JP6386531B2 - 整合器及び整合方法 - Google Patents

整合器及び整合方法 Download PDF

Info

Publication number
JP6386531B2
JP6386531B2 JP2016505225A JP2016505225A JP6386531B2 JP 6386531 B2 JP6386531 B2 JP 6386531B2 JP 2016505225 A JP2016505225 A JP 2016505225A JP 2016505225 A JP2016505225 A JP 2016505225A JP 6386531 B2 JP6386531 B2 JP 6386531B2
Authority
JP
Japan
Prior art keywords
reflection coefficient
variable capacitor
matching
circle
capacitance value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016505225A
Other languages
English (en)
Other versions
JPWO2015129678A1 (ja
Inventor
中村 学
学 中村
藤本 直也
直也 藤本
規一 加藤
規一 加藤
押田 善之
善之 押田
▲高▼橋 直人
直人 ▲高▼橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Kokusai Electric Inc
Original Assignee
Hitachi Kokusai Electric Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Kokusai Electric Inc filed Critical Hitachi Kokusai Electric Inc
Publication of JPWO2015129678A1 publication Critical patent/JPWO2015129678A1/ja
Application granted granted Critical
Publication of JP6386531B2 publication Critical patent/JP6386531B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32082Radio frequency generated discharge
    • H01J37/32174Circuits specially adapted for controlling the RF discharge
    • H01J37/32183Matching circuits
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H7/00Multiple-port networks comprising only passive electrical elements as network components
    • H03H7/38Impedance-matching networks
    • H03H7/40Automatic matching of load impedance to source impedance
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P5/00Coupling devices of the waveguide type
    • H01P5/12Coupling devices having more than two ports
    • H01P5/16Conjugate devices, i.e. devices having at least one port decoupled from one other port
    • H01P5/18Conjugate devices, i.e. devices having at least one port decoupled from one other port consisting of two coupled guides, e.g. directional couplers
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H2242/00Auxiliary systems
    • H05H2242/20Power circuits
    • H05H2242/26Matching networks

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Plasma Technology (AREA)

