μm)、東レ社製のポリエチレンテレフタレート樹脂フィルム(ルミラーS10、厚み:100μm)、帝人化成社製のポリカーボネート樹脂フィルム(ユーピロンH-3000、厚み125μm)等を用いることができる。 Commercially available products may be used as the resin substrate. For example, an acrylic resin film manufactured by Mitsubishi Rayon Co., Ltd. (Acryprene HBS010P, thickness: 125 μm), a polyethylene terephthalate resin film manufactured by Toray Industries, Inc. (Lumirror S10, thickness: 100 μm), polycarbonate resin film (Iupilon H-3000, thickness 125 μm) manufactured by Teijin Chemicals Ltd. and the like can be used.
(硬化物)
 積層シートにおける硬化物は、少なくとも、架橋構造を有する硬化樹脂と、ピロリドン骨格及びカプロラクタム骨格から選ばれる少なくとも一方の骨格と、を含み、ピロリドン骨格及びカプロラクタム骨格の総含有量は、光学部材(レンチキュラーシートの場合はシリンドリカルレンズ)の全質量に対して8質量%以上の範囲とされている。また、光学部材は、必要に応じて、更に他の成分を含んでいてもよい。
(Cured product)
The cured product in the laminated sheet includes at least a cured resin having a crosslinked structure and at least one skeleton selected from a pyrrolidone skeleton and a caprolactam skeleton, and the total content of the pyrrolidone skeleton and the caprolactam skeleton is an optical member (lenticular sheet). In this case, the range is 8% by mass or more with respect to the total mass of the cylindrical lens). Moreover, the optical member may further contain other components as necessary.
 硬化物には、凸状レンズとしてシリンドリカルレンズ、プリズム、半球状のマイクロレンズ、フレネルレンズ等の光学部材などが含まれる。硬化物としては、光学部材が好ましく、光学部材として、複数の凸状レンズ(シリンドリカルレンズ)が並列したレンチキュラーレンズは特に好適である。 The cured product includes optical members such as cylindrical lenses, prisms, hemispherical microlenses, and Fresnel lenses as convex lenses. As the cured product, an optical member is preferable, and a lenticular lens in which a plurality of convex lenses (cylindrical lenses) are arranged in parallel is particularly suitable as the optical member.
 ピロリドン骨格又はカプロラクタム骨格が含まれていることは、赤外吸収スペクトル(IR)から確認することが可能である。 It can be confirmed from the infrared absorption spectrum (IR) that the pyrrolidone skeleton or the caprolactam skeleton is contained.
-硬化樹脂-
 積層シートにおける硬化物は、架橋構造を有する硬化樹脂を含む。
 硬化樹脂は、後述するように、多官能(メタ)アクリル単量体が重合反応して形成される架橋構造を含み、樹脂中には多官能(メタ)アクリル単量体が残存し得、残存する多官能(メタ)アクリル単量体は加熱下で重合反応するため、熱硬化性を呈する。
 硬化樹脂は、架橋構造を含むことで耐熱効果が付与される。
-Cured resin-
The cured product in the laminated sheet includes a cured resin having a crosslinked structure.
As will be described later, the curable resin includes a crosslinked structure formed by polymerization reaction of a polyfunctional (meth) acrylic monomer, and the polyfunctional (meth) acrylic monomer can remain in the resin. Since the polyfunctional (meth) acrylic monomer that undergoes the polymerization reaction under heating, it exhibits thermosetting properties.
The cured resin is imparted with a heat resistance effect by including a crosslinked structure.
 硬化物における硬化樹脂の架橋構造の有無は、下記の方法で確認することが可能である。
 積層シートから硬化物(例えばレンチキュラーレンズ)を削り取り、削り採った硬化物をテトラヒドロフランに加えて溶解させ、濾過した場合に硬化物が溶解せずに濾過物として残った場合、架橋構造を有すると判断する。
The presence or absence of the crosslinked structure of the cured resin in the cured product can be confirmed by the following method.
When a cured product (for example, a lenticular lens) is scraped off from a laminated sheet, the cured product removed is added to tetrahydrofuran and dissolved, and when the cured product is not dissolved but remains as a filtered product, it is judged to have a crosslinked structure. To do.
 硬化物に含まれる硬化樹脂は、後述するように、末端に(メタ)アクリロイル基を有する(メタ)アクリル樹脂、2官能以上4官能以下の(メタ)アクリル単量体、ビニル化合物、及び光ラジカル重合開始剤を含有する硬化性組成物を用い、(メタ)アクリロイル基の重合反応により架橋構造を形成して硬化された樹脂である。ビニル化合物は、硬化樹脂中に取り込まれている。
 具体的には、活性エネルギー線を照射した際に光ラジカル重合開始剤から生じたラジカルが(メタ)アクリル樹脂及び(メタ)アクリル単量体の(メタ)アクリロイル基に作用し、(メタ)アクリロイル基が連鎖的に重合反応して硬化されている。
As will be described later, the cured resin contained in the cured product is a (meth) acrylic resin having a (meth) acryloyl group at the terminal, a bifunctional to tetrafunctional (meth) acrylic monomer, a vinyl compound, and a photo radical. This is a resin cured by forming a crosslinked structure by a polymerization reaction of (meth) acryloyl groups using a curable composition containing a polymerization initiator. The vinyl compound is incorporated in the cured resin.
Specifically, radicals generated from the photo radical polymerization initiator when irradiated with active energy rays act on the (meth) acryloyl group of the (meth) acrylic resin and (meth) acrylic monomer, and (meth) acryloyl The groups are cured by a chain polymerization reaction.
 硬化樹脂の原材料となる、末端に(メタ)アクリロイル基を有する(メタ)アクリル樹脂、2官能以上4官能以下の(メタ)アクリル単量体、ビニル化合物、及び光ラジカル重合開始剤の詳細については後述する。 For details of (meth) acrylic resin having a (meth) acryloyl group at the terminal, a (meth) acrylic monomer having 2 to 4 functionalities, a vinyl compound, and a radical photopolymerization initiator, which is a raw material of the cured resin It will be described later.
 硬化樹脂の硬化物中における含有量としては、光学部材(レンチキュラーシートの場合はシリンドリカルレンズ)等の硬化物の全質量に対して、70質量%以上100質量%以下が好ましい。
 なお、硬化樹脂には、(メタ)アクリル樹脂、多官能(メタ)アクリル単量体を含む単量体成分、及びビニル化合物が含まれている。
The content of the cured resin in the cured product is preferably 70% by mass or more and 100% by mass or less with respect to the total mass of the cured product such as an optical member (a cylindrical lens in the case of a lenticular sheet).
The cured resin contains a (meth) acrylic resin, a monomer component containing a polyfunctional (meth) acrylic monomer, and a vinyl compound.
-ピロリドン骨格、カプロラクタム骨格-
 硬化物は、ビニルピロリドン及びビニルカプロラクタムから選ばれる少なくとも一方のビニル化合物に由来する構造として、ピロリドン骨格及びカプロラクタム骨格から選ばれる少なくとも一方の骨格を含む。
 ビニル化合物に由来のピロリドン骨格及びカプロラクタム骨格は、既述の樹脂基材との密着性の向上に寄与し、かつ、硬化物(好ましくは光学部材)の、成形時における延伸性を向上させる。これにより、硬化物(好ましくは光学部材)は、樹脂基材から剥がれにくく、成形時に生じやすい亀裂(クラック)等の発生が抑制される。
-Pyrrolidone skeleton, caprolactam skeleton-
The cured product contains at least one skeleton selected from a pyrrolidone skeleton and a caprolactam skeleton as a structure derived from at least one vinyl compound selected from vinyl pyrrolidone and vinyl caprolactam.
The pyrrolidone skeleton and the caprolactam skeleton derived from the vinyl compound contribute to the improvement of the adhesion to the resin base described above, and improve the stretchability of the cured product (preferably an optical member) at the time of molding. Thereby, hardened | cured material (preferably optical member) is hard to peel from a resin base material, and generation | occurrence | production of the crack (crack) etc. which are easy to occur at the time of shaping | molding is suppressed.
 ピロリドン骨格及びカプロラクタム骨格の、硬化物(好ましくは光学部材(レンチキュラーシートの場合はシリンドリカルレンズ))の全質量に対する総含有量は、8質量%以上の範囲である。ピロリドン骨格及びカプロラクタム骨格の総含有量が上記範囲であることにより、樹脂基材に対する密着性がより優れたものとなり、硬化物である光学部材の成形時における延伸性が効果的に向上する。
 ピロリドン骨格及びカプロラクタム骨格の総含有量としては、15質量%以上が好ましく、20質量%以上がより好ましく、30質量%以上が更に好ましい。また、ビニル化合物の含有量の上限については、特に制限はないが、60質量%以下が好ましく、50質量%以下がより好ましい。ビニル化合物の含有量が60質量%以下であることで、耐熱性がより高められ、硬化物(好ましくは光学部材)の形状保持性を良好に保つことができ、レンズ形状を所望の形状のまま保持しやすい。
The total content of the pyrrolidone skeleton and caprolactam skeleton with respect to the total mass of the cured product (preferably an optical member (cylindrical lens in the case of a lenticular sheet)) is in the range of 8 mass% or more. When the total content of the pyrrolidone skeleton and the caprolactam skeleton is in the above range, the adhesion to the resin base material is further improved, and the stretchability at the time of molding of the optical member which is a cured product is effectively improved.
The total content of the pyrrolidone skeleton and the caprolactam skeleton is preferably 15% by mass or more, more preferably 20% by mass or more, and further preferably 30% by mass or more. Moreover, although there is no restriction | limiting in particular about the upper limit of content of a vinyl compound, 60 mass% or less is preferable and 50 mass% or less is more preferable. When the content of the vinyl compound is 60% by mass or less, the heat resistance is further improved, the shape retainability of the cured product (preferably the optical member) can be kept good, and the lens shape remains the desired shape. Easy to hold.
 ピロリドン骨格及びカプロラクタム骨格の含有量は、赤外吸収スペクトル(IR)から求めることができる。 The contents of the pyrrolidone skeleton and caprolactam skeleton can be determined from an infrared absorption spectrum (IR).
 ピロリドン骨格及びカプロラクタム骨格を与えるビニル化合物は、ビニルピロリドンの例としてはN-ビニル-2-ピロリドン等が挙げられ、ビニルカプロラクタムの例としてはN-ビニル-ε-カプロラクタム等が挙げられる。ビニル化合物の中でも、成形時における高温下での延伸性がより優れたものとなる点で、ビニルピロリドンが好ましい。 Examples of vinyl compounds that give a pyrrolidone skeleton and a caprolactam skeleton include N-vinyl-2-pyrrolidone and the like as an example of vinyl pyrrolidone, and N-vinyl-ε-caprolactam and the like as an example of vinyl caprolactam. Among the vinyl compounds, vinylpyrrolidone is preferable in that the stretchability at a high temperature at the time of molding is more excellent.
-他の成分-
 硬化物には、上記の成分以外に、必要に応じて、有機溶剤、無機粒子等の他の成分が含まれてもよい。有機溶剤、無機粒子等の詳細は、後述する。
-Other ingredients-
In addition to the above components, the cured product may contain other components such as an organic solvent and inorganic particles as necessary. Details of the organic solvent, inorganic particles and the like will be described later.
 積層シートの例として、レンチキュラーシートは好適である。
 レンチキュラーシートでは、半円筒形状の表面を有する複数の凸状レンズ(シリンドリカルレンズ)が並列したレンチキュラーレンズ層を有しており、シリンドリカルレンズ1本当たりの幅は、特に限定されず、目的によってレンズのピッチ幅を選択すればよい。シリンドリカルレンズ1本当たりの幅は、通常、1インチ(2.54cm)当たりのレンズ数を表すLPI(Line Per Inch)で表されることが多い。例えば100LPIは、1インチ当たり100本(100列)のシリンドリカルレンズが並列することを示しており、レンズのピッチは254μmである。1インチ当たりの線数(レンズの配列数)は、値が大きいほどレンズのピッチは小さくなり、精細度が向上する。
 精細度の低いレンチキュラーシート(例えば60LPIなど)は、観察位置が比較的遠い図柄を表示するポスターなどに使うには適している。名刺など小さい文字情報を読ませることを目的とする場合は、レンチキュラーレンズ層を構成するレンズが、2.54cm(1インチ)当たり100列以上並列していることが好ましい。一方、レンチキュラー画像の解像度の観点から、レンチキュラーレンズ層を構成する凸状レンズの配列数は、2.54cm当たり200列(200LPI)以下であることがより好ましい。
As an example of the laminated sheet, a lenticular sheet is suitable.
The lenticular sheet has a lenticular lens layer in which a plurality of convex lenses (cylindrical lenses) having a semi-cylindrical surface are arranged in parallel, and the width per cylindrical lens is not particularly limited. What is necessary is just to select a pitch width. The width per cylindrical lens is usually often expressed by LPI (Line Per Inch) representing the number of lenses per inch (2.54 cm). For example, 100 LPI indicates that 100 cylindrical lenses (100 rows) per inch are arranged in parallel, and the pitch of the lenses is 254 μm. The larger the value of the number of lines per inch (number of lenses arranged), the smaller the lens pitch, and the higher the definition.
A low-definition lenticular sheet (for example, 60 LPI) is suitable for use in a poster or the like that displays a pattern whose observation position is relatively far. For the purpose of reading small text information such as a business card, it is preferable that the lenses constituting the lenticular lens layer are arranged in 100 rows or more per 2.54 cm (1 inch). On the other hand, from the viewpoint of the resolution of the lenticular image, the number of convex lenses constituting the lenticular lens layer is more preferably 200 rows (2.5 LPI) or less per 2.54 cm.
(画像)
 樹脂基材の光学部材(レンチキュラーシートの場合はシリンドリカルレンズ)等の硬化物を有する側の反対側には、光学的に表示される画像(レンチキュラーシートの場合は、レンチキュラー表示されるレンチキュラー画像)が形成されている態様が好ましい。レンチキュラー画像は、レンチキュラーシートの樹脂基材の表面に直接形成されてもよい。また、レンチキュラー画像は、レンチキュラー画像を記録するための記録層を設け、記録層にレンチキュラー画像が形成されている態様でもよい。
 樹脂基材のレンチキュラー画像が形成される面は、樹脂基材と記録層との接着力を高める観点から、表面処理(例えばコロナ放電処理等)が施されてもよい。
 レンチキュラー画像は、例えば、レンチキュラー画像を形成するための着色液(例えばインク)を樹脂基材に付与することにより形成されてよい。着色液の付与(レンチキュラー画像の形成)は、例えば、オフセット印刷等の印刷法、塗布法、インクジェット法等により行うことができる。
 着色液は、レンチキュラー画像を形成するための固形成分と溶媒とを含むことが好ましい。レンチキュラー画像は、樹脂を含むことが好ましく、樹脂の少なくとも一部は架橋剤で架橋されていることが好ましい。したがって、着色液に含まれる固形成分として樹脂及び架橋剤を含む態様が好ましい。
 樹脂としては、ポリエステル、アクリル樹脂、及びウレタン樹脂から選択される少なくとも一つの樹脂であることが好ましく、特にオフセット印刷により視差画像を形成する場合に有利である。
(image)
An optically displayed image (a lenticular image displayed in the case of a lenticular sheet) is provided on the side opposite to the side having a cured product such as an optical member of a resin base (cylindrical lens in the case of a lenticular sheet). The formed aspect is preferable. The lenticular image may be directly formed on the surface of the resin base material of the lenticular sheet. Further, the lenticular image may be an aspect in which a recording layer for recording the lenticular image is provided and the lenticular image is formed on the recording layer.
