JP6383763B2 - 医学的治療のための新規の金系ナノ結晶、及び該金系ナノ結晶のための電気化学的製造方法 - Google Patents

医学的治療のための新規の金系ナノ結晶、及び該金系ナノ結晶のための電気化学的製造方法 Download PDF

Info

Publication number
JP6383763B2
JP6383763B2 JP2016160686A JP2016160686A JP6383763B2 JP 6383763 B2 JP6383763 B2 JP 6383763B2 JP 2016160686 A JP2016160686 A JP 2016160686A JP 2016160686 A JP2016160686 A JP 2016160686A JP 6383763 B2 JP6383763 B2 JP 6383763B2
Authority
JP
Japan
Prior art keywords
gold
nanocrystals
suspension
electrode
liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016160686A
Other languages
English (en)
Other versions
JP2017075390A (ja
Inventor
モーテンソン マーク
モーテンソン マーク
ピアス ディー.カイル
ピアス ディー.カイル
ブライス デイビッド
ブライス デイビッド
ドルフマン アダム
ドルフマン アダム
ウィルコックス リード
ウィルコックス リード
ロケット アンソニー
ロケット アンソニー
マーズリアーコブ ミカイル
マーズリアーコブ ミカイル
Original Assignee
クリーン ナノメディシン,インコーポレイティド
クリーン ナノメディシン,インコーポレイティド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by クリーン ナノメディシン,インコーポレイティド, クリーン ナノメディシン,インコーポレイティド filed Critical クリーン ナノメディシン,インコーポレイティド
Publication of JP2017075390A publication Critical patent/JP2017075390A/ja
Application granted granted Critical
Publication of JP6383763B2 publication Critical patent/JP6383763B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/08Solutions
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N55/00Biocides, pest repellants or attractants, or plant growth regulators, containing organic compounds containing elements other than carbon, hydrogen, halogen, oxygen, nitrogen and sulfur
    • A01N55/02Biocides, pest repellants or attractants, or plant growth regulators, containing organic compounds containing elements other than carbon, hydrogen, halogen, oxygen, nitrogen and sulfur containing metal atoms
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/28Compounds containing heavy metals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K33/00Medicinal preparations containing inorganic active ingredients
    • A61K33/24Heavy metals; Compounds thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K33/00Medicinal preparations containing inorganic active ingredients
    • A61K33/24Heavy metals; Compounds thereof
    • A61K33/242Gold; Compounds thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/02Inorganic compounds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/0087Galenical forms not covered by A61K9/02 - A61K9/7023
    • A61K9/0095Drinks; Beverages; Syrups; Compositions for reconstitution thereof, e.g. powders or tablets to be dispersed in a glass of water; Veterinary drenches
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/10Dispersions; Emulsions
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/14Particulate form, e.g. powders, Processes for size reducing of pure drugs or the resulting products, Pure drug nanoparticles
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P1/00Drugs for disorders of the alimentary tract or the digestive system
