WO2012020476A1 - インピーダンス整合装置、制御方法 - Google Patents

インピーダンス整合装置、制御方法 Download PDF

Info

Publication number
WO2012020476A1
WO2012020476A1 PCT/JP2010/063570 JP2010063570W WO2012020476A1 WO 2012020476 A1 WO2012020476 A1 WO 2012020476A1 JP 2010063570 W JP2010063570 W JP 2010063570W WO 2012020476 A1 WO2012020476 A1 WO 2012020476A1
Authority
WO
WIPO (PCT)
Prior art keywords
value
matching
circuit
transmission
matching circuit
Prior art date
Application number
PCT/JP2010/063570
Other languages
English (en)
French (fr)
Inventor
雅美 鈴木
Original Assignee
パイオニア株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パイオニア株式会社 filed Critical パイオニア株式会社
Priority to PCT/JP2010/063570 priority Critical patent/WO2012020476A1/ja
Priority claimed from JP2012501072A external-priority patent/JP5059243B2/ja
Publication of WO2012020476A1 publication Critical patent/WO2012020476A1/ja
Priority to JP2012037331A priority patent/JP5544386B2/ja

Links

Images

Classifications

    • HELECTRICITY
    • H03BASIC ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H7/00Multiple-port networks comprising only passive electrical elements as network components
    • H03H7/38Impedance-matching networks
    • H03H7/40Automatic matching of load impedance to source impedance

Abstract

 反射係数算出部は、進行波・反射波抽出部によって抽出された進行波電圧と反射波電圧とに基づき、反射係数絶対値相当値を算出する。位相判定部は、進行波電圧の位相と反射波電圧の位相とを比較し、当該位相間の遅れ又は進みを判定する。調整方向決定部は、位相判定に基づき、制御値の読み出し位置の方向を決定する。読み出し位置決定部は、読み出し位置の方向と、読み出し位置を変更するステップ幅と、に基づき、第1又は第2の記憶部の選択、第1形式又は第2形式の整合回路の選択、及び、読み出し位置の決定を行う。整合回路選択部は、読み出し位置決定部が選択した第1形式又は第2形式の整合回路が送信回路と送信アンテナとの間で電気的に接続されるようにスイッチ部を動作させる。制御値出力部は、読み出し位置決定部が決定した読み出し位置に相当する制御値を読み出し、整合回路選択部が選択した前記第1形式又は第2の形式の整合回路に反映させる。