The surface of the resin substrate on which the lenticular image is formed may be subjected to surface treatment (for example, corona discharge treatment) from the viewpoint of increasing the adhesive force between the resin substrate and the recording layer.
The lenticular image may be formed, for example, by applying a colored liquid (for example, ink) for forming a lenticular image to a resin base material. The application of the coloring liquid (formation of a lenticular image) can be performed by, for example, a printing method such as offset printing, a coating method, an ink jet method, or the like.
The coloring liquid preferably contains a solid component and a solvent for forming a lenticular image. The lenticular image preferably contains a resin, and at least a part of the resin is preferably crosslinked with a crosslinking agent. Therefore, the aspect containing resin and a crosslinking agent as a solid component contained in a coloring liquid is preferable.
The resin is preferably at least one resin selected from polyester, acrylic resin, and urethane resin, and is particularly advantageous when a parallax image is formed by offset printing.
 図1では、レンチキュラー画像14は、2つの表示用画像をそれぞれ別々に表示するための表示用画像列14A,14Bと、隣接する表示用画像列14A,14Bの間に挿入された補間画像列14Cと、を含む画像列群から構成されている。
 具体的には、各表示用画像からストライプ状に抽出された表示用画像列14A,14Bが対応する位置の凸状レンズ12Aごとに隣接して配列されており、隣接する表示用画像列14A,14Bの間に、隣接する表示用画像列14A,14Bの色が互いに異なる位置において、隣接する表示用画像列14A,14Bの一方の色と他方の色との間にある色(補間色)を有する補間画像列14cが挿入されている。
In FIG. 1, a lenticular image 14 includes display image sequences 14A and 14B for separately displaying two display images, and an interpolated image sequence 14C inserted between adjacent display image sequences 14A and 14B. And an image sequence group including
Specifically, the display image rows 14A and 14B extracted from each display image in a stripe shape are arranged adjacent to each other at the corresponding convex lens 12A, and the adjacent display image rows 14A and 14A are arranged. A color (interpolation color) between one color and the other color of the adjacent display image rows 14A and 14B at a position where the colors of the adjacent display image rows 14A and 14B are different from each other during 14B. The interpolated image sequence 14c is inserted.
<光学部材用硬化性組成物>
 本発明の一実施形態の光学部材用硬化性組成物(以下、単に「硬化性組成物」ともいう。)は、積層シートにおける硬化物(例えばシリンドリカルレンズ等の光学部材)の作製に好適に用いられる、光硬化性を有する組成物である。既述の本開示の積層シートの作製に好適に用いられる。
<Curable composition for optical members>
The curable composition for optical members according to one embodiment of the present invention (hereinafter also simply referred to as “curable composition”) is suitably used for producing a cured product (for example, an optical member such as a cylindrical lens) in a laminated sheet. A composition having photocurability. It is suitably used for producing the laminated sheet of the present disclosure described above.
 本開示の光学部材用硬化性組成物は、末端に(メタ)アクリロイル基を有する(メタ)アクリル樹脂と、2つ以上4つ以下の(メタ)アクリロイル基を含む多官能(メタ)アクリル単量体(以下、「2官能以上4官能以下の(メタ)アクリル単量体」ともいう。)と、ビニルピロリドン及びビニルカプロラクタムから選ばれる少なくとも一方のビニル化合物と、光ラジカル重合開始剤と、を含有し、ビニル化合物の含有量を、光学部材用硬化性組成物の全質量に対して10質量%を超える範囲としたものである。
 本開示の光学部材用硬化性組成物は、必要に応じて、更に、有機溶剤、無機粒子等の他の成分を含有してもよい。
The curable composition for an optical member according to the present disclosure includes a (meth) acrylic resin having a (meth) acryloyl group at a terminal and a polyfunctional (meth) acrylic monomer containing two or more and four (meth) acryloyl groups. A body (hereinafter also referred to as “bifunctional to tetrafunctional (meth) acrylic monomer”), at least one vinyl compound selected from vinylpyrrolidone and vinylcaprolactam, and a radical photopolymerization initiator. And content of a vinyl compound shall be the range which exceeds 10 mass% with respect to the total mass of the curable composition for optical members.
The curable composition for optical members of the present disclosure may further contain other components such as an organic solvent and inorganic particles as necessary.
 本開示の光学部材用硬化性組成物は、2官能以上4官能以下の(メタ)アクリル単量体及び光ラジカル重合開始剤を含有することで、架橋構造が形成されて耐熱性の付与に寄与するところ、更に、末端に(メタ)アクリロイル基を有する(メタ)アクリル樹脂と予め定めた量の特定のビニル化合物とを含有していることで、成形(賦形)の際に延ばされることで生じやすい亀裂(クラック)等の発生が抑制され、かつ、樹脂基材に対する密着性も向上する。すなわち、本開示の光学部材用硬化性組成物は、光硬化によって優れた耐熱性を保ちながら、成形の際の延伸性に優れ、かつ、樹脂基材に対する密着性にも優れている。 The curable composition for an optical member of the present disclosure contains a bifunctional to tetrafunctional (meth) acrylic monomer and a radical photopolymerization initiator, thereby forming a crosslinked structure and contributing to heat resistance. However, by containing a (meth) acrylic resin having a (meth) acryloyl group at the terminal and a specific amount of a specific vinyl compound, it is extended during molding (shaping). Occurrence of cracks or the like that tend to occur is suppressed, and adhesion to the resin base material is improved. That is, the curable composition for an optical member of the present disclosure is excellent in stretchability at the time of molding and excellent in adhesion to a resin substrate while maintaining excellent heat resistance by photocuring.
-(メタ)アクリル樹脂-
 光学部材用硬化性組成物は、末端に(メタ)アクリロイル基を有する(メタ)アクリル樹脂の少なくとも1種を含有する。(メタ)アクリル樹脂は、分子鎖の末端に(メタ)アクリロイル基を有しているので、後述の(メタ)アクリル単量体と併用することで組成物全体における架橋密度を制御し、硬化物とした際の耐熱性と成形時の延伸性との両立に好適である。
-(Meth) acrylic resin-
The curable composition for optical members contains at least one (meth) acrylic resin having a (meth) acryloyl group at the terminal. Since the (meth) acrylic resin has a (meth) acryloyl group at the end of the molecular chain, it is used in combination with the later-described (meth) acrylic monomer to control the crosslink density in the entire composition and to obtain a cured product. It is suitable for coexistence of heat resistance at the time of forming and stretchability at the time of molding.
 (メタ)アクリル樹脂としては、末端に(メタ)アクリロイル基を有するポリマーであれば主鎖構造に特に制限はなく、例えば、ポリメチルメタクリレート(PMMA)、ポリスチレン、ポリスチレン・メタクリレート(MS樹脂)、ポリスチレン・アクリロニトリル(AS樹脂)、ポリプロピレン、ポリエチレン、ポリエチレンテレフタレート、グリコール変性ポリエチレンテレフタレート、ポリ塩化ビニル(PVC)、熱可塑性エラストマー、又はこれらの共重合体、シクロオレフィンポリマー等の、主鎖構造の末端に(メタ)アクリロイル基を少なくとも1つ有するポリマーを挙げることができる。中でも、耐熱性の観点から、末端に(メタ)アクリロイル基を有するポリメチルメタクリレート、末端に(メタ)アクリロイル基を有するポリスチレンが好ましい。 As the (meth) acrylic resin, the main chain structure is not particularly limited as long as it is a polymer having a (meth) acryloyl group at the terminal. For example, polymethyl methacrylate (PMMA), polystyrene, polystyrene / methacrylate (MS resin), polystyrene -At the end of the main chain structure such as acrylonitrile (AS resin), polypropylene, polyethylene, polyethylene terephthalate, glycol-modified polyethylene terephthalate, polyvinyl chloride (PVC), thermoplastic elastomers, copolymers thereof, cycloolefin polymers ( Mention may be made of polymers having at least one (meth) acryloyl group. Among these, from the viewpoint of heat resistance, polymethyl methacrylate having a (meth) acryloyl group at the terminal and polystyrene having a (meth) acryloyl group at the terminal are preferable.
 (メタ)アクリル樹脂は、上市されている市販品を用いてもよく、市販品の例として、東亞合成社製のマクロモノマーシリーズ(例:マクロモノマーAA-6(メタクリロイル基を有するポリメチルメタクリレート)、マクロモノマーAS-6もしくはAS-6S(メタクリロイル基を有するポリスチレン)、マクロモノマーAN-6S(メタクリロイル基を有するポリスチレン・アクリロニトリル)、マクロモノマーAB-6(メタクリロイル基を有するポリブチルメタクリレート)等を用いることができる。 As the (meth) acrylic resin, a commercially available product may be used. As an example of a commercially available product, a macromonomer series manufactured by Toagosei Co., Ltd. (Example: Macromonomer AA-6 (polymethyl methacrylate having a methacryloyl group) , Macromonomer AS-6 or AS-6S (polystyrene having a methacryloyl group), macromonomer AN-6S (polystyrene / acrylonitrile having a methacryloyl group), macromonomer AB-6 (polybutyl methacrylate having a methacryloyl group), or the like is used. be able to.
 (メタ)アクリル樹脂の数平均分子量としては、延伸性の付与に寄与する組成物粘度のバランスの観点から、1000以上10000以下の範囲が好ましく、3000以上10000以下の範囲がより好ましく、5000以上10000以下の範囲がさらに好ましい。 The number average molecular weight of the (meth) acrylic resin is preferably in the range of 1000 or more and 10,000 or less, more preferably in the range of 3000 or more and 10,000 or less, and more preferably in the range of 5000 or more and 10,000 from the viewpoint of the balance of the composition viscosity that contributes to imparting stretchability. The following ranges are more preferable.
 数平均分子量は、ゲル透過クロマトグラフ(GPC)により測定される値である。
 具体的には、GPCは、測定装置として、HLC(登録商標)-8220GPC(東ソー社製)を用い、カラムとして、TSKgel、Super Multipore HZ-H(東ソー社製、4.6mmID×15cm)を3本用い、溶離液として、THF(テトラヒドロフラン)を用いて行う。また、条件としては、試料濃度を0.45質量%とし、流速を0.35ml/minとし、サンプル注入量を10μlとし、測定温度を40℃として、示唆屈折計(RI)検出器を用いる。また、検量線は、東ソー社製の「標準試料TSK standard,polystyrene」:「F-40」、「F-20」、「F-4」、「F-1」、「A-5000」、「A-2500」、「A-1000」、「n-プロピルベンゼン」の8サンプルから作製する。
The number average molecular weight is a value measured by gel permeation chromatography (GPC).
Specifically, GPC uses HLC (registered trademark) -8220GPC (manufactured by Tosoh Corporation) as a measuring device, and 3 columns of TSKgel, Super Multipore HZ-H (manufactured by Tosoh Corporation, 4.6 mm ID × 15 cm) as a column. This is carried out using THF (tetrahydrofuran) as an eluent. As the conditions, the sample concentration is 0.45 mass%, the flow rate is 0.35 ml / min, the sample injection amount is 10 μl, the measurement temperature is 40 ° C., and the suggestive refractometer (RI) detector is used. In addition, the calibration curve is “Standard sample TSK standard, polystyrene” manufactured by Tosoh Corporation: “F-40”, “F-20”, “F-4”, “F-1”, “A-5000”, “ It is prepared from 8 samples of “A-2500”, “A-1000” and “n-propylbenzene”.
 (メタ)アクリル樹脂のガラス転移温度(Tg)としては、50℃以上が好ましい。Tgが50℃以上であると、耐熱性に優れたものとなる。Tgは、同様の観点から、80℃以上が好ましい。また、樹脂基材への密着性及び成形時の延伸性の観点から、Tgは250℃未満が好ましく、200℃以下がより好ましい。 The glass transition temperature (Tg) of the (meth) acrylic resin is preferably 50 ° C. or higher. When Tg is 50 ° C. or higher, the heat resistance is excellent. Tg is preferably 80 ° C. or higher from the same viewpoint. Further, from the viewpoint of adhesion to the resin substrate and stretchability at the time of molding, Tg is preferably less than 250 ° C, and more preferably 200 ° C or less.
 Tgは、示差走査熱量測定(DSC)により、(メタ)アクリル樹脂を含む試料を調製し、試料を液体窒素で20℃に冷却した後に昇温し、20℃~250℃の温度域に現れるピークから求められる。 Tg is a peak that appears in the temperature range of 20 ° C. to 250 ° C. by preparing a sample containing (meth) acrylic resin by differential scanning calorimetry (DSC), cooling the sample to 20 ° C. with liquid nitrogen, It is requested from.
 末端に(メタ)アクリロイル基を有する(メタ)アクリル樹脂は、一種単独で用いるほか、二種以上を混合して用いてもよい。
 末端に(メタ)アクリロイル基を有する(メタ)アクリル樹脂の、光学部材用硬化性組成物中における含有量としては、光学部材用硬化性組成物の総含有量100質量部に対して、5質量部以上60質量部以下が好ましく、5質量部以上40質量部以下がより好ましく、10質量部以上30質量部以下が更に好ましく、15質量部以上25質量部以下が更に好ましい。
 (メタ)アクリル樹脂の含有量が上記範囲内であると、耐熱性及び成形時の延伸性により優れる。また、(メタ)アクリル樹脂の含有量は光学部材用硬化性組成物の粘度の増減にも寄与し、(メタ)アクリル樹脂の含有量が上記範囲内であると、光学部材(例えばレンチキュラーレンズ)の樹脂基材の表面からみた高さを確保しやすい。中でも、(メタ)アクリル樹脂の含有量が5質量%以上であると、成形時の延伸性が良好になり、成形後における亀裂(クラック)等の発生がより抑えられる。また、(メタ)アクリル樹脂の含有量が40質量%以下であると、耐熱性に優れ、かつ、形状保持性に優れたものとなる。
The (meth) acrylic resin having a (meth) acryloyl group at the terminal may be used alone or in combination of two or more.
As content in the curable composition for optical members of the (meth) acrylic resin which has a (meth) acryloyl group at the terminal, it is 5 mass with respect to 100 mass parts of total content of the curable composition for optical members. Part to 60 parts by weight, preferably 5 parts to 40 parts by weight, more preferably 10 parts to 30 parts by weight, and further preferably 15 parts to 25 parts by weight.