Description

本発明は、高周波電源装置の出力を負荷に整合させる整合器に関するものである。
エッチングや薄膜形成を行う半導体製造工程では、プラズマ処理装置が用いられる。このプラズマ処理装置の電力供給源として、高周波電源装置が用いられる。高周波電源装置からプラズマ処理装置に対し、効率良く電力を供給するには、高周波電源装置とプラズマ処理装置(負荷)との間でインピーダンスを整合させる必要がある。インピーダンスを整合させる手段として、例えば特許文献1に示されるように、高周波電源装置とプラズマ処理装置との間に整合器を挿入する方法が一般的である。
図7は、背景技術の整合器100の機能ブロック図である。図7では、高周波電源装置2とプラズマ処理装置3との間に、整合器100が挿入されている。高周波電源装置2から出力した高周波電力を、整合器100を介してプラズマ処理装置3に供給することで、プラズマ処理装置3でプラズマを発生させる。高周波電源装置2からプラズマ処理装置3に効率よく電力を供給するためには、高周波電源装置2とプラズマ処理装置3との間でインピーダンスを整合させる必要がある。高周波電源装置2の出力インピーダンスは通常50Ωであるため、プラズマ処理装置3の入力インピーダンスを、整合器100によって変換し、整合器100の入力インピーダンスを50Ωにすればよい。
プラズマ処理装置3の入力インピーダンスは、プラズマ処理装置3に入力されるガスの種類や流量、圧力、温度等によって変化する。よって、整合器100は、時間的に変化するプラズマ処理装置3の入力インピーダンスに合わせて、適応的に整合する必要がある。
図7の整合器100は、進行波と反射波とを検出する方向性結合器11と、高周波電源装置2とプラズマ処理装置3との間でインピーダンスを整合させる整合素子を有する整合回路30と、整合回路30の整合素子の回路定数を制御するための制御部120とで構成される。
方向性結合器11の動作を説明する。
RFin端子からRFout端子に向かって進む高周波電力(進行波:Pf)は、方向性結合器11で検出され、FORWARD端子に出力される。RFout端子からRFin端子に向かって進む高周波電力(反射波:Pr)は、方向性結合器11で検出され、REFLECT端子に出力される。また、RFin端子からRFout端子に向かって進む高周波電力Pfは、REFLECT端子では検出されず、もし検出されても僅かである。同様に、RFo ut端子からRFin端子に向かって進む高周波電力Prは、FORWARD端子では検出されず、もし検出されても僅かである。
方向性結合器11で検出された進行波Pfと反射波Prは、制御部120の反射係数演算部21に入力される。反射係数Γは、進行波Pfに対する反射波Prの振幅比rと位相差θから、(数1)のように定義される。
Γ=r・exp(j・θ) (j:虚数単位)・・・(数1)
よって、進行波Pfに対する反射波Prの振幅比rと位相差θが分かれば、反射係数Γを求めることが出来る。反射係数演算部21では、進行波Pfと反射波Prとに基づき、上記振幅比rと位相差θを計算し、反射係数Γを算出する。具体的な方法としては、進行波Pfと反射波PrをFFT(高速フーリエ変換)によって周波数領域に変換し、高周波電源装置2が出力している高周波電力と同じ周波数について、進行波Pfと反射波Prの振幅と位相を比較し、振幅比rと位相差θを計算すればよい。
容量演算部122は、反射係数演算部21で計算された反射係数Γに基づき、反射係数Γをゼロに近づけるためのコンデンサ容量を計算する。コンデンサ容量の計算方法については後述する。容量設定部23は、容量演算部122で算出したコンデンサの容量に基づき、整合回路30内の可変容量コンデンサの容量を設定、変更する。
図2は、整合回路30の構成図である。
整合回路30は、負荷となるプラズマ処理装置3の入力インピーダンスが変動する範囲によって回路構成が決まるが、ここでは、π型の整合回路を例にして説明する。この整合回路30は、可変容量コンデンサ31、可変容量コンデンサ32、インダクタンス33、伝送線路35、伝送線路36を含むように構成されている。この伝送線路35と伝送線路36は、同軸ケーブルや金属板などで構成することができ、また、インダクタやコンデンサの集中定数回路を含むように構成することもできる。
伝送線路35は、整合回路30の入力端子30aと可変容量コンデンサ31の一端を接続する。可変容量コンデンサ31の他端は接地されている。伝送線路36は、整合回路30の出力端子30bと可変容量コンデンサ32の一端を接続する。可変容量コンデンサ32の他端は接地されている。
可変容量コンデンサ31、可変容量コンデンサ32、インダクタンス33は、高周波電源装置2とプラズマ処理装置3との間のインピーダンス整合を行うための整合素子である。また、整合回路30は、可変容量コンデンサ31の容量を制御するための可変容量コンデンサ制御端子31aと、可変容量コンデンサ32の容量を制御するための可変容量コンデンサ制御端子32aとを備える。
整合回路30の可変容量コンデンサの制御は、方向性結合器11で検波した進行波Pfと反射波Prから計算される反射係数Γの大きさがゼロに近づくように制御される。このときの可変容量の計算式を、(数2)と(数3)に示す。VC1は可変容量コンデンサ31の容量、VC2は可変容量コンデンサ32の容量である。
VC1(n)=VC1(n-1)+real(Γ(n))*S1・・・(数2) VC2(n)=VC2(n-1)−imag(Γ(n))*S2・・・(数3) ここでreal( )は( )内の複素数の実部を示し、imag( )は( )内の複素数の虚部を示す。S1とS2は係数であり、コンデンサ容量を更新する量を決める。