    • A61P1/04Drugs for disorders of the alimentary tract or the digestive system for ulcers, gastritis or reflux esophagitis, e.g. antacids, inhibitors of acid secretion, mucosal protectants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P1/00Drugs for disorders of the alimentary tract or the digestive system
    • A61P1/16Drugs for disorders of the alimentary tract or the digestive system for liver or gallbladder disorders, e.g. hepatoprotective agents, cholagogues, litholytics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P11/00Drugs for disorders of the respiratory system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P11/00Drugs for disorders of the respiratory system
    • A61P11/02Nasal agents, e.g. decongestants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P11/00Drugs for disorders of the respiratory system
    • A61P11/06Antiasthmatics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P17/00Drugs for dermatological disorders
    • A61P17/04Antipruritics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P19/00Drugs for skeletal disorders
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P19/00Drugs for skeletal disorders
    • A61P19/02Drugs for skeletal disorders for joint disorders, e.g. arthritis, arthrosis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P19/00Drugs for skeletal disorders
    • A61P19/06Antigout agents, e.g. antihyperuricemic or uricosuric agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P19/00Drugs for skeletal disorders
    • A61P19/08Drugs for skeletal disorders for bone diseases, e.g. rachitism, Paget's disease
    • A61P19/10Drugs for skeletal disorders for bone diseases, e.g. rachitism, Paget's disease for osteoporosis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P21/00Drugs for disorders of the muscular or neuromuscular system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P21/00Drugs for disorders of the muscular or neuromuscular system
    • A61P21/04Drugs for disorders of the muscular or neuromuscular system for myasthenia gravis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/04Centrally acting analgesics, e.g. opioids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/14Drugs for disorders of the nervous system for treating abnormal movements, e.g. chorea, dyskinesia
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/14Drugs for disorders of the nervous system for treating abnormal movements, e.g. chorea, dyskinesia
    • A61P25/16Anti-Parkinson drugs
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/28Drugs for disorders of the nervous system for treating neurodegenerative disorders of the central nervous system, e.g. nootropic agents, cognition enhancers, drugs for treating Alzheimer's disease or other forms of dementia