Description

インピーダンス整合装置、制御方法
 本発明は、無線による非接触電力伝送システム、特に電磁界共振結合(磁界共鳴、電界共鳴とも言われる。)の原理に基づく無線電力伝送システムに有用なインピーダンス整合装置に関する。
 近年、家電機器や産業用装置、電気自動車等に対して電力を供給する際に、AC(Alternating Current)ケーブル等の接続を必要としない無線による非接触電力伝送技術が利用され始めている。家庭においては、電動歯ブラシ、シェーバなど水周りの小型機器や、携帯電話などポータブル機器への非接触充電装置が普及している。また電気自動車に対しては駐車場やバス停などで停車した自動車に対して、車体の下に置かれた給電装置から非接触で充電もしくは給電するシステムが実用化されている。
 無線(電磁波)を用いた電力伝送技術は大きく分けて3つの方式がある。それらは電磁誘導方式、電磁界共振結合方式、及びマイクロ波電力伝送方式である。このうち前記の家庭用、産業用、電気自動車用として普及しているのは電磁誘導方式であり、数Wという小さな電力から数10kWという大電力の領域まで幅広く製品化されている。しかし、電磁誘導方式は、電力送信側コイル(一次側コイル)と受信側コイル(二次側コイル)との間隔(エアギャップ、以降「ギャップ」と呼ぶ。)を極力小さくする必要があること、及び送受信コイル間の位置ずれに弱いことが大きな課題となっており、応用できる領域が限定されている。また、マイクロ波電力伝送方式を採用したシステムとして、人工衛星に取り付けた太陽電池パネルによって発電した電力を、ビーム幅を非常に細く絞った電波を用いて地上の受信アンテナに送信するSPS(Solar Power Satellite)システムが研究されているが、かなり大規模な設備を必要とする。電気自動車用には、送信部に導波管スロットアンテナを用い、受信部にパッチアンテナと整流器を組み合わせた試作も報告されているが、現状では効率が低いことが課題となっている。
 そのような中で近年注目されているのが電磁界共振結合方式による無線電力伝送である(例えば、非特許文献1、非特許文献2、特許文献1を参照)。この方式は送信・受信アンテナ間のギャップを大きくとれ(数10cm~数m)、位置ずれにも強いという特徴を持っており、家庭内機器、産業用機器、電気自動車など幅広い領域での応用が期待されている。また、電磁界共振結合方式には、電磁誘導では不可能な領域として移動体へ無線で電力を供給することに関しても大きな期待が寄せられている。
特表2009-501510号公報 特許第4225953号公報
A.Kurs,A.Karalis,et al."Wireless Power Transfer via Strongly Coupled Magnetic Resonances",Science,Vol.317,6 July 2007 居村,堀,"電磁界共振結合による伝送技術",IEEJ Journal,Vol.129,Vo.7,2009
 ここで、電磁界共振結合方式について説明する。図32は、電磁界共振結合方式に準じた無線電力伝送システムの一例のブロック図である。送信部は、無線周波数の高周波信号を発生する送信信号源と、その信号を伝送電力の信号レベルに増幅する増幅部とからなる送信側回路部と、送信側回路部と送信アンテナとを接続するケーブル部と、無線電力信号を放射する送信アンテナとを備える。受信部は、送信アンテナから放射された無線電力信号を受信する受信アンテナと、受信された高周波信号を整流する整流回路と、受信された電力を消費する負荷装置とを備える。送信アンテナと受信アンテナは、同じ共振周波数を有しており、一般に対向して設置される。図32に示す無線電力伝送システムは、共振周波数に等しい高周波信号で送信アンテナを駆動させることにより、送信アンテナの近接場に磁場もしくは電場を発生させ、その近接場内に置かれた受信アンテナを共鳴させることにより電力を伝送する。
 上記の文献などで、電磁界共振結合方式は、電磁誘導方式に比べてギャップを大きく取れること、位置ずれに強いことが技術的な強みとして挙げられている。一方、電磁界共振結合方式は、送信・受信アンテナ間のギャップが変わると、それに伴い伝送効率が大きく変化するという特性を持っている。しかし、電力伝送を目的としたあらゆる局面で伝送効率は極力100%に近いことが望まれるので、このような特性は好ましくない。
 また、移動する自動車、軽鉄道車両、自転車などへの給電手段として電磁界共振結合方式を適用する場合を考えると、そのような移動体では、送信アンテナ及び受信アンテナ間のギャップの連続的な変動や、絶え間ない位置ずれ状態が発生する。このような状況においても出来るだけ安定した状態で電力を供給することが望まれる。
 本発明は、上記のような課題を解決するためになされたものであり、送信アンテナと受信アンテナとの結合状態の時間経過に伴う変動に対し、インピーダンスの整合状態を高速に追従させて伝送効率を高い状態に維持し続けることが可能なインピーダンス整合装置を提供することを目的とする。
 請求項1に記載の発明は、電磁界共振結合方式に準じた無線電力伝送システムにおいて、送信回路と送信アンテナとの間に設置されるインピーダンス整合装置であって、前記送信回路からの送信信号に対応する進行波電圧と、前記送信アンテナからの反射信号に対応する反射波電圧と、を取り出す進行波・反射波抽出部と、前記進行波電圧と前記反射波電圧とに基づき、反射係数の絶対値又は当該絶対値に相当する値である反射係数絶対値相当値を算出する反射係数算出部と、前記進行波電圧の位相と前記反射波電圧の位相とを比較し、当該位相間の遅れ又は進みを判定する位相判定を行う位相判定部と、前記送信回路と前記送信アンテナとの間に直列に挿入される可変インダクタ要素と、当該可変インダクタ要素よりも前記送信アンテナ側に並列に接続される可変キャパシタ要素と、を備える第1形式の整合回路と、前記第1形式の整合回路を用いて所定のインピーダンス値に整合させるために必要なインダクタンス値及びキャパシタンス値に対応した制御値を、対応する前記送信アンテナと受信アンテナとの結合係数の大小の順に従い、反射係数絶対値相当値に関連付けて、予め記憶させた第1の記憶部と、前記送信回路と前記送信アンテナとの間に直列に挿入される可変インダクタ要素と、当該可変インダクタ要素よりも前記送信回路側に並列に接続される可変キャパシタ要素と、を備える第2形式の整合回路と、前記第2形式の整合回路を用いて所定のインピーダンス値に整合させるために必要な前記制御値を、対応する前記送信アンテナと受信アンテナとの結合係数の大小の順に従い、反射係数絶対値相当値に関連付けて、予め記憶させた第2の記憶部と、前記第1形式の整合回路、前記第2形式の整合回路、又は整合回路を挿入しないスルー回路、の何れかを、前記送信回路と前記送信アンテナとの間に電気的に接続させるスイッチ部と、前記位相判定に基づき、前記第1又は第2の記憶部から前記制御値を読出す際の、現在使用している制御値から前記結合係数が大きくなる場合に対応する制御値を選択するか、又は前記結合係数が小さくなる場合に対応する制御値を選択するかの制御値の読み出し位置の方向を決定する調整方向決定部と、前記読出し位置の方向と、前記読出し位置を変更するステップ幅と、に基づき、前記第1形式又は第2形式の整合回路又は整合回路を挿入しないスルー回路の選択、第1形式又は第2形式の整合回路が選択された場合に使用する前記第1又は第2の記憶部の選択、及び前記読出し位置の決定を行う読出し位置決定部と、前記読出し位置決定部が選択した第1形式又は第2形式の整合回路又は整合回路を挿入しないスルー回路、の何れかが前記送信回路と前記送信アンテナとの間で電気的に接続されるように前記スイッチ部を動作させる整合回路選択部と、前記読み出し位置決定部が選択した前記第1又は第2の記憶部を、前記制御値を読み出す記憶部として選択する記憶部選択部と、前記記憶部選択部が選択した前記第1又は第2の記憶部から、前記読み出し位置決定部が決定した前記読み出し位置に相当する制御値を読み出し、前記整合回路選択部が選択した前記第1形式又は第2の形式の整合回路に反映させる制御値出力部と、を備えることを特徴とする。
 請求項6に記載の発明は、電磁界共振結合方式に準じた無線電力伝送システムにおいて、送信回路と送信アンテナとの間に設置され、前記送信回路と前記送信アンテナとの間に直列に挿入される可変インダクタ要素と、当該可変インダクタ要素よりも前記送信アンテナ側に並列に接続される可変キャパシタ要素と、を備える第1形式の整合回路と、前記第1形式の整合回路を用いて所定のインピーダンス値に整合させるために必要なインダクタンス値及びキャパシタンス値に対応した制御値を、対応する前記送信アンテナと受信アンテナとの結合係数の大小の順に従い、反射係数絶対値相当値に関連付けて、予め記憶させた第1の記憶部と、前記送信回路と前記送信アンテナとの間に直列に挿入される可変インダクタ要素と、当該可変インダクタ要素よりも前記送信回路側に並列に接続される可変キャパシタ要素と、を備える第2形式の整合回路と、前記第2形式の整合回路を用いて所定のインピーダンス値に整合させるために必要な前記制御値を、対応する前記送信アンテナと受信アンテナとの結合係数の大小の順に従い、反射係数絶対値相当値に関連付けて、予め記憶させた第2の記憶部と、前記第1形式の整合回路、前記第2形式の整合回路、又は整合回路を挿入しないスルー回路、の何れかを、前記送信回路と前記送信アンテナとの間に電気的に接続させるスイッチ部と、を備えるインピーダンス整合装置が実行する制御方法であって、前記送信回路からの送信信号に対応する進行波電圧と、前記送信アンテナからの反射信号に対応する反射波電圧と、を取り出す進行波・反射波抽出工程と、前記進行波電圧と前記反射波電圧とに基づき、反射係数の絶対値又は当該絶対値に相当する値である反射係数絶対値相当値を算出する反射係数算出工程と、前記進行波電圧の位相と前記反射波電圧の位相とを比較し、当該位相間の遅れ又は進みを判定する位相判定を行う位相判定工程と、前記位相判定に基づき、前記第1又は第2の記憶部から前記制御値を読出す際の、現在使用している制御値から前記結合係数が大きくなる場合に対応する制御値を選択するか、又は前記結合係数が小さくなる場合に対応する制御値を選択するかの制御値の読み出し位置の方向を決定する調整方向決定工程と、前記読出し位置の方向と、前記読出し位置を変更するステップ幅と、に基づき、前記第1形式又は第2形式の整合回路又は整合回路を挿入しないスルー回路の選択、第1形式又は第2形式の整合回路が選択された場合に使用する前記第1又は第2の記憶部の選択、及び前記読出し位置の決定を行う読出し位置決定工程と、前記読出し位置決定工程が選択した第1形式又は第2形式の整合回路又は整合回路を挿入しないスルー回路、の何れかが前記送信回路と前記送信アンテナとの間で電気的に接続されるように前記スイッチ部を動作させる整合回路選択工程と、前記読み出し位置決定工程が選択した前記第1又は第2の記憶部を、前記制御値を読み出す記憶部として選択する記憶部選択工程と、前記記憶部選択工程が選択した前記第1又は第2の記憶部から、前記読み出し位置決定工程が決定した前記読み出し位置に相当する制御値を読み出し、前記整合回路選択工程が選択した前記第1形式又は第2の形式の整合回路に反映させる制御値出力工程と、を備えることを特徴とする。
 請求項7に記載の発明は、電磁界共振結合方式に準じた無線電力伝送システムにおいて、送信回路と送信アンテナとの間に設置されるインピーダンス整合装置であって、前記送信回路からの送信信号に対応する進行波電圧と、前記送信アンテナからの反射信号に対応する反射波電圧と、を取り出す進行波・反射波抽出部と、前記進行波電圧と前記反射波電圧とに基づき、反射係数の絶対値又は当該絶対値に相当する値である反射係数絶対値相当値を算出する反射係数算出部と、前記進行波電圧の位相と前記反射波電圧の位相とを比較し、当該位相間の遅れ又は進みを判定する位相判定を行う位相判定部と、前記送信回路と前記送信アンテナとの間に直列に挿入される可変インダクタ要素と、当該可変インダクタ要素よりも前記送信アンテナ側に並列に接続される可変キャパシタ要素と、を備える整合回路と、前記整合回路を用いて所定のインピーダンス値に整合させるために必要なインダクタンス値及びキャパシタンス値に対応した制御値を、対応する前記送信アンテナと受信アンテナとの結合係数の大小の順に従い、反射係数絶対値相当値に関連付けて、予め記憶させた記憶部と、前記整合回路、又は整合回路を挿入しないスルー回路、の何れかを、前記送信回路と前記送信アンテナとの間に電気的に接続させるスイッチ部と、前記反射係数絶対値相当値に基づき、前記スイッチ部を動作させる整合回路選択部と、前記位相判定に基づき、前記記憶部から前記制御値を読出す際の、現在使用している制御値から前記結合係数が大きくなる場合に対応する制御値を選択するか、又は前記結合係数が小さくなる場合に対応する制御値を選択するかの制御値の読み出し位置の方向を決定する調整方向決定部と、前記読み出し位置の方向と、前記読み出し位置を変更するステップ幅と、に基づき、前記読み出し位置の決定を行う読み出し位置決定部と、前記記憶部から、前記読み出し位置決定部が決定した前記読み出し位置に相当する制御値を読み出し、前記整合回路に反映させる制御値出力部と、を備えることを特徴とする。
 請求項8に記載の発明は、電磁界共振結合方式に準じた無線電力伝送システムにおいて、送信回路と送信アンテナとの間に設置されるインピーダンス整合装置であって、前記送信回路からの送信信号に対応する進行波電圧と、前記送信アンテナからの反射信号に対応する反射波電圧と、を取り出す進行波・反射波抽出部と、前記進行波電圧と前記反射波電圧とに基づき、反射係数の絶対値又は当該絶対値に相当する値である反射係数絶対値相当値を算出する反射係数算出部と、前記進行波電圧の位相と前記反射波電圧の位相とを比較し、当該位相間の遅れ又は進みを判定する位相判定を行う位相判定部と、前記送信回路と前記送信アンテナとの間に直列に挿入される可変インダクタ要素と、当該可変インダクタ要素よりも前記送信回路側に並列に接続される可変キャパシタ要素と、を備える整合回路と、前記整合回路を用いて所定のインピーダンス値に整合させるために必要なインダクタンス値及びキャパシタンス値に対応した制御値を、対応する前記送信アンテナと受信アンテナとの結合係数の大小の順に従い、反射係数絶対値相当値に関連付けて、予め記憶させた記憶部と、前記整合回路、又は整合回路を挿入しないスルー回路、の何れかを、前記送信回路と前記送信アンテナとの間に電気的に接続させるスイッチ部と、前記反射係数絶対値相当値に基づき、前記スイッチ部を動作させる整合回路選択部と、前記位相判定に基づき、前記記憶部から前記制御値を読出す際の、現在使用している制御値から前記結合係数が大きくなる場合に対応する制御値を選択するか、又は前記結合係数が小さくなる場合に対応する制御値を選択するかの制御値の読み出し位置の方向を決定する調整方向決定部と、前記読み出し位置の方向と、前記読み出し位置を変更するステップ幅と、に基づき、前記読み出し位置の決定を行う読み出し位置決定部と、前記記憶部から、前記読み出し位置決定部が決定した前記読み出し位置に相当する制御値を読み出し、前記整合回路に反映させる制御値出力部と、を備えることを特徴とする。
 本発明のインピーダンス整合装置の一態様では、インピーダンス整合装置は、電磁界共振結合方式特有の入力インピーダンス変化の軌跡に基づいて整合回路用の制御値を求め、それを記憶部に格納する。そして、インピーダンス整合装置は、一度整合を取った後に再度整合がずれた場合であっても、予め用意された記憶部のテーブルの中を、適切な方向に、適切な量だけ移動させることで迅速に整合状態を回復させることができる。これは、整合がずれた後の整合すべき入力インピーダンスはやはり入力インピーダンス変化の軌跡上に存在するからである。これにより、インピーダンス整合装置は、移動時など送受信間の結合状態の連続的な変化に伴うインピーダンス変化に対して高速に追従できるようになる。
 また、インピーダンス整合装置は、整合がずれ、反射電力が大きくなって整合を調整する必要があると判断された場合、即ち反射係数の絶対値が増大して所定の閾値を超えた場合では、進行波電圧と反射波電圧との位相比較という単純な演算結果によって、整合回路の制御値を記憶部のテーブルの中でインピーダンス値が増加する方向に更新すればよいのか、又は減少する方向に更新すれば良いのか判断する。従って、インピーダンス整合装置は、この部分の回路が簡易に製作される。また、インピーダンス整合装置の一態様では、インピーダンス整合装置は、整合の再調整を行う場合に、インピーダンス値のずれ量に対応する反射係数絶対値相当値に応じてテーブル内で整合回路の制御値を読出す際の調整ステップ幅を変えることができるので、ずれ量が多い場合には調整ステップ幅を大きくするなどして、整合状態追従の速度を上げることが可能となる。
 また、インピーダンス整合装置は、電磁界共振結合方式特有の入力インピーダンス変化の軌跡に基づいて整合回路用の制御値を求め、それを記憶部に格納することにより、従来の一般的なインピーダンス整合回路に比べて記憶部として必要なメモリサイズを大幅に低減することができる。また、それらの制御値は、反射による電力の損失が常に所定の閾値以下となるように量子化されているので、反射による損失の増大を抑えつつ、更に必要なメモリサイズを低減することが可能である。
第1実施形態に係る送信システムの概略構成図を示す。 送信アンテナ及び受信アンテナとして使用されるアンテナの一例を示す。 送受信アンテナの入力インピーダンスを3次元電磁界解析シミュレータで解析した結果を示す。 送受信アンテナの直並列型等価回路の一例である。 図4の等価回路解析の結果と、図3の電磁界解析の結果との両者をプロットしたグラフを示す。 電力伝送時の送信アンテナ及び受信アンテナの位置関係を示す。 図6に示すシステムを直並列型等価回路により表現した図である。 結合係数を変えたときの入力インピーダンスの軌跡を求め、それをスミスチャート上にプロットした図である。 結合係数を変えたときの入力インピーダンスの軌跡を求め、それをスミスチャート上にプロットした図である。 直並列等価回路によって送受信アンテナをモデル化し、送信回路1と送信アンテナ4の間に方向性結合器を入れて進行波電圧波形Vfと反射波電圧波形Vrとを計測した結果を示す。 第1形式及び第2形式の整合回路の構成例である。 入力インピーダンス軌跡上の任意のポイントを、第1形式又は第2形式の整合回路を用いてスミスチャート上の等抵抗円、等コンダクタンス円に沿って移動させて50Ωの整合ポイントまで到達させる概要図である。 第1の記憶部として記憶するテーブルの作成方法を模式的に示した図である。 第1記憶部に相当するマップの一例である。 第2の記憶部として記憶するテーブルの作成方法を模式的に示した図である。 第2記憶部に相当するマップの一例である。 第1記憶部に記憶される量子化前後の制御値を示すグラフの一例である。 第1記憶部に相当するテーブルの一例である。 第2記憶部に記憶される量子化前後の制御値を示すグラフの一例である。 第2記憶部に相当するテーブルの一例である。 進行波電圧と各結合係数に対応する反射波電圧とを示すグラフの一例である。 進行波電圧と各結合係数に対応する反射波電圧とを示すグラフの一例である。 進行波電圧と反射波電圧とを示すグラフ及び伝送効率を示すグラフである。 進行波電圧と反射波電圧とを示すグラフ及び伝送効率を示すグラフである。 進行波電圧と反射波電圧とを示すグラフ及び伝送効率を示すグラフである。 進行波電圧と反射波電圧とを示すグラフ及び伝送効率を示すグラフである。 進行波電圧と反射波電圧とを示すグラフ及び伝送効率を示すグラフである。 進行波電圧と反射波電圧とを示すグラフ及び伝送効率を示すグラフである。 第1インピーダンス整合の処理手順を示すフローチャートの一例である。 第2インピーダンス整合の処理手順を示すフローチャートの一例である。 第2実施形態に係る送信システムの概略構成図を示す。 電磁界共振結合方式に準じた無線電力伝送システムのブロック図の一例を示す。 整合回路の変形例を示す。 ギャップが近くなる方向の不整合を整合させる送信システムを示す。 ギャップが遠くなる方向の不整合を整合させる送信システムを示す。
 本発明の1つの観点では、電磁界共振結合方式に準じた無線電力伝送システムにおいて、送信回路と送信アンテナとの間に設置されるインピーダンス整合装置であって、前記送信回路からの送信信号に対応する進行波電圧と、前記送信アンテナからの反射信号に対応する反射波電圧と、を取り出す進行波・反射波抽出部と、前記進行波電圧と前記反射波電圧とに基づき、反射係数の絶対値又は当該絶対値に相当する値である反射係数絶対値相当値を算出する反射係数算出部と、前記進行波電圧の位相と前記反射波電圧の位相とを比較し、当該位相間の遅れ又は進みを判定する位相判定を行う位相判定部と、前記送信回路と前記送信アンテナとの間に直列に挿入される可変インダクタ要素と、当該可変インダクタ要素よりも前記送信アンテナ側に並列に接続される可変キャパシタ要素と、を備える第1形式の整合回路と、前記第1形式の整合回路を用いて所定のインピーダンス値に整合させるために必要なインダクタンス値及びキャパシタンス値に対応した制御値を、対応する前記送信アンテナと受信アンテナとの結合係数の大小の順に従い、反射係数絶対値相当値に関連付けて、予め記憶させた第1の記憶部と、前記送信回路と前記送信アンテナとの間に直列に挿入される可変インダクタ要素と、当該可変インダクタ要素よりも前記送信回路側に並列に接続される可変キャパシタ要素と、を備える第2形式の整合回路と、前記第2形式の整合回路を用いて所定のインピーダンス値に整合させるために必要な前記制御値を、対応する前記送信アンテナと受信アンテナとの結合係数の大小の順に従い、反射係数絶対値相当値に関連付けて、予め記憶させた第2の記憶部と、前記第1形式の整合回路、前記第2形式の整合回路、又は整合回路を挿入しないスルー回路、の何れかを、前記送信回路と前記送信アンテナとの間に電気的に接続させるスイッチ部と、前記位相判定に基づき、前記第1又は第2の記憶部から前記制御値を読出す際の、現在使用している制御値から前記結合係数が大きくなる場合に対応する制御値を選択するか、又は前記結合係数が小さくなる場合に対応する制御値を選択するかの制御値の読み出し位置の方向を決定する調整方向決定部と、前記読出し位置の方向と、前記読出し位置を変更するステップ幅と、に基づき、前記第1形式又は第2形式の整合回路又は整合回路を挿入しないスルー回路の選択、第1形式又は第2形式の整合回路が選択された場合に使用する前記第1又は第2の記憶部の選択、及び前記読出し位置の決定を行う読出し位置決定部と、前記読出し位置決定部が選択した第1形式又は第2形式の整合回路又は整合回路を挿入しないスルー回路、の何れかが前記送信回路と前記送信アンテナとの間で電気的に接続されるように前記スイッチ部を動作させる整合回路選択部と、前記読み出し位置決定部が選択した前記第1又は第2の記憶部を、前記制御値を読み出す記憶部として選択する記憶部選択部と、前記記憶部選択部が選択した前記第1又は第2の記憶部から、前記読み出し位置決定部が決定した前記読み出し位置に相当する制御値を読み出し、前記整合回路選択部が選択した前記第1形式又は第2の形式の整合回路に反映させる制御値出力部と、を備える。