(数2)はVC1を更新する式であり、(数3)はVC2を更新する式である。VC1(n)は、前回に更新したVC1(n-1)に対し、反射係数Γの実部に係数S1をかけたものを足すことで算出される。VC2(n)は、前回に更新したVC2(n-1)に対し、反射係数Γの虚部に係数S2をかけたものを引くことで算出される。ここで、VC1とVC2において、更新する量(real(Γ)*S1、又は、imag(Γ)*S2)を足すか引くかの違いは、整合回路30の回路方式と、整合する負荷の入力インピーダンスによるものである。
この背景技術のアルゴリズムの弱点は、負荷インピーダンスが変化したときに、VC1とVC2が整合点に収束しない条件があるということである。前述したように、プラズマ負荷のインピーダンスは変化する。プラズマが着火する前後で急激に変化するし、プラズマ処理装置に入力されるガスの種類や流量、圧力、温度等によっても変化する。
整合回路30の入力インピーダンスが50Ωに整合(つまり、反射係数が0)するためのVC1とVC2は、整合器100の出力に接続される負荷インピーダンスによってきまるが、プラズマ負荷が変化するため、整合するときのVC1とVC2の値も変化する。そのため、(数2)と(数3)によるアルゴリズムを使うと、VC1とVC2が収束しない場合がある。その理由は、VC1は(数2)で計算、つまり反射係数の実部から計算され、VC2は(数3)で計算、つまり反射係数の虚部から計算されるが、プラズマ負荷のインピーダンスや可変容量コンデンサの容量によっては、(数2)と(数3)の関係が成り立たない場合があり、このときVC1とVC2は、整合する定数に収束しない。
WO2013/132591号公報
上述したように、背景技術の整合アルゴリズムでは、負荷インピーダンスによっては整合点に収束しないという課題があった。本発明の目的は、どのような負荷インピーダンスにおいても整合点に収束する整合アルゴリズムを提供することにある。
上記課題を解決するための、本願発明の整合器の代表的な構成は、次のとおりである。すなわち、
進行波と反射波とを検出する方向性結合器と、
入力端子と、出力端子と、一端が第1の伝送線路を介して前記入力端子に接続され他端が接地された第1の可変容量コンデンサと、一端が第2の伝送線路を介して前記出力端子に接続され他端が接地された第2の可変容量コンデンサと、一端が前記第1の可変容量コンデンサの前記一端に接続され他端が前記第2の可変容量コンデンサの前記一端に接続されたインダクタンスと、を有する整合回路と、
前記方向性結合器で検出した進行波と反射波とに基づき、前記第1の可変容量コンデンサの容量値と前記第2の可変容量コンデンサの容量値とを制御する制御部と、を備え、
前記制御部は、
前記方向性結合器で検出した進行波と反射波とに基づき、反射係数を算出し、
スミスチャート上で整合点を通過する反射係数の軌跡が描く円と、前記算出された反射係数との間の距離が所定値より大きい場合は、前記第2の可変容量コンデンサの容量値を変更し、前記算出される反射係数を変更することにより、前記距離を前記所定値以内とし、
前記距離が前記所定値以内になると、前記第1の可変容量コンデンサの容量値を変更し、前記算出される反射係数を小さくする、
ことを特徴とする整合器。
上記構成によれば、どのような負荷インピーダンスにおいても整合点に収束することができる。
本発明の実施形態に係る整合器の構成図である。 本発明の実施形態に係る整合回路の構成図である。 可変容量コンデンサの容量を変えたときの反射係数の軌跡の一例を説明する図である。 可変容量コンデンサの容量を変えたときの反射係数の軌跡の他の例を説明する図である。 本発明の実施形態に係る反射係数の軌跡を示す図である。 本発明の実施形態に係るインピーダンス整合の処理フローチャートである。 背景技術に係る整合器の構成図である。
以下、本発明の実施形態について図を用いて説明する。図1は、本発明の実施形態に係る整合器10の構成図である。図1の構成のうち、背景技術の図7と同一構成には、同一の符号を付しており、適宜説明を省略する。
整合器10は、進行波と反射波とを検出する方向性結合器11と、高周波電源装置2とプラズマ処理装置3との間でインピーダンスを整合させる整合素子を有する整合回路30と、整合器10の整合素子の回路定数を制御するための制御部20と、記憶部25と、を含むように構成される。
図2において前述したように、整合回路30は、入力端子30aと、出力端子30bと、一端が伝送線路35を介して入力端子30aに接続され他端が接地された第1の可変容量コンデンサ31と、一端が伝送線路36を介して出力端子30bに接続され他端が接地された第2の可変容量コンデンサ32と、一端が第1の可変容量コンデンサ31の前記一端に接続され他端が第2の可変容量コンデンサ32の前記一端に接続されたインダクタンス33と、を有する。
制御部20は、反射係数演算部21と、容量演算部22と、容量設定部23とを含むように構成される。前述したように、制御部20は、方向性結合器11で検出した進行波と反射波とに基づき、反射係数を算出し、該反射係数を用いて、第1の可変容量コンデンサ31の容量値と第2の可変容量コンデンサ32の容量値とを制御する。記憶部25は、後述する円の情報等を記憶する。
整合器10が背景技術の整合器100と異なる点は、容量演算部22の処理内容、つまり、整合回路30の可変容量コンデンサ31の容量VC1および変容量コンデンサ32の容量VC2の制御方法と、円の情報を記憶する記憶部25が追加された点である。他の構成は、背景技術の整合器100と同じである。