When the content of the (meth) acrylic resin is within the above range, the heat resistance and the stretchability at the time of molding are excellent. In addition, the content of the (meth) acrylic resin contributes to an increase or decrease in the viscosity of the curable composition for optical members, and when the content of the (meth) acrylic resin is within the above range, an optical member (for example, a lenticular lens). It is easy to ensure the height seen from the surface of the resin substrate. Among these, when the content of the (meth) acrylic resin is 5% by mass or more, the stretchability at the time of molding becomes good, and the occurrence of cracks (cracks) after molding is further suppressed. Further, when the content of the (meth) acrylic resin is 40% by mass or less, the heat resistance is excellent and the shape retention is excellent.
-(メタ)アクリル単量体-
 光学部材用硬化性組成物は、2つ以上4つ以下の(メタ)アクリロイル基を有する多官能(メタ)アクリル単量体(2官能以上4官能以下の(メタ)アクリル単量体)の少なくとも一種を含有し、多官能(メタ)アクリル単量体に加えて単官能の(メタ)アクリル単量体を含有してもよい。
 (メタ)アクリロイル基を複数有する単量体(モノマー)を含有するので、(メタ)アクリロイル基が重合反応して架橋構造を形成し、架橋構造の形成による耐熱性の向上に寄与している。
-(Meth) acrylic monomer-
The curable composition for optical members is at least a polyfunctional (meth) acrylic monomer having 2 to 4 (meth) acryloyl groups (a bifunctional to tetrafunctional (meth) acrylic monomer). 1 type is contained and you may contain a monofunctional (meth) acryl monomer in addition to a polyfunctional (meth) acryl monomer.
Since it contains a monomer (monomer) having a plurality of (meth) acryloyl groups, the (meth) acryloyl group undergoes a polymerization reaction to form a crosslinked structure, which contributes to an improvement in heat resistance due to the formation of the crosslinked structure.
(2官能以上4官能以下の(メタ)アクリル単量体)
 光学部材用硬化性組成物は、(メタ)アクリル単量体として、一分子中に含まれる(メタ)アクリロイル基の数が2~4である多官能(メタ)アクリル単量体を含有する。
 分子中の(メタ)アクリロイル基の数が1つのみである場合、架橋構造を形成し得ないため、分子中の(メタ)アクリロイル基の数が2つ以上とすることで架橋構造が得られ、耐熱性が良好になる。また、分子中の(メタ)アクリロイル基の数が4つ以下であると、架橋密度の均一性が高く、局所的に架橋し過ぎることもないので、延伸性を確保しやすく、樹脂基材に対する密着性にも優れたものとなる。
 (メタ)アクリル単量体の中でも、上記と同様の観点から、2官能又は3官能の(メタ)アクリル単量体が好ましい。
(Bifunctional to tetrafunctional (meth) acrylic monomer)
The curable composition for optical members contains a polyfunctional (meth) acrylic monomer having 2 to 4 (meth) acryloyl groups contained in one molecule as the (meth) acrylic monomer.
When the number of (meth) acryloyl groups in the molecule is only one, a crosslinked structure cannot be formed. Therefore, a crosslinked structure can be obtained by setting the number of (meth) acryloyl groups in the molecule to two or more. , Heat resistance is improved. In addition, when the number of (meth) acryloyl groups in the molecule is 4 or less, the uniformity of the crosslinking density is high and the crosslinking is not excessively locally. It also has excellent adhesion.
Among the (meth) acrylic monomers, a bifunctional or trifunctional (meth) acrylic monomer is preferable from the same viewpoint as described above.
 (メタ)アクリル単量体としては、(メタ)アクリロイル基の数が2~4である(メタ)アクリル単量体であれば、特に制限はなく、例えば以下の化合物が挙げられる。
 分子中にアクリロイル基を2つ有する2官能(メタ)アクリル単量体の具体例としては、トリシクロデカンジメタノールジ(メタ)アクリレート、ジエチレングリコールモノエチルエーテルジ(メタ)アクリレート、ジメチロールジシクロペンタンジ(メタ)アクリレート、ジ(メタ)アクリル化イソシアヌレート、1,3-ブチレングリコールジ(メタ)アクリレート、1,4-ブタンジオールジ(メタ)アクリレート、エチレンオキシド(以下、「EO」と略記する。)変性1,6-ヘキサンジオールジ(メタ)アクリレート、エピクロロヒドリン(以下「ECH」という)変性1,6-ヘキサンジオールジ(メタ)アクリレート、アリロキシポリエチレングリコールジ(メタ)アクリレート、1,9-ノナンジオールジ(メタ)アクリレート、EO変性ビスフェノールAジ(メタ)アクリレート、プロピレンオキシド(以後「PO」という。)変性ビスフェノールAジ(メタ)アクリレート、変性ビスフェノールAジ(メタ)アクリレート、EO変性ビスフェノールFジ(メタ)アクリレート、ECH変性ヘキサヒドロフタル酸ジ(メタ)アクリレート、ヒドロキシピバリン酸ネオペンチルグリコールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、EO変性ネオペンチルグリコールジ(メタ)アクリレート、PO変性ネオペンチルグリコールジ(メタ)アクリレート、ステアリン酸変性ペンタエリスリトールジ(メタ)アクリレート、ECH変性フタル酸ジ(メタ)アクリレート、ECH変性プロピレングリコールジ(メタ)アクリレート、シリコーンジ(メタ)アクリレート、トリエチレングリコールジ(メタ)アクリレート、テトラエチレングリコールジ(メタ)アクリレート、ジメチロールトリシクロデカンジ(メタ)アクリレート、ネオペンチルグリコール変性トリメチロールプロパンジ(メタ)アクリレート、トリプロピレングリコールジ(メタ)アクリレート、EO変性トリプロピレングリコールジ(メタ)アクリレート、トリグリセロールジ(メタ)アクリレート、ジプロピレングリコールジ(メタ)アクリレート、等が挙げられる。上市されている市販品の例としては、新中村化学工業製のA-DCP(トリシクロデカンメタノールジアクリレート)、新中村化学工業社製のA-HD-N(1,9-ノナンジオールジ(メタ)アクリレート)等を用いることができる。
The (meth) acrylic monomer is not particularly limited as long as it is a (meth) acrylic monomer having 2 to 4 (meth) acryloyl groups, and examples thereof include the following compounds.
Specific examples of bifunctional (meth) acrylic monomers having two acryloyl groups in the molecule include tricyclodecane dimethanol di (meth) acrylate, diethylene glycol monoethyl ether di (meth) acrylate, dimethylol dicyclopentane. Di (meth) acrylate, di (meth) acrylated isocyanurate, 1,3-butylene glycol di (meth) acrylate, 1,4-butanediol di (meth) acrylate, ethylene oxide (hereinafter abbreviated as “EO”). ) Modified 1,6-hexanediol di (meth) acrylate, epichlorohydrin (hereinafter referred to as “ECH”) modified 1,6-hexanediol di (meth) acrylate, allyloxy polyethylene glycol di (meth) acrylate, 1, 9-nonanediol di (meth) acryl EO modified bisphenol A di (meth) acrylate, propylene oxide (hereinafter referred to as “PO”) modified bisphenol A di (meth) acrylate, modified bisphenol A di (meth) acrylate, EO modified bisphenol F di (meth) acrylate , ECH-modified hexahydrophthalic acid di (meth) acrylate, hydroxypivalic acid neopentyl glycol di (meth) acrylate, neopentyl glycol di (meth) acrylate, EO modified neopentyl glycol di (meth) acrylate, PO modified neopentyl glycol Di (meth) acrylate, stearic acid modified pentaerythritol di (meth) acrylate, ECH modified phthalic acid di (meth) acrylate, ECH modified propylene glycol di (meth) acrylate, Corn di (meth) acrylate, triethylene glycol di (meth) acrylate, tetraethylene glycol di (meth) acrylate, dimethylol tricyclodecane di (meth) acrylate, neopentyl glycol modified trimethylolpropane di (meth) acrylate, tripropylene Examples include glycol di (meth) acrylate, EO-modified tripropylene glycol di (meth) acrylate, triglycerol di (meth) acrylate, and dipropylene glycol di (meth) acrylate. Examples of commercially available products are A-DCP (tricyclodecane methanol diacrylate) manufactured by Shin-Nakamura Chemical Co., Ltd., A-HD-N (1,9-nonanediol di (Meth) acrylate) and the like can be used.
 分子中にアクリロイル基を3つ有する3官能(メタ)アクリル単量体の具体例としては、イソシアヌル酸EO変性トリアクリレート、ECH変性グリセロールトリ(メタ)アクリレート、EO変性グリセロールトリ(メタ)アクリレート、PO変性グリセロールトリ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、EO変性リン酸トリ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、カプロラクトン変性トリメチロールプロパントリ(メタ)アクリレート、EO変性トリメチロールプロパントリ(メタ)アクリレート、PO変性トリメチロールプロパントリ(メタ)アクリレート、等が挙げられる。上市されている市販品の例としては、東亞合成社製のM-315(イソシアヌル酸EO変性トリアクリレート)、新中村化学工業社製のA-TMPT(トリメチロールプロパントリ(メタ)アクリレート)等を用いることができる。 Specific examples of trifunctional (meth) acrylic monomers having three acryloyl groups in the molecule include isocyanuric acid EO-modified triacrylate, ECH-modified glycerol tri (meth) acrylate, EO-modified glycerol tri (meth) acrylate, PO Modified glycerol tri (meth) acrylate, pentaerythritol tri (meth) acrylate, EO modified phosphate tri (meth) acrylate, trimethylolpropane tri (meth) acrylate, caprolactone modified trimethylolpropane tri (meth) acrylate, EO modified trimethylol Examples include propane tri (meth) acrylate, PO-modified trimethylolpropane tri (meth) acrylate, and the like. Examples of commercially available products include M-315 (isocyanuric acid EO-modified triacrylate) manufactured by Toagosei Co., Ltd., A-TMPT (trimethylolpropane tri (meth) acrylate) manufactured by Shin-Nakamura Chemical Co., Ltd. Can be used.
 分子中にアクリロイル基を4つ有する4官能(メタ)アクリル単量体の具体例としては、ペンタエリスリトールテトラ(メタ)アクリレート、ジトリメチロールプロパンテトラ(メタ)アクリレート、エトキシ化ペンタエリスリトールテトラ(メタ)アクリレート、ジグリセリンEO変性テトラ(メタ)アクリレート等が挙げられる。上市されている市販品の例としては、新中村化学工業社製のA-TMMTペンタエリスリトールテトラアクリレート、新中村化学工業社製のAD-TMP(ジトリメチロールプロパンテトラ(メタ)アクリレート)等を用いることができる。 Specific examples of tetrafunctional (meth) acrylic monomers having four acryloyl groups in the molecule include pentaerythritol tetra (meth) acrylate, ditrimethylolpropane tetra (meth) acrylate, and ethoxylated pentaerythritol tetra (meth) acrylate. And diglycerin EO-modified tetra (meth) acrylate. Examples of commercially available products are A-TMMT pentaerythritol tetraacrylate manufactured by Shin-Nakamura Chemical Co., Ltd., AD-TMP (ditrimethylolpropane tetra (meth) acrylate) manufactured by Shin-Nakamura Chemical Co., Ltd., etc. Can do.
 2官能以上4官能以下の(メタ)アクリル単量体は、一種単独で用いるほか、二種以上を混合して用いてもよい。
 2官能以上4官能以下の(メタ)アクリル単量体の、光学部材用硬化性組成物中における含有量としては、光学部材用硬化性組成物の総含有量100質量部に対して、1質量部以上75質量部以下が好ましく、10質量部以上70質量部以下がより好ましく、20質量部以上60質量部以下が更に好ましい。
 2官能以上4官能以下の(メタ)アクリル単量体の含有量が1質量部以上であると、耐熱性に優れ、かつ、形状保持性に優れたものとなる。また、2官能以上4官能以下の(メタ)アクリル単量体の含有量が75質量部以下であると、成形時の延伸性が良好になり、成形後における亀裂(クラック)等の発生がより抑えられる。
The bifunctional or tetrafunctional (meth) acrylic monomer may be used alone or in combination of two or more.
The content of the bifunctional to tetrafunctional (meth) acrylic monomer in the curable composition for optical members is 1 mass relative to 100 parts by mass of the total content of the curable composition for optical members. Part or more and 75 parts by mass or less are preferable, 10 parts by mass or more and 70 parts by mass or less are more preferable, and 20 parts by mass or more and 60 parts by mass or less are more preferable.
When the content of the bifunctional to tetrafunctional (meth) acrylic monomer is 1 part by mass or more, the heat resistance is excellent and the shape retention is excellent. In addition, when the content of the bifunctional to tetrafunctional (meth) acrylic monomer is 75 parts by mass or less, the stretchability at the time of molding is improved, and the occurrence of cracks after the molding is more likely. It can be suppressed.
(単官能(メタ)アクリル単量体)
 光学部材用硬化性組成物は、(メタ)アクリル単量体として、上記の2官能以上4官能以下の(メタ)アクリル単量体に加え、更に、単官能の(メタ)アクリル単量体を含有してもよい。
 単官能の(メタ)アクリル単量体を2官能以上4官能以下の(メタ)アクリル単量体と併用することで、2官能以上4官能以下の(メタ)アクリル単量体を用いた場合の特性、特に延伸性及び密着性をより向上させることが可能である。
(Monofunctional (meth) acrylic monomer)
The curable composition for optical members includes a monofunctional (meth) acrylic monomer as a (meth) acrylic monomer, in addition to the bifunctional to tetrafunctional (meth) acrylic monomer. You may contain.
When a monofunctional (meth) acrylic monomer is used in combination with a bifunctional to tetrafunctional (meth) acrylic monomer, the bifunctional to tetrafunctional (meth) acrylic monomer is used. It is possible to further improve characteristics, particularly stretchability and adhesion.
 単官能の(メタ)アクリル単量体の具体例としては、1-アダマンチル(メタ)アクリレートなどのアダマンチル(メタ)アクリレート化合物、イソボロニル(メタ)アクリレートなどのノルボルニル(メタ)アクリレート化合物、ジシクロペンタニルメタクリレートなどのトリシクロデカン(メタ)アクリレート化合物、2-エチル-2-ブチルプロパンジオール(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、2-エチルヘキシルカルビトール(メタ)アクリレート、2-ヒドロキシブチル(メタ)アクリレート、2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、2-メトキシエチル(メタ)アクリレート、3-メトキシブチル(メタ)アクリレート、4-ヒドロキシブチル(メタ)アクリレート、ベンジル(メタ)アクリレート、1-又は2-ナフチル(メタ)アクリレート、ブタンジオールモノ(メタ)アクリレート、ブトキシエチル(メタ)アクリレート、ブチル(メタ)アクリレート、セチル(メタ)アクリレート、エチレンオキシド(EO)変性クレゾール(メタ)アクリレート、ジプロピレングリコール(メタ)アクリレート、エトキシ化フェニル(メタ)アクリレート、エチル(メタ)アクリレート、イソアミル(メタ)アクリレート、イソブチル(メタ)アクリレート、イソオクチル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、ジシクロヘンタニル(メタ)アクリレート、ジシクロペンタニルオキシエチル(メタ)アクリレート、イソミリスチル(メタ)アクリレート、ラウリル(メタ)アクリレート、メトキシジプロピレングリコール(メタ)アクリレート、メトキシトリプロピレングリコール(メタ)アクリレート、メトキシポリエチレングリコール(メタ)アクリレート、メトキシトリエチレングリコール(メタ)アクリレート、メチル(メタ)アクリレート、ネオペンチルグリコールベンゾエート(メタ)アクリレート、ノニルフェノキシポリエチレングリコール(メタ)アクリレート、ノニルフェノキシポリプロピレングリコール(メタ)アクリレート、オクチル(メタ)アクリレート、パラクミルフェノキシエチレングリコール(メタ)アクリレート、ECH変性フェノキシ(メタ)アクリレート、フェノキシエチル(メタ)アクリレート、フェノキシジエチレングリコール(メタ)アクリレート、フェノキシヘキサエチレングリコール(メタ)アクリレート、フェノキシテトラエチレングリコール(メタ)アクリレート、ステアリル(メタ)アクリレート、EO変性コハク酸(メタ)アクリレート、tert-ブチル(メタ)アクリレート、トリブロモフェニル(メタ)アクリレート、EO変性トリブロモフェニル(メタ)アクリレート、トリドデシル(メタ)アクリレート、等が挙げられる。上市されている市販品の例としては、日立化成社製のFA-513AS(ジシクロペンタニルアクリレ-ト)、共栄社化学社製のライトアクリレートIB-XA(イソボロニルアクリレート)等を用いることができる。 Specific examples of monofunctional (meth) acrylic monomers include adamantyl (meth) acrylate compounds such as 1-adamantyl (meth) acrylate, norbornyl (meth) acrylate compounds such as isobornyl (meth) acrylate, and dicyclopentanyl. Tricyclodecane (meth) acrylate compounds such as methacrylate, 2-ethyl-2-butylpropanediol (meth) acrylate, 2-ethylhexyl (meth) acrylate, 2-ethylhexyl carbitol (meth) acrylate, 2-hydroxybutyl (meth) ) Acrylate, 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 2-methoxyethyl (meth) acrylate, 3-methoxybutyl (meth) acrylate, 4-hydroxy Chill (meth) acrylate, benzyl (meth) acrylate, 1- or 2-naphthyl (meth) acrylate, butanediol mono (meth) acrylate, butoxyethyl (meth) acrylate, butyl (meth) acrylate, cetyl (meth) acrylate, Ethylene oxide (EO) modified cresol (meth) acrylate, dipropylene glycol (meth) acrylate, ethoxylated phenyl (meth) acrylate, ethyl (meth) acrylate, isoamyl (meth) acrylate, isobutyl (meth) acrylate, isooctyl (meth) acrylate Cyclohexyl (meth) acrylate, dicyclohentanyl (meth) acrylate, dicyclopentanyloxyethyl (meth) acrylate, isomyristyl (meth) acrylate, Uril (meth) acrylate, methoxydipropylene glycol (meth) acrylate, methoxytripropylene glycol (meth) acrylate, methoxypolyethylene glycol (meth) acrylate, methoxytriethylene glycol (meth) acrylate, methyl (meth) acrylate, neopentyl glycol Benzoate (meth) acrylate, nonylphenoxypolyethylene glycol (meth) acrylate, nonylphenoxypolypropylene glycol (meth) acrylate, octyl (meth) acrylate, paracumylphenoxyethylene glycol (meth) acrylate, ECH-modified phenoxy (meth) acrylate, phenoxyethyl (Meth) acrylate, phenoxydiethylene glycol (meth) acrylate, Phenoxyhexaethylene glycol (meth) acrylate, phenoxytetraethylene glycol (meth) acrylate, stearyl (meth) acrylate, EO-modified succinic acid (meth) acrylate, tert-butyl (meth) acrylate, tribromophenyl (meth) acrylate, EO Examples thereof include modified tribromophenyl (meth) acrylate and tridodecyl (meth) acrylate. Examples of commercially available products are FA-513AS (dicyclopentanyl acrylate) manufactured by Hitachi Chemical Co., Ltd., Light acrylate IB-XA (isoboronyl acrylate) manufactured by Kyoeisha Chemical Co., Ltd. Can do.