 上記のインピーダンス整合装置は、電磁界共振結合方式に準じた無線電力伝送システムにおいて、送信回路と送信アンテナとの間に設置される。インピーダンス整合装置は、進行波・反射波抽出部と、反射係数算出部と、位相判定部と、第1形式の整合回路と、第1の記憶部と、第2形式の整合回路と、第2の記憶部と、スイッチ部と、調整方向決定部と、読み出し位置決定部と、整合回路選択部と、記憶部選択部と、制御値出力部と、を備える。第1記憶部は、第1形式の整合回路を用いて所定のインピーダンス値に整合させるために必要なインダクタンス値及びキャパシタンス値に対応した制御値を、対応する送信アンテナと受信アンテナとの結合係数の大小の順に従い、反射係数絶対値相当値に関連付けて、予め記憶する。ここで、「制御値」とは、インダクタンス値及びキャパシタンス値の他、インダクタンス値及びキャパシタンス値を電気的もしくはモーター等の機械的機構を用いて変化させるための制御電圧値,複数の微小インダクタ要素,微小キャパシタ要素から成るLCネットワーク回路に含まれるリレーやMEMS(Micro Electro Mechanical System)等スイッチ部のON/OFFを制御するためのビットパターンなどが該当する。また、「対応する送信アンテナと受信アンテナとの結合係数」とは、各制御値が第1形式の整合回路に反映された場合に好適な結合係数を指し、「結合係数の大小の順」に記憶されるとは、各制御値が対応する結合係数の大きい順又は小さい順に当該制御値が記憶されていることを指す。同様に、第2の記憶部は、第2形式の整合回路を用いて所定のインピーダンス値に整合させるために必要な制御値を、対応する送信アンテナと受信アンテナとの結合係数の大小の順に従い、反射係数絶対値相当値に関連付けて、予め記憶している。反射係数算出部は、進行波・反射波抽出部によって抽出された進行波電圧と反射波電圧とに基づき、反射係数絶対値相当値を算出する。ここで、「反射係数絶対値相当値」とは、反射係数の絶対値、又はこれと一意な関係にある値等、反射係数の絶対値に相当する値であり、例えば反射係数の絶対値やインピーダンスの絶対値などが該当する。位相判定部は、進行波電圧の位相と反射波電圧の位相とを比較し、当該位相間の遅れ又は進みを判定する。調整方向決定部は、位相判定に基づき、第1又は第2の記憶部から前記制御値を読出す際の、現在使用している制御値から結合係数が大きくなる場合に対応する制御値を選択するか、又は前記結合係数が小さくなる場合に対応する制御値を選択するかの制御値の読み出し位置の方向を決定する。「制御値の読み出し位置の方向」とは、各制御値が結合係数の大きい順又は小さい順に記憶されている場合に、現在の制御値が記憶されている位置を基準とした場合の新たに適用する制御値が記憶されている位置への方向を指す。読み出し位置決定部は、読出し位置の方向と、読出し位置を変更するステップ幅と、に基づき、第1形式又は第2形式の整合回路又は整合回路を挿入しないスルー回路の選択、第1形式又は第2形式の整合回路が選択された場合に使用する第1又は第2の記憶部の選択、及び読出し位置の決定を行う。「ステップ幅」とは、各制御値が結合係数の大きい順又は小さい順に記憶されている場合に、現在の制御値を基準とした制御値の数に基づく幅を指す。このステップ幅は、不変値であってもよく、可変値であってもよい。整合回路選択部は、読出し位置決定部が選択した第1形式又は第2形式の整合回路又は整合回路を挿入しないスルー回路、の何れかが送信回路と送信アンテナとの間で電気的に接続されるようにスイッチ部を動作させる。記憶部選択部は、読み出し位置決定部が選択した第1又は第2の記憶部を、制御値を読み出す記憶部として選択する。制御値出力部は、記憶部選択部が選択した第1又は第2の記憶部から、読み出し位置決定部が決定した読み出し位置に相当する制御値を読み出し、整合回路選択部が選択した前記第1形式又は第2の形式の整合回路に反映させる。このようにすることで、インピーダンス整合装置は、送信アンテナと受信アンテナとの結合状態の時間経過に伴う変動に対し、インピーダンスの整合状態を高速に追従させて伝送効率を高い状態に維持し続けることができる。
 上記のインピーダンス整合装置の一態様では、前記反射係数絶対値相当値に基づき、現在使用している制御値を調整する必要性の有無、及び、前記ステップ幅を決定する調整ステップ幅決定部をさらに備える。これにより、インピーダンス整合装置は、送信アンテナと受信アンテナとの結合状態の変化が激しい場合であっても、ステップ幅を柔軟に変更し、整合状態追従の速度を上げることが可能となる。
 上記のインピーダンス整合装置の他の一態様では、前記制御値は、電磁界共振結合方式の前記送信アンテナ及び受信アンテナを対向させ、当該送信アンテナ及び受信アンテナ間のギャップを変更した際の、前記送信回路から前記送信アンテナ側への入力インピーダンスの変化の軌跡に基づいて設定される。インピーダンス整合装置は、このように設定された制御値を予め記憶しておき、インピーダンス整合を行うことで、処理工程を削減することができ、回路規模及び必要なメモリ容量を削減することができる。
 上記のインピーダンス整合装置の他の一態様では、前記制御値は、反射による損失が常に所定の閾値以下となるように量子化して生成されている。インピーダンス整合装置は、当該制御値に基づきインピーダンス整合を行うことで、整合後の反射による損失を、常に所定の閾値以下にすることができる。
 上記のインピーダンス整合装置の他の一態様では、前記制御値は、前記反射係数の絶対値または当該絶対値に相当する値である反射係数絶対値相当値が大きくなるほど、量子化間隔が小さくなるように量子化される。インピーダンス整合装置は、当該制御値に基づきインピーダンス整合を行うことで、整合後の反射による損失を、所定の閾値以下にすることができる。
 本発明の他の観点では、電磁界共振結合方式に準じた無線電力伝送システムにおいて、送信回路と送信アンテナとの間に設置され、前記送信回路と前記送信アンテナとの間に直列に挿入される可変インダクタ要素と、当該可変インダクタ要素よりも前記送信アンテナ側に並列に接続される可変キャパシタ要素と、を備える第1形式の整合回路と、前記第1形式の整合回路を用いて所定のインピーダンス値に整合させるために必要なインダクタンス値及びキャパシタンス値に対応した制御値を、対応する前記送信アンテナと受信アンテナとの結合係数の大小の順に従い、反射係数絶対値相当値に関連付けて、予め記憶させた第1の記憶部と、前記送信回路と前記送信アンテナとの間に直列に挿入される可変インダクタ要素と、当該可変インダクタ要素よりも前記送信回路側に並列に接続される可変キャパシタ要素と、を備える第2形式の整合回路と、前記第2形式の整合回路を用いて所定のインピーダンス値に整合させるために必要な前記制御値を、対応する前記送信アンテナと受信アンテナとの結合係数の大小の順に従い、反射係数絶対値相当値に関連付けて、予め記憶させた第2の記憶部と、前記第1形式の整合回路、前記第2形式の整合回路、又は整合回路を挿入しないスルー回路、の何れかを、前記送信回路と前記送信アンテナとの間に電気的に接続させるスイッチ部と、を備えるインピーダンス整合装置が実行する制御方法であって、前記送信回路からの送信信号に対応する進行波電圧と、前記送信アンテナからの反射信号に対応する反射波電圧と、を取り出す進行波・反射波抽出工程と、前記進行波電圧と前記反射波電圧とに基づき、反射係数の絶対値又は当該絶対値に相当する値である反射係数絶対値相当値を算出する反射係数算出工程と、前記進行波電圧の位相と前記反射波電圧の位相とを比較し、当該位相間の遅れ又は進みを判定する位相判定を行う位相判定工程と、前記位相判定に基づき、前記第1又は第2の記憶部から前記制御値を読出す際の、現在使用している制御値から前記結合係数が大きくなる場合に対応する制御値を選択するか、又は前記結合係数が小さくなる場合に対応する制御値を選択するかの制御値の読み出し位置の方向を決定する調整方向決定工程と、前記読出し位置の方向と、前記読出し位置を変更するステップ幅と、に基づき、前記第1形式又は第2形式の整合回路又は整合回路を挿入しないスルー回路の選択、第1形式又は第2形式の整合回路が選択された場合に使用する前記第1又は第2の記憶部の選択、及び前記読出し位置の決定を行う読出し位置決定工程と、前記読出し位置決定工程が選択した第1形式又は第2形式の整合回路又は整合回路を挿入しないスルー回路、の何れかが前記送信回路と前記送信アンテナとの間で電気的に接続されるように前記スイッチ部を動作させる整合回路選択工程と、前記読み出し位置決定工程が選択した前記第1又は第2の記憶部を、前記制御値を読み出す記憶部として選択する記憶部選択工程と、前記記憶部選択工程が選択した前記第1又は第2の記憶部から、前記読み出し位置決定工程が決定した前記読み出し位置に相当する制御値を読み出し、前記整合回路選択工程が選択した前記第1形式又は第2の形式の整合回路に反映させる制御値出力工程と、を備える。インピーダンス整合装置は、この制御方法を実行することで、送信アンテナと受信アンテナとの結合状態の時間経過に伴う変動に対し、インピーダンスの整合状態を高速に追従させて伝送効率を高い状態に維持し続けることができる。
 本発明の他の観点では、電磁界共振結合方式に準じた無線電力伝送システムにおいて、送信回路と送信アンテナとの間に設置されるインピーダンス整合装置であって、前記送信回路からの送信信号に対応する進行波電圧と、前記送信アンテナからの反射信号に対応する反射波電圧と、を取り出す進行波・反射波抽出部と、前記進行波電圧と前記反射波電圧とに基づき、反射係数の絶対値又は当該絶対値に相当する値である反射係数絶対値相当値を算出する反射係数算出部と、前記進行波電圧の位相と前記反射波電圧の位相とを比較し、当該位相間の遅れ又は進みを判定する位相判定を行う位相判定部と、前記送信回路と前記送信アンテナとの間に直列に挿入される可変インダクタ要素と、当該可変インダクタ要素よりも前記送信アンテナ側に並列に接続される可変キャパシタ要素と、を備える整合回路と、前記整合回路を用いて所定のインピーダンス値に整合させるために必要なインダクタンス値及びキャパシタンス値に対応した制御値を、対応する前記送信アンテナと受信アンテナとの結合係数の大小の順に従い、反射係数絶対値相当値に関連付けて、予め記憶させた記憶部と、前記整合回路、又は整合回路を挿入しないスルー回路、の何れかを、前記送信回路と前記送信アンテナとの間に電気的に接続させるスイッチ部と、前記反射係数絶対値相当値に基づき、前記スイッチ部を動作させる整合回路選択部と、前記位相判定に基づき、前記記憶部から前記制御値を読出す際の、現在使用している制御値から前記結合係数が大きくなる場合に対応する制御値を選択するか、又は前記結合係数が小さくなる場合に対応する制御値を選択するかの制御値の読み出し位置の方向を決定する調整方向決定部と、前記読み出し位置の方向と、前記読み出し位置を変更するステップ幅と、に基づき、前記読み出し位置の決定を行う読み出し位置決定部と、前記記憶部から、前記読み出し位置決定部が決定した前記読み出し位置に相当する制御値を読み出し、前記整合回路に反映させる制御値出力部と、を備える。このようにすることで、インピーダンス整合装置は、ギャップが近くなる方向に対応する不整合を整合する場合に、送信アンテナと受信アンテナとの結合状態の時間経過に伴う変動に対し、インピーダンスの整合状態を高速に追従させて伝送効率を高い状態に維持し続けることができる。
 本発明の他の観点では、電磁界共振結合方式に準じた無線電力伝送システムにおいて、送信回路と送信アンテナとの間に設置されるインピーダンス整合装置であって、前記送信回路からの送信信号に対応する進行波電圧と、前記送信アンテナからの反射信号に対応する反射波電圧と、を取り出す進行波・反射波抽出部と、前記進行波電圧と前記反射波電圧とに基づき、反射係数の絶対値又は当該絶対値に相当する値である反射係数絶対値相当値を算出する反射係数算出部と、前記進行波電圧の位相と前記反射波電圧の位相とを比較し、当該位相間の遅れ又は進みを判定する位相判定を行う位相判定部と、前記送信回路と前記送信アンテナとの間に直列に挿入される可変インダクタ要素と、当該可変インダクタ要素よりも前記送信回路側に並列に接続される可変キャパシタ要素と、を備える整合回路と、前記整合回路を用いて所定のインピーダンス値に整合させるために必要なインダクタンス値及びキャパシタンス値に対応した制御値を、対応する前記送信アンテナと受信アンテナとの結合係数の大小の順に従い、反射係数絶対値相当値に関連付けて、予め記憶させた記憶部と、前記整合回路、又は整合回路を挿入しないスルー回路、の何れかを、前記送信回路と前記送信アンテナとの間に電気的に接続させるスイッチ部と、前記反射係数絶対値相当値に基づき、前記スイッチ部を動作させる整合回路選択部と、前記位相判定に基づき、前記記憶部から前記制御値を読出す際の、現在使用している制御値から前記結合係数が大きくなる場合に対応する制御値を選択するか、又は前記結合係数が小さくなる場合に対応する制御値を選択するかの制御値の読み出し位置の方向を決定する調整方向決定部と、前記読み出し位置の方向と、前記読み出し位置を変更するステップ幅と、に基づき、前記読み出し位置の決定を行う読み出し位置決定部と、前記記憶部から、前記読み出し位置決定部が決定した前記読み出し位置に相当する制御値を読み出し、前記整合回路に反映させる制御値出力部と、を備える。このようにすることで、インピーダンス整合装置は、ギャップが遠くなる方向に対応する不整合を整合する場合に、送信アンテナと受信アンテナとの結合状態の時間経過に伴う変動に対し、インピーダンスの整合状態を高速に追従させて伝送効率を高い状態に維持し続けることができる。
 上記のインピーダンス整合装置の一態様では、前記反射係数絶対値相当値に基づき、現在使用している制御値を調整する必要性の有無、及び、前記ステップ幅を決定する調整ステップ幅決定部をさらに備える。
 上記のインピーダンス整合装置の他の一態様では、前記制御値は、電磁界共振結合方式の前記送信アンテナ及び受信アンテナを対向させ、当該送信アンテナ及び受信アンテナ間のギャップを変更した際の、前記送信回路から前記送信アンテナ側への入力インピーダンスの変化の軌跡に基づいて設定される。
 なお、スイッチ部で切換えられる回路の一つとして整合回路を挿入しないスルー回路と記載したが、この記載の本質としての、整合回路を挿入しないというスルーの状態と同様の効果を有する実装方法であれば、いかなる実装方法でも構わない.例えば、明示的に整合回路をスルーするような回路パスは持っていないが、可変インダクタンスの値をゼロとすることで整合回路が入っていない状態と等価にするような実装方法も、整合回路を挿入しないスルー回路に切換えていることと同じことであるとみなされる。
 以下、図面を参照して本発明の好適な各実施形態について説明する。
 <第1実施形態>
 [概要説明]
 図1は、第1実施形態に係る送信システム100の概略構成図である。図1に示すように、送信システム100は、送信回路1と、インピーダンス整合装置2と、送信アンテナ4と、を備える。以下では、「初期状態」とは、送信システム100がインピーダンス整合のなされていない状態を指す。また、「ギャップGp」とは、送信アンテナ及び受信アンテナ間のギャップを指す。
 送信回路1は送信信号源11と増幅部12とを備える。送信信号源11は無線電力伝送で使用する高周波信号を発生させる。増幅部12は、伝送する電力の大きさを調整すると共に、電力を伝送する際の開始動作及び停止動作など制御回路として機能する。
 インピーダンス整合装置2は、後述するように、送信システム100が初期状態の場合に、送信システム100を所定のインピーダンス値に整合された状態(「整合状態」とも呼ぶ。)にするようにインピーダンス整合を行う。以後、この場合のインピーダンス整合を、「第1インピーダンス整合」とも呼ぶ。また、インピーダンス整合装置2は、第1インピーダンス整合の実行後、ギャップGpの変化等に起因して再びインピーダンス値が整合状態からずれた場合にも、インピーダンス整合を行う。以後、この場合のインピーダンス整合を、「第2インピーダンス整合」とも呼ぶ。
 インピーダンス整合装置2は、送信回路1と送信アンテナ4との間に配置される。インピーダンス整合装置2は、主に、進行波・反射波抽出部21と、反射係数算出部22と、位相判定部23と、第1形式の整合回路24と、第1の記憶部25と、第2形式の整合回路26と、第2の記憶部27と、調整方向決定部28と、調整ステップ幅決定部29と、読み出し位置決定部30と、スルー回路31と、スイッチ部32と、整合回路選択部33と、記憶部選択部34と、制御値出力部35と、を備える。
 進行波・反射波抽出部21は、送信回路1から入力された送信信号に対応する信号成分の電圧(以後、「進行波電圧Vf」と呼ぶ。)と、送信アンテナ4からの反射信号に対応する信号成分の電圧(以後、「反射波電圧Vr」とも呼ぶ。)を分離して取り出す。進行波・反射波抽出部21は、好適には、方向性結合器である。また、進行波・反射波抽出部21は、サーキュレータであってもよいが、この場合、所定のレベルの進行波を取出すためにアッテネータをさらに備える必要がある。
 反射係数算出部22は、進行波電圧Vfと反射波電圧Vrとから、反射係数「Γ」の絶対値(「反射係数絶対値|Γ|」とも呼ぶ。)を算出する。具体的には、反射係数算出部22は、反射係数絶対値|Γ|を以下の式(1)に従って算出する。
Figure JPOXMLDOC01-appb-M000001
 位相判定部23は、第1インピーダンス整合の実行時に、進行波電圧Vfの位相と反射波電圧Vrの位相が同相に近いか逆相に近いかの判定(「第1位相判定」とも呼ぶ。)を行う。後述するように、初期状態では、進行波電圧Vfの位相と反射波電圧Vrの位相とは、ほぼ同相又はほぼ逆相となる。
 また、位相判定部23は、第2インピーダンス整合の実行時に、反射波電圧Vrの位相が進行波電圧Vfの位相よりも進んでいるか又は遅れているか否かの判定(「第2位相判定」とも呼ぶ。)を行う。
 第1形式の整合回路24は、送信回路1と送信アンテナ4との間に直列に挿入される可変インダクタ要素240と、送信アンテナ4側の端に並列に接続される可変キャパシタ要素241と、を備える。第1の記憶部25は、第1形式の整合回路24を用いて送信システム100を所定のインピーダンス値に整合させるために必要な制御値を、反射係数絶対値|Γ|の各値域に対応させてテーブル上に記憶する。後述するように、第1記憶部25は、小さい反射係数絶対値|Γ|の値域から順に付された通し番号であるインデックス(以後、「インデックスIdx」と呼ぶ。)を記憶する。
 以後では、「制御値Tc」とは、第1形式又は第2形式の整合回路24、26に入力される制御値を指す。ここでは、制御値Tcは、第1形式又は第2形式の整合回路24、26に設定するインダクタンス値(「インダクタンス補正量Lm」とも呼ぶ。)及びキャパシタンス値(「キャパシタンス補正量Cm」とも呼ぶ。)を指すものとする。制御値Tcは、後述するように、電磁界共振結合方式の送信アンテナ4及び図示しない受信アンテナ(「送受信アンテナ」とも呼ぶ。)を対向させてこれらのギャップGpを変更した際の、送信回路1から送信アンテナ4側を見た時の入力インピーダンスの変化の軌跡に基づいて設定される。
 第2形式の整合回路26は、送信回路1と送信アンテナ4との間に直列に挿入される可変インダクタ要素260と、送信回路1側の端に並列に接続される可変キャパシタ要素261と、を備える。第2の記憶部27は、第2形式の整合回路26を用いて送信システム100を所定のインピーダンス値に整合させるために必要な制御値Tcを、各反射係数絶対値|Γ|の各値域に対応させてテーブル上に記憶する。後述するように、各記憶部は、小さい反射係数絶対値|Γ|の値域から順に付されたインデックスIdxを記憶する。
 以後では、第1形式の整合回路24及び第2形式の整合回路26を、単に「整合回路」とも総称する。また、第1の記憶部25及び第2の記憶部27を、単に「記憶部」とも総称する。
 調整方向決定部28は、送信システム100が整合後状態の場合に、第2位相判定の判定結果(「第2位相判定結果Jr2」とも呼ぶ。)に基づき、記憶部から制御値Tcを読み出す際の読み出し位置の方向(以後、「読み出し方向Didx」とも呼ぶ。)を決定する。ここで、「読み出し方向Didx」とは、現在使用されている制御値Tcに対応したインデックスIdxを基準とした場合の、次に使用する制御値Tcに対応するインデックスIdxの方向を指す。
 調整ステップ幅決定部29は、送信システム100が整合後状態の場合に、反射係数絶対値|Γ|に基づき、使用する制御値Tcを現在の制御値Tcから変更する必要があるか否かの判断をすると共に、新たな制御値Tcを読み出す場合のインデックスIdxのステップ(移動)幅(「ステップ幅Widx」と呼ぶ。)を決定する。
 読み出し位置決定部30は、送信システム100が整合後状態の場合に、読み出し方向Didx及びステップ幅Widxに基づき、制御値Tcを読み出す記憶部及びそのインデックスIdxを決定する。
 スイッチ部32は、第1形式の整合回路24又は第2形式の整合回路26若しくは電線のみからなるスルー回路31のいずれかが送信回路1及び送信アンテナ4と、これらの間に電気的に接続されるように動作する。
 整合回路選択部33は、第1インピーダンス整合の実行時に、反射係数絶対値|Γ|と、第1位相判定の結果(「第1位相判定結果Jr1」と呼ぶ。)とに基づいて、第1形式の整合回路24又は第2形式の整合回路26若しくは電線のみからなるスルー回路31のいずれかが送信回路1及び送信アンテナ4と電気的に接続されるようにスイッチ部32を制御する。具体的には、整合回路選択部33は、反射係数絶対値|Γ|が所定の閾値(「閾値|Γ|thr」と呼ぶ。)以下の場合、インピーダンス値を整合する必要がないと判断し、スルー回路31を選択する。一方、整合回路選択部33は、反射係数絶対値|Γ|が閾値|Γ|thrより大きい場合、インピーダンス値を整合する必要があると判断し、第1形式又は第2形式の整合回路24、26のいずれかを選択する。ここで、閾値|Γ|thrは、好適には、反射による損失を0.5%に抑えることができる値、即ち他に損失を生じる部分が無ければ効率99.5%を達成できる値に相当する0.0707に設定されるとよい。
 また、整合回路選択部33は、第2インピーダンス整合の実行時に、読み出し位置決定部30の処理結果に基づき、第1形式の整合回路24又は第2形式の整合回路26若しくはスルー回路31のいずれかが送信回路1及び送信アンテナ4と連結されるようにスイッチ部32を制御する。記憶部選択部34は、第1位相判定結果Jr1に基づいて、第1の記憶部25または第2の記憶部27のいずれに記憶された制御値Tcを使用するか選択する。また、記憶部選択部34は、読み出し位置決定部30の処理結果に基づき第1の記憶部25または第2の記憶部27のいずれに記憶された制御値Tcを使用するか選択する。制御値出力部35は、第1インピーダンス整合時及び第2インピーダンス整合時に、選択された第1又は第2の記憶部25、27から所望の制御値Tcを読み出し、整合回路選択部33によって選択された第1形式の整合回路24又は第2形式の整合回路26に当該制御値Tcを反映させる。
 [送受信アンテナ]
 次に、電磁界共振結合方式で使用される送受信アンテナ単体での特性と、その等価回路表現について述べる。図2は、本実施形態に係る送信アンテナ4及び受信アンテナとして用いられるアンテナの一例を示す。図2に示すアンテナは、直径30cm、巻数5、巻線間ピッチ5mm、銅線太さ2mmの先端オープン型ヘリカルアンテナである。
 図3は、図2に示すアンテナの入力インピーダンスを3次元電磁界解析シミュレータで解析した結果を示す。図3において、グラフ「Gr1」、「Gr2」は、入力インピーダンスの実部に相当し、グラフ「Gi1」、「Gi2」は、入力インピーダンスの虚部に相当する。図3に示すように、図2に示すアンテナは、直列共振点(即ち、虚部に相当するグラフGi1がマイナス側からプラス側へと変化する際に0Ωを横切るポイント。)において実部に相当するグラフGr1がほとんど0Ωであるという特徴を持つ。従って、このアンテナを単体で用いてもほとんど放射しないことが分かる。
 図2に示すアンテナは、直並列型等価回路によって正確にモデル化できる。図4は、図2に示すアンテナの直並列型等価回路の一例である。ここで、図3に示す周波数特性から得られる連立方程式を解いて、図4の等価回路を構成する回路要素の値を求めると、図4に示すコイルのインダクタンスLは、8.14μH、コイルと直列に配置されたコンデンサの直列キャパシタンスCは、12.6pF、コイルと並列に配置されたコンデンサの並列キャパシタンスCtは、11.4pF、抵抗Rは、0.81Ωと計算される。電磁界共振結合の現象として電力伝送で使用されるのは、図3の直列共振点であり、その共振周波数は、15.7MHzと計算される。
 ここで、図4に示す直並列型等価回路の正当性について述べる。図4に示す回路を左側から見た場合の入力インピーダンス「Zin」は式(2)により表される。
Figure JPOXMLDOC01-appb-M000002
 式(2)より、入力インピーダンスZinの実部(Re)及び虚部(Im)は、式(3)のように求められる。
Figure JPOXMLDOC01-appb-M000003
 図5は、式(2)に、先に求めたアンテナの等価回路要素の値(L=8.14μH、C=12.6pF、Ct=11.4pF、R=0.81Ω)を代入して求めた周波数特性と、図3の電磁界解析の結果との両者をプロットしたグラフを示す。具体的には、図5(a)は、入力インピーダンスZinの実部と、周波数との関係を示す。図5(b)は、入力インピーダンスZinの虚部と、周波数との関係を示す。なお、図5(a)、(b)では、図4の等価回路解析の結果は実線、図3の電磁界解析の結果は点線により表現されている。