ここで、円の情報とは、スミスチャート上で整合点(反射係数Γの実部と虚部がゼロの点)を通過する反射係数Γの軌跡が描く円の情報であって、円の位置や大きさに関する情報である。この円の情報は、伝送線路35の条件、つまり伝送線路35の特性インピーダンスZや線路長Lに基づき、決定されることが知られている。
容量演算部22は、反射係数演算部21で算出された反射係数Γと、記憶部25に記憶している円の情報とに基づき、算出された反射係数Γに対応する整合回路30の可変容量コンデンサ31の容量VC1および変容量コンデンサ32の容量VC2を算出する。つまり、算出された反射係数Γを小さくするようなVC1とVC2を算出する。
詳しくは、容量演算部22は、反射係数演算部21で算出される反射係数Γが、記憶部25に記憶している円に接近するように、整合回路30の可変容量コンデンサ32の容量VC2を算出する。そして、容量設定部23は、上記算出した容量になるよう、可変容量コンデンサ32の容量値VC2を変更する。これにより、容量設定部23は、反射係数Γを、前記円上に位置させる。
その後、容量演算部22は、反射係数演算部21で算出される反射係数Γが小さくなるように、整合回路30の可変容量コンデンサ31の容量VC1を算出する。そして、容量設定部23は、上記算出した容量になるよう、可変容量コンデンサ31の容量値VC1を変更する。これにより、容量設定部23は、反射係数Γを、整合点(反射係数Γが0の点)に位置させる。
記憶部25には、伝送線路35に応じた円の情報が、予め記憶されている。この円の情報(位置と大きさ)は、前述したように、伝送線路35の条件、つまり伝送線路35の特性インピーダンスZや線路長Lに基づき決定される。例えば、伝送線路35が、無視できるほどに短い場合は、円は、後述する図3に示すR1となる。また、伝送線路35が、特性インピーダンスが50Ωで、線路長がλ/4である場合は、円は、後述する図4に示すR2や、図5に示すR3となる。
ここで、本実施形態の整合アルゴリズムの考え方を説明する。
あるプラズマ負荷のときに、高周波電源装置2とプラズマ処理装置3との間のインピーダンスが整合する(つまり反射係数Γが0)ときのVC1とVC2の値を、VC1=X、VC2=Yとする。説明を解り易くするために、整合する条件であるVC1=X、VC2=Yの状態から、VC1の容量を変えたときの、整合回路30の入力インピーダンスの軌跡、つまり、反射係数Γの軌跡を図3のスミスチャートに示す。この場合、伝送線路35は、進行波や反射波の波長λに比べ、無視できるほど短いものとする。
図3において、VC1の容量を変えると、反射係数Γの軌跡は、整合がとれている状態であるF点と、G点とを結ぶ線分を直径とする円R1を描く。F点における反射係数Γは、その虚部(Γi)がゼロであり、その実部(Γr)がゼロである(整合器10の入力インピーダンスは50Ω)。G点における反射係数Γは、その虚部がゼロであり、その実部が−1である。
詳しくは、図3において、整合がとれている状態(F点)でVC1の容量を増やすと、反射係数Γは、円R1上をF点からA点の方向に動く。また、VC1の容量を減らすと、円R1上をF点からB点の方向に動く。このことは、可変容量コンデンサ31,32とインダクタンス33とを含む図2のπ型整合回路30において、可変容量コンデンサ31がグランドに接続(接地)されているときのインピーダンス軌跡として、一般的に知られているため、詳細な説明は割愛する。
図3では、伝送線路35が無視できる場合を示したが、現実には無視できないこともある。図4のスミスチャートに、伝送線路35の特性インピーダンスが50Ωで線路長がλ/4の場合の、反射係数Γの軌跡を示す。図4において、反射係数Γの軌跡は、整合がとれている状態であるF点と、H点とを結ぶ線分を直径とする円R2を描くことが知られている。H点における反射係数Γは、その虚部がゼロであり、その実部が1である(整合器10の入力インピーダンスは無限大)。
図2の整合回路30において、伝送線路35の右端から見た入力インピーダンスをZとし、伝送線路35の左端から見た入力インピーダンスをZとすると、Zは、次の(数4)により決まる。(数4)において、Zは、伝送線路35が無視できる場合(図3)の入力インピーダンスであり、Zは、伝送線路35が無視できない場合(図4)の入力インピーダンスである。伝送線路35が無視できない場合(図4)、図3の円R1は、図4の円R2になる。
Figure 0006386531
このように、図4の軌跡は、特性インピーダンスが50Ωで線路長がλ/4の伝送線路35を挿入しているため、図3の軌跡において、反射係数Γの実部と虚部がゼロの点(F点)を中心にして、180°回転した状態になる。よって、図4において、整合がとれている状態(F点)でVC1の容量を増やすと、反射係数Γは、円R2上をA´点の方向(反射係数Γの虚部が正の方向)に動く。また、VC1の容量を減らすと、反射係数Γは、円R2上をB´点の方向(反射係数Γの虚部が負の方向)に動く。すなわち、図4の円R2上において、反射係数Γの虚部が正の場合は、VC1が整合値Xよりも大きく、反射係数Γの虚部が負の場合は、VC1が整合値Xよりも小さい。
このように、図4では、整合点(F点)において、VC1を増加、又は減少させると、反射係数Γは、円R2を描くような軌跡をたどる。このことは、VC2が整合値にある状態で、VC1を変えると、反射係数Γは、図4で示した円R2上を移動することを示している。従って、まず、反射係数Γが図4の円R2上にのるようにVC2を制御し、その後、反射係数Γが0になるように、VC1を制御すればよいことが解る。