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P27/00Drugs for disorders of the senses
    • A61P27/02Ophthalmic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P29/00Non-central analgesic, antipyretic or antiinflammatory agents, e.g. antirheumatic agents; Non-steroidal antiinflammatory drugs [NSAID]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P29/00Non-central analgesic, antipyretic or antiinflammatory agents, e.g. antirheumatic agents; Non-steroidal antiinflammatory drugs [NSAID]
    • A61P29/02Non-central analgesic, antipyretic or antiinflammatory agents, e.g. antirheumatic agents; Non-steroidal antiinflammatory drugs [NSAID] without antiinflammatory effect
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • A61P3/08Drugs for disorders of the metabolism for glucose homeostasis
    • A61P3/10Drugs for disorders of the metabolism for glucose homeostasis for hyperglycaemia, e.g. antidiabetics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/04Antibacterial agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/04Antibacterial agents
    • A61P31/06Antibacterial agents for tuberculosis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • A61P31/14Antivirals for RNA viruses
    • A61P31/16Antivirals for RNA viruses for influenza or rhinoviruses
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • A61P31/20Antivirals for DNA viruses
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P33/00Antiparasitic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P33/00Antiparasitic agents
    • A61P33/02Antiprotozoals, e.g. for leishmaniasis, trichomoniasis, toxoplasmosis
    • A61P33/06Antimalarials
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • A61P35/02Antineoplastic agents specific for leukemia
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • A61P35/04Antineoplastic agents specific for metastasis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • A61P37/02Immunomodulators
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • A61P37/02Immunomodulators
    • A61P37/06Immunosuppressants, e.g. drugs for graft rejection
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • A61P37/08Antiallergic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P5/00Drugs for disorders of the endocrine system
    • A61P5/14Drugs for disorders of the endocrine system of the thyroid hormones, e.g. T3, T4
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • A61P9/10Drugs for disorders of the cardiovascular system for treating ischaemic or atherosclerotic diseases, e.g. antianginal drugs, coronary vasodilators, drugs for myocardial infarction, retinopathy, cerebrovascula insufficiency, renal arteriosclerosis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/05Metallic powder characterised by the size or surface area of the particles