 図5(a)、(b)に示すように、図4の等価回路解析の結果を示す実線と、図3の電磁界解析の結果を示す点線とは、ほとんど一致する。よって、図4に示す直並列型等価回路によって電磁界共振結合方式のアンテナをモデル化することは正当である。後に、図4に示す直並列型等価回路を用いて、送信アンテナ4と受信アンテナとを組み合わせた場合での入力インピーダンスの変化の軌跡(以後、「入力インピーダンス軌跡Tr」と呼ぶ。)を求める。
 [入力インピーダンスの変化の軌跡]
 次に、送信アンテナ4と受信アンテナ間の結合状態を変えたときの入力インピーダンス軌跡Trについて詳しく説明する。
 図6は、電力伝送時の送信アンテナ4及び受信アンテナの位置関係を示す。図6は、図2に示すアンテナを送信アンテナ4及び受信アンテナとして対向させて電力伝送させるシステムを示す。ギャップGpは一般に数10cm程度とされることが多い。送信アンテナ4への給電(図6では信号発生器から給電)と受信アンテナからの電力の取出しは、同軸ケーブル等を接続して行うものとする。なお、図6では、負荷を接続することで受信アンテナから電力が取り出される。
 図7は、図6に示すシステムを直並列型等価回路により表現したものである。即ち、図7に示す直並列型等価回路は、2つの電磁界共振結合用の送受信アンテナを互いに対向させ、同軸ケーブル等で送信アンテナ4に給電し、受信アンテナと負荷を同軸ケーブル等で接続させたシステムを示す。この例では、送信アンテナ4と受信アンテナとは、同じアンテナである。ここで、図7中の「Lm」は送受信アンテナが磁気的に結合された状態での相互インダクタンスを表し、送信アンテナ4及び受信アンテナに同じアンテナを用いた場合、相互インダクタンスLmは、その結合係数を「k」とすれば、式(4)により表される。
Figure JPOXMLDOC01-appb-M000004
 結合係数kの値は送受信アンテナ間のギャップGpによって決まる。従って、ギャップGpを変更することは結合係数kを変更することと等価である。
 ここで、負荷のインピーダンス「Rx」を送信側の信号源インピーダンスと等しいと仮定し、負荷のインピーダンスRxが整合目標のインピーダンス「Z」と等しいとして送信回路1側(信号源)から送信アンテナ4を見たときの入力インピーダンスZinは、式(5)により表される。
Figure JPOXMLDOC01-appb-M000005
 ここで、駆動周波数(即ち、電力伝送で使用する無線周波数)として送受信アンテナ単体での共振周波数「f」を用いるものとする。ここで、共振周波数fは、以下に示す式(6)により表される。
Figure JPOXMLDOC01-appb-M000006
 式(5)の入力インピーダンスZinは、共振周波数f(ω=2πfとする。)を用いると、式(7)が成立することを利用すると、式(8)により表せられる。
Figure JPOXMLDOC01-appb-M000007
Figure JPOXMLDOC01-appb-M000008
 ここで、式(8)では、式(4)の関係を用いて、結合係数kをパラメータとして表している。
 なお、式(5)式(8)は送信アンテナ4及び受信アンテナとして同じ形状のものを用いた場合の例として示されているが、例えば受信アンテナのサイズ(直径)を小さくした場合など、送信アンテナ4と受信アンテナとの形状が異なる場合であっても(ただし、共振周波数は同一である必要はある。)、同様の手順によって送信回路1から送信アンテナ4を見たときの入力インピーダンスの値を定式化して(式(5)に相当する式を求める)、式(7)に記載した共振周波数の条件(この条件は、送信アンテナ4に対応するL1、C1の値を用いた式と、受信アンテナに対応するL2、C2の値を用いた式の2つを使用することになる。)を適用してやれば、式(8)に対応する式が求められる。
 図8は、式(8)を用いて、結合係数kを変えたときの(つまり、送受信アンテナ間のギャップGpを変えたときの)入力インピーダンスZin(ω=ω)の軌跡を求め、それをスミスチャート上にプロットした図である。図8では、結合係数kは、0.001~0.7の範囲で変化している。なお、図9は、図8のスミスチャートに後述する説明を補足的に記載した図である。
 図8に示されるように、電磁界共振結合方式では送受信アンテナ間のギャップGpを変えると送信回路1側から送信アンテナ4を見たときの入力インピーダンスが大きく変化する。図8に示すスミスチャートの中心点(単に「中心点」とも呼ぶ。)は、図9に示すように、インピーダンス整合が出来ている状態(この場合では、Z=50Ω、以後、「整合状態」、又は「整合ポイント」とも呼ぶ。)に相当する。そして、中心点より右に移動した状態は、整合ポイントと比較して入力インピーダンスが高くなっている状態であることを表している。また逆に、中心点より左側に移動した状態は整合ポイントと比較して入力インピーダンスが低くなっている状態であることを表している。言い換えると、中心点より右に移動した状態(図9の破線枠WR内に相当する。)は、整合ポイントから送受信アンテナ間のギャップGpを小さくした場合、即ち整合ポイントよりも送受信アンテナ間の結合が強い場合に生じる状態である。逆に、中心点から左に移動した状態(図9の破線枠WL内に相当する。)は、整合ポイントから送受信アンテナ間のギャップGpを大きくした場合、即ち整合ポイントより送受信アンテナ間の結合が小さい場合に生じる状態である。
 [本発明におけるインピーダンス整合の考え方]
 図8、9に示すように、送受信アンテナ間の結合状態(即ちギャップGp)を変えることで入力インピーダンスは変化する。一方、その入力インピーダンスの変化は、スミスチャートの横軸(抵抗軸)に沿ってわずかにカーブした一次元に近い変化である。特徴的なのは、リアクタンス分が「0」である抵抗軸上に近い所で変化することである。このような場合、求めた入力インピーダンス軌跡Tr上のポイントの複素反射係数の位相成分「arg(Γ)」の値は、結合が強い場合(図9の破線枠WR内)ではわずかにカーブしている分マイナス側にずれた0度に近い値となり、結合が弱い場合(図9の破線枠WL内)ではほぼ180度となる。このことは、送信アンテナ4への入力信号に相当する進行波電圧Vfの位相とインピーダンス値の不整合により送信アンテナ4から戻ってくる反射信号に相当する反射波電圧Vrの位相との関係が、前者ではほぼ同相、後者では逆相となることを表している。
 図10は、前述の直並列等価回路によって送受信アンテナをモデル化し、送信回路1と送信アンテナ4の間に方向性結合器を入れて進行波電圧Vfと反射波電圧Vrとを計測した結果を示す。具体的には、図10(a)は、整合ポイントより送受信アンテナ間の結合を強めた場合に相当し、図10(b)は、整合ポイントより送受信アンテナ間の結合を弱めた場合に相当する。そして、図10(a)、(b)において、「Gvf」は、進行波電圧Vfの計測結果に相当し、「Gvr1」は、結合係数kが0.07の場合の反射波電圧Vrの測定結果に相当し、「Gvr2」は、結合係数kが0.08の反射波電圧Vrの測定結果に相当し、「Gvr3」は、結合係数kが0.1の場合の反射波電圧Vrの測定結果に相当し、「Gvr4」は、結合係数kが0.14の場合の反射波電圧Vrの測定結果に相当し、「Gvr5」は、結合係数kが0.2の場合の反射波電圧Vrの測定結果に相当する。また、「Gvr6」は、結合係数kが0.05の場合の反射波電圧Vrの測定結果に相当し、「Gvr7」は、結合係数kが0.04の場合の反射波電圧Vrの測定結果に相当し、「Gvr8」は、結合係数kが0.03の場合の反射波電圧Vrの測定結果に相当し、「Gvr9」は、結合係数kが0.02の場合の反射波電圧Vrの測定結果に相当する。
 このように、進行波電圧Vfと反射波電圧Vrの位相関係(ほぼ同相なのか、それとも逆相なのか)を調べることで、インピーダンス整合装置2は、入力インピーダンスのスミスチャート上の位置が、破線枠WR内にあるのか、又は、破線枠WL内にあるのかを把握することができる。
 なお、ここで示した結合係数kの値の例は、送信アンテナ4及び受信アンテナに図3のアンテナで、直径30cm、巻数5、巻線間ピッチ5mm、銅線太さ2mmとしたアンテナを用いた場合のものである。アンテナのサイズやその他の構造パラメータが変化した場合は、ここで示した結合係数kの値も変わることはあり得る。
 この特徴を利用し、本実施形態に係るインピーダンス整合装置2は、インピーダンス整合動作のパターンとして、2通りに動作する。具体的には、本実施形態に係るインピーダンス整合装置2は、整合回路として、第1形式の整合回路24と、第2形式の整合回路26とを有し、進行波電圧Vfと反射波電圧Vrとの位相関係に基づき使い分ける。図11(a)は、第1形式の整合回路24の構成例を示す。図11(b)は、第2形式の整合回路26の構成例を示す。そして、インピーダンス整合装置2は、進行波電圧Vfと反射波電圧Vrとが同相の場合には、整合ポイントからギャップGpが小さくなる等により整合ポイントより送受信アンテナ間の結合が強まった状態にあると判断し、第1形式の整合回路24を使用する。一方、インピーダンス整合装置2は、進行波電圧Vfと反射波電圧Vrとが逆相の場合には、整合ポイントからギャップGpが大きくなる等により整合ポイントより送受信アンテナ間の結合が弱まった状態にあると判断し、第2形式の整合回路26を使用する。
 ここで、整合回路に使用される可変インダクタ要素240、260及び可変キャパシタ要素241、261について補足説明する。可変インダクタ要素240、260及び可変キャパシタ要素241、261の実現手法は公知の手法が使用可能である。例えば、可変インダクタ要素240、260は、微小インダクタを直列に接続してスイッチ切換えにより所定の値のインダクタを実現し、可変キャパシタ要素241、261は、微小コンデンサを並列に接続してスイッチ切換えにより所定の値のキャパシタを実現する。他の実現手段として、可変キャパシタ要素241、261は、真空コンデンサやエアーバリコンなどを可変キャパシタであってもよい。その場合、可変キャパシタ要素241、261は、ステッピングモーターなど機械的手段を使って回転軸部が回転する。さらに、可変キャパシタ要素241、261は、大電力用途には向かないが可変容量ダイオード(バラクタダイオード)などの半導体素子であってもよい。
 図12は、図9に示した入力インピーダンス軌跡Tr上の任意のポイントを、図11(a)、(b)に示す第1形式又は第2形式の整合回路24、26を用いてスミスチャート上の等抵抗円、等コンダクタンス円に沿って移動させて50Ωの整合ポイントまで到達させる概要図を示す。
 まず、進行波電圧Vfと反射波電圧Vrがほぼ同相になる場合、即ち、整合対象となるインピーダンス点が破線枠WR内に存在する場合について説明する。ここでは、代表例として、整合対象となるインピーダンス点が位置Prに存在するものとする。この場合、インピーダンス整合装置2は、図11(a)に示す第1形式の整合回路24を用いて等コンダクタンス円上で、所定のサセプタンス補正量「A」だけ位置Prを時計回りに移動させ(矢印Y1参照)、次に正規化レジスタンス「r=1」の等レジスタンス円C1上で所定のリアクタンス補正量「B」だけ時計回りに移動させる(矢印Y2参照)。これにより、インピーダンス整合装置2は、整合対象となるインピーダンス点を整合ポイントに移動させることができる。なお、上述のサセプタンス補正量A及びリアクタンス補正量Bの決定方法については後述する。
 次に、進行波電圧Vfと反射波電圧Vrがほぼ逆相になる場合、即ち、整合対象となるインピーダンス点が破線枠WL内に存在する場合について説明する。ここでは、代表例として、整合対象となるインピーダンス点が位置Plに存在するものとする。この場合、インピーダンス整合装置2は、図11(b)に示す第2形式の整合回路26を用いて等レジスタンス円上で所定のリアクタンス補正量「C」だけ位置Plを時計回りに移動させ(矢印Y3参照)、次に正規化コンダクタンス「g=1」の等コンダクタンス円上で所定のサセプタンス補正量「D」だけ時計回りに移動させる(矢印Y4参照)。これにより、インピーダンス整合装置2は、整合対象となるインピーダンス点を整合ポイントに移動させることができる。なお、上述のリアクタンス補正量C及びサセプタンス補正量Dの決定方法については後述する。
 以上を勘案し、インピーダンス整合装置2は、整合対象となる入力インピーダンス軌跡Tr上の各位置に対して、上述の補正量A~Dを計算し、第1及び第2の記憶部25、27に記憶する。これにより、インピーダンス整合装置2は、インピーダンス整合を実行する際のインピーダンス点がどこかにあるか知ることにより、整合のために必要な上述の補正量A~Dを求めることができる。
 ここで、インピーダンス整合装置2は、反射係数絶対値|Γ|に基づき第1及び第2の記憶部25、27を参照して補正量A~Dを特定する。これについて補足説明する。反射係数絶対値|Γ|はスミスチャートの中心点からインピーダンス点までの距離に等しいため、破線枠WR内にインピーダンス点がある場合と破線枠WL内にインピーダンス点がある場合とで同じ反射係数絶対値|Γ|を持つ一対のインピーダンス点が存在する。しかし、反射係数絶対値|Γ|の位相は、前者が0度に近い値、後者が180度に近い値となっている。従って、インピーダンス整合装置2は、進行波電圧Vfと反射波電圧Vrの位相がほぼ同相か又はほぼ逆相かを特定することで、これらを明確に区別することができる。
 以上を勘案し、インピーダンス整合装置2は、各反射係数絶対値|Γ|に対して整合に必要な制御値Tcを記憶させる参照元として、進行波電圧Vfと反射波電圧Vrが同相な場合に参照する第1の記憶部25と、進行波電圧Vfと反射波電圧Vrが逆相な場合に参照する第2の記憶部27との2つの記憶部(テーブル)を用意する。この記憶部に必要な記憶容量は、スミスチャート上の実軸付近でわずかにカーブした一次元の入力インピーダンス軌跡Trのみを考慮して決定される。従って、整合のために実部と虚部の両方の値を必要とする場合に比べて必要なメモリサイズを大幅に縮小することができる。
 なお、インピーダンス整合装置2は、正規化レジスタンス「r=1」の等レジスタンス円C1と、入力インピーダンス軌跡Trとの交点に相当する結合係数kよりも小さい結合係数kの場合に、上述の処理を行うことで、整合を実行する際のインピーダンス点を整合ポイントに好適に遷移させることができる。特に、本実施形態において採用されている電磁界共振結合方式では、正規化レジスタンス「r=1」の等レジスタンス円C1と、入力インピーダンス軌跡Trとの交点に相当する結合係数kよりも小さい結合係数kが使用される。従って、本実施形態のインピーダンス整合装置2は、任意のインピーダンス点を整合ポイントに移動させることができる。
 [制御値の生成方法]
 導出した入力インピーダンス軌跡Tr上の各インピーダンス点に対する上述の補正量A~Dはスミスチャートの理論式を用いて算出される。そして、制御値Tcであるキャパシタンス補正量Cm及びインダクタンス補正量Lmは、この補正量A~Dに基づき算出される。この算出について以下説明する。この計算により求められたキャパシタンス補正量Cm及びインダクタンス補正量Lmは、連続値からなるグラフを描く。しかし、後述するように、インピーダンス整合装置2は、上述の連続値をアプリケーションで必要なサイズとなるように量子化したテーブル(「量子化テーブル」とも呼ぶ。)を記憶部に予め記憶する。この量子化テーブルの作成方法については、後述する。
 (第1の記憶部)
 まず、第1の記憶部25に記憶させる反射係数絶対値|Γ|と制御値Tcとのテーブルの作成方法について説明する。第1の記憶部25は、進行波電圧Vfと反射波電圧Vrがほぼ同相の場合に使用される。
 図13は、第1の記憶部25に記憶させる反射係数絶対値|Γ|と制御値Tcとのテーブルの作成方法を模式的に示した図である。整合対象のインピーダンス点が図中の「Zin」にあるとする。インピーダンス点Zinは、正規化コンダクタンス「g=gin」の等コンダクタンス円、正規化サセプタンス「b=bin」の等サセプタンス円に乗っている。まず、インピーダンス点Zinのポイントが存在する「g=gin」の等コンダクタンス円と、正規化レジスタンス「r=1」の等レジスタンス円との交点「A」の座標(u、v)は、以下の式(9)により表される。
Figure JPOXMLDOC01-appb-M000009
 ここで、インピーダンス点Zinのポイントを、「g=gin」の等コンダクタンス円に沿って交点Aまで移動させるために必要な正規化サセプタンス補正量「Δb」、及び、交点Aのポイントを「r=1」の等レジスタンス円に沿ってスミスチャートの中心に移動させるために必要な正規化リアクタンス補正量「Δx」は、等サセプタンス円の理論式及び等リアクタンス円の理論式に基づき、式(10)に示すように表せられる。
Figure JPOXMLDOC01-appb-M000010
 式(10)に示すように、正規化サセプタンス補正量「Δb」は、インピーダンス点Zinの正規化サセプタンス「bin」が減算されることでわずかなカーブの分が調整されている。なお、正規化リアクタンス補正量Δxは、上述したリアクタンス補正量Bに相当し、正規化サセプタンス補正量Δbは、上述したサセプタンス補正量Aに相当する。
 最後に、求められた正規化リアクタンス補正量Δx及び正規化サセプタンス補正量Δbにより、実際のキャパシタンス補正量Cm及びインダクタンス補正量Lmを表した式(11)を以下に示す。この際に使用する変数「f」は駆動周波数(単位はHz)を示し、「Z」は整合目標のインピーダンス値を示す。
Figure JPOXMLDOC01-appb-M000011
 入力インピーダンス軌跡Tr上のインピーダンス点Zinは、以下の式(12)に示すように、スミスチャートの右側のみを考えれば反射係数絶対値|Γ|と一対一に対応する。
Figure JPOXMLDOC01-appb-M000012
 従って、入力インピーダンス軌跡Tr上の各インピーダンス点Zinを式(12)に従って反射係数絶対値|Γ|に変換し、その各々の値に対して、予め式(11)に従って求めていたキャパシタンス補正量Cm、インダクタンス補正量Lmの値の組を対応させたテーブルを生成して第1の記憶部25に記憶させておく。ここで、上述のテーブルは、アプリケーションで必要かつ許容されるメモリサイズのテーブルとして用意される。これにより、インピーダンス整合装置2は、反射係数絶対値|Γ|に基づき、整合に必要なキャパシタンス補正量Cm及びインダクタンス補正量Lmを特定することができる。
 図14(a)、(b)は、直径30cm、巻数5、巻線間ピッチ5mm、銅線太さ2mmの先端オープン型ヘリカルアンテナ(図2参照)用として作成した反射係数絶対値|Γ|と制御値Tcとの関係を示すマップ(グラフ)である。具体的には、図14(a)は、キャパシタンス補正量Cmと反射係数絶対値|Γ|との関係を示すグラフであり、図14(b)は、インダクタンス補正量Lmと反射係数絶対値|Γ|との関係を示すグラフである。この場合、共振周波数fは15.7MHzであり、整合目標のインピーダンスZは50Ωである。
 なお、インピーダンス整合装置2は、後述するように、図14(a)、(b)に示す値を元に、アプリケーションで必要な分解能で作成した量子化テーブルを第1の記憶部25に保持する。
 (第2の記憶部)
 次に、第2の記憶部27に記憶させる反射係数絶対値|Γ|と制御値Tcとのテーブルの作成方法について説明する。第2の記憶部27は、進行波電圧Vfと反射波電圧Vrがほぼ逆相の場合に使用される。
 図15は、第2の記憶部27として記憶するテーブルの作成方法を模式的に示した図である。整合対象のインピーダンス点が図中の「Zin」にあるとする。インピーダンス点Zinは正規化レジスタンス「r=rin」の等レジスタンス円、正規化リアクタンス「x=xin」の等リアクタンス円に乗っている。まず、インピーダンス点Zinのポイントが存在する「r=rin」の等レジスタンス円と、正規化コンダクタンス「g=1」の等コンダクタンス円との交点「D」の座標(u、v)は、以下の式(13)に示すように表せられる。
Figure JPOXMLDOC01-appb-M000013
 ここで、インピーダンス点Zinを、「r=rin」の等レジスタンス円に沿って交点「D」まで移動させるために必要な正規化リアクタンス補正量「Δx」、及び、交点Dのポイントを「g=1」の等コンダクタンス円に沿って中心点に移動させるために必要な正規化サセプタンス補正量「Δb」は、等サセプタンス円の理論式及び等リアクタンス円の理論式に基づき、式(14)に示すように表せられる。
Figure JPOXMLDOC01-appb-M000014
 式(14)に示すように、正規化リアクタンス補正量Δxは、インピーダンス点Zinの正規化リアクタンスxinが減算されることでわずかなカーブの分が調整されている。なお、正規化サセプタンス補正量Δbは、上述したサセプタンス補正量Dに相当し、正規化リアクタンス補正量Δxは、上述したリアクタンス補正量Cに相当する。
 最後に、求められた各補正量を実際のインダクタンス補正量Lm及びキャパシタンス補正量Cmを表した式(15)を以下に示す。この際に使用する変数「f」は駆動周波数(単位はHz)、「Z」は整合目標のインピーダンス値を示す。
Figure JPOXMLDOC01-appb-M000015
 従って、進行波電圧Vfと反射波電圧Vrがほぼ同相の場合と同様に、各インピーダンス点Zinを式(15)に従って反射係数絶対値|Γ|に変換し、その各々の値に対して、予め式(15)に従って求めていたインダクタンス補正量Lm及びキャパシタンス補正量Cmの組を対応させたテーブルを第2の記憶部27に記憶しておく。このテーブルは、アプリケーションで必要かつ許容されるメモリサイズのテーブルとして用意される。これにより、インピーダンス整合装置2は、反射係数絶対値|Γ|に基づき、インピーダンス整合に必要なキャパシタンス補正量Cm及びインダクタンス補正量Lmを特定することができる。
 図16(a)、(b)は、直径30cm、巻数5、巻線間ピッチ5mm、銅線太さ2mmの先端オープン型ヘリカルアンテナ(図2参照)用として作成した反射係数絶対値|Γ|と制御値Tcとの関係を示すマップ(グラフ)である。この場合、共振周波数fは15.7MHzであり、整合目標のインピーダンスZは50Ωである。
 なお、インピーダンス整合装置2は、後述するように、図16(a)、(b)に示す値を元に、アプリケーションで必要な分解能で作成した量子化テーブルを第2の記憶部27に記憶する。
 [量子化テーブルの作成方法]
 次に、図14、図16に示すグラフから実際に記憶部としてインピーダンス整合装置2が記憶する量子化テーブルを作成する方法について具体的に説明する。
 図14及び図16に示した各制御値Tcを示すグラフは、連続値となっている。しかし、現実的には、インピーダンス整合装置2は、これらのグラフを、アプリケーションで必要なサイズとなるように量子化をしたテーブルを保持する必要がある。ここで、「量子化」とは、ある範囲の反射係数絶対値|Γ|に対し、同じインダクタンス補正量Lm及びキャパシタンス補正値Cmが使用される反射係数絶対値|Γ|の範囲(値域)を区切ること、及び、区切られた反射係数絶対値|Γ|の各値域で使用するインダクタンス補正量Lm及びキャパシタンス補正値Cmの代表値(「量子化代表値」とも呼ぶ。)を決めることを指す。以後では、上述の反射係数絶対値|Γ|の各範囲(値域)の境界を「量子化境界」と呼ぶ。量子化は反復処理を用いて実行される。概略的には、量子化は、量子化境界付近においても反射係数絶対値|Γ|が予め設定された閾値|Γ|thr以下となるように、量子化境界と量子化代表値を交互に求めることで実行される。
 ここで、制御値Tcの量子化処理の入力として、反射係数絶対値|Γ|に対応した連続量と見なせる程度に精度が高いキャパシタンス補正量Cm及びインダクタンス補正量Lmからなるテーブルを考える。このテーブルは元々、結合係数kを変化させることによって得られた入力インピーダンス軌跡Tr上で求められたものであり、テーブルの各行には対応する結合係数kが存在する。この結合係数kを変えることで入力インピーダンス軌跡Tr上を移動させるようにする。