図5は、図4と同様の整合回路30の場合、つまり、伝送線路35の特性インピーダンスが50Ωで線路長がλ/4の場合において、本発明の実施形態に係るインピーダンス整合を行う際における、反射係数Γの軌跡を示すスミスチャートである。C点は、プラズマ負荷がある入力インピーダンス値にある場合において、VC1とVC2が初期値(例えば、可変容量コンデンサの最小値)のときの、反射係数Γ、つまり、整合器10の入力インピーダンスである。
まず、制御部20は、反射係数Γが、VC1とVC2の初期値のC点から、円R3に接するD点に達するまで、VC2のみを増やす。円R3は、図4の円R2と同じである。円R3の情報は、記憶部25に記憶されている。反射係数Γが、円R3に接するD点に到達すると、VC2は、整合時の容量であるYとなる。この状態では、VC2は、整合値に制御されているが、VC1は初期値のままである。そこで、制御部20は、次にVC1を増やしていく。VC1を増やすと、前述したように、反射係数Γは、円R3上を移動する。したがって、VC1を増やしていき、反射係数Γが0になるところで、VC1の増加を止めればよい。そのときのVC1は、整合時の容量であるXとなる。
図5の軌跡は、プラズマ負荷の入力インピーダンスがある値にある場合の一例であるが、プラズマ負荷の入力インピーダンスが変われば、当然、C点やD点の位置は変化する。ただし、VC2が整合時の容量である場合に、反射係数Γが円R3上にあることは変わらない。
また、図5のC点の場合は、VC1とVC2の初期値として、可変容量コンデンサの最小値を選んでいるが、可変容量コンデンサの最大値でもよく、また、その他の値でもよい。その場合、当然、C点の位置は変わる。しかし、VC1とVC2の初期値が何れの値であっても、VC2が整合時の値になっていれば、VC1を変えたときに、反射係数Γが円R3上を移動するという現象は変わらない。
よって、反射係数Γが円R3に接するまで、VC2のみを制御し、円R3に接した後は、VC1のみを制御するという、制御部20の動作は変わらない。VC2の制御において、VC2が整合値であるYよりも大きいときは、反射係数Γが円R3の外にあるので、VC2を減らすことにより、反射係数Γが円R3に接するように制御する。逆に、VC2が整合値であるYよりも小さいときは、反射係数Γが円R3の内にあるので、VC2を増やすことにより、反射係数Γが円R3に接するように制御する。
そして、反射係数Γが円R3に接するようにVC2を制御した後、VC1を次のように制御する。すなわち、反射係数Γの虚数部が正の場合は、VC1が整合値であるXよりも大きい値の場合であるので、VC1を減らすことにより、反射係数Γが0になるよう制御する。逆に、反射係数Γの虚数部が負の場合は、VC1がXよりも小さい場合なので、VC1を増やすことにより、反射係数Γが0になるよう制御する。
また、プラズマ負荷の入力インピーダンスが、VC1とVC2を制御している途中に変化した場合においても、上述したようにVC2とVC1を制御する。すなわち、反射係数Γが円R3に接するようにVC2を制御した後、VC1を制御する。
なお、図4や図5の説明では、図2の整合回路30において、伝送線路35の特性インピーダンスが50Ωで、線路長がλ/4の条件である場合を例として説明したが、本発明は、これらの条件である場合に限られない。伝送線路35の条件が上記の条件と異なれば、VC2が整合時の容量であるという条件下においてVC1を変えた場合の円の軌跡は、図4や図5で示した円R3の軌跡とは異なるので、前述した(数4)により、伝送線路35の条件に合わせた円の軌跡を設定すればよい。
図6は、本発明の実施形態に係るインピーダンス整合の処理フローチャートである。この処理は、制御部20において実行される。
先ず、初期設定として、図4や図5で示した円の情報(スミスチャート上の位置と大きさ)を、記憶部25に記憶し保存する(図6のステップS1)。上述したように、この円の情報は、伝送線路35によって決まるため、整合回路30に応じた情報を与える必要がある。また、ステップS1では、VC1とVC2の初期値も設定する。
次に、そのときの反射係数Γを、方向性結合器11から得られた進行波Pfと反射波Prから演算する(ステップS2)。次に、反射係数Γの絶対値と所定値Lとを比較する(ステップS3)。反射係数Γの絶対値がL以下である場合は(ステップS3でYes)、ステップS2に戻り、方向性結合器11から進行波Pfと反射波Prを取得して、再度、そのときの反射係数Γを演算する。
反射係数Γの絶対値がLよりも大きい場合は(ステップS3でNo)、ステップS4に進む。このLは、整合がとれたことを判断するための閾値であり、理想的には0であるが、現実的には、反射係数Γを0にするのは困難であるため、ある閾値Lを設けて判断する。このLは、高周波電源装置2の耐反射電力や、高周波電源装置2を使うプラズマ処理装置3の要求仕様によって決定される値である。
ステップS4では、初期設定(ステップS1)で定義した円上に反射係数Γがあるか否かを判定するため、記憶部25から円の情報を取得し、反射係数Γと円との距離の最小値Pを演算する。この値Pが所定の閾値Mよりも大きい場合は(ステップS5でYes)、VC2が整合値でないので、VC2を変更するように制御する。具体的には、反射係数Γが円上にないと判定し、ステップS6に進む。このMも、理想的には0であるが、現実には0にするのは困難であるため、所定の値に設定する。
Pが所定の閾値M以下の場合は(ステップS5でNo)、VC2が整合値であるので、VC2を変更する必要はない。そこで、VC1(つまり可変容量コンデンサ31)の制御動作へ進む。すなわち、反射係数Γが円上にあると判定し、ステップS10に進む。