 単官能の(メタ)アクリル単量体の光学部材用硬化性組成物中における含有量は、本発明の実施形態における効果を損なわない範囲であればよく、2官能以上4官能以下の(メタ)アクリル単量体の含有量にもよるが、例えば、光学部材用硬化性組成物の総含有量100質量部に対して、1質量部以上50質量部以下の範囲とすることができる。 The content of the monofunctional (meth) acrylic monomer in the curable composition for an optical member may be in a range that does not impair the effects in the embodiment of the present invention. Although it depends on the content of the acrylic monomer, for example, it can be in the range of 1 part by mass to 50 parts by mass with respect to 100 parts by mass of the total content of the curable composition for optical members.
-ビニル化合物-
 光学部材用硬化性組成物は、ビニルピロリドン及びビニルカプロラクタムから選ばれる少なくとも一方のビニル化合物を含有する。ビニル化合物は、既述の樹脂基材との密着性の向上に寄与し、かつ、硬化物である光学部材の、成形時における延伸性を向上させる。
 これにより、硬化物であるリンドリカルレンズは、樹脂基材から剥がれにくく、成形時に生じやすい亀裂(クラック)等の発生が抑制される。
-Vinyl compounds-
The curable composition for optical members contains at least one vinyl compound selected from vinyl pyrrolidone and vinyl caprolactam. A vinyl compound contributes to the improvement of adhesiveness with the above-mentioned resin base material, and improves the stretchability at the time of shaping | molding of the optical member which is a hardened | cured material.
Thereby, the cylindrical lens which is a cured product is hardly peeled off from the resin base material, and the occurrence of cracks or the like that are likely to occur during molding is suppressed.
 ビニル化合物の光学部材用硬化性組成物の全質量に対する含有量は、10質量%を超える範囲とする。ビニル化合物の含有量が上記範囲であることにより、樹脂基材に対する密着性がより優れたものとなり、硬化物(光学部材)とした際の延伸性により優れたものとなる。
 ビニル化合物の含有量としては、15質量%以上60質量%以下が好ましい。ビニル化合物の含有量の下限は、20質量%以上がより好ましく、25質量%以上が更に好ましく、30質量%以上が更に好ましい。また、ビニル化合物の含有量の上限については、40質量%以下がより好ましい。ビニル化合物の含有量は60質量%以下であることで、耐熱性がより高められ、硬化物である光学部材の形状保持性を良好に保つことができ、レンズ形状を所望の形状のまま保持しやすい。
Content with respect to the total mass of the curable composition for optical members of a vinyl compound shall be the range exceeding 10 mass%. When the content of the vinyl compound is within the above range, the adhesiveness to the resin base material is further improved, and the stretchability when the cured product (optical member) is obtained is improved.
As content of a vinyl compound, 15 to 60 mass% is preferable. The lower limit of the content of the vinyl compound is more preferably 20% by mass or more, further preferably 25% by mass or more, and further preferably 30% by mass or more. Moreover, about the upper limit of content of a vinyl compound, 40 mass% or less is more preferable. When the content of the vinyl compound is 60% by mass or less, the heat resistance is further improved, the shape retaining property of the optical member that is a cured product can be maintained well, and the lens shape is maintained in a desired shape. Cheap.
 ビニル化合物のうち、ビニルピロリドンの例としては、N-ビニル-2-ピロリドン等が挙げられる。また、ビニルカプロラクタムの例としては、N-ビニル-ε-カプロラクタム等が挙げられる。 Among vinyl compounds, examples of vinyl pyrrolidone include N-vinyl-2-pyrrolidone. Examples of vinyl caprolactam include N-vinyl-ε-caprolactam.
 ビニル化合物の中でも、成形時における高温下での延伸性がより優れたものとなる点で、ビニルピロリドンが好ましい。 Among the vinyl compounds, vinyl pyrrolidone is preferable because it is more excellent in stretchability at a high temperature during molding.
-光ラジカル重合開始剤-
 光学部材用硬化性組成物は、光ラジカル重合開始剤の少なくとも1種を含有する。光ラジカル重合開始剤は、光に曝されると、(メタ)アクリロイル基の重合反応を開始させる活性種としてラジカルを発生する化合物である。
-Photo radical polymerization initiator-
The curable composition for optical members contains at least one kind of radical photopolymerization initiator. A photoradical polymerization initiator is a compound that generates a radical as an active species that initiates a polymerization reaction of a (meth) acryloyl group when exposed to light.
 光ラジカル重合開始剤としては、構造上の制限は特になく、例えば、2,4,6-トリメチルベンゾイル-ジフェニル-フォスフィンオキサイド、ビス(2,4,6-トリメチルベンゾイル)-フェニルフォスフィンオキサイド、2,2-ジメトキシ-1,2-ジフェニルエタン-1-オン、1-ヒドロキシ-シクロヘキシル-フェニル-ケトン、1-ヒドロキシ-シクロヘキシル-フェニル-ケトン 、1-[4-(2-ヒドロキシエトキシ)-フェニル]-2-ヒドロキシ-2-メチル-1-プロパン-1-オン、2-ヒドロキシ-1-{4-[4-(2-ヒドロキシ-2-メチル-プロピオニル)-ベンジル]フェニル}-2-メチル-プロパン-1-オン、2-メチル-1-(4-メチルチオフェニル)-2-モルフォリノプロパン-1-オン等を挙げることができる。 The radical photopolymerization initiator is not particularly limited in structure. For example, 2,4,6-trimethylbenzoyl-diphenyl-phosphine oxide, bis (2,4,6-trimethylbenzoyl) -phenylphosphine oxide, 2,2-dimethoxy-1,2-diphenylethane-1-one, 1-hydroxy-cyclohexyl-phenyl-ketone, 1-hydroxy-cyclohexyl-phenyl-ketone, 1- [4- (2-hydroxyethoxy) -phenyl ] -2-Hydroxy-2-methyl-1-propan-1-one, 2-hydroxy-1- {4- [4- (2-hydroxy-2-methyl-propionyl) -benzyl] phenyl} -2-methyl -Propan-1-one, 2-methyl-1- (4-methylthiophenyl) -2-morpholinopropa 1-one and the like.
 光ラジカル重合開始剤は、上市されている市販品を用いてもよく、市販品の具体例として、BASF社製のイルガキュアシリーズ(例:IRGACURE TPO、IRGACURE 819、IRGACURE 651、IRGACURE 184、IRGACURE 1173、IRGACURE 2959、IRGACURE 127、IRGACURE 907等)が挙げられる。 Commercially available products that are commercially available may be used as the photoradical polymerization initiator. As specific examples of commercially available products, BASF's Irgacure series (eg: IRGACURE TPO, IRGACURE 819, IRGACURE 651, IRGACURE 184, IRGACURE 1173) IRGACURE 2959, IRGACURE 127, IRGACURE 907, etc.).
 光ラジカル重合開始剤は、一種単独で用いるほか、二種以上を混合して用いてもよい。
 光ラジカル重合開始剤の光学部材用硬化性組成物の全質量に対する含有量は、0.1質量部以上5質量部以下の範囲が好ましい。
 光ラジカル重合開始剤の含有量が0.1質量部以上であると、重合反応が良好に進行し、耐熱性により優れた硬化物が得られる。また、光ラジカル重合開始剤は、含有量が5質量部を越える範囲で多く含有させても、含有量に見合う効果が期待できないため、5質量部以下であることが好ましい。
 光ラジカル重合開始剤の含有量は、0.5質量部以上3質量部以下がより好ましく、1質量部以上3質量部以下が更に好ましい。
The radical photopolymerization initiator may be used alone or in combination of two or more.
The content of the radical photopolymerization initiator with respect to the total mass of the curable composition for optical members is preferably in the range of 0.1 parts by mass or more and 5 parts by mass or less.
When the content of the radical photopolymerization initiator is 0.1 parts by mass or more, the polymerization reaction proceeds favorably, and a cured product having better heat resistance is obtained. Moreover, since the effect corresponding to content cannot be anticipated even if it contains a radical photopolymerization initiator in the range which content contains more than 5 mass parts, it is preferable that it is 5 mass parts or less.
The content of the photo radical polymerization initiator is more preferably 0.5 parts by mass or more and 3 parts by mass or less, and further preferably 1 part by mass or more and 3 parts by mass or less.
 本発明の一実施形態の光学部材用硬化性組成物では、本発明の実施形態における効果(耐熱性、延伸性及び密着性)の観点から、光学部材用硬化性組成物の総含有量100質量部に対して、(メタ)アクリル樹脂の含有量が5質量部以上40質量部以下であり、多官能(メタ)アクリル単量体の含有量が1質量部以上75質量部以下であり、ビニル化合物の含有量が15質量部以上50質量部以下であり、かつ、光ラジカル重合開始剤の含有量が0.1質量部以上5質量部以下である組成に調製されることが好ましい。 In the curable composition for optical members of one embodiment of the present invention, the total content of the curable composition for optical members of 100 mass from the viewpoint of the effects (heat resistance, stretchability and adhesion) in the embodiments of the present invention. The content of the (meth) acrylic resin is 5 parts by mass or more and 40 parts by mass or less, the content of the polyfunctional (meth) acrylic monomer is 1 part by mass or more and 75 parts by mass or less, and vinyl. It is preferable to prepare a composition having a compound content of 15 parts by mass or more and 50 parts by mass or less and a radical photopolymerization initiator content of 0.1 parts by mass or more and 5 parts by mass or less.
 また、本発明の一実施形態の光学部材用硬化性組成物において、本発明の実施形態における効果(耐熱性、延伸性及び密着性)の観点から、特に、ビニル化合物としてビニルピロリドンを含有し、かつ、末端に(メタ)アクリロイル基を有する(メタ)アクリル樹脂の含有量を20質量部以上40質量部とした組成に調製されることがより好ましい。 Moreover, in the curable composition for optical members of one embodiment of the present invention, from the viewpoint of the effect (heat resistance, stretchability and adhesion) in the embodiment of the present invention, in particular, vinylpyrrolidone is contained as a vinyl compound, And it is more preferable to prepare to the composition which content of the (meth) acrylic resin which has a (meth) acryloyl group at the terminal was 20 mass parts or more and 40 mass parts.
-他の成分-
 硬化物には、上記の成分以外に、必要に応じて、有機溶剤、無機粒子等の他の成分が含まれてもよい。
 有機溶剤としては、トルエン、メチルエチルケトン等が挙げられる。本発明の実施形態では、上記の(メタ)アクリル単量体を含むため、(メタ)アクリル単量体が溶剤としての機能を兼ね、別途有機溶剤を含有していなくてもよい。
 無機粒子としては、二酸化珪素(シリカ)等のいわゆるフィラーと称される粒子が挙げられる。無機粒子の例として、上市されている市販品として日産化学工業社製のオルガノシリカゾルMEK-STシリーズ(例:MEK-ST-40、MEK-ST-L等)が挙げられる。
-Other ingredients-
In addition to the above components, the cured product may contain other components such as an organic solvent and inorganic particles as necessary.
Examples of the organic solvent include toluene and methyl ethyl ketone. In the embodiment of the present invention, since the (meth) acrylic monomer is included, the (meth) acrylic monomer also serves as a solvent and does not need to contain an organic solvent separately.
Examples of the inorganic particles include so-called filler particles such as silicon dioxide (silica). Examples of inorganic particles include commercially available organosilica sol MEK-ST series (eg, MEK-ST-40, MEK-ST-L, etc.) manufactured by Nissan Chemical Industries.
<硬化物及びその製造方法>
 本開示に係る硬化物は、末端に(メタ)アクリロイル基を有する(メタ)アクリル樹脂と、2官能以上4官能以下の(メタ)アクリル単量体と、ビニルピロリドン及びビニルカプロラクタムから選ばれる少なくとも一方のビニル化合物と、光ラジカル重合開始剤と、を含有し、ビニル化合物の含有量を、光学部材用硬化性組成物の全質量に対して10質量%を超える範囲とした硬化性組成物を硬化してなる硬化物(本開示に係る硬化性組成物の硬化物)である。
 本開示に係る硬化物は、光学部材として好適に用いることができ、凸状レンズとしてシリンドリカルレンズ、プリズム、半球状のマイクロレンズ、フレネルレンズなどがより好適に用いることができ、複数の凸状レンズ(シリンドリカルレンズ)が並列したレンチキュラーレンズとして特に好適に用いることができる。
 また、本開示に係る光学部材は、本開示に係る硬化物を有するものである。
 本開示に係る硬化物の製造方法は、特に制限はなく、本開示に係る硬化性組成物を準備する工程、及び、上記硬化性組成物を硬化する工程を含む製造方法であることが好ましい。また、例えば、本開示に係る硬化性組成物の硬化は、光硬化(活性エネルギー線の照射による硬化)であっても、熱硬化であってもよいが、光硬化であることが好ましい。
<Hardened product and production method thereof>
The cured product according to the present disclosure is at least one selected from a (meth) acrylic resin having a (meth) acryloyl group at a terminal, a (meth) acrylic monomer having 2 to 4 functionalities, vinylpyrrolidone, and vinylcaprolactam. A curable composition containing a vinyl compound and a radical photopolymerization initiator, wherein the content of the vinyl compound exceeds 10% by mass relative to the total mass of the curable composition for optical members. Is a cured product (cured product of the curable composition according to the present disclosure).