 進行波電圧Vfと反射波電圧Vrが同相の場合に参照されるテーブル(第1の記憶部25)の生成時では結合係数kを微増させ、進行波電圧Vfと反射波電圧Vrが逆相の場合に参照されるテーブル(第2の記憶部27)の生成時では結合係数kを微減して整合状態を故意に悪化させ、反射係数絶対値|Γ|の増加状況を観測する。そして、反射係数絶対値|Γ|が予め設定された所定の閾値|Γ|thrを超えたかどうかを判断基準として、量子化境界と量子化代表値の設定を交互に行う。
 以下に具体的な処理手順を示す手順1~手順11を述べる。なお、以下では、「結合係数kを更新する」とは、第1の記憶部25を生成する場合には、結合係数kに所定値だけ加算することを指し、第2の記憶部27を生成する場合には、結合係数kに所定値だけ減算することを指す。
(1)初期化
 ・手順1:スイッチ部32がスルー回路31を選択した状態で整合ポイントとなるように結合係数kを設定する。キャパシタンス補正量Cm及びインダクタンス補正量Lmをそれぞれ0に設定する。以下を反復処理する。
(2)量子化境界を求める処理
 ・手順2:現在の結合係数kにおける入力インピーダンスを計算する。
 ・手順3:手順2で求めた入力インピーダンスに整合回路(Cm、Lmの初期値は0)を追加した場合のインピーダンス値を計算する。
 ・手順4:手順3で求めたインピーダンス値から反射係数絶対値|Γ|を算出する。
 ・手順5:反射係数絶対値|Γ|が閾値|Γ|thrを超えたか調べる。超えていない場合は、結合係数kを更新して手順2に戻る。超えている場合は、現在の結合係数k及びこれに対応する反射係数絶対値|Γ|を量子化境界として保存して手順6に進む。
(3)量子化代表値を求める処理
 ・手順6:結合係数kを直前に手順2~5で求められた量子化境界の値に設定する。また、このときの入力インピーダンスを計算する。
 ・手順7:結合係数kを更新し、その値に対応するキャパシタンス補正量Cm及びインダクタンス補正量Lmをセットする。
 ・手順8:手順6で求めた入力インピーダンスに手順7でセットしたキャパシタンス補正量Cm及びインダクタンス補正量Lmを追加したときのインピーダンス値を計算する。
 ・手順9:手順8で求めたインピーダンス値から反射係数絶対値|Γ|を算出する。
 ・手順10:反射係数絶対値|Γ|が閾値|Γ|thrを超えたか否か調べる。超えていない場合は、結合係数kを更新して手順7に戻る。超えている場合は、現在の結合係数k及び現在のキャパシタンス補正量Cm及びインダクタンス補正量Lmを量子化代表値として保存する。終了確認処理(手順11)に進む。
(4)終了確認処理
 ・手順11:結合係数kが予め定められた所定の終了値に達していたら全ての処理を終了する。まだ達していない場合は、再び手順2に戻って反復処理を行う。
 次に、上述の手順1~手順11によって生成された第1の記憶部25に記憶するテーブルの具体例について説明する。なお、以後では、閾値|Γ|thrは0.0707に設定される。この場合、量子化境界での反射による損失(|Γ|に相当する。)は、0.5%である。
 図17(a)は、量子化前のキャパシタンス補正量Cmの推移を示すグラフ「Gcm1」、及び、量子化後のキャパシタンス補正量Cmの推移を示すグラフ「Qcm1」を示す。また、図17(b)は、量子化前のインダクタンス補正量Lmの推移を示すグラフ「Glm1」、及び、量子化後のインダクタンス補正量Lmの推移を示すグラフ「Qlm1」を示す。図17(a)、(b)に示すように、キャパシタンス補正量Cm及びインダクタンス補正量Lmは、反射係数絶対値|Γ|が大きくなるほど、これらの量子化間隔(即ち、量子化境界の間隔)が小さくように量子化されている。
 図18は、実際に第1の記憶部25に保持されるテーブルの一例を示す。図18に示すテーブルでは、行ごとに反射係数絶対値|Γ|の量子化境界の下限値と、結合係数kの量子化境界の下限値と、キャパシタンス補正量Cmと、インダクタンス補正量Lmとが対応づけられている。また、反射係数絶対値|Γ|の各値域には、インデックスIdxが「0」から「12」まで割当てられている。ここで、反射係数絶対値|Γ|の量子化境界の上限値、及び、結合係数kの量子化境界の上限値は、1だけ小さいインデックスIdxに対応する反射係数絶対値|Γ|の量子化境界の下限値、及び、結合係数kの量子化境界の下限値に基づき定められる。図18に示すように、インデックスIdxは、結合係数kが大きいほど大きい値が割り当てられている。なお、第1の記憶部25は、必ずしも結合係数kの値を記憶しなくともよい。
 次に、上述の手順1~手順11によって生成された第2の記憶部27の具体例について説明する。
 図19(a)は、量子化前のインダクタンス補正量Lmの推移を示すグラフ「Glm2」、及び、量子化後のインダクタンス補正量Lmの推移を示すグラフ「Qlm2」を示す。また、図19(b)は、量子化前のキャパシタンス補正量Cmの推移を示すグラフ「Gcm2」、及び、量子化後のキャパシタンス補正量Cmの推移を示すグラフ「Qcm2」を示す。図19(a)、(b)に示すように、キャパシタンス補正量Cm及びインダクタンス補正量Lmは、反射係数絶対値|Γ|が大きくなるほど、これらの量子化間隔が小さくように量子化されている。
 図20は、実際に第2の記憶部27としてインピーダンス整合装置2に保持されるテーブルの一例を示す。図20に示すテーブルでは、行ごとに反射係数絶対値|Γ|の量子化境界の下限値と、結合係数kの量子化境界の下限値と、キャパシタンス補正量Cmと、インダクタンス補正量Lmとが対応づけられている。また、反射係数絶対値|Γ|の各値域には、インデックスIdxが「-1」から「-12」まで割当てられている。ここで、反射係数絶対値|Γ|の量子化境界の上限値、及び、結合係数kの量子化境界の上限値は、1だけ小さいインデックスIdxに対応する反射係数絶対値|Γ|の量子化境界の下限値、及び、結合係数kの量子化境界の下限値に基づき定められる。図20に示すように、インデックスIdxは、図18と同様、結合係数kが大きいほど大きい値が割り当てられている。さらに、インデックスIdxは、図18、図20を通して、「-12」から「12」までの連番が付され、結合係数kが大きいほど大きい値が割り当てられている。なお、第2の記憶部27は、必ずしも結合係数kの値を記憶しなくともよい。
 [第2インピーダンス整合]
 次に、整合後状態にインピーダンス整合装置2が実行する第2インピーダンス整合について具体的に説明する。概略的には、インピーダンス整合装置2は、整合後状態では、反射係数絶対値|Γ|を所定の周期ごとに検出し、反射係数絶対値|Γ|が閾値|Γ|thrより大きくなったか否か監視する。そして、インピーダンス整合装置2は、反射係数絶対値|Γ|が閾値|Γ|thrより大きくなった場合、反射波電圧Vrの位相が進行波電圧Vfの位相よりも遅れているか又は進んでいるかに基づき読み出し方向Didxを決定する。ここで、インピーダンス整合装置2は、後述するように、進行波電圧Vfの位相よりも反射波電圧Vrの位相の方が遅れている場合には、整合状態から送受信アンテナの結合が強くなる方向に整合がずれていると判断し、インデックスIdxが大きくなる方向に読み出し方向Didxを定める。一方、インピーダンス整合装置2は、進行波電圧Vfの位相よりも反射波電圧Vrの位相の方が進んでいる場合には、整合状態から送受信アンテナの結合が弱くなる方向に整合がずれていると判断し、インデックスIdxが小さくなる方向に読み出し方向Didxを定める。
 以下、送受信アンテナの結合が強くなる方向に整合がずれていく場合と、送受信アンテナの結合が弱くなる方向に整合がずれていく場合とに場合分けして説明する。
 (結合が強くなる方向に整合がずれていく場合)
 まず、送受信アンテナの結合が強くなる方向に整合がずれて行く場合、即ち、結合係数kが増加する方向に送受信アンテナの状態が変化する場合について説明する。
 図21(a)は、結合係数kが0.1のときに第1インピーダンス整合により送信システム100が整合状態となり、その後、結合係数kが0.12~0.3と増加した場合の進行波電圧Vfと各反射波電圧Vrの波形を示す。具体的には、グラフ「Gvr10」は、結合係数kが0.1の場合、即ち整合状態の場合に相当し、グラフ「Gvr11」は、結合係数kが0.12の場合に相当し、グラフ「Gvr12」は、結合係数kが0.15の場合に相当し、グラフ「Gvr13」は、結合係数kが0.2の場合に相当し、グラフ「Gvr14」は、結合係数kが0.3の場合に相当する。また、図21(b)は、結合係数kが0.055のときに第1インピーダンス整合により送信システム100が整合状態となり、その後、結合係数kが0.06~0.10と増加した場合の進行波電圧Vfと各反射波電圧Vrの波形を示す。具体的には、グラフ「Gvr15」は、結合係数kが0.055の場合、即ち、整合状態の場合に相当し、グラフ「Gvr16」は、結合係数kが0.06の場合に相当し、グラフ「Gvr17」は、結合係数kが0.07の場合に相当し、グラフ「Gvr18」は、結合係数kが0.08の場合に相当し、グラフ「Gvr19」は、結合係数kが0.10の場合に相当する。
 ここで、図21(a)に示すグラフGvr10は、第1インピーダンス整合の実行時のインピーダンス点が破線枠WR内の入力インピーダンス軌跡Tr上にあった場合に相当する。一方、図21(b)に示すグラフGvr15は、第1インピーダンス整合の実行時のインピーダンス点が破線枠WL内の入力インピーダンス軌跡Tr上にあった場合に相当する。そして、これらの場合のいずれも、結合が強くなる方向に整合がずれて行く場合には、進行波電圧Vfの位相より反射波電圧Vrの位相の方が遅れている(グラフGvr11~Gvr14及びグラフGvr16~Gvr19参照)。なお、反射波電圧Vrの位相の遅れる度合いは、第1インピーダンス整合の実行直前のインピーダンス点により一意に定まる。具体的には、反射波電圧Vrの位相の遅れる度合いは、スミスチャートの中心点である整合ポイントに近いインピーダンス点であるほど、小さくなる。
 また、図21(a)、(b)に示すように、整合状態の結合係数kから離れた結合係数kの場合ほど、即ち、結合係数kの増大に起因して整合状態からのずれが大きくなるほど、反射波電圧Vrのレベルが大きくなる。また、式(1)から、反射波電圧Vrのレベル(絶対値)が大きいほど、反射係数絶対値|Γ|は大きくなる。従って、反射係数絶対値|Γ|が大きいほど整合状態からのずれが大きいため、調整ステップ幅決定部29は、この場合、ステップ幅Widxを大きく設定する必要がある。
 以上を勘案し、インピーダンス整合装置2は、送信システム100が整合後状態になった後、反射係数絶対値|Γ|を監視することで整合状態の悪化の有無を判断する。そして、インピーダンス整合装置2は、反射係数絶対値|Γ|が増大し、かつ、反射波電圧Vrの位相が進行波電圧Vfの位相より遅れた状態であると判断した場合、送受信アンテナ間の結合が強くなる方向に整合がずれていると特定する。即ち、この場合、調整方向決定部28は、現在使用している制御値Tcに相当するインデックスIdxから、結合係数kが大きくなる方向、図18、図20ではインデックスIdxが大きくなる方向を、読み出し方向Didxとして定める。また、好適には、調整ステップ幅決定部29は、整合状態からの反射係数絶対値|Γ|の変化幅が大きいほど、ステップ幅Widxを大きくする。これにより、インピーダンス整合装置2は、迅速に送信システム100を再び整合状態に移行させることができる。調整ステップ幅決定部29によるステップ幅Widxの決定方法の詳細は、[ステップ幅決定方法]のセクションで後述する。なお、調整ステップ幅決定部29は、上述の説明に代えて、反射係数絶対値|Γ|によらず、ステップ幅Widxを常に予め定めた所定値(例えば「1」)に定めてもよい。
 (結合が弱くなる方向に整合がずれていく場合)
 次に、送受信アンテナの結合が弱くなる方向に整合がずれて行く場合、即ち、結合係数kが減少する方向に送受信アンテナの状態が変化する場合について説明する。
 図22(a)は、結合係数kが0.1のときに第1インピーダンス整合により送信システム100が整合状態となり、その後、結合係数kが0.05~0.09と減少した場合の進行波電圧Vfと各反射波電圧Vrの波形を示す。具体的には、グラフ「Gvr10」は、図21(a)と同様、結合係数kが0.1の場合、即ち整合状態の場合に相当し、グラフ「Gvr21」は、結合係数kが0.09の場合に相当し、グラフ「Gvr22」は、結合係数kが0.08の場合に相当し、グラフ「Gvr23」は、結合係数kが0.07の場合に相当し、グラフ「Gvr24」は、結合係数kが0.06の場合に相当し、グラフ「Gvr25」は、結合係数kが0.05の場合に相当する。また、図22(b)は、結合係数kが0.055のときに第1インピーダンス整合により送信システム100が整合状態となり、その後、結合係数kが0.02~0.05と減少した場合の進行波電圧Vfと各反射波電圧Vrの波形を示す。具体的には、グラフ「Gvr15」は、図21(b)と同様、結合係数kが0.055の場合、即ち、整合状態の場合に相当し、グラフ「Gvr26」は、結合係数kが0.05の場合に相当し、グラフ「Gvr27」は、結合係数kが0.04の場合に相当し、グラフ「Gvr28」は、結合係数kが0.03の場合に相当し、グラフ「Gvr29」は、結合係数kが0.02の場合に相当する。
 ここで、図22(a)に示すグラフGvr10は、第1インピーダンス整合の実行時のインピーダンス点が破線枠WR内の入力インピーダンス軌跡Tr上にあった場合に相当する。図22(b)に示すグラフGvr15は、第1インピーダンス整合の実行時のインピーダンス点が破線枠WL内の入力インピーダンス軌跡Tr上にあった場合に相当する。これらの場合のいずれも、結合が弱くなる方向に整合がずれて行く場合には、進行波電圧Vfの位相より反射波電圧Vrの位相の方が進んでいる(グラフGvr21~Gvr29参照)。なお、反射波電圧Vrの位相が進む度合いは、第1インピーダンス整合の実行直前のインピーダンス点により一意に定まる。具体的には、反射波電圧Vrの位相が進む度合いは、スミスチャートの中心点である整合ポイントに近いインピーダンス点であるほど、大きくなる。
 また、図22(a)、(b)に示すように、整合状態の結合係数kから離れた結合係数kの場合ほど、即ち、結合係数kの増大に起因して整合状態からのずれが大きくなるほど、反射波電圧Vrのレベルが大きくなる。また、式(1)から、反射波電圧Vrのレベルが大きいほど、反射係数絶対値|Γ|は大きくなる。従って、反射波係数絶対値|Γ|が大きいほど整合状態からのずれが大きいことから、調整ステップ幅決定部29は、この場合ステップ幅Widxを大きく設定する必要がある。
 以上を勘案し、インピーダンス整合装置2は、送信システム100が整合後状態になった後、反射係数絶対値|Γ|を監視することで整合状態の悪化の有無を判断する。そして、インピーダンス整合装置2は、反射係数絶対値|Γ|が増大し、かつ、反射波電圧Vrの位相が進行波電圧Vfの位相より進んだ状態であると判断した場合、送受信アンテナ間の結合が弱まる方向に整合がずれていると特定することができる。即ち、この場合、調整方向決定部28は、第1インピーダンス整合の実行時に選択したインデックスIdxから、結合係数kが小さくなる方向、図18、図20ではインデックスIdxが大きくなる方向を、読み出し方向Didxとして定めることができる。また、好適には、調整ステップ幅決定部29は、整合状態からの反射係数絶対値|Γ|の変化幅が大きいほど、ステップ幅Widxを大きくする。これにより、インピーダンス整合装置2は、迅速に送信システム100を再び整合状態に移行させることができる。なお、調整ステップ幅決定部29は、上述の説明に代えて、反射係数絶対値|Γ|によらず、ステップ幅Widxを常に予め定めた所定値に定めてもよい。
 [動作例及び効果]
 次に、インピーダンス整合装置2の動作の具体例及びそれに付随する効果について説明する。
 (第1インピーダンス整合)
 まず、送信システム100が初期状態の場合、即ち、送信回路1と送信アンテナ4との間でまだインピーダンス整合を行っていない場合に実行する第1インピーダンス整合の処理について説明する。
 初期状態では、インピーダンス整合装置2は、スイッチ部32によりスルー回路31が送信回路1と送信アンテナ4との間に連結するように挿入されている。ここで、送受信アンテナ間の結合係数kは、0.095であったとする。この状態は、図2に示す先端オープン型ヘリカルアンテナを使用した場合、比較的結合が強い状態に属する。また、方向性結合器が進行波・反射波抽出部21として使用される。また、閾値|Γ|thrは0.0707とする。
 まず、進行波・反射波抽出部21が進行波電圧Vfと反射波電圧Vrとを抽出する。そして、反射係数算出部22は、前述した式(1)に基づき反射係数絶対値|Γ|を算出する。
 また、位相判定部23は、進行波電圧Vfと反射波電圧Vrの位相関係、即ち、それらが同相であるか逆相であるかを判定する。そして、これらがほぼ同相の場合、整合回路選択部33は第1形式の整合回路24を選択すると共に、記憶部選択部34は第1の記憶部25を選択する。一方、上述の位相関係がほぼ逆相であった場合、整合回路選択部33が第2形式の整合回路26を選択すると共に、記憶部選択部34が第2の記憶部27を選択する。
 図23(a)は、第1インピーダンス整合の実行直前の進行波電圧Vfと反射波電圧Vrとの波形を示す。図23(a)において、グラフ「Gvf」は、進行波電圧Vfの波形に相当し、グラフ「Gvr」は、反射波電圧Vrの波形に相当する。図23(a)に示すように、進行波電圧Vfと反射波電圧Vrはほぼ同相となる。従って、第1の記憶部25及び第1形式の整合回路24がそれぞれ選択される。また、図23(a)では、進行波電圧Vfが「15.8mV」、反射波電圧Vrが「6.3mV」と観測されている。従って、反射係数絶対値|Γ|は、0.40と算出される。図23(b)は、伝送効率の周波数特性を示す。駆動周波数が「15.7MHz」の場合における伝送効率は82%である。
 次に、第1の記憶部25に記憶されたテーブルから制御値Tcを選択する処理について説明する。図18に示すテーブル上で、反射係数絶対値|Γ|が0.40である場合に対応するインデックスIdxは、「3」であり、その量子化代表値は、キャパシタンス補正量Cmが「94pF」、インダクタンス補正量Lmが「587nH」である。そして、制御値出力部35は、これらのキャパシタンス補正量Cm及びインダクタンス補正量Lmを第1形式の整合回路24の可変キャパシタ要素241、可変インダクタ要素240に設定する。
 図24(a)は、上述の制御値Tcに基づきインピーダンス整合を行った場合の進行波電圧Vf及び反射波電圧Vrの波形を示す。また、図24(b)は、伝送効率の周波数特性を示す。図24(a)のグラフでは、進行波電圧Vfが「15.8mV」、反射波電圧Vrが「0.43mV」と観測され、反射係数絶対値|Γ|は0.027と計算される。従って、反射による損失は、0.07%と非常に小さい。また、伝送効率は、「15.7MHz」の駆動周波数で97.6%に改善されている。
 (第2インピーダンス整合)
 以下では、整合後状態において、送受信アンテナ間の結合の変化の影響により、整合状態から整合がずれた場合に実行する第2インピーダンス整合の処理について場合分けして説明する。
 1.結合が強くなる方向に整合がずれる場合
 ここで、送受信アンテナ間のギャップGpが小さくなり、結合係数kが0.095から0.102に増加したものとする。なお、整合回路は、第1インピーダンス整合により設定された制御値Tc、即ち第1の記憶部25のテーブル内のインデックスIdxが3の制御値Tcが反映されたままである。図25(a)は、上述の状態に相当する進行波電圧Vf及び反射波電圧Vrの波形を示す。図25(b)は、伝送効率の周波数特性を示す。図25(a)では、進行波電圧Vfは「15.8mV」、反射波電圧Vrは「1.54mV」と観測され、反射係数絶対値|Γ|は0.097と計算される。従って、図25に示す状態では、整合の悪化に起因して、不整合による反射の損失は0.95%まで上昇した。一方、伝送効率は97.2%であり、僅かに低下したがほとんど変化がない。
 図25に示す状態では、反射係数絶対値|Γ|(0.097)は、予め設定した閾値|Γ|thr(0.0707)を超えている。従って、インピーダンス整合装置2は、第2インピーダンス整合を行う。
 ここで、図25(a)の進行波電圧Vfの位相と反射波電圧Vrの位相とを比較すると、反射波電圧Vrの位相は、進行波電圧Vfの位相より遅れている。従って、インピーダンス整合装置2は、この場合、送受信アンテナ間の結合が強くなる方向にずれたと判断することができる。そして、調整方向決定部28は、第1の記憶部25に記憶された図18に示されるテーブルから、第1インピーダンス整合時に選択されたインデックスIdxを3から増加させる方向に読み出し方向Didxを定める。また、ここでは、調整ステップ幅決定部29は、ステップ幅Widxを予め定められた所定値である「1」に設定する。従って、ここでは、記憶部選択部34は、第1の記憶部25からインデックスIdxが「4」の場合に相当する制御値Tc、即ち、キャパシタンス補正量Cmが「87pF」及びインダクタンス補正量Lmが「736nH」)を抽出する。そして、制御値出力部35は、この制御値Tcを、第1形式の整合回路24に設定する。
 図26(a)は、上述の制御値Tcが設定された後の進行波電圧Vf及び反射波電圧Vrを示す。図26(b)は、上述の制御値Tcが設定された後の伝送効率を示す。図26(a)では、進行波電圧Vfが「15.73mV」、反射波電圧Vrが「0.72mV」と観測され、反射係数絶対値|Γ|は0.046と計算される。このように、整合回路に設定する制御値Tcが更新されたことにより、不整合による反射の損失は、0.21%まで減少した。また、伝送効率は、97.1%となり、引続きほとんど変化がない。
 ここで注目すべきは、図24(b)、図25(b)、図26(b)に示すように、一度インピーダンス整合がなされた後では、伝送効率は、ほとんど変化しないということである。即ち、インピーダンス整合装置2は、伝送効率に大きな悪影響が出る前に、反射係数絶対値|Γ|の変化を観測し、この値が常に所定の閾値|Γ|thr以下となるように制御することで、伝送効率を常に高い状態で維持させることができている。
 2.結合が弱くなる方向に整合がずれる場合
 ここで、結合係数kが0.095の状態に対して一度インピーダンス整合がなされた後、送受信アンテナ間のギャップGpが大きくなり、結合係数kが0.085になった場合について述べる。なお、整合回路は、第1インピーダンス整合により設定された制御値Tc、即ち第1の記憶部25のテーブル内のインデックスIdxが3の制御値Tcが反映されたままである。図27(a)は、上述の状態に相当する進行波電圧Vf及び反射波電圧Vrの波形を示す。図27(b)は、上述の状態に相当する伝送効率を示す。図27(a)では、進行波電圧Vfが「15.7mV」、反射波電圧Vrが「1.29mV」と観測され、反射係数絶対値|Γ|は0.082と計算される。このように、整合の悪化に伴い、不整合による反射の損失は0.68%まで増加した。一方、図27(b)に示すように、駆動周波数における伝送効率は、96.1%と若干低下したが、96%以上という高い値は維持している。
 図27に示す状態では、反射係数絶対値|Γ|(0.082)は、予め設定した閾値|Γ|thr(0.0707)を超えている。従って、インピーダンス整合装置2は、第2インピーダンス整合を行う。
 図27(a)の進行波電圧Vfの位相と反射波電圧Vrの位相とを比較すると、反射波電圧Vrの位相は、進行波電圧Vfの位相より進んでいる。従って、インピーダンス整合装置2は、この場合、送受信アンテナ間の結合が弱まる方向にずれたと判断することができる。そして、調整方向決定部28は、第1の記憶部25に記憶された図18に示されるテーブルから、第1インピーダンス整合時に選択されたインデックスIdxを「3」から減少させる方向に読み出し方向Didxを定める。また、ここでは、調整ステップ幅決定部29は、ステップ幅Widxを予め定められた所定値である「1」に設定する。従って、ここでは、記憶部選択部34は、第1の記憶部25からインデックスIdxが「2」の場合に相当する制御値Tc、即ち、キャパシタンス補正量Cmが「95pF」及びインダクタンス補正量Lmが「443nH」)を抽出する。そして、制御値出力部35は、この制御値Tcを、第1形式の整合回路24に設定する。