ステップS6では、VC2(つまり可変容量コンデンサ32)を制御する方向を判断するため、反射係数Γが円よりも内側にあるか否かを判定する。反射係数Γが円の内側にある場合は(ステップS6でYes)、VC2がYよりも小さいので、VC2を増やす(ステップS7)。反射係数Γが円の外側にある場合は(ステップS6でNo)、VC2がYよりも大きいので、VC2を減らす(ステップS8)。このとき、減らす量、増やす量は予め設定しておけばよい。
こうして、ステップS2からステップS7又はS8までの処理を繰り返すことにより、Pを所定の閾値M以下とすることができる、つまり、ほぼ円上に反射係数Γをのせることができる。こうして、ステップS5において、PがM以下であると判定されると、ステップS10に進み、VC1(つまり可変容量コンデンサ31)の制御動作を行う。
ステップS10では、反射係数Γの虚部が負であるか否かを判定、つまり、VC1がXより小さいか否かを判定する。前述したように、反射係数Γの虚部が負の場合は、VC1がXよりも小さく、反射係数Γの虚部が正の場合は、VC1がXよりも大きい。したがって、反射係数Γの虚部が負である場合は(ステップS10でYes)、VC1を増やす。反射係数Γの虚部が正である場合は(ステップS10でNo)、VC1を減らす。こうして、VC1を変更することにより、反射係数Γをゼロに近づける。このときの増減の量も予め設定しておく。
以上説明したように、制御部20は、方向性結合器11で検出した進行波と反射波とに基づき、反射係数を算出し、スミスチャート上で整合点を通過する反射係数の軌跡が描く円と、前記算出された反射係数との間の距離が所定値より大きい場合は、第2の可変容量コンデンサ32の容量値を変更し、前記算出される反射係数を変更することにより、前記距離を前記所定値以内とし、前記距離が前記所定値以内になると、第1の可変容量コンデンサ31の容量値を変更し、前記距離を変えることなく、前記算出される反射係数を小さくする。
本実施形態によれば、少なくとも次の効果を奏する。
(a)スミスチャート上で整合点を通過する反射係数の軌跡が描く円と、算出された反射係数との間の距離が所定値より大きい場合は、第2の可変容量コンデンサの容量値を変更し、算出される反射係数を変更することにより、前記距離を前記所定値以内とし、前記距離が前記所定値以内になると、第1の可変容量コンデンサの容量値を変更し、算出される反射係数を小さくするように構成したので、どのような負荷インピーダンスにおいても整合点に収束することができる。
なお、本発明は、上記実施形態に限定されるものではなく、その要旨を逸脱しない範囲で種々に変更が可能であることはいうまでもない。
上記実施形態では、伝送線路35に対応する円の情報を記憶部25に予め記憶するように構成したが、記憶部25に予め記憶するのではなく、円の情報が必要になる毎に、制御部20が(数4)を用いて円の情報を演算するように構成してもよい。
本明細書には、本発明に関する少なくとも次の構成が含まれる。
第1の構成は、
進行波と反射波とを検出する方向性結合器と、
入力端子と、出力端子と、一端が第1の伝送線路を介して前記入力端子に接続され他端が接地された第1の可変容量コンデンサと、一端が第2の伝送線路を介して前記出力端子に接続され他端が接地された第2の可変容量コンデンサと、一端が前記第1の可変容量コンデンサの前記一端に接続され他端が前記第2の可変容量コンデンサの前記一端に接続されたインダクタンスと、を有する整合回路と、
前記方向性結合器で検出した進行波と反射波とに基づき、前記第1の可変容量コンデンサの容量値と前記第2の可変容量コンデンサの容量値とを制御する自動制御部と、を備え、
前記自動制御部は、
前記方向性結合器で検出した進行波と反射波とに基づき、反射係数を算出し、
スミスチャート上で整合点を通過する反射係数の軌跡が描く円と、前記算出された反射係数との間の距離が所定値より大きい場合は、前記第2の可変容量コンデンサの容量値を変更し、前記算出される反射係数を変更することにより、前記距離を前記所定値以内とし、
前記距離が前記所定値以内になると、前記第1の可変容量コンデンサの容量値を変更し、前記算出される反射係数を小さくする、
ことを特徴とする整合装置。
第2の構成は、第1の構成の整合器であって、
前記自動制御部は、前記算出された反射係数が前記円の内側に位置する場合は、前記第2の可変容量コンデンサの容量値を大きくし、前記算出された反射係数が前記円の外側に位置する場合は、前記第2の可変容量コンデンサの容量値を小さくすることを特徴とする整合器。
第3の構成は、第1の構成又は第2の構成の整合器であって、
前記自動制御部は、前記算出された反射係数の虚部が負である場合は、前記第1の可変容量コンデンサの容量値を大きくし、前記算出された反射係数の虚部が正である場合は、前記第1の可変容量コンデンサの容量値を小さくすることを特徴とする整合器。
第4の構成は、第1の構成ないし第3の構成の整合器であって、
前記整合回路の前記第1の伝送線路は、特性インピーダンスが50Ωで、線路長がλ/4(λは、前記進行波及び反射波の波長)であるか、又は、前記進行波及び反射波に比べ無視できる程度の長さであることを特徴とする整合器。
プラズマ発生用のマイクロ波電源などに好適であり、13.56MHz、915MHz、2.45GHz、5.8GHz等のISMバンドを含む広い周波数で利用できる。
2…高周波電源装置、3…プラズマ処理装置、10…整合器、11…方向性結合器、20…制御部、21…反射係数演算部、22…容量演算部、23…容量設定部、25…記憶部、30…整合回路、30a…入力端子、30b…出力端子、31,32…可変容量コンデンサ、31a…制御端子、32a…制御端子、33…インダクタンス、35,36…伝送線路、100…整合器、120…制御部、122…容量演算部。