    • B22F1/054Nanosized particles
    • B22F1/0545Dispersions or suspensions of nanosized particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/05Metallic powder characterised by the size or surface area of the particles
    • B22F1/054Nanosized particles
    • B22F1/0553Complex form nanoparticles, e.g. prism, pyramid, octahedron
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82BNANOSTRUCTURES FORMED BY MANIPULATION OF INDIVIDUAL ATOMS, MOLECULES, OR LIMITED COLLECTIONS OF ATOMS OR MOLECULES AS DISCRETE UNITS; MANUFACTURE OR TREATMENT THEREOF
    • B82B3/00Manufacture or treatment of nanostructures by manipulation of individual atoms or molecules, or limited collections of atoms or molecules as discrete units
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B1/00Single-crystal growth directly from the solid state
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/02Elements
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/60Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape characterised by shape
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B7/00Single-crystal growth from solutions using solvents which are liquid at normal temperature, e.g. aqueous solutions
    • C30B7/12Single-crystal growth from solutions using solvents which are liquid at normal temperature, e.g. aqueous solutions by electrolysis
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/30Against vector-borne diseases, e.g. mosquito-borne, fly-borne, tick-borne or waterborne diseases whose impact is exacerbated by climate change

Description

本出願は、7つの他の特許出願:1)2009年7月8日付けで出願された米国特許出願第61/223,944号明細書;2)2009年7月16日付けで出願された米国特許出願第61/226,153号明細書;3)2009年7月24日付けで出願された米国特許出願第61/228,250号明細書;4)2009年8月20日付けで出願された米国特許出願第61/235,574号明細書;5)2009年10月8日付けで出願された米国特許出願第61/249,804号明細書;6)2009年11月23日付けで出願された米国特許出願第61/263,648号明細書;及び7)2010年1月13日付けで出願された米国特許出願第61/294,690号明細書の優先権を主張する。
本発明は、有機又はその他の不純物又は膜を実質的に含まない表面を有する新規の金ナノ結晶及びナノ結晶形状分布に関する。具体的には、これらの表面は、溶液中の金イオンから金ナノ粒子を成長させるために有機還元剤及び/又は界面活性剤を必要とする化学的還元プロセスを用いて形成された金ナノ粒子の表面と比較して「クリーン」である。
本発明は、金系ナノ結晶を製造するための新規の電気化学的製造装置及び技術を含む。本発明はさらにその医薬組成物を含み、また、金ナノ結晶又はその懸濁液又はコロイドを、対応する金療法がすでに知られている疾患又は状態の治療又は予防のために使用すること、そしてより一般的に言えば、病理学的細胞活性から生じる状態、例えば炎症(慢性炎症を含む)状態、自己免疫状態、過敏反応及び/又は癌疾患又は状態のために使用することを含む。1実施態様の場合、この状態はMIF(マクロファージ遊走阻止因子)によって媒介される。
金塩
Mycobacterium tuberculosis(ヒト型結核菌)に対するシアン化金の静菌効果を発見したのはローベルト・コッホの功績である。続いて、結核患者が、疾患に対する金塩注射を与えられると特定の炎症状態が軽減することによってしばしば恩恵を受けることが観察された。観察されたこのような炎症軽減は、関節リウマチ治療薬として1927年にForestierによって用いられた金チオレートに導いた(Panyala, 2009)(Abraham, 1997)。初期の金系製品は典型的には筋内、又は皮下(そして後には動脈内)注射され、そしていくつかは今日でもまだ利用可能であり、且つ/又は関節リウマチを治療するためにまだ使用されている。