 図28(a)は、上述の制御値Tcが設定された後の進行波電圧Vf及び反射波電圧Vrを示す。図28(b)は、上述の制御値Tcが設定された後の伝送効率を示す。図28(a)では、進行波電圧Vfが「15.8mV」、反射波電圧Vrが「0.95mV」と観測され、反射係数絶対値|Γ|は、0.060と計算される。そして、整合回路に設定する制御値Tcが更新されたことにより、不整合による反射の損失は0.36%まで減少した。また、伝送効率は、97.4%と改善され、高い値を維持している。
 このように、結合が徐々に大きくなる場合と同様、図24(b)、図27(b)、図28(b)に示すように、一度インピーダンス整合がなされた後の伝送効率は、96%以上という高い値に維持されている。即ち、インピーダンス整合装置2は、伝送効率に大きな悪影響が出る前に、反射係数絶対値|Γ|の変化を観測し、この値が常に所定の閾値|Γ|thr以下となるように制御することで、伝送効率を常に高い状態で維持させることができている。
 以上の1.及び2.に記した例では、初期状態として比較的結合の強い状態(k=0.095)から整合がずれた場合について説明したが、比較的結合が弱い状態から整合がずれる場合についても同様に対処することができる。なお、その場合、インピーダンス整合装置2は、第2の記憶部27に記憶した図20に示すテーブルを参照して制御値Tcを定める。
 [ステップ幅決定方法]
 次に、反射係数絶対値|Γ|に基づきステップ幅Widxを決定する方法について補足説明する。
 上述の「2.結合が弱くなる方向に整合がずれる場合」の例では、ステップ幅Widxは「1」に固定されていた。しかし、反射係数が急激に変化した場合、インデックスIdxを一つずつずらして制御値Tcを更新していたのでは、所望の制御値Tcに係るインデックスIdxに到達するまでにかなり時間が掛かる可能性がある。即ち、移動する物体に対して電磁界共振結合のシステムを用いて電力を供給しようとする場合には、送受信アンテナ間のギャップGpの変化や位置ずれが高速かつ大きな変動幅で発生する可能性がある。このような場合には、反射係数絶対値|Γ|を観測する周期内での上述の変化量がかなり大きくなると予想される。そのような場合に備え、インピーダンス整合装置2は、好適には、整合状態からの反射係数絶対値|Γ|の変化幅に応じて、ステップ幅Widxを柔軟に決定する。これにより、インピーダンス整合装置2は、ギャップGpの変化、位置ずれの変化が高速に起こるような場合にも迅速に整合できる。
 具体的には、以下のような実装方法が考えられる。
 ここで、第1インピーダンス整合実行後の図24に示す整合状態からギャップGpが小さくなり、結合係数kが0.095から0.12に変化したとする。このとき、進行波電圧Vfと反射波電圧Vrとは、それぞれ「15.88mV」及び「4.03mV」となり、反射係数絶対値|Γ|は0.254となる。この場合、インピーダンス整合装置2は、インデックスIdxを、現在の「3」から、結合が強くなる方向にステップ幅Widx「2」だけ移動させて、「5」にしたとする。このとき、整合回路に反映される制御値Tcは、キャパシタンス補正量Cmが「78pF」、インダクタンス補正量Lmが「896uH」である。その結果、当該制御値Tcを反映後の進行波電圧Vfは「15.74mV」、反射波電圧Vrは「0.484mV」となり、反射係数絶対値|Γ|は0.03となる。このように、インピーダンス整合装置2は、ステップ幅Widxを適切に設定することで、一挙に整合改善することが出来る。
 また、第1インピーダンス整合実行後の図24に示す整合状態からギャップGpが大きくなり、結合係数kが0.095から0.145まで増加したとする。このとき進行波電圧Vfと反射波電圧Vrは、それぞれ「15.97mV」及び「6.73mV」となり、反射係数絶対値|Γ|は0.42となる。この場合、インピーダンス整合装置2は、インデックスIdxを、現在の「3」から、結合が強くなる方向にステップ幅Widx「3」だけ移動させて、「6」にしたとする。このとき、整合回路に反映される制御値Tcは、キャパシタンス補正量Cmが「69pF」、インダクタンス補正量Lmが「1070uH」である。その結果、進行波電圧Vfは「15.76mV」、反射波電圧Vrは「0.344mV」となり、反射係数絶対値|Γ|は0.022となる。このように、インピーダンス整合装置2は、ステップ幅Widxを適切に設定することで、一挙に整合改善することが出来る。
 以上より、一例として、以下のような基準でステップ幅Widxを変化させる方法が考えられる。
・「|Γ|の変化幅<0.15」の場合、「Widx=1」
・「|Γ|の変化幅<0.30」の場合、「Widx=2」
・「|Γ|の変化幅<0.45」の場合、「Widx=3」
・「|Γ|の変化幅≧0.45」の場合、「Widx=4」
 このように、インピーダンス整合装置2は、例えば、各反射係数絶対値|Γ|の変化幅に対応する適切なステップ幅Widxのテーブルを予めメモリに記憶しておく。上述のテーブルは、例えば実験等に基づき予め作成される。そして、インピーダンス整合装置2は、反射係数絶対値|Γ|の変化幅から、このテーブルを参照してステップ幅Widxを決定することで、送受信アンテナ間のギャップGpの変化、位置ずれの変化が高速に起こるような場合にも迅速に整合状態を回復することができる。
 [処理フロー]
 次に、第1実施形態における処理手順について説明する。以下では、まず、第1インピーダンス整合の処理手順について説明した後、第2インピーダンス整合の処理手順について説明する。
 (第1インピーダンス整合)
 図29は、第1実施形態においてインピーダンス整合装置2が実行する処理手順を示すフローチャートである。インピーダンス整合装置2は、図29に示す処理を、所定のタイミングで実行する。
 まず、整合回路選択部33は、スイッチ部32をスルー回路31に設定する(ステップS101)。そして、進行波・反射波抽出部21は、進行波電圧Vf及び反射波電圧Vrの各々の大きさを計測する(ステップS102)。そして、反射係数算出部22は、反射係数絶対値|Γ|を算出する(ステップS103)。具体的には、反射係数算出部22は、式(1)を参照し、進行波電圧Vf及び反射波電圧Vrに基づき算出する。
 次に、整合回路選択部33は、反射係数絶対値|Γ|が閾値|Γ|thr以下か否か判定する(ステップS104)。これにより、整合回路選択部33は、インピーダンスの整合を行う必要があるか否か判定する。そして、整合回路選択部33は、反射係数絶対値|Γ|が閾値|Γ|thr以下の場合(ステップS104;Yes)、インピーダンスの整合を行う必要がないと判断し、スイッチ部32の設定を変更しない。一方、整合回路選択部33は、反射係数絶対値|Γ|が閾値|Γ|thrより大きい場合(ステップS104;No)、インピーダンスの整合を行う必要があると判断し、ステップS105へ処理を進める。
 次に、位相判定部23は、進行波電圧Vfと反射波電圧Vrとに基づき第1位相判定を行う(ステップS105)。具体的には、位相判定部23は、これらの電圧が同相に近いか又は逆相に近いか判定する。そして、位相判定部23は、進行波電圧Vfと反射波電圧Vrが同相に近いと判断した場合(ステップS106;Yes)、記憶部選択部34は、第1の記憶部25を選択する(ステップS107)。そして、記憶部選択部34は、反射係数絶対値|Γ|に対応した制御値Tcの読み出しを行う(ステップS108)。そして、制御値出力部35は、第1形式の整合回路24に制御値Tcを設定する(ステップS109)。そして、整合回路選択部33は、スイッチ部32を第1形式の整合回路24に設定する(ステップS110)。
 一方、位相判定部23は、進行波電圧Vfと反射波電圧Vrが同相に近くない、即ち逆相に近いと判断した場合(ステップS106;No)、記憶部選択部34は、第2の記憶部27を選択する(ステップS111)。そして、記憶部選択部34は、反射係数絶対値|Γ|に対応した制御値Tcの読み出しを行う(ステップS112)。そして、制御値出力部35は、第2形式の整合回路26に制御値Tcを設定する(ステップS113)。そして、整合回路選択部33は、スイッチ部32を第2形式の整合回路26に設定する(ステップS114)。
 (第2インピーダンス整合)
 図30は、第2インピーダンスの処理手順を示すフローチャートの一例である。インピーダンス整合装置2は、図30に示すフローチャートの処理を、図29の処理を実行後、所定の周期に従い繰り返し実行する。
 まず、インピーダンス整合装置2は、整合状態を基準の状態に設定する(ステップS201)。具体的には、インピーダンス整合装置2は、第1又は第2インピーダンス整合が行われた直後の送信システムを基準の状態と定める。なお、当該基準の状態では、インピーダンス整合の結果、反射係数絶対値|Γ|は、ほぼ「0」とみなせるほど小さい。よって、以下では、当該基準の状態の反射係数絶対値|Γ|は「0」であるものとして取り扱う。
 次に、進行波・反射波抽出部21は、進行波電圧Vf及び反射波電圧Vrの各々の大きさを計測する(ステップS202)。そして、反射係数算出部22は、反射係数絶対値|Γ|を算出する(ステップS203)。具体的には、反射係数算出部22は、式(1)を参照し、進行波電圧Vf及び反射波電圧Vrに基づき算出する。
 次に、整合回路選択部33は、反射係数絶対値|Γ|が閾値|Γ|thr以下か否か判定する(ステップS204)。これにより、整合回路選択部33は、インピーダンスの整合を行う必要があるか否か判定する。そして、整合回路選択部33は、反射係数絶対値|Γ|が閾値|Γ|thr以下の場合(ステップS204;Yes)、インピーダンスの整合を行う必要がないと判断し、フローチャートの処理を終了する。一方、整合回路選択部33は、反射係数絶対値|Γ|が閾値|Γ|thrより大きい場合(ステップS204;No)、インピーダンスの整合を行う必要があると判断し、ステップS205へ処理を進める。
 次に、位相判定部23は、進行波電圧Vfと反射波電圧Vrとの第2位相判定を行う(ステップS205)。具体的には、位相判定部23は、反射波電圧Vrの位相は進行波電圧Vfの位相より遅れているか否か判定する(ステップS206)。そして位相判定部23は、反射波電圧Vrの位相が進行波電圧Vfの位相よりも遅れていると判断した場合(ステップS206;Yes)、調整方向決定部28は、送受信アンテナ間の結合が強まる方向に読み出し方向Didxを決定する(ステップS207)。具体的には、調整方向決定部28は、現在整合回路に反映されている制御値Tcに係るインデックスIdxよりも大きいインデックスIdxが存在する方向に読み出し方向Didxを決定する。そして調整ステップ幅決定部29は、反射係数絶対値|Γ|に基づきステップ幅Widxを決定する(ステップS208)。具体的には、調整ステップ幅決定部29は、例えば所定のマップ又はテーブルを参照し、反射係数絶対値|Γ|に基づき、ステップ幅Widxを大きく設定する。上述のマップ等は、例えば予め実験等に基づき作成され、インピーダンス整合装置2のメモリに記憶される。
 一方、位相判定部23は、反射波電圧Vrの位相が進行波電圧Vfの位相よりも遅れていないと判断した場合(ステップS206;No)、即ち、反射波電圧Vrの位相が進行波電圧Vfの位相よりも進んでいると判断した場合、調整方向決定部28は、送受信アンテナ間の結合が弱まる方向に読み出し方向Didxを決定する(ステップS209)。具体的には、調整方向決定部28は、現在整合回路に反映されている制御値Tcに係るインデックスIdxよりも小さいインデックスIdxが存在する方向に読み出し方向Didxを決定する。そして、調整ステップ幅決定部29は、反射係数絶対値|Γ|に基づきステップ幅Widxを決定する(ステップS210)。具体的には、調整ステップ幅決定部29は、ステップS208と同様、例えば所定のマップ又はテーブルを参照し、反射係数絶対値|Γ|に基づき、ステップ幅Widxを大きく設定する。
 次に、読み出し位置決定部30は、使用する記憶部及びインデックスIdxを決定する(ステップS211)。具体的には、読み出し位置決定部30は、決定された読み出し方向Didx及びステップ幅Widxに基づき該当するインデックスIdx及び当該インデックスIdxに係る制御値Tcを記憶した記憶部を特定する。
 次に、制御値出力部35は、制御値Tcを読み出すと共に、制御値Tcを整合回路に反映し、整合回路選択部33は、適宜スイッチ部32の切り替えを行う(ステップS212)。具体的には、整合回路選択部33は、第1の記憶部25が記憶する制御値Tcが使用される場合には、第1形式の整合回路24が有効になるようにスイッチ部32を動作させる。一方、整合回路選択部33は、第2の記憶部27が記憶する制御値Tcが使用される場合には、第2形式の整合回路26を選択するようにスイッチ部32を動作させる。
 ここで、図30のフローチャートについて補足説明する。ステップS208及びS210の処理は、実装する必要が無い場合は省略可能である。その場合は、例えばステップ幅Widxは、例えば「1」に固定される。
 また、ステップS211において、インピーダンス整合装置2は、第1の記憶部25から第2の記憶部27に切り替えて使用する場合がある。例えば、インピーダンス整合装置2は、現在が第1の記憶部25のテーブル内のインデックスIdx「1」に係る制御値Tcを使用していたとする。このとき、ギャップGpの急激な変化等に起因して、インピーダンス整合装置2は、読み出し方向Didxを送受信アンテナ間の結合が弱まる方向に設定すると共に、ステップ幅Widxを「4」に設定した場合には、選択されるインデックスIdxは「-3」となる。従って、この場合、インピーダンス整合装置2は、第1の記憶部25から第2の記憶部27に切り替えて制御値Tcを使用する。また、この場合、インピーダンス整合装置2は、第1形式の整合回路24から第2形式の整合回路26に、使用する整合回路を切り替える。このように、インピーダンス整合装置2は、柔軟に第1の記憶部25と第2の記憶部27とを切り替えて使用することで、制御値Tcを適切に選択することができる。
 <第2実施形態>
 次に、第2実施形態について説明する。第2実施形態は、第1形式の整合回路24と、第2形式の整合回路26とが1の統合された整合回路により実現されている点で、第1実施形態と異なる。以下、第1実施形態と同様の部分については、適宜その説明を省略する。
 図31は、第2実施形態に係る送信システム100Aの概略構成図の一例である。送信システム100Aは、送信回路1と、インピーダンス整合装置2Aと、送信アンテナ4と、を備える。
 インピーダンス整合装置2Aは、第1実施形態における第1形式の整合回路24及び第2形式の整合回路26が統合された整合回路24Aを備える。整合回路24Aは、スイッチ部32Yの切り替えにより、第1形式の整合回路24としての機能と、第2形式の整合回路26としての機能とが切り替わる。整合回路24Aは、第1形式の整合回路24及び第2形式の整合回路26で使用される可変インダクタ要素240、260の制御範囲、即ちこれらに設定され得るインダクタンス補正量Lmが全て設定可能な1の可変インダクタ要素を備える。また、整合回路24Aは、第1形式の整合回路24及び第2形式の整合回路26で使用される可変キャパシタ要素241、261の制御範囲、即ちこれらに設定され得るキャパシタンス補正量Cmが全て設定可能な1の可変キャパシタ要素を備える。
 また、インピーダンス整合装置2Aは、スルー回路31と整合回路24Aとを選択可能なスイッチ部32Xと、整合回路24Aがスイッチ部32Xにより選択された場合に第1形式の整合回路24の構成と第2形式の整合回路26の構成とを切換えるスイッチ部32Yと、を備える。
 以上のように、第2実施形態では、インピーダンス整合装置2Aは、スイッチ部32X、32Yを切り替えることで、1の整合回路24Aにより、第1実施形態と同様にインピーダンス整合を実行することができる。
 <変形例>
 次に、第1実施形態及び第2実施形態に好適な変形例について説明する。以下に説明する変形例は、任意に組み合わせて、上述の第1実施形態及び第2実施形態に適用してもよい。
 (変形例1)
 第1実施形態では、インピーダンス整合装置2は、反射係数絶対値|Γ|に基づき、図18、図20などのテーブルを参照して、制御値Tcを特定した。しかし、本発明が適用可能な構成は、これに限定されない。これに代えて、インピーダンス整合装置2は、反射係数絶対値|Γ|に相当する値(以後、「反射係数絶対値相当値」とも呼ぶ。)に基づき、制御値Tcを特定してもよい。ここで、反射係数絶対値相当値は、反射係数絶対値|Γ|の他、インピーダンス値の絶対値など反射係数絶対値|Γ|と一意の関係にある値、その他相関のある値が該当する。
 ここで、インピーダンス値の絶対値に基づき制御値Tcを特定する場合について説明する。この場合、インピーダンス整合装置2は、正規化インピーダンス(第1実施形態では、50Ω)より大きいインピーダンス値の絶対値の量子化境界と、量子化代表値となる制御値Tcとのテーブルを第1の記憶部25に記憶すると共に、正規化インピーダンスより小さいインピーダンス値の絶対値の量子化境界と、量子化代表値となる制御値Tcとのテーブルを第2の記憶部27に記憶する。また、このとき、各量子化境界、量子化代表値に対応して、例えば結合係数kが大きいほど大きい値となるインデックスIdxが割当てられる。第1の記憶部25、第2の記憶部27に記憶する具体的な制御値Tcは、例えば第1実施形態と同様、計算又は実験により予め設定される。
 そして、インピーダンス整合装置2は、第1インピーダンス整合を実行する際、現在のインピーダンス値の絶対値を算出すると共に、当該インピーダンス値の絶対値が正規化インピーダンスより所定値以上離れていた場合、第1位相判定結果Jr1に基づき使用する記憶部を特定する。次に、インピーダンス整合装置2は、インピーダンス値の絶対値に基づき、特定した記憶部から制御値Tcを特定し、特定した記憶部に対応する整合回路に当該制御値Tcを反映させる。また、インピーダンス整合装置2は、第2インピーダンス整合では、第1実施形態と同様、第2位相判定結果Jr2に基づき読み出し方向Didxを決定する。また、インピーダンス整合装置2は、インピーダンス値の絶対値の整合状態からの変化幅に基づき所定のテーブル又はマップを参照して、又は予め定めた固定値を使用して、ステップ幅Widxを決定する。そして、インピーダンス整合装置2は、当該読み出し方向Didx及びステップ幅Widxに基づき参照する記憶部及びインデックスIdxを特定し、該当する制御値Tcを特定した記憶部に対応する整合回路に反映させる。
 (変形例2)
 第1実施形態では、送信アンテナ4及び受信アンテナは、直並列型等価回路によってモデル化された。これに代えて、送信アンテナ4及び受信アンテナは、直並列型等価回路をより簡略化した等価回路である直列共振等価回路によってモデル化されてもよい。また、入力インピーダンス軌跡Trは、送受信アンテナを実際に対向させて実験により測定されて導出されてもよい。
 (変形例3)
 本発明に適用可能な整合回路の構成は、図1又は図31に示す構成に限定されない。これについて、図33を参照して説明する。
 図33(a)は、第1形式の整合回路24と第2形式の整合回路26とで可変インダクタ要素のみを共用する形態の整合回路を示す。図33(a)に示す整合回路は、スイッチ部の切り替えにより、第1形式の整合回路24として機能することが可能であり、第2形式の整合回路26として機能することも可能である。同様に、整合回路は、第1形式の整合回路24と第2形式の整合回路26とで可変キャパシタ要素のみを共用する形態であってもよい。
 図33(b)は、可変インダクタの代わりに固定インダクタと可変キャパシタを用いる整合回路の回路図を示す。図33(b)に示す整合回路は、スイッチ部の切り替えにより、第1形式の整合回路24として機能することが可能であり、第2形式の整合回路26として機能することも可能である。そして、図33(b)の固定インダクタと可変キャパシタは、本発明における「可変インダクタ要素」の一例である。このように、図33(a)、(b)に示す整合回路によっても、本発明を好適に実施することができる。
 (変形例4)
 第1実施形態では、制御値Tcは、インダクタンス補正量Lm及びキャパシタンス補正量Cmであった。しかし、本発明が適用可能な制御値Tcはこれに限定されない。
 これに代えて、制御値Tcとは、可変キャパシタ要素241、261に加えるキャパシタンス補正量Cmを反映するための制御電圧値、可変インダクタ要素240、260を構成するスイッチ群のオン又はオフに対応したインダクタンス補正量Lmを反映するためのビットパターンであってもよい。従って、この場合、インピーダンス整合装置2は、整合回路を構成する可変インダクタ要素240、260及び可変キャパシタ要素241、261を所定のキャパシタンス及びインダクタンスに設定するためのキャパシタンス補正量Cm及びインダクタンス補正量Lmに相当する制御値Tcを、各反射係数絶対値|Γ|に対応させて、第1及び第2の記憶部25、27に保持しておく。
(変形例5)
 第1実施形態では、インピーダンス整合装置2は、第1及び第2形式の整合回路24、26を備え、ギャップGpが近くなる場合(即ち、整合ポイントより送受信アンテナ間の結合が強い場合)及びギャップGpが遠くなる場合(即ち、整合ポイントより送受信アンテナ間の結合が弱い場合)の両方の場合に、インピーダンス整合を実行した。しかし、本発明が適用可能な構成は、これに限定されない。
 これに代えて、インピーダンス整合装置2は、整合ポイントとそのポイントから結合が強くなる方向の範囲でのみギャップGpが変化するような場合、即ち整合ポイントからギャップGpが近くなる方向の範囲内で整合させれば良いような場合には、第1及び第2形式の整合回路24、26のうち、第1形式の整合回路24に相当する整合回路のみ備えてもよい。図34は、ギャップGpが近くなる方向の不整合を整合させる送信システム100Bの概略構成を示す。図34に示すインピーダンス整合装置2Bは、主に、進行波・反射波抽出部21と、反射係数算出部22と、位相判定部23と、整合回路24と、記憶部25と、調整方向決定部28と、調整ステップ幅決定部29と、読出し位置決定部30と、スルー回路31と、スイッチ部32と、整合回路選択部33と、制御値出力部35と、を備える。そして、記憶部25は第1実施形態における第1の記憶部25に相当し、整合回路24は第1実施形態における第1形式の整合回路24に相当する。また、可変キャパシタ要素は、可変インダクタ要素よりも送信アンテナ4側に並列に接続されている。
 一方、インピーダンス整合装置2は、整合ポイントとそのポイントから結合が弱くなる方向の範囲でのみギャップGpが変化するような場合、即ち整合ポイントからギャップGpが遠くなる方向の範囲内で整合させれば良いような場合には、第1及び第2形式の整合回路24、26のうち、第2形式の整合回路26に相当する整合回路のみ備えてもよい。図35は、ギャップGpが遠くなる方向の不整合を整合させる送信システム100Cの概略構成を示す。図35に示すインピーダンス整合装置2Bは、主に、進行波・反射波抽出部21と、反射係数算出部22と、位相判定部23と、整合回路24と、記憶部25と、調整方向決定部28と、調整ステップ幅決定部29と、読出し位置決定部30と、スルー回路31と、スイッチ部32と、整合回路選択部33と、制御値出力部35と、を備える。そして、記憶部25は第1実施形態における第2の記憶部27に相当し、整合回路24は第1実施形態における第2形式の整合回路26に相当する。また、可変キャパシタ要素は、可変インダクタ要素よりも送信回路1側に並列に接続されている。
 本発明は、電磁界共振結合方式を用いた無線電力伝送システム全般に好適に適用される。また、本発明は、磁界結合、電界結合等の種々の方式に対して好適に適用可能である。
 1 送信回路
 2、2A インピーダンス整合装置
 4 送信アンテナ
 11 送信信号源
 12 増幅部
 21 進行波・反射波抽出部
 22 反射係数算出部
 23 位相判定部
 24 第1形式の整合回路
 25 第1の記憶部
 26 第2形式の整合回路
 27 第2の記憶部
 28 調整方向決定部
 29 調整ステップ幅決定部
 30 読み出し位置決定部
 31 スルー回路
 32、32X、32Y スイッチ部
 33 整合回路選択部
 34 記憶部選択部
 35 制御値出力部
 100、100A 送信システム