Claims (5)

  1. 入力端子と、出力端子と、一端が第1の伝送線路を介して前記入力端子に接続され他端が接地された第1の可変容量コンデンサと、一端が第2の伝送線路を介して前記出力端子に接続され他端が接地された第2の可変容量コンデンサと、一端が前記第1の可変容量コンデンサの前記一端に接続され他端が前記第2の可変容量コンデンサの前記一端に接続されたインダクタンスと、を有する整合回路と、
    前記入力端子側で進行波と反射波とを検出する方向性結合器と、
    前記方向性結合器で検出した進行波と反射波とに基づき、前記第1の可変容量コンデンサの容量値と前記第2の可変容量コンデンサの容量値とを制御する制御部と、を備え、
    前記制御部は、
    前記方向性結合器で検出した進行波と反射波とに基づき、反射係数を算出し、
    前記第1の可変容量コンデンサの容量値を変えた場合にスミスチャート上で整合点を通過する反射係数の軌跡が描く円と、
    前記算出された反射係数との間の距離が所定値より大きい場合は、前記第2の可変容量コンデンサの容量値を変更し、前記算出される反射係数を変更することにより、前記距離を前記所定値以内とする第1の制御と
    前記距離が前記所定値以内になると、前記第1の可変容量コンデンサの容量値を変更し、前記算出される反射係数を小さくする第2の制御とし、
    前記第1と第2の制御を前記整合点に収束するまで繰り返すことを特徴とする整合器。
  2. 入力端子と、出力端子と、一端が第1の伝送線路を介して前記入力端子に接続され他端が接地された第1の可変容量コンデンサと、一端が第2の伝送線路を介して前記出力端子に接続され他端が接地された第2の可変容量コンデンサと、一端が前記第1の可変容量コンデンサの前記一端に接続され他端が前記第2の可変容量コンデンサの前記一端に接続されたインダクタンスと、を有する整合回路と、
    前記入力端子側で進行波と反射波とを検出する方向性結合器と、
    を備える整合器における整合方法であって、
    前記第1の伝送線路に応じて、前記第1の可変容量コンデンサの容量値を変えた場合にスミスチャート上で整合点を通過する反射係数の軌跡が描く円を設定するステップと、
    前記方向性結合器で検出した進行波と反射波とに基づき、反射係数を算出するステップと、
    前記算出された反射係数と前記円との間の距離が所定値より大きいと、前記第2の可変容量コンデンサの容量値を変更することにより、
    前記算出される反射係数を変更して、前記距離を前記所定値以内とする第1のステップと、
    前記距離が前記所定値以内になると、前記第1の可変容量コンデンサの容量値を変更することにより、前記算出される反射係数をゼロに近づける第2のステップと、前記第1と第2のステップを前記整合点に収束するまで繰り返すことを特徴とする整合器における整合方法。
  3. 前記第1の制御において、前記制御部は、前記算出された反射係数が前記円の内側に位置する場合は、前記第2の可変容量コンデンサの容量値を大きくし、前記算出された反射係数が前記円の外側に位置する場合は、前記第2の可変容量コンデンサの容量値を小さくすることを特徴とする請求項1記載の整合器。
  4. 前記第2の制御において、前記制御部は、前記算出された反射係数の虚部が負である場合は、前記第1の可変容量コンデンサの容量値を大きくし、前記算出された反射係数の虚部が正である場合は、前記第1の可変容量コンデンサの容量値を小さくすることを特徴とする請求項3記載の整合器。
  5. 前記整合回路の前記第1の伝送線路は、特性インピーダンスが50Ωで、線路長がλ/4(λは、前記進行波及び反射波の波長)であるか、又は、前記進行波及び反射波に比べ無視できる程度の長さであることを特徴とする請求項3記載の整合器。
JP2016505225A 2014-02-28 2015-02-24 整合器及び整合方法 Active JP6386531B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2014039276 2014-02-28
JP2014039276 2014-02-28
PCT/JP2015/055197 WO2015129678A1 (ja) 2014-02-28 2015-02-24 整合器及び整合方法