具体的には、特定の金化合物が抗炎症活性を有することは何年も前から知られている。例えば、(i)Myocrisinとして販売されているナトリウム金チオマレート(「金ナトリウムチオマレート」とも呼ばれる)、及びMyocrisine及びMyochrisisとして販売されている関連化学バージョン;(ii)Solganolとして販売されているナトリウム金チオグルコース(「金ナトリウムチオグルコースとも呼ばれる);(iii)Sanocrysinとして販売されているナトリウム金チオスルフェート、及びCrisalbine, Aurothion及びSanocrysisとして販売されている関連化学的バージョン;及び(iv)Allocrysineとして販売されているナトリウム金チオプロパノールスルホネートが、関節リウマチの治療に用いられている(Sadler, 1976; Shaw, 1999; Eisler, p.133, 2004)。一価金塩だけが、関節リウマチの治療に対して治療効果を示すと考えられた。1961年に、Empire Rheumatism Councilは、注射可能な金塩が有効性を示し、金塩が引き続き、幅広く用いられる進行性関節リウマチ治療法であり続けることを確認した(Ueda, 1998)。
種々の金塩による治療が、ぜんそく、HIV、マラリア、及び癌を含む一連の他の疾患において効果的であることも示唆されており、或いは事例的に観察されている。ヒト及び動物モデルの両方において、これらの疾患にはかなり多くの証拠が存在し、このことは金が、満たされていないこれらの医療ニーズ分野に対する実行可能な治療選択肢となり得ることを示唆している(Dabrowiak, 2009)。
経口金
ごく最近では、世界の数個所においてAuranofin(登録商標)又はRidaura(登録商標)として販売されている経口金製品、2,3,4,6−テトラ−o−アセチルI−チオB−D−グルコピラノサト−S−(トリエチル−ホスフィン)が利用可能になってきている(Ho & Tiekink, 2005, Dabrowiak, 2009)。Auranofin(登録商標)は、1980年半ばに人間への使用がFDAによって承認された。Auranofin(登録商標)は、経口吸収されるという利点を有するが、しかし、注射可能な金チオレートよりも効果が低いと考えられた(Sadler, 1976; Shaw 1999)。
金塩及び経口金の毒物学
歴史的に見て、毒性は、全ての注射物質の金ベース療法及び経口物質の金ベース療法の利用を制限している。いずれの場所でも、患者の30〜50%が望ましくない又は耐容不能な副作用によって種々の金ベース治療を終わらせている。多くのコンベンショナルな金治療の副作用は、発疹又は皮膚粘膜作用(例えば掻痒、皮膚炎、及び口内炎);血液学的変化(例えば血小板減少症);尿中のタンパク(タンパク尿);口腔の炎症;循環する白血球数の減少;血小板数の減少;器官損傷による再生不良性貧血、肺異常;有害な免疫反応、例えば好酸球増加、リンパ節症、高ガンマグロブリン血;重症低血圧、アンギナ、心筋梗塞、腎臓毒性及びネフローゼ症候群;肝炎;大腸炎;及び角膜、水晶体、及び皮膚の金皮症(色素沈着)を含む(Eisler, p.133-134, 2004)。金療法の最も一般的な副作用は、全ての有害反応の60%までを占める皮膚の毒性であり、特に苔癬様発疹及び非特異的皮膚炎であった(Eisler, p.133-134, 2004)。これらの副作用は、金それ自体ではなく、使用される製剤(例えばキャリア分子、化合物中の金の酸化状態など)に関連すると考えられる(Ho & Tiekink, 2005)。
Payne及びArenaは1978年に、ラットにおけるAuranofin(登録商標)を含むいくつかの経口金化合物の亜急性及び慢性の毒性を報告した。Sprague Dawleyラットに、6週間、6ヶ月、及び1年にわたって投与した。追跡研究において、1年間の調査で、順次殺すことと投薬計画を改変することとを繰り返した。
この研究によって同定されたターゲット器官は胃及び腎臓であった。胃の変化は、粘膜の厚さの1/3まで広がり、粘膜の表面積の最大5%を覆う粘膜の表在性びらんから成った。この変化は投与量依存的であり、体重の減少を伴った。治癒病変も明らかであった。6ヶ月にわたってSK&F 36914を与えられたラットの腎臓において、皮質尿細管上皮細胞(巨大細胞)が拡大した。加えて、多形性の多核細胞のエビデンスを伴う、投与量依存的な核の拡大(巨大核)も生じた。1年研究において、同様の変化が見られたが、しかし、付加的に腎皮質細胞腺腫も、それぞれ対照、低投与量、中投与量、及び高投与量に対して投与関連発生率(0/38,3/39,6/37,及び8/37)で見られた。繰り返された1年研究において、予期しないほど高い致死率が発生した。これは潰瘍まで進行する回盲病変に起因するものであり、この潰瘍は、数多くの事例において腸壁を穿孔するように見えた。おそらく、死因は急性感染性腹膜炎であった。注射対照において、1年間にわたって週に一度、そして第2回研究では46週間にわたって週に一度、次いで330日間にわたって一日一度、筋内注射によって金ナトリウムチオマレートを投与した。1年研究では、腎尿細管細胞の巨大核が観察され、腎細胞腺腫が1/16の雌に見られたがしかし雄には見られなかった。21ヶ月研究において、生き残った全てのラットは、腎臓皮質尿細管上皮細胞の巨大核を示し、嚢胞性尿細管が頻繁に観察された。多発性のこともある腎腺腫は、21ヶ月まで生残した8/8の雌及び3/7の雄に見られた(Payne & Arena, 1978)。同様の結果が犬にも見られた(Payne & Arena, The subacute and chronic toxicity of SK&F 36914 and SK&F D-39162 in dogs, 1978)。
Szabo et al 1978aは、妊娠中のラット及び胎児に対するAuranofin(登録商標)を含む金含有化合物の影響を報告した。母体及び胎児への毒性及び催寄形成性に対する金ナトリウムチオマレート及び経口金化合物Auranofin(登録商標)の影響を調査した。妊娠6〜15日目に挿管によって経口金を投与する一方、金ナトリウムチオマレートを皮下注射によって6〜15日目に投与した。これは、このような研究における標準的な曝露期間であり、そしてこの曝露は人間の妊娠第1期と同等のものと考えられる。標準手順を用いて胎児を試験し、群のサイズはこの研究を目的とするには十分であった。母体及び胎児毒性は明らかであり、そして金ナトリウムチオマレートを投与された動物の胎児は、用量依存的な奇形のパターンを示した。用いられた投与量は、所定の割合の母獣の死をもたらし、体重に対して顕著な影響を示し(投与開始時の実際の体重損失を含む)、そして食物消費量を低減した。奇形は骨奇形、外表奇形、及び種々の程度の水頭症、及び眼異常を含んだ。SK&F D-39162は食物摂取又は体重増加には影響を与えることはなかったが、しかし、対照と比較した胎児の体重低減に関連した。SK&F D-39162治療とともに見いだされる唯一の主要欠陥は浮腫であった。金ナトリウムチオマレート治療動物における着床、再吸収、胎児数、又は胎児重量に対する金ナトリウムチオマレートの影響のエビデンスはなかった。これらの著者は、胎児に対する影響は間接的であり、内臓卵黄嚢上皮のリソソーム内に金が蓄積され、胎児栄養に関与する生命必須酵素が結果として阻害されることに起因し得ると結論づけた。この仮説は、他の化学物質の奇形発生を説明するために唱えられ、妥当なものと考えることができた(Szabo, Guerriero, & Kang, The effects of gold containing compounds on pregnant rats and their fetuses, 1978)。