The cured product according to the present disclosure can be suitably used as an optical member, and a cylindrical lens, a prism, a hemispherical microlens, a Fresnel lens, or the like can be more suitably used as a convex lens, and a plurality of convex lenses It can be particularly suitably used as a lenticular lens in which (cylindrical lenses) are arranged in parallel.
Moreover, the optical member which concerns on this indication has the hardened | cured material which concerns on this indication.
The manufacturing method of the hardened | cured material which concerns on this indication does not have a restriction | limiting in particular, It is preferable that it is a manufacturing method including the process of preparing the curable composition which concerns on this indication, and the process of hardening | curing the said curable composition. Further, for example, the curing of the curable composition according to the present disclosure may be photocuring (curing by irradiation with active energy rays) or heat curing, but is preferably photocuring.
<成形体及び光学成形体の製造方法>
 本開示の成形体は、既述の本開示の積層シートを(好ましくは、熱成形又は真空成形などの手法により)成形して製造された熱成形物又は真空成形物である立体成形体である。本開示の成形体は、立体形状を有する成形物であればよく、光学成形体も含まれる。
 本開示の成形体は、既述の積層シートを用いた方法であれば、成形方法に特に制限されるものではない。
 本開示の成形体は、好ましくは、光学部材用硬化性組成物を成形し、かつ、活性エネルギー線を照射して硬化させ、樹脂基材上に光学部材を有する積層シートを作製する工程(以下、「積層シート作製工程」ともいう。)と、作製された積層シートを立体成形(好ましくは真空成形)することで光学成形体を得る工程(以下、「立体成形工程」ともいう。)と、を有する方法(本発明の一実施形態の光学成形体の製造方法)により製造される。この場合、成形体として光学成形体が製造される。
<Manufacturing method of molded body and optical molded body>
The molded body of the present disclosure is a three-dimensional molded body that is a thermoformed product or a vacuum molded product produced by molding the laminated sheet of the present disclosure described above (preferably by a technique such as thermoforming or vacuum forming). . The molded body of the present disclosure may be a molded product having a three-dimensional shape, and includes an optical molded body.
The molded body of the present disclosure is not particularly limited to a molding method as long as it is a method using the above-described laminated sheet.
The molded body of the present disclosure is preferably a step of forming a curable composition for an optical member and curing it by irradiation with an active energy ray to produce a laminated sheet having an optical member on a resin substrate (hereinafter referred to as “a laminated sheet”). , Also referred to as “laminated sheet manufacturing step”), a step of obtaining an optical molded body by three-dimensionally molding (preferably vacuum forming) the prepared laminated sheet (hereinafter also referred to as “three-dimensional molding step”), (The manufacturing method of the optical molded object of one Embodiment of this invention). In this case, an optical molded body is manufactured as the molded body.
 比較的高い温度に曝される成形に際して、既述の本発明の一実施形態の積層シートが用いられるので、成形の際の熱で溶融して形状変形を生じにくく、かつ、成形時に延ばされた際に生じやすい亀裂(クラック)等の発生も抑えられる。 Since the laminated sheet according to one embodiment of the present invention described above is used for molding that is exposed to a relatively high temperature, it is difficult to cause shape deformation by melting with heat during molding, and is extended during molding. Occurrence of cracks or the like that are likely to occur during the process is also suppressed.
-積層シート作製工程-
 本開示における積層シート作製工程では、光学部材用硬化性組成物を成形し、かつ、活性エネルギー線を照射して硬化させ、樹脂基材上に光学部材を有する積層シートを作製する。
 光学部材用硬化性組成物の詳細については、既述の通りであり、好ましい態様も同様である。
-Laminated sheet manufacturing process-
In the laminated sheet production process in the present disclosure, the curable composition for an optical member is molded and cured by irradiation with active energy rays to produce a laminated sheet having an optical member on a resin substrate.
The details of the curable composition for optical members are as described above, and the preferred embodiments are also the same.
 光学部材用硬化性組成物は、光ラジカル重合開始剤を含有するので、活性エネルギー線が照射されることでラジカルが発生し、(メタ)アクリル樹脂及び2官能以上4官能以下の(メタ)アクリル単量体における(メタ)アクリロイル基の重合反応が進行することによって硬化する。これにより、光学部材用硬化性組成物の硬化物である光学部材が成形される。
 光学部材の成形に当たり、光学部材用硬化性組成物を硬化させる前にあらかじめ樹脂基材を光学部材用硬化性組成物と接触させた後、光学部材用硬化性組成物の硬化を行うようにしてもよい。樹脂基材と光学部材用硬化性組成物とを接触させた状態で硬化させることで、硬化収縮による密着性の向上がより期待でき、組成に由来する密着効果に加え、樹脂基材に対する密着性の向上がより効果的に図られる。
 光学部材の樹脂基材に対する密着の観点から、樹脂基材に接触された光学部材用硬化性組成物を硬化させることで、密着性により優れた光学部材を有する積層シートが得られる。
Since the curable composition for optical members contains a radical photopolymerization initiator, radicals are generated when irradiated with active energy rays, and a (meth) acrylic resin and a bifunctional to tetrafunctional (meth) acrylic. It hardens | cures when the polymerization reaction of the (meth) acryloyl group in a monomer advances. Thereby, the optical member which is a hardened | cured material of the curable composition for optical members is shape | molded.
Before molding the optical member curable composition, the resin base material is brought into contact with the optical member curable composition in advance before curing the optical member curable composition. Also good. By curing in a state where the resin substrate and the curable composition for optical members are in contact with each other, an improvement in adhesion due to curing shrinkage can be expected, and in addition to the adhesion effect derived from the composition, adhesion to the resin substrate Is improved more effectively.
From the viewpoint of adhesion of the optical member to the resin base material, a laminated sheet having an optical member superior in adhesion can be obtained by curing the curable composition for an optical member in contact with the resin base material.
 本工程では、硬化前にまず、光学部材用硬化性組成物を、目的とする光学部材の形状に立体成形する。成形は、目的とする形状が得られる方法であれば特に制限されないが、成形効率及び成形精度の観点から、金型又は木型等の型を用いた成形が好ましい。
 具体的には、例えば、所望とするレンズ形状に加工された金型を用意し、金型に光学部材用硬化性組成物を流し込み、必要に応じて乾燥させた後、光学部材用硬化性組成物を硬化させてもよい。これにより、目的とする形状に成形された成形物が安定的に得られる。
In this step, first, the curable composition for an optical member is three-dimensionally formed into the shape of the target optical member before curing. Molding is not particularly limited as long as the desired shape can be obtained, but molding using a mold such as a mold or a wooden mold is preferable from the viewpoint of molding efficiency and molding accuracy.
Specifically, for example, a mold processed into a desired lens shape is prepared, and the curable composition for an optical member is poured into the mold and dried as necessary, and then the curable composition for an optical member. The object may be cured. Thereby, the molded object shape | molded by the target shape is obtained stably.
 活性エネルギー線としては、γ線、β線、電子線、紫外線、可視光線等が含まれる。
 活性エネルギー線を発生させるための光源としては、水銀ランプ、メタルハライドランプ、UV蛍光灯、ガスレーザー、固体レーザー等が広く知られている。また、光源として半導体紫外発光デバイスを適用してもよく、小型、高寿命、高効率、及び低コストの点で、LED(Light Emitting Diode)及びLD(Laser Diode)も好適である。
 光源としては、メタルハライドランプ、超高圧水銀ランプ、高圧水銀ランプ、中圧水銀ランプ、低圧水銀ランプ、LED、又は青紫レーザーが好ましい。中でも、波長365nm、405nmもしくは436nmの光照射が可能な超高圧水銀ランプ、波長365nm、405nmもしくは436nmの光照射が可能な高圧水銀ランプ、又は、波長355nm、365nm、385nm、395nmもしくは405nmの光照射が可能なLEDがより好ましく、波長355nm、365nm、385nm、395nmもしくは405nmの光照射が可能なLEDが最も好ましい。
Active energy rays include γ rays, β rays, electron beams, ultraviolet rays, visible rays, and the like.
As light sources for generating active energy rays, mercury lamps, metal halide lamps, UV fluorescent lamps, gas lasers, solid lasers, and the like are widely known. Further, a semiconductor ultraviolet light emitting device may be applied as a light source, and an LED (Light Emitting Diode) and an LD (Laser Diode) are also suitable in terms of small size, long life, high efficiency, and low cost.
As the light source, a metal halide lamp, an ultra high pressure mercury lamp, a high pressure mercury lamp, a medium pressure mercury lamp, a low pressure mercury lamp, an LED, or a blue-violet laser is preferable. Among them, an ultra-high pressure mercury lamp capable of irradiating light with a wavelength of 365 nm, 405 nm or 436 nm, a high-pressure mercury lamp capable of irradiating light with a wavelength of 365 nm, 405 nm or 436 nm, or light irradiation with a wavelength of 355 nm, 365 nm, 385 nm, 395 nm or 405 nm Are more preferable, and an LED capable of irradiating light with a wavelength of 355 nm, 365 nm, 385 nm, 395 nm, or 405 nm is most preferable.
 活性エネルギー線の照射量は、光学部材用硬化性組成物の組成及び使用量により適宜選択すればよく、例えば、0.3J/cm以上5J/cm以下とすることができる。 The dose of the active energy ray may be appropriately selected depending on the composition and amount of the optical member for the curable composition, for example, be a 0.3 J / cm 2 or more 5 J / cm 2 or less.
 活性エネルギー線の照射には、上記の活性エネルギー線を照射可能な光源を備えた公知の装置を選択して行うことができる。例えば、HOYA CANDEO OPTRONICS社製のEXECURE 3000等の紫外線(UV)照射装置を用いてもよい。 The irradiation with the active energy ray can be performed by selecting a known device including a light source capable of irradiating the active energy ray. For example, an ultraviolet (UV) irradiation device such as EXECULE 3000 manufactured by HOYA CANDEO OPTRONICS may be used.
-立体成形工程-
 本開示における立体成形工程では、積層シート作製工程で作製された積層シートを立体成形する。本工程では、積層シートを成形できればよく、金型等の型を用いた成型加工に供されてもよい。
-Solid molding process-
In the three-dimensional forming step in the present disclosure, the laminated sheet produced in the laminated sheet producing step is three-dimensionally formed. In this step, it is sufficient that the laminated sheet can be formed, and the laminated sheet may be subjected to a forming process using a mold such as a mold.
 立体成形は、熱成形又は真空成形などが好適に挙げられる。
 真空成形する方法としては、特に制限されるものではないが、立体成形を、真空下の加熱した状態で行う方法による場合に、本発明の一実施形態の光学成形体の製造方法で成形する効果が顕著に現れる。
 真空とは、室内を真空引きし、100Pa以下の真空度とした状態を指す。
 立体成形する際の温度は、60℃以上の高温の温度域が好ましく、80℃以上の温度域がより好ましく、100℃以上の温度域がさらに好ましい。立体成形する際の温度の上限は、一般に200℃が望ましい。
 立体成形する際の温度とは、成形に供される積層シートの温度を指し、積層シートの表面に熱電対を付すことで測定される。
Suitable examples of the three-dimensional molding include thermoforming and vacuum forming.
The method for vacuum forming is not particularly limited, but the effect of forming by the method for producing an optical molded body according to an embodiment of the present invention when three-dimensional molding is performed in a heated state under vacuum. Appears prominently.
The vacuum refers to a state in which the room is evacuated to a degree of vacuum of 100 Pa or less.
The temperature during three-dimensional molding is preferably a high temperature range of 60 ° C. or higher, more preferably a temperature range of 80 ° C. or higher, and even more preferably a temperature range of 100 ° C. or higher. In general, the upper limit of the temperature for three-dimensional molding is preferably 200 ° C.
The temperature at the time of three-dimensional molding refers to the temperature of the laminated sheet subjected to molding, and is measured by attaching a thermocouple to the surface of the laminated sheet.
 上記の真空成形は、成形分野で広く知られている真空成形技術を利用して行うことができ、例えば、日本製図器工業社製のFormech508FSを用いて真空成形してもよい。 The above-described vacuum forming can be performed by using a vacuum forming technique widely known in the forming field. For example, the vacuum forming may be performed using Formech 508FS manufactured by Nippon Shikki Kogyo Co., Ltd.
 以下、本発明を実施例により更に具体的に説明するが、本発明はその主旨を越えない限り、以下の実施例に限定されるものではない。なお、特に断りのない限り、「部」は質量基準である。
 なお、以下の実施例では、積層シートの例としてレンチキュラーシートを作製し、光学部材の例としてシリンドリカルレンズが並列したレンチキュラーレンズを作製する場合を例に説明する。
EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited to the following examples unless it exceeds the gist thereof. Unless otherwise specified, “part” is based on mass.
In the following examples, a case where a lenticular sheet is manufactured as an example of a laminated sheet and a lenticular lens in which cylindrical lenses are arranged in parallel is described as an example of an optical member.
(実施例1)
-硬化性組成物の調製-
 以下に示す組成中の成分を混合し、光学部材であるシリンドリカルレンズを作製するための硬化組成物(光学部材用硬化組成物)を調製した。
 <組成>
・ポリメチルメタクリレート(PMMA) ・・・20部
(AA-6、東亞合成社製;末端にメタクリロイル基を有するメタクリル樹脂)
・トリシクロデカンメタノールジアクリレート ・・・48部
(A-DCP、新中村化学工業社製;アクリロイル基を有する2官能のアクリル単量体(2官能アクリレート))
・N-ビニル-2-ピロリドン(和光純薬工業社製) ・・・30部
・イルガキュアTPO ・・・2部
(2,4,6-トリメチルベンゾイル-ジフェニル-フォスフィンオキサイド、BASF社製;アシルフォスフィンオキサイド系の光ラジカル重合開始剤)
Example 1
-Preparation of curable composition-