Claims (10)

  1.  電磁界共振結合方式に準じた無線電力伝送システムにおいて、送信回路と送信アンテナとの間に設置されるインピーダンス整合装置であって、
     前記送信回路からの送信信号に対応する進行波電圧と、前記送信アンテナからの反射信号に対応する反射波電圧と、を取り出す進行波・反射波抽出部と、
     前記進行波電圧と前記反射波電圧とに基づき、反射係数の絶対値又は当該絶対値に相当する値である反射係数絶対値相当値を算出する反射係数算出部と、
     前記進行波電圧の位相と前記反射波電圧の位相とを比較し、当該位相間の遅れ又は進みを判定する位相判定を行う位相判定部と、
     前記送信回路と前記送信アンテナとの間に直列に挿入される可変インダクタ要素と、当該可変インダクタ要素よりも前記送信アンテナ側に並列に接続される可変キャパシタ要素と、を備える第1形式の整合回路と、
     前記第1形式の整合回路を用いて所定のインピーダンス値に整合させるために必要なインダクタンス値及びキャパシタンス値に対応した制御値を、対応する前記送信アンテナと受信アンテナとの結合係数の大小の順に従い、反射係数絶対値相当値に関連付けて、予め記憶させた第1の記憶部と、
     前記送信回路と前記送信アンテナとの間に直列に挿入される可変インダクタ要素と、当該可変インダクタ要素よりも前記送信回路側に並列に接続される可変キャパシタ要素と、を備える第2形式の整合回路と、
     前記第2形式の整合回路を用いて所定のインピーダンス値に整合させるために必要な前記制御値を、対応する前記送信アンテナと受信アンテナとの結合係数の大小の順に従い、反射係数絶対値相当値に関連付けて、予め記憶させた第2の記憶部と、
     前記第1形式の整合回路、前記第2形式の整合回路、又は整合回路を挿入しないスルー回路、の何れかを、前記送信回路と前記送信アンテナとの間に電気的に接続させるスイッチ部と、
     前記位相判定に基づき、前記第1又は第2の記憶部から前記制御値を読出す際の、現在使用している制御値から前記結合係数が大きくなる場合に対応する制御値を選択するか、又は前記結合係数が小さくなる場合に対応する制御値を選択するかの制御値の読み出し位置の方向を決定する調整方向決定部と、
     前記読出し位置の方向と、前記読出し位置を変更するステップ幅と、に基づき、前記第1形式又は第2形式の整合回路又は整合回路を挿入しないスルー回路の選択、第1形式又は第2形式の整合回路が選択された場合に使用する前記第1又は第2の記憶部の選択、及び前記読出し位置の決定を行う読出し位置決定部と、
     前記読出し位置決定部が選択した第1形式又は第2形式の整合回路又は整合回路を挿入しないスルー回路、の何れかが前記送信回路と前記送信アンテナとの間で電気的に接続されるように前記スイッチ部を動作させる整合回路選択部と、
     前記読み出し位置決定部が選択した前記第1又は第2の記憶部を、前記制御値を読み出す記憶部として選択する記憶部選択部と、
     前記記憶部選択部が選択した前記第1又は第2の記憶部から、前記読み出し位置決定部が決定した前記読み出し位置に相当する制御値を読み出し、前記整合回路選択部が選択した前記第1形式又は第2の形式の整合回路に反映させる制御値出力部と、
    を備えることを特徴とするインピーダンス整合装置。
  2.  前記反射係数絶対値相当値に基づき、現在使用している制御値を調整する必要性の有無、及び、前記ステップ幅を決定する調整ステップ幅決定部をさらに備えることを特徴とする請求項1に記載のインピーダンス整合装置。
  3.  前記制御値は、電磁界共振結合方式の前記送信アンテナ及び受信アンテナを対向させ、当該送信アンテナ及び受信アンテナ間のギャップを変更した際の、前記送信回路から前記送信アンテナ側への入力インピーダンスの変化の軌跡に基づいて設定されることを特徴とする請求項1または2に記載のインピーダンス整合装置。
  4.  前記制御値は、反射による損失が常に所定の閾値以下となるように量子化して生成されていることを特徴とする請求項1乃至3のいずれか一項に記載のインピーダンス整合装置。
  5.  前記制御値は、前記反射係数の絶対値または当該絶対値に相当する値である反射係数絶対値相当値が大きくなるほど、量子化間隔が小さくなるように量子化されることを特徴とする請求項1乃至4のいずれか一項に記載のインピーダンス整合装置。
  6.  電磁界共振結合方式に準じた無線電力伝送システムにおいて、送信回路と送信アンテナとの間に設置され、
     前記送信回路と前記送信アンテナとの間に直列に挿入される可変インダクタ要素と、当該可変インダクタ要素よりも前記送信アンテナ側に並列に接続される可変キャパシタ要素と、を備える第1形式の整合回路と、
     前記第1形式の整合回路を用いて所定のインピーダンス値に整合させるために必要なインダクタンス値及びキャパシタンス値に対応した制御値を、対応する前記送信アンテナと受信アンテナとの結合係数の大小の順に従い、反射係数絶対値相当値に関連付けて、予め記憶させた第1の記憶部と、
     前記送信回路と前記送信アンテナとの間に直列に挿入される可変インダクタ要素と、当該可変インダクタ要素よりも前記送信回路側に並列に接続される可変キャパシタ要素と、を備える第2形式の整合回路と、
     前記第2形式の整合回路を用いて所定のインピーダンス値に整合させるために必要な前記制御値を、対応する前記送信アンテナと受信アンテナとの結合係数の大小の順に従い、反射係数絶対値相当値に関連付けて、予め記憶させた第2の記憶部と、
     前記第1形式の整合回路、前記第2形式の整合回路、又は整合回路を挿入しないスルー回路、の何れかを、前記送信回路と前記送信アンテナとの間に電気的に接続させるスイッチ部と、を備えるインピーダンス整合装置が実行する制御方法であって、
     前記送信回路からの送信信号に対応する進行波電圧と、前記送信アンテナからの反射信号に対応する反射波電圧と、を取り出す進行波・反射波抽出工程と、
     前記進行波電圧と前記反射波電圧とに基づき、反射係数の絶対値又は当該絶対値に相当する値である反射係数絶対値相当値を算出する反射係数算出工程と、
     前記進行波電圧の位相と前記反射波電圧の位相とを比較し、当該位相間の遅れ又は進みを判定する位相判定を行う位相判定工程と、
     前記位相判定に基づき、前記第1又は第2の記憶部から前記制御値を読出す際の、現在使用している制御値から前記結合係数が大きくなる場合に対応する制御値を選択するか、又は前記結合係数が小さくなる場合に対応する制御値を選択するかの制御値の読み出し位置の方向を決定する調整方向決定工程と、
     前記読出し位置の方向と、前記読出し位置を変更するステップ幅と、に基づき、前記第1形式又は第2形式の整合回路又は整合回路を挿入しないスルー回路の選択、第1形式又は第2形式の整合回路が選択された場合に使用する前記第1又は第2の記憶部の選択、及び前記読出し位置の決定を行う読出し位置決定工程と、
     前記読出し位置決定工程が選択した第1形式又は第2形式の整合回路又は整合回路を挿入しないスルー回路、の何れかが前記送信回路と前記送信アンテナとの間で電気的に接続されるように前記スイッチ部を動作させる整合回路選択工程と、
     前記読み出し位置決定工程が選択した前記第1又は第2の記憶部を、前記制御値を読み出す記憶部として選択する記憶部選択工程と、
     前記記憶部選択工程が選択した前記第1又は第2の記憶部から、前記読み出し位置決定工程が決定した前記読み出し位置に相当する制御値を読み出し、前記整合回路選択工程が選択した前記第1形式又は第2の形式の整合回路に反映させる制御値出力工程と、
    を備えることを特徴とする制御方法。
  7.  電磁界共振結合方式に準じた無線電力伝送システムにおいて、送信回路と送信アンテナとの間に設置されるインピーダンス整合装置であって、
     前記送信回路からの送信信号に対応する進行波電圧と、前記送信アンテナからの反射信号に対応する反射波電圧と、を取り出す進行波・反射波抽出部と、
     前記進行波電圧と前記反射波電圧とに基づき、反射係数の絶対値又は当該絶対値に相当する値である反射係数絶対値相当値を算出する反射係数算出部と、
     前記進行波電圧の位相と前記反射波電圧の位相とを比較し、当該位相間の遅れ又は進みを判定する位相判定を行う位相判定部と、
     前記送信回路と前記送信アンテナとの間に直列に挿入される可変インダクタ要素と、当該可変インダクタ要素よりも前記送信アンテナ側に並列に接続される可変キャパシタ要素と、を備える整合回路と、
     前記整合回路を用いて所定のインピーダンス値に整合させるために必要なインダクタンス値及びキャパシタンス値に対応した制御値を、対応する前記送信アンテナと受信アンテナとの結合係数の大小の順に従い、反射係数絶対値相当値に関連付けて、予め記憶させた記憶部と、
     前記整合回路、又は整合回路を挿入しないスルー回路、の何れかを、前記送信回路と前記送信アンテナとの間に電気的に接続させるスイッチ部と、
     前記反射係数絶対値相当値に基づき、前記スイッチ部を動作させる整合回路選択部と、
     前記位相判定に基づき、前記記憶部から前記制御値を読出す際の、現在使用している制御値から前記結合係数が大きくなる場合に対応する制御値を選択するか、又は前記結合係数が小さくなる場合に対応する制御値を選択するかの制御値の読み出し位置の方向を決定する調整方向決定部と、
     前記読み出し位置の方向と、前記読み出し位置を変更するステップ幅と、に基づき、前記読み出し位置の決定を行う読み出し位置決定部と、
     前記記憶部から、前記読み出し位置決定部が決定した前記読み出し位置に相当する制御値を読み出し、前記整合回路に反映させる制御値出力部と、
    を備えることを特徴とするインピーダンス整合装置。
  8.  電磁界共振結合方式に準じた無線電力伝送システムにおいて、送信回路と送信アンテナとの間に設置されるインピーダンス整合装置であって、
     前記送信回路からの送信信号に対応する進行波電圧と、前記送信アンテナからの反射信号に対応する反射波電圧と、を取り出す進行波・反射波抽出部と、
     前記進行波電圧と前記反射波電圧とに基づき、反射係数の絶対値又は当該絶対値に相当する値である反射係数絶対値相当値を算出する反射係数算出部と、
     前記進行波電圧の位相と前記反射波電圧の位相とを比較し、当該位相間の遅れ又は進みを判定する位相判定を行う位相判定部と、
     前記送信回路と前記送信アンテナとの間に直列に挿入される可変インダクタ要素と、当該可変インダクタ要素よりも前記送信回路側に並列に接続される可変キャパシタ要素と、を備える整合回路と、
     前記整合回路を用いて所定のインピーダンス値に整合させるために必要なインダクタンス値及びキャパシタンス値に対応した制御値を、対応する前記送信アンテナと受信アンテナとの結合係数の大小の順に従い、反射係数絶対値相当値に関連付けて、予め記憶させた記憶部と、
     前記整合回路、又は整合回路を挿入しないスルー回路、の何れかを、前記送信回路と前記送信アンテナとの間に電気的に接続させるスイッチ部と、
     前記反射係数絶対値相当値に基づき、前記スイッチ部を動作させる整合回路選択部と、
     前記位相判定に基づき、前記記憶部から前記制御値を読出す際の、現在使用している制御値から前記結合係数が大きくなる場合に対応する制御値を選択するか、又は前記結合係数が小さくなる場合に対応する制御値を選択するかの制御値の読み出し位置の方向を決定する調整方向決定部と、
     前記読み出し位置の方向と、前記読み出し位置を変更するステップ幅と、に基づき、前記読み出し位置の決定を行う読み出し位置決定部と、
     前記記憶部から、前記読み出し位置決定部が決定した前記読み出し位置に相当する制御値を読み出し、前記整合回路に反映させる制御値出力部と、
    を備えることを特徴とするインピーダンス整合装置。
  9.  前記反射係数絶対値相当値に基づき、現在使用している制御値を調整する必要性の有無、及び、前記ステップ幅を決定する調整ステップ幅決定部をさらに備えることを特徴とする請求項7または8に記載のインピーダンス整合装置。
  10.  前記制御値は、電磁界共振結合方式の前記送信アンテナ及び受信アンテナを対向させ、当該送信アンテナ及び受信アンテナ間のギャップを変更した際の、前記送信回路から前記送信アンテナ側への入力インピーダンスの変化の軌跡に基づいて設定されることを特徴とする請求項7乃至9のいずれか一項に記載のインピーダンス整合装置。
PCT/JP2010/063570 2010-08-10 2010-08-10 インピーダンス整合装置、制御方法 WO2012020476A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2010/063570 WO2012020476A1 (ja) 2010-08-10 2010-08-10 インピーダンス整合装置、制御方法
JP2012037331A JP5544386B2 (ja) 2010-08-10 2012-02-23 インピーダンス整合装置、制御方法