Szabo et al 1978bは、妊娠中のウサギ及び胎児に対する金含有化合物の影響を報告した。この研究では、妊娠中のウサギに妊娠6〜18日目から投薬した。金ナトリウムチオマレートを皮下注射によって投与し、そして経口化合物を挿管によって与えた。両投与経路は母体の死亡をもたらし、生残動物において流産が観察された。実際の体重減少をもたらす用量依存的な母体食物消費量低減が、注射金及び経口金の両方の投与量が高いほど観察された。一腹の子のサイズ、再吸収数、及び平均胎児体重に対する影響も明らかであった。胎児の異常及び奇形も、主として腹部において観察され(胃壁破裂及び臍ヘルニア)、脳、心肺、及び骨格への異常発生率はより低かった。著者は、歴史的な対照データの全てを上回る腹部異常の発生率が、金のこのような影響に対するウサギの特異的感受性を示すものであると結論づけた(Szabo, DiFebbo, & Phelan, 1978)。
これらの研究に基づいて、比較多量の金含有化合物を経口投与することが、用量依存的な胃粘膜びらん発生、そして長期間研究においては、多数の動物の死を招く、用量依存的な顕著な回盲病変(潰瘍を含む)発生を伴った。提供されたデータの試験は、胃病変が、粘膜に対する際だった直接の局所的影響に典型的なものであることを示唆した。腎臓皮質尿細管上皮は、おそらくは尿の濃縮中に高い局所濃度が発生することによる別のターゲット組織である。皮質尿細管上皮病変は極めて多数の動物において、巨大核から腺腫形成へ進行した。これは良性腫瘍ではあるものの、リスク評価の点では無視することはできない。しかし、齧歯類の腎臓病変は、特に雄において比較的一般的であることも注目に値するが、これらの研究ではこれら病変は雄よりも雌が比較的多く罹患するように見えた。
比較的多量の金溶液を投与した後に、胃病変が発生した。重要な毒性物質はイオン性金(例えばAu(III)又はAu3+)であるという示唆もこれらの研究にあった。このタイプの病変は、種々の形の関節炎の治療に使用される多くのNSAID薬によっても生み出されるものであって、望ましくはないものの管理可能な副作用と一般には考えられる。従って、このような不都合な作用が存在しなければ、既存の金ベース療法を凌ぐ利点を構成することになる。
Cheriathundam及びAlvaresは1996年に、Sprague Dawleyラット及び3つの系統のマウス(Swiss-Webster, C3H/Hej, 及びDBA/2J)における肝臓及び腎臓マーカー及びメタロチオネイン濃度に対するナトリウム金チオレート及びAuranofin(登録商標)の影響を評価した。ラットにおいて、金ナトリウムチオレートは、肝臓メタロチオネイン濃度を7倍増大させ、これに対してマウス系統では、メタロチオネイン濃度はSwiss-Websterの場合には2倍増大し、そして近交系では約5倍増大した。金ナトリウムチオレートは、マウス系統では腎臓メタロチオネイン濃度を最小限しか変化させなかった。肝臓マーカー血清ALATは、試験された種又は系統のいずれにおいても金ナトリウムチオレートによっては変化しなかった。腎臓機能の指標であるBUNは、ラットでは3倍上昇したが、しかしマウス系統のいずれにおいても上昇しなかった。これらのデータは、金ナトリウムチオレートがラット及びヒトにおいて腎毒性であるという観察と一致するが、しかしマウスの腎毒性のエビデンスが欠如していることに注目することは興味深い(Cheriathundam & Alvares, 1996)。
2つの種の妊娠中の動物を処理した後の肺毒性及び胎児欠陥を観察すると、これは、全てではないにしても数多くの以前に使用された形態の金が発育リスクを示すことを示唆している。このことは、数多くの他の現行のRA療法と類似点を有している。RA療法の場合、例えばメトトレキサートに、胎児に対して潜在的な有害な影響を警告するラベルが適用されている。
臨床有効性及び有害反応の両方に関与するいくつかの可能な薬理作用が、経口金に対して同定されている。例えばWalz及びその同僚は、Auranofin(登録商標)が、ラットのカラギナン誘導浮腫を、40,20及び10mg/kgの濃度で用量依存的に阻止し、この場合、最高投与量における最大阻止率は86%、そして血清中金濃度はほぼ10μg/mLであることを示した。Auranofin(登録商標)の2つの塩基性リガンド、つまりトリエチルホスフィンオキシド及び2,3,4,6−テトラ−o−アセチル−1−チオ−β−Dグルコピラノースは、いかなる有意な生物学的活性も示さず、また金ナトリウムチオマレート、金チオグルコース、及びチオリンゴ酸は、ラット足浮腫に有意な影響を与えなかった。Auranofin(登録商標)は、アジュバント関節炎を有意に抑制するのが判っているのに対して、リガンドはいかなる作用も有していなかった。Auranofin(登録商標)は、抗体依存性相補体リーシスを阻止した。Auranofin(登録商標)は、刺激された多形体からのリソソーム酵素、例えばβ−グルクロニダーゼ及びリゾチームの放出を阻止することが判っている。Auranofin(登録商標)は、アジュバント関節炎ラットからの多形体によって示された抗体依存性細胞毒性の強力な阻止因子である。Auranofin(登録商標)は、金ナトリウムチオマレートよりも著しく強力なスーパーオキシド生成阻止因子である。免疫食細胞アッセイにおいて、金ナトリウムチオマレートは、顕著な阻止を引き起こすAuranofin(登録商標)の40倍の濃度で阻止活性を示さなかった(Walz, DiMartino, Intocca, & Flanagan, 1983)。