The components in the composition shown below were mixed to prepare a cured composition (cured composition for optical member) for producing a cylindrical lens as an optical member.
<Composition>
Polymethylmethacrylate (PMMA) 20 parts (AA-6, manufactured by Toagosei Co., Ltd .; methacrylic resin having a methacryloyl group at the end)
Tricyclodecane methanol diacrylate 48 parts (A-DCP, manufactured by Shin-Nakamura Chemical Co., Ltd .; bifunctional acrylic monomer having acryloyl group (bifunctional acrylate))
・ N-vinyl-2-pyrrolidone (manufactured by Wako Pure Chemical Industries, Ltd.) 30 parts ・ Irgacure TPO 2 parts (2,4,6-trimethylbenzoyl-diphenyl-phosphine oxide, manufactured by BASF; acyl Phosphine oxide photo radical polymerization initiator)
-レンチキュラーレンズシートの作製-
 図1に示すように半円筒形状の表面を有する複数本の凸状のシリンドリカルレンズが並列したレンチキュラーレンズの形状〔高さ60μm、長手方向yの長さ80mm、1本のレンズ幅(レンズのピッチ)100LPI(Line Per Inch)〕に加工された金型(幅100mm×奥行100mm)に、上記の硬化性組成物2gを流し込み、金型の加工面にアクリル樹脂フィルム(アクリプレンHBS010P、厚み:125μm、三菱レイヨン社製;樹脂基材)を載置して固定した。次いで、金型に流し込まれた硬化性組成物に対して、アクリル樹脂フィルムを介して紫外線(UV)を照射(UV照射)した。UV照射は、紫外線(UV)照射装置(EXECURE 3000、HOYA CANDEO OPTRONICS社製)を用い、UV照射量1.0J/cmの条件にて硬化するまで照射した。UV照射後、UV照射された硬化性組成物を脱型することにより、レンチキュラーレンズシートを得た。
 なお、レンチキュラーレンズには、N-ビニル-2-ピロリドンが用いられているため、レンチキュラーレンズ中にピロリドン骨格を含むものである。また、レンチキュラーレンズは、2官能アクリレートを重合反応させることで硬化された硬化物であるため、レンチキュラーレンズ中には架橋構造を有している。
-Production of lenticular lens sheet-
As shown in FIG. 1, the shape of a lenticular lens in which a plurality of convex cylindrical lenses having a semi-cylindrical surface are arranged in parallel [height 60 μm, length 80 mm in the longitudinal direction y, one lens width (lens pitch ) 100 LPI (Line Per Inch)] was poured into a mold (width 100 mm × depth 100 mm), and 2 g of the curable composition was poured into the mold, and an acrylic resin film (Acryprene HBS010P, thickness: 125 μm, Mitsubishi Rayon Co., Ltd. resin base material) was placed and fixed. Next, the curable composition poured into the mold was irradiated with ultraviolet rays (UV) through an acrylic resin film (UV irradiation). UV irradiation was performed using an ultraviolet (UV) irradiation apparatus (EXECURE 3000, manufactured by HOYA CANDEO OPTRONICS) until curing was performed under the condition of a UV irradiation amount of 1.0 J / cm 2 . After UV irradiation, the curable composition irradiated with UV was demolded to obtain a lenticular lens sheet.
Since lenticular lenses use N-vinyl-2-pyrrolidone, the lenticular lenses contain a pyrrolidone skeleton. Further, since the lenticular lens is a cured product that is cured by polymerizing a bifunctional acrylate, the lenticular lens has a cross-linked structure.
-単膜の作製-
 上記の硬化性組成物を、疎水化処理された2枚のガラス板間に挟み込み、上記と同様の条件にてUV照射し、ガラス板から剥がして膜厚50μmの樹脂硬化膜(単膜)を作製した。
-Fabrication of single film-
The above curable composition is sandwiched between two glass plates that have been subjected to a hydrophobic treatment, irradiated with UV under the same conditions as described above, and peeled off from the glass plate to form a cured resin film (single film) having a thickness of 50 μm. Produced.
(実施例2~8、比較例1、4)
 実施例1において、シリンドリカルレンズ作製用の硬化性組成物の組成又は樹脂基材を、下記表1に示すように変更したこと以外は、実施例1と同様にして、硬化性組成物を調製し、さらにレンチキュラーレンズシート及び単膜を作製した。
 なお、レンチキュラーレンズには、N-ビニル-2-ピロリドン又はN-ビニル-ε-カプロラクタムが用いられているため、レンチキュラーレンズ中にピロリドン骨格又はカプロラクタム骨格を含むものである。レンチキュラーレンズは、2官能アクリレート又は6官能アクリレートを重合反応させることで硬化された硬化物であるため、レンチキュラーレンズ中には架橋構造を有している。
(Examples 2 to 8, Comparative Examples 1 and 4)
In Example 1, a curable composition was prepared in the same manner as in Example 1 except that the composition of the curable composition for producing a cylindrical lens or the resin base material was changed as shown in Table 1 below. Further, a lenticular lens sheet and a single film were produced.
Since lenticular lenses use N-vinyl-2-pyrrolidone or N-vinyl-ε-caprolactam, the lenticular lenses contain a pyrrolidone skeleton or a caprolactam skeleton. Since the lenticular lens is a cured product that is cured by polymerizing a bifunctional acrylate or a hexafunctional acrylate, the lenticular lens has a crosslinked structure.
(実施例9)
 実施例1と同様の硬化組成物を用い、以下の方法でフィルム積層体を作製した。
-フィルム積層体の作製-
 上記の硬化性組成物を、疎水化処理されたガラス板と樹脂基材である厚み50mのアクリル樹脂フィルムとの間に挟み、上記と同様の条件にてUV照射し、照射後にガラス板から剥離した。このようにして、膜厚50μmの樹脂硬化膜と、アクリル樹脂フィルムと、からなるフィルム積層体(積層シート)を作製した。
Example 9
Using the same cured composition as in Example 1, a film laminate was produced by the following method.
-Production of film laminate-
The above curable composition is sandwiched between a hydrophobized glass plate and an acrylic resin film having a thickness of 50 m, which is a resin base material, irradiated with UV under the same conditions as described above, and peeled off from the glass plate after irradiation. did. Thus, the film laminated body (laminated sheet) which consists of a 50-micrometer-thick resin cured film and an acrylic resin film was produced.
 なお、表1中の各成分の詳細は、以下の通りである。
・PET:ポリエチレンテレフタレート(ルミラー、東レ社製;基材)
・AS-6:東亞合成社製、末端にメタクリロイル基を有するポリスチレン(末端に(メタ)アクリロイル基を有する(メタ)アクリル樹脂)
・AN-6S:東亞合成社製、固形分:51質量%、末端にメタクリロイル基を有するポリスチレン・アクリロニトリル(末端に(メタ)アクリロイル基を有する(メタ)アクリル樹脂)
・Kayarad DPHA:日本化薬社製、アクリロイル基を有する6官能のアクリル単量体(6官能アクリレート)
・N-ビニル-ε-カプロラクタム(東京化成工業社製)
・MEK-ST:オルガノシリカゾル(日産化学工業社製)
The details of each component in Table 1 are as follows.
PET: Polyethylene terephthalate (Lumirror, manufactured by Toray Industries, Inc .; base material)
AS-6: manufactured by Toagosei Co., Ltd., polystyrene having a methacryloyl group at the terminal ((meth) acrylic resin having a (meth) acryloyl group at the terminal)
AN-6S: manufactured by Toagosei Co., Ltd., solid content: 51% by mass, polystyrene acrylonitrile having a methacryloyl group at the terminal ((meth) acrylic resin having a (meth) acryloyl group at the terminal)
-Kayrad DPHA: manufactured by Nippon Kayaku Co., Ltd., a hexafunctional acrylic monomer having an acryloyl group (hexafunctional acrylate)
・ N-vinyl-ε-caprolactam (manufactured by Tokyo Chemical Industry Co., Ltd.)
MEK-ST: Organosilica sol (manufactured by Nissan Chemical Industries)
(比較例2~3)
-レンチキュラーレンズシートの作製-
 実施例で用いた金型と同一の金型の加工面にポリメチルメタクリレート(PMMA、スミペックスLG、住友化学社製)のペレット又はポリスチレン(PS、HF-77、PSジャパン社製)のペレットを置き、200℃で5分間加熱した。加熱後、ポリカーボネート(PC)フィルム(ユーピロンH-3000、厚み:125μm、三菱化学社製;基材)を載置し、溶融プレス機を用いて20MPaの圧力下、5分間加熱圧着した。その後、溶融プレス機から取り出し、比較用のレンチキュラーレンズシートを得た。
 なお、PMMA及びPSは、ペレットに代えて粉体を用いても同様である。
(Comparative Examples 2-3)
-Production of lenticular lens sheet-
Place the pellets of polymethyl methacrylate (PMMA, Sumipex LG, manufactured by Sumitomo Chemical Co., Ltd.) or polystyrene (PS, HF-77, manufactured by PS Japan Co., Ltd.) on the processed surface of the same mold as the mold used in the examples. And heated at 200 ° C. for 5 minutes. After heating, a polycarbonate (PC) film (Iupilon H-3000, thickness: 125 μm, manufactured by Mitsubishi Chemical Corp .; base material) was placed, and thermocompression bonded for 5 minutes under a pressure of 20 MPa using a melt press. Then, it removed from the melt press and obtained the lenticular lens sheet for a comparison.
PMMA and PS are the same even when powder is used instead of pellets.
-単膜の作製-
 ポリメチルメタクリレート(PMMA)のペレット又はポリスチレン(PS)のペレットを2枚のカプトン(登録商標)フィルム(200H、東レ・デュポン社製)に挟み込んで、溶融プレス機を用いて温度200℃、圧力20MPaの条件下、5分間加熱圧着した。その後、溶融プレス機から取り出し、フィルムを剥がして膜厚50μmの樹脂膜(単膜)を作製した。
 なお、PMMA及びPSは、ペレットに代えて粉体を用いても同様である。
-Fabrication of single film-
A pellet of polymethyl methacrylate (PMMA) or a pellet of polystyrene (PS) is sandwiched between two Kapton (registered trademark) films (200H, manufactured by Toray DuPont), and the temperature is 200 ° C. and the pressure is 20 MPa using a melt press. Under the conditions described above, thermocompression bonding was performed for 5 minutes. Then, it took out from the melt press and peeled off the film to produce a resin film (single film) having a thickness of 50 μm.
PMMA and PS are the same even when powder is used instead of pellets.
(評価)
 上記で作製したレンチキュラーレンズシート、樹脂硬化膜(単膜)及びフィルム積層体に対して、以下の評価を行った。評価結果は、下記表1に示す。
(Evaluation)
The following evaluation was performed with respect to the lenticular lens sheet, the resin cured film (single film), and the film laminate produced as described above. The evaluation results are shown in Table 1 below.
-1.耐熱性(形状保持性)-
 レンチキュラーレンズシート又はフィルム積層体を温度80℃の環境下に1000時間放置した後の形状を観察し、下記の評価基準にしたがって評価した。
 <評価基準>
A:レンズ高さ又はフィルム積層体の硬化物の高さ(厚さ)の変化率が5%未満である。
B:レンズ高さ又はフィルム積層体の硬化物の高さ(厚さ)の変化率が5%以上10%未満である。
C:レンズ高さ又はフィルム積層体の硬化物の高さ(厚さ)の変化率が10%以上である。
-1. Heat resistance (shape retention)-
The shape of the lenticular lens sheet or film laminate after being left in an environment at a temperature of 80 ° C. for 1000 hours was observed and evaluated according to the following evaluation criteria.
<Evaluation criteria>
A: The change rate of the lens height or the height (thickness) of the cured product of the film laminate is less than 5%.
B: The change rate of the lens height or the height (thickness) of the cured product of the film laminate is 5% or more and less than 10%.
C: The rate of change of the lens height or the height (thickness) of the cured product of the film laminate is 10% or more.
-2.高温延伸性-
 樹脂硬化膜(単膜)を、長さ50mm×幅10mmの大きさに打ち抜いてサンプル片を作成し、TENSILON RTC-1225A(エー・アンド・デイ社製)を用い、下記の条件にて引張試験を行って破断伸度を測定した。測定を3回行い、3回の測定値の平均値を破断伸度とした。破断伸度の測定値を、成形時における高温での延伸性を評価する指標として、下記の評価基準に基づいて延伸性を評価した。伸びの基準は、チャック間距離の30mmである。なお、評価基準のうち、AA~Bの範囲が実用上許容される範囲である。
 <条件>
・チャック間距離:30mm
・サンプル片の温度:100℃
・引張速度:1mm/秒
 <評価基準>
AA:破断伸度が20%以上である。
A:破断伸度が15%以上20未満%である。
B:破断伸度が10%以上15未満%である。
C:破断伸度が10%未満である。
-2. High temperature stretchability
A sample piece is made by punching a cured resin film (single film) into a size of 50 mm length x 10 mm width, and a tensile test using TENSILON RTC-1225A (manufactured by A & D) under the following conditions. And the elongation at break was measured. The measurement was performed three times, and the average value of the three measurements was taken as the breaking elongation. Using the measured value of elongation at break as an index for evaluating the extensibility at a high temperature during molding, the extensibility was evaluated based on the following evaluation criteria. The standard of elongation is 30 mm of the distance between chucks. Of the evaluation criteria, the range of AA to B is a practically acceptable range.
<Condition>
・ Distance between chucks: 30mm
-Sample piece temperature: 100 ° C
・ Tensile speed: 1mm / sec <Evaluation criteria>
AA: The elongation at break is 20% or more.
A: The elongation at break is 15% or more and less than 20%.
B: The elongation at break is 10% or more and less than 15%.
C: The elongation at break is less than 10%.
-3.基材密着性-
 レンチキュラーレンズシート又はフィルム積層体に対し、JIS K5600-5-6(1999)に準拠した方法により、樹脂硬化膜又はPMMA膜もしくはPS膜の膜面から樹脂基材まで到達する切れ込みを平行に11本入れ、90°向きを変えて更に11本の平行な切れ込みを入れて樹脂硬化膜又はPMMA膜もしくはPS膜を格子状に区画した。切れ込みの間隔は、2mm間隔とした。格子状に区画された各膜の表面にセロハン粘着テープ(CT-24、ニチバン社製)を貼り付けた後、セロハン粘着テープの一端を握持して面方向に垂直な方向へ引っ張って剥離し、剥離箇所の有無を目視により確認した。評価は、下記の評価基準にしたがって行った。
 <評価基準>
A:剥離部分がない。
B:表面全体に対する剥離箇所の割合が0%を超えて15%未満である。
C:表面全体に対する剥離部分の割合が15%以上である。
-3. Substrate adhesion
11 parallel cuts reaching the resin substrate from the resin cured film, PMMA film or PS film surface by a method based on JIS K5600-5-6 (1999) on the lenticular lens sheet or film laminate. Then, the direction of 90 ° was changed, and another 11 parallel cuts were made to partition the resin cured film, PMMA film or PS film in a lattice shape. The interval between the cuts was 2 mm. A cellophane adhesive tape (CT-24, manufactured by Nichiban Co., Ltd.) is applied to the surface of each film partitioned in a grid, and then the cellophane adhesive tape is gripped and pulled in a direction perpendicular to the surface direction. The presence or absence of the peeled part was confirmed visually. Evaluation was performed according to the following evaluation criteria.
<Evaluation criteria>
A: There is no peeling part.
B: The ratio of the peeled portion to the entire surface is more than 0% and less than 15%.
C: The ratio of the peeled portion to the entire surface is 15% or more.
Figure JPOXMLDOC01-appb-T000001