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
PCT/JP2010/063570 WO2012020476A1 (ja) 2010-08-10 2010-08-10 インピーダンス整合装置、制御方法
JP2012501072A JP5059243B2 (ja) 2010-08-10 2010-08-10 インピーダンス整合装置、制御方法
JP2012037331A JP5544386B2 (ja) 2010-08-10 2012-02-23 インピーダンス整合装置、制御方法

Publications (1)

Publication Number Publication Date
WO2012020476A1 true WO2012020476A1 (ja) 2012-02-16

Family

ID=46829011

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/063570 WO2012020476A1 (ja) 2010-08-10 2010-08-10 インピーダンス整合装置、制御方法

Country Status (2)

Country Link
JP (1) JP5544386B2 (ja)
WO (1) WO2012020476A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014045571A1 (en) * 2012-09-18 2014-03-27 Panasonic Corporation Contactless electric power feeding system
JPWO2014030690A1 (ja) * 2012-08-23 2016-07-28 株式会社豊田自動織機 非接触電力伝送装置
JP2017506019A (ja) * 2013-12-17 2017-02-23 クアルコム,インコーポレイテッド 調整可能な負荷線

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014037994A1 (ja) * 2012-09-04 2014-03-13 パイオニア株式会社 インピーダンス整合装置及び方法、並びにコンピュータプログラム
KR101829563B1 (ko) * 2014-02-28 2018-02-14 가부시키가이샤 히다치 고쿠사이 덴키 정합기 및 정합 방법
WO2016136444A1 (ja) 2015-02-27 2016-09-01 株式会社日立国際電気 整合器及び整合方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005129985A (ja) * 2003-10-21 2005-05-19 Hitachi Kokusai Electric Inc 自動インピーダンス整合方法
JP2010087845A (ja) * 2008-09-30 2010-04-15 Oki Consulting Solutions Co Ltd 自動整合方法及び自動整合回路
WO2010067763A1 (ja) * 2008-12-09 2010-06-17 株式会社 豊田自動織機 非接触電力伝送装置及び非接触電力伝送装置における電力伝送方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3398211B2 (ja) * 1994-03-31 2003-04-21 アイコム株式会社 オートアンテナチューナー、およびその制御方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005129985A (ja) * 2003-10-21 2005-05-19 Hitachi Kokusai Electric Inc 自動インピーダンス整合方法
JP2010087845A (ja) * 2008-09-30 2010-04-15 Oki Consulting Solutions Co Ltd 自動整合方法及び自動整合回路
WO2010067763A1 (ja) * 2008-12-09 2010-06-17 株式会社 豊田自動織機 非接触電力伝送装置及び非接触電力伝送装置における電力伝送方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2014030690A1 (ja) * 2012-08-23 2016-07-28 株式会社豊田自動織機 非接触電力伝送装置
WO2014045571A1 (en) * 2012-09-18 2014-03-27 Panasonic Corporation Contactless electric power feeding system
JP2017506019A (ja) * 2013-12-17 2017-02-23 クアルコム,インコーポレイテッド 調整可能な負荷線

Also Published As

Publication number Publication date
JP2012130061A (ja) 2012-07-05
JP5544386B2 (ja) 2014-07-09

Similar Documents

Publication Publication Date Title
JP5619710B2 (ja) インピーダンス整合装置及び制御方法
JP5544386B2 (ja) インピーダンス整合装置、制御方法
JP5957556B2 (ja) インピーダンス整合装置、受電側装置、及び制御方法
JP5710759B2 (ja) インピーダンス整合装置、制御方法
Kim et al. Loop switching technique for wireless power transfer using magnetic resonance coupling
Dang et al. Modeling and investigation of magnetic resonance coupled wireless power transfer system with lateral misalignment
US9780575B2 (en) System and method for contactless exchange of power
Tan et al. Output power stabilisation of wireless power transfer system with multiple transmitters
US11031821B2 (en) Wireless power transmission device
Dang et al. Elimination method for the transmission efficiency valley of death in laterally misaligned wireless power transfer systems
JP5819502B2 (ja) インピーダンス整合装置及び制御方法
Cho et al. Wireless power transfer system for docent robot by using magnetic resonant coils
WO2013183700A1 (ja) 受電機器及び非接触電力伝送装置
JP5059243B2 (ja) インピーダンス整合装置、制御方法
Ricketts et al. On the efficient wireless power transfer in resonant multi-receiver systems
Fang et al. Circuit model based design and analysis for a four-structure-switchable wireless power transfer system
Li et al. Improved particle swarm optimization algorithm for adaptive frequency-tracking control in wireless power transfer systems
Hu et al. Wireless power transfer through strongly coupled electric resonance
Zhang Design of High Efficiency Wireless Power Transfer System with Nonlinear Resonator
Lee et al. Hybrid Impedance Matching Strategy for Wireless Charging System
Misran et al. Enhancement algorithm for reverse loop technique on planar reverse loop antenna
Zhao et al. Analysis Resonant Compensation for Wireless Power Transfer via Magnetic Coupling.
Shen et al. optimization Design of Coil of Magnetically Coupled Resonant Wireless Power Transmission System
Blazevic et al. Resonant Near-Field Power Transfer: Revisiting the frequency-splitting phenomenon using the spherical mode theory antenna model

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2012501072

Country of ref document: JP

ENP Entry into the national phase in:

Ref document number: 2012501072

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10855877

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase in:

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10855877

Country of ref document: EP

Kind code of ref document: A1