Publications (2)

Publication Number Publication Date
JPWO2015129678A1 JPWO2015129678A1 (ja) 2017-03-30
JP6386531B2 true JP6386531B2 (ja) 2018-09-05

Family

ID=54008996

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016505225A Active JP6386531B2 (ja) 2014-02-28 2015-02-24 整合器及び整合方法

Country Status (4)

Country Link
US (1) US9876482B2 (ja)
JP (1) JP6386531B2 (ja)
KR (1) KR101829563B1 (ja)
WO (1) WO2015129678A1 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6438252B2 (ja) * 2014-09-22 2018-12-12 株式会社日立国際電気 整合器および整合方法
JP6507243B2 (ja) 2015-06-30 2019-04-24 株式会社日立国際電気 整合器
WO2017159151A1 (ja) * 2016-03-18 2017-09-21 株式会社日立国際電気 整合器
JP6740725B2 (ja) * 2016-06-08 2020-08-19 株式会社リコー 加熱装置及び画像形成装置
WO2018051447A1 (ja) * 2016-09-15 2018-03-22 株式会社日立国際電気 整合器

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5195045A (en) * 1991-02-27 1993-03-16 Astec America, Inc. Automatic impedance matching apparatus and method
JP2001274651A (ja) * 2000-03-27 2001-10-05 Japan Radio Co Ltd インピーダンス整合装置、インピーダンス整合用コンダクタンス検出回路、およびインピーダンス整合方法
US8744384B2 (en) * 2000-07-20 2014-06-03 Blackberry Limited Tunable microwave devices with auto-adjusting matching circuit
JP2002271160A (ja) 2001-03-14 2002-09-20 Shindengen Electric Mfg Co Ltd 整合点距離検出補正装置及びその方法
JP2003318689A (ja) * 2002-04-23 2003-11-07 Kanazawa Inst Of Technology 整合回路および反射波検出回路
JP4417666B2 (ja) * 2003-07-03 2010-02-17 島田理化工業株式会社 群遅延時間調整器
KR100980598B1 (ko) * 2003-11-27 2010-09-07 가부시키가이샤 다이헨 고주파 전력 공급 시스템
JP2006139949A (ja) 2004-11-10 2006-06-01 Sumihide Ikenouchi インピーダンス整合器及びこれを用いたプラズマ処理装置
WO2006054246A1 (en) * 2004-11-19 2006-05-26 Koninklijke Philips Electronics N.V. Device comprising a controlled matching stage
US7711337B2 (en) * 2006-01-14 2010-05-04 Paratek Microwave, Inc. Adaptive impedance matching module (AIMM) control architectures
KR100895689B1 (ko) 2007-11-14 2009-04-30 주식회사 플라즈마트 임피던스 매칭 방법 및 이 방법을 위한 전기 장치
US8120259B2 (en) 2007-04-19 2012-02-21 Plasmart Co., Ltd. Impedance matching methods and systems performing the same
JP5327785B2 (ja) * 2008-08-07 2013-10-30 株式会社京三製作所 インピーダンス整合装置、およびインピーダンス整合方法
EP2151921B1 (en) * 2008-08-07 2013-10-02 Epcos AG Dynamic impedance matching network and method for matching an impedance between a source and a load
JP2010045664A (ja) 2008-08-14 2010-02-25 Tokyo Electron Ltd マッチング装置、マッチング方法、プラズマ処理装置、及び記憶媒体
JP5167053B2 (ja) * 2008-09-30 2013-03-21 吉川アールエフシステム株式会社 自動整合方法及び自動整合回路
CN102239622A (zh) * 2008-12-09 2011-11-09 株式会社丰田自动织机 非接触电力传输装置及非接触电力传输装置中的电力传输方法
JP5570796B2 (ja) 2009-12-14 2014-08-13 東京エレクトロン株式会社 インピーダンス整合装置及びそれを備えたプラズマ発生装置
JP5411683B2 (ja) 2009-12-14 2014-02-12 東京エレクトロン株式会社 インピーダンス整合装置
KR101151414B1 (ko) * 2010-02-23 2012-06-04 주식회사 플라즈마트 임피던스 정합 장치
JP4856288B1 (ja) * 2010-08-10 2012-01-18 パイオニア株式会社 インピーダンス整合装置、制御方法
WO2012020476A1 (ja) 2010-08-10 2012-02-16 パイオニア株式会社 インピーダンス整合装置、制御方法
JP2013005614A (ja) * 2011-06-17 2013-01-07 Toyota Motor Corp 送電装置、受電装置、車両、および非接触給電システム
WO2013132591A1 (ja) 2012-03-06 2013-09-12 株式会社日立国際電気 高周波電源装置およびその整合方法

Also Published As

Publication number Publication date
JPWO2015129678A1 (ja) 2017-03-30
KR20160104688A (ko) 2016-09-05
WO2015129678A1 (ja) 2015-09-03
KR101829563B1 (ko) 2018-02-14
US20160352302A1 (en) 2016-12-01
US9876482B2 (en) 2018-01-23

Similar Documents

Publication Publication Date Title
JP6429419B2 (ja) 整合器及び整合方法
JP6386531B2 (ja) 整合器及び整合方法
KR100362598B1 (ko) 예측기-수정기제어시스템을사용한전기적동조된매칭네트워크
TWI523417B (zh) RF power supply system and the use of RF power supply system impedance matching method
JP4887197B2 (ja) 高周波装置
US20080158927A1 (en) High frequency device
KR20180112883A (ko) 고효율 제너레이터 소스 임피던스의 제어를 위한 시스템 및 방법
JP4624686B2 (ja) 高周波電源装置
US10840874B2 (en) Matching device
JP7094179B2 (ja) インピーダンス整合方法およびインピーダンス整合装置
WO2017002196A1 (ja) 整合器及び整合方法
US11244809B2 (en) Control method of driving frequency of pulsed variable frequency RF generator
JP6485924B2 (ja) 高周波整合システムのインピーダンス調整方法
JP6430561B2 (ja) 高周波整合システムのインピーダンス調整方法
JP7097376B2 (ja) 複数の周波数で発生器と負荷との間のインピーダンス整合をとるための回路、そのような回路を含むアセンブリ、および関連する使用
WO2018051447A1 (ja) 整合器
JP4875331B2 (ja) 高周波電源装置および高周波電源の制御方法
JP6438252B2 (ja) 整合器および整合方法
JP6463786B2 (ja) 高周波整合システムのインピーダンス調整方法
CN107391825B (zh) 一种模拟行波管线性注波互作用的欧拉方法
Prechtl et al. Theory on dynamic matching with adjustable capacitors for the ICRF system of ASDEX Upgrade
JP2017073770A (ja) 高周波整合システム
Miazga Nonuniform transmission line matching circuits synthesis-Analytical versus optimization approach

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171024

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171215

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180523

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180719

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180802

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180809

R150 Certificate of patent or registration of utility model

Ref document number: 6386531

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250