 
Figure JPOXMLDOC01-appb-T000001

 
 表1に示すように、多官能(メタ)アクリル単量体を用い、架橋構造を形成して耐熱性を付与し、かつ、特定の骨格構造、すなわちピロリドン骨格又はカプロラクタム骨格が特定量の範囲で含まれた実施例では、高温での延伸性に優れ、樹脂基材との密着性も良好であった。特に、ビニルピロリドン(ピロリドン骨格)を含み、かつ、(メタ)アクリル樹脂の含有量を20質量部以上40質量部とした場合がより良好な結果を示した。
 これに対して、ビニル化合物であるN-ビニル-2-ピロリドンに由来のピロリドン骨格の含有量が10質量%である比較例1では、樹脂基材との密着性に劣っていた。更にビニル化合物(ピロリドン骨格及びカプロラクタム骨格)を含まない比較例4では、密着性と高温での延伸性に著しく劣り、(メタ)アクリル樹脂の含有量も少ないため、所望のレンズ高さを有する形状が得られなかった。
As shown in Table 1, a polyfunctional (meth) acrylic monomer is used, a crosslinked structure is formed to impart heat resistance, and a specific skeleton structure, that is, a pyrrolidone skeleton or a caprolactam skeleton is in a specific amount range. In the included examples, the stretchability at high temperature was excellent, and the adhesion to the resin substrate was also good. In particular, better results were obtained when vinylpyrrolidone (pyrrolidone skeleton) was included and the content of the (meth) acrylic resin was 20 to 40 parts by mass.
In contrast, Comparative Example 1 in which the content of the pyrrolidone skeleton derived from the vinyl compound N-vinyl-2-pyrrolidone was 10% by mass was inferior in adhesion to the resin substrate. Furthermore, in Comparative Example 4 which does not contain a vinyl compound (pyrrolidone skeleton and caprolactam skeleton), the shape having a desired lens height is remarkably inferior in adhesion and stretchability at high temperature, and the content of (meth) acrylic resin is small. Was not obtained.
 2016年7月27日に出願された日本出願特願2016-147489及び2017年3月27日に出願された日本出願特願2017-061854の開示はその全体が参照により本明細書に取り込まれる。
 本明細書に記載された全ての文献、特許出願、及び技術規格は、個々の文献、特許出願、及び技術規格が参照により取り込まれることが具体的かつ個々に記された場合と同程度に、本明細書中に参照により取り込まれる。
The disclosures of Japanese Patent Application No. 2016-147489 filed on July 27, 2016 and Japanese Patent Application No. 2017-061854 filed on March 27, 2017 are incorporated herein by reference in their entirety.
All documents, patent applications, and technical standards mentioned in this specification are to the same extent as if each individual document, patent application, and technical standard were specifically and individually stated to be incorporated by reference, Incorporated herein by reference.

Claims (16)

  1.  樹脂基材と、
     前記樹脂基材の少なくとも一方面に配置された硬化物であって、架橋構造を有する硬化樹脂、並びに、硬化物の全質量に対する総含有量が8質量%以上の、ピロリドン骨格及びカプロラクタム骨格から選ばれる少なくとも一方の骨格を有する硬化物と、
     を有する積層シート。
    A resin substrate;
    A cured product disposed on at least one surface of the resin base material, which is selected from a cured resin having a crosslinked structure, and a pyrrolidone skeleton and a caprolactam skeleton having a total content of 8% by mass or more based on the total mass of the cured product A cured product having at least one skeleton,
    A laminated sheet having
  2.  前記ピロリドン骨格及び前記カプロラクタム骨格の総含有量が、前記硬化物の全質量に対して、15質量%以上60質量%以下である請求項1に記載の積層シート。 The laminated sheet according to claim 1, wherein the total content of the pyrrolidone skeleton and the caprolactam skeleton is 15% by mass or more and 60% by mass or less with respect to the total mass of the cured product.
  3.  更に、前記樹脂基材の前記硬化物を有する側と反対側に画像を有する請求項1又は請求項2に記載の積層シート。 Furthermore, the lamination sheet of Claim 1 or Claim 2 which has an image on the opposite side to the side which has the said hardened | cured material of the said resin base material.
  4.  前記硬化物が、光学部材である請求項1~請求項3のいずれか1項に記載の積層シート。 The laminated sheet according to any one of claims 1 to 3, wherein the cured product is an optical member.
  5.  前記光学部材がシリンドリカルレンズであり、レンチキュラーシートである請求項4に記載の積層シート。 The laminated sheet according to claim 4, wherein the optical member is a cylindrical lens and is a lenticular sheet.
  6.  末端に(メタ)アクリロイル基を有する(メタ)アクリル樹脂と、
     2つ以上4つ以下の(メタ)アクリロイル基を含む多官能(メタ)アクリル単量体と、
     組成物全質量に対する含有量が10質量%を超える、ビニルピロリドン及びビニルカプロラクタムから選ばれる少なくとも一方のビニル化合物と、
     光ラジカル重合開始剤と、
    を含有し、
     積層シート用光学部材の作製に用いられる、光学部材用硬化性組成物。
    A (meth) acrylic resin having a (meth) acryloyl group at the end;
    A polyfunctional (meth) acrylic monomer containing 2 or more and 4 or less (meth) acryloyl groups;
    At least one vinyl compound selected from vinyl pyrrolidone and vinyl caprolactam, the content of which exceeds 10% by mass with respect to the total mass of the composition;
    A radical photopolymerization initiator;
    Containing
    A curable composition for an optical member, which is used for producing an optical member for a laminated sheet.
  7.  更に、単官能の(メタ)アクリル単量体を含有する請求項6に記載の光学部材用硬化性組成物。 Furthermore, the curable composition for optical members according to claim 6, further comprising a monofunctional (meth) acrylic monomer.
  8.  総含有量100質量部に対して、
     前記(メタ)アクリル樹脂の含有量が5質量部以上40質量部以下であり、
     前記多官能(メタ)アクリル単量体の含有量が1質量部以上75質量部以下であり、
     前記ビニル化合物の含有量が15質量部以上50質量部以下であり、かつ、
     前記光ラジカル重合開始剤の含有量が0.1質量部以上5質量部以下である、
     請求項6又は請求項7に記載の光学部材用硬化性組成物。
    For a total content of 100 parts by weight,
    The content of the (meth) acrylic resin is 5 parts by mass or more and 40 parts by mass or less,
    The content of the polyfunctional (meth) acrylic monomer is 1 part by mass or more and 75 parts by mass or less,
    The vinyl compound content is 15 parts by mass or more and 50 parts by mass or less, and
    The content of the radical photopolymerization initiator is 0.1 parts by mass or more and 5 parts by mass or less.
    The curable composition for optical members according to claim 6 or 7.
  9.  前記ビニル化合物がビニルピロリドンであり、かつ、前記(メタ)アクリル樹脂の含有量が20質量部以上40質量部である請求項6~請求項8のいずれか1項に記載の光学部材用硬化性組成物。 The curability for an optical member according to any one of claims 6 to 8, wherein the vinyl compound is vinyl pyrrolidone, and the content of the (meth) acrylic resin is 20 parts by mass or more and 40 parts by mass. Composition.
  10.  請求項6~請求項9のいずれか1項に記載の光学部材用硬化性組成物を成形し、かつ、活性エネルギー線を照射して硬化させ、樹脂基材上に光学部材を有する積層シートを作製する工程と、
     作製された積層シートを立体成形することで光学成形体を得る工程と、
     を有する光学成形体の製造方法。
    A laminated sheet having the optical member on a resin substrate, wherein the curable composition for an optical member according to any one of claims 6 to 9 is molded and cured by irradiation with an active energy ray. A manufacturing process;
    A process of obtaining an optical molded body by three-dimensionally molding the produced laminated sheet;
    The manufacturing method of the optical molded object which has this.
  11.  請求項1~請求項5のいずれか1項に記載の積層シートの熱成形物又は真空成形物である成形体。 A molded body which is a thermoformed product or a vacuum formed product of the laminated sheet according to any one of claims 1 to 5.
  12.  光学成形体である請求項11に記載の成形体。 The molded article according to claim 11, which is an optical molded article.
  13.  請求項6~請求項9のいずれか1項に記載の光学部材用硬化性組成物を準備する工程、及び前記光学部材用硬化性組成物を硬化する工程を含む、硬化物の製造方法。 A method for producing a cured product, comprising a step of preparing the curable composition for an optical member according to any one of claims 6 to 9, and a step of curing the curable composition for an optical member.
  14.  請求項6~請求項9のいずれか1項に記載の光学部材用硬化性組成物の硬化物を有する積層シート。 A laminated sheet having a cured product of the curable composition for optical members according to any one of claims 6 to 9.
  15.  請求項6~請求項9のいずれか1項に記載の光学部材用硬化性組成物の硬化物を有する光学部材。 An optical member having a cured product of the curable composition for an optical member according to any one of claims 6 to 9.
  16.  請求項6~請求項9のいずれか1項に記載の光学部材用硬化性組成物の硬化物を有するレンチキュラーシート。 A lenticular sheet comprising a cured product of the curable composition for optical members according to any one of claims 6 to 9.
PCT/JP2017/027133 2016-07-27 2017-07-26 Multilayer sheet, lenticular sheet, curable composition for optical members, optical member, method for producing optical molded body, molded body, and method for producing cured product WO2018021445A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018530370A JPWO2018021445A1 (en) 2016-07-27 2017-07-26 Laminated sheet, lenticular sheet, curable composition for optical member, optical member, method for producing optical molded body, molded body, and method for producing cured product

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2016-147489 2016-07-27
JP2016147489 2016-07-27
JP2017061854 2017-03-27
JP2017-061854 2017-03-27

Publications (1)

Publication Number Publication Date
WO2018021445A1 true WO2018021445A1 (en) 2018-02-01

Family

ID=61016223

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/027133 WO2018021445A1 (en) 2016-07-27 2017-07-26 Multilayer sheet, lenticular sheet, curable composition for optical members, optical member, method for producing optical molded body, molded body, and method for producing cured product

Country Status (2)

Country Link
JP (1) JPWO2018021445A1 (en)
WO (1) WO2018021445A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02248215A (en) * 1989-02-10 1990-10-04 Minnesota Mining & Mfg Co <3M> Production of plastic complex having practically fine structure
JP2003501296A (en) * 1999-06-02 2003-01-14 スリーエム イノベイティブ プロパティズ カンパニー Polycarbonate articles and adhesive compositions
WO2013047524A1 (en) * 2011-09-27 2013-04-04 丸善石油化学株式会社 Optical element material and method for producing same
WO2016114367A1 (en) * 2015-01-15 2016-07-21 富士フイルム株式会社 Lenticular sheet and method for manufacturing same, and lenticular display element

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02248215A (en) * 1989-02-10 1990-10-04 Minnesota Mining & Mfg Co <3M> Production of plastic complex having practically fine structure
JP2003501296A (en) * 1999-06-02 2003-01-14 スリーエム イノベイティブ プロパティズ カンパニー Polycarbonate articles and adhesive compositions
WO2013047524A1 (en) * 2011-09-27 2013-04-04 丸善石油化学株式会社 Optical element material and method for producing same
WO2016114367A1 (en) * 2015-01-15 2016-07-21 富士フイルム株式会社 Lenticular sheet and method for manufacturing same, and lenticular display element

Also Published As

Publication number Publication date
JPWO2018021445A1 (en) 2019-02-28

Similar Documents

Publication Publication Date Title
EP2163566B1 (en) Resin for optical component, raw material composition used for resin for optical component, and optical component
WO1996011964A1 (en) Actinic-radiation-curable composition and lens sheet
KR20160042813A (en) Adhesive agent composition, adhesive agent composition for polarizing plate, adhesive agent for polarizing plate, and polarizing plate manufactured using said adhesive agent
WO2013146346A1 (en) Semi-cured product, cured product, methods for producing same, optical component, and curable resin composition
JP5616187B2 (en) Molded body and resin composition for molded body
JP2012226040A (en) Energy ray-curable resin composition for optical lens sheet, and cured material thereof
WO2016088580A1 (en) Light control panel and optical imaging device
WO2018021445A1 (en) Multilayer sheet, lenticular sheet, curable composition for optical members, optical member, method for producing optical molded body, molded body, and method for producing cured product
JPWO2018070538A1 (en) Curable composition, cured product and method for producing the same, laminated sheet, optical member, lenticular sheet, and three-dimensional structure
KR20180129675A (en) Resin laminate
JP6782843B2 (en) Laminated sheet and its manufacturing method, and three-dimensional structure and its manufacturing method
JP6755326B2 (en) Curable composition, cured product and its manufacturing method, laminated sheet, optical member, lenticular sheet, and three-dimensional structure
WO2018070228A1 (en) Lenticular sheet
WO2020008912A1 (en) Photocurable ink for optical sheet
WO2018174102A1 (en) Curable composition for sheets, cured product and method for producing same, sheet for three-dimensional shaping, optical member, lenticular sheet and three-dimensional structure
JP2018112687A (en) Method for producing optical member and method for producing three-dimensional structure
WO2018147242A1 (en) Curable composition, cured product, method for producing cured product, laminate sheet, optical member, lenticular sheet, and three-dimensional structure
WO2018207846A1 (en) Method for producing cured product, method for producing multilayer sheet, and method for producing three-dimensional model
JP6708754B2 (en) Laminate for forming optical member, optical member sheet and manufacturing method thereof, and three-dimensional structure and manufacturing method thereof
JP2011063726A (en) Acrylic resin composition for molding
JP4900685B2 (en) Active energy ray-curable resin composition for shaping, shaping sheet and shaped article
JP6256664B2 (en) Method for producing laminate for image display device
JP2019159005A (en) Lenticular sheet
JP2019019276A (en) Curable composition for sheet used for three-dimensional molding, laminate sheet for three-dimensional molding and manufacturing method therefor, and three-dimensional structure and manufacturing method therefor
JP2006063326A (en) Actinic radiation-curable resin composition for shaping, shaping sheet and shaped product

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2018530370

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17834447

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17834447

Country of ref document: EP

Kind code of ref document: A1