Walz及びその同僚はまた、Auranofin(登録商標)が、末梢血単球による皮膚遊走、走化性及び食作用の阻止因子として、金ナトリウムチオマレートよりも強力である。Lipsky及びその同僚は、Auranofin(登録商標)が金ナトリウムチオマレートと同様に、単核食細胞を直接に阻止することによってin vitroのリンパ球幼若化現象を阻止することを示した。しかしながら、Auranofin(登録商標)は、金ナトリウムチオマレートでは観察されない、リンパ球機能に対する阻止作用をも有した。単球の阻止は、金ナトリウムチオマレートの20分の1〜10分の1の濃度のAuranofin(登録商標)で達成された(Walz, DiMartino, Intocca, & Flanagan, 1983)。
一般に、活性リウマチ疾患の患者は、マイトジェン刺激型リンパ球幼若化、又は混合リンパ球反応によって誘導されるリンパ球幼若化の能力を低下させている。金ナトリウムチオマレートで最初に治療された患者は、先ずマイトジェン刺激型リンパ球幼若化の何らかの抑制を示すものの、最終的に薬物に対して反応した患者は、正常なin vitroリンパ球反応を示した。対照的に、Auranofin(登録商標)を受容した患者の場合、2,3週間以内に、リンパ球応答性が顕著に阻止された。こうして、Auranofin(登録商標)は、おそらくは、経口化合物と注射可能な金−チオール化合物との薬理学的特性の大きな違いにより、注射可能な金化合物の1桁小さい規模で、強力なin vitro免疫抑制効果を示す(Dabrowiak, 2009)。
受療患者のほぼ30〜50%が何らかの毒性を発現するという点で、有害な反応は、Auranofin(登録商標)のような経口金化合物の使用に対する主要な制限因子であった(Dabrowiak, 2009)(Kean & Anastassiades, 1979)(Kean & Kean, The clinical Parmacology of Gold, 2008)。
皮膚発疹は最も一般的な不都合な副作用であり、何らかの形の発疹が患者のほぼ30%に発生した。大抵の病変は手、前腕、胴、及びすねに生じたが、しかし顔面に発生することもあり、大きさ1〜10cmの鱗状斑点を有した状態で僅かに紅斑状であり、脂漏性皮疹に類似していた。貨幣状湿疹、総剥離、及び強い掻痒感という形の皮膚発疹の深刻な問題はまれであると記録されている。
注射物質金療法を受容する患者のほぼ20%に、アフター性潰瘍に類似する口内炎(痛みを伴うもの及び伴わないもの)が発生した。口内炎の発現は、金療法の持続に対する明確な禁忌であった。それというのも、口内炎は類天疱瘡様の水疱性皮膚病変の前触れであり得ることが知られているからである。
タンパク尿の頻度は、Kean及びAnastassiadesによって報告された研究において大幅に変動した(0〜40%)。これはおそらくタンパク尿を構成するものが何であるかに関して定義が異なっていることを反映していると考えられる。これらの研究において、金療法に起因する長期にわたる重症の又は永久的な腎臓損傷の十分に裏付けされた事例がなく、他方において顕微鏡的血尿が経口金治療を中断する原因であった(Kean & Anastassiades, 1979)。
金化合物に起因する血小板減少症が、2つの区別可能なタイプとして発生した。すなわち、より普通のものは血小板表面IgG抗体と関連し、そしてより一般的でない他方のものは骨髄抑制に続いて生じた。遺伝子マーカーHLA DR3は、血小板表面抗体と関連する血小板減少症を患者が発現させるリスクが高まることを示すことができる。
胆汁うっ滞性黄疸の形の突発性毒性又は急性腸炎も、注射可能な金化合物、具体的には金ナトリウムチオマレートと関連したが、しかし経口金に関しては報告されなかった。
眼の水晶体及び角膜内の元素金の堆積は報告されているが、しかしこれが視力に対する特定の損傷を招くとは思えなかった。
経口金療法に特異的なのは、普通は治療の最初の1ヶ月に軟便が発生することであった。後の治療月に便変化の発生率が低くなるのは、下痢しやすい患者が早期にドロップアウトしたことに関連するのかもしれない。水溶性の下痢の発現は患者の2〜5%において生じ、用量依存性であるように見えた。
一般に、有害な事象の発生は、注射可能な金よりも経口金を用いた方が低いが、しかしまたかなり発生するおそれがある。
入手可能な金系治療薬を使用することの第2の主要な欠点は、有効性の極めて遅い発現である。患者はしばしば、例えば有意な恩恵を経験する前に3〜6ヶ月間にわたって金塩を用いた治療を続けなければならない。恩恵が観察されるのを長い間このように待つことは、患者のコンプライアンスに対する大きな障害になり、従って使用時の有効性に不都合な影響を及ぼす。
金の薬物動態プロフィールに関する知識は主として、元素Auの測定が中心であるが、しかし金が種々の組織又は器官に存在する場合、その金構造(例えばその化学又は物理又は結晶構造)に関してはあまり知られていない。
経口摂取後、経口金錯体は迅速に、しかし不完全に吸収される。注射可能な金錯体の金部分は、筋内注射後、循環中に迅速に吸収されるように見える。血液循環中、Auranofin(登録商標)(又はそのリガンド)は、主としてアルブミンに結合されるように見える。具体的には、人間有志に放射性標識Auranofin(登録商標)を経口投与した後、投与量のほぼ25%が血漿中で検出され、1〜2時間以内にピーク濃度6〜9μg/100mLに達した。血漿半減期は15〜25日のオーダーであり、55〜80日後にはほとんど全てが身体から排除された。放射性標識Auの約1%だけが180日後に検出可能であったのに対して、金ナトリウムチオマレートからの金の最大30%がこの時点で検出された。金は、細網内皮系全体を通して、具体的には、肝臓、骨髄、リンパ節、脾臓の食細胞内、及び滑膜内にも分配された。皮膚内の堆積が発生し、真皮内の金の量と、与えられた金の総投与量との間には量的な相関関係があることが観察された。電子密度の高い金堆積物が、腎臓の尿細管細胞、スルフヒドリル含有酵素が豊富な別の部位にも観察されたが、糸球体と関連する金の存在は一般的でないようである(Walz, DiMartino, Intocca, & Flanagan, 1983)(Dabrowiak, 2009)。
金ナノ粒子
他の金製剤も開発されており、そして開発され続けている。これらのほとんどは、種々様々な化学的還元技術によって形成された金ナノ粒子を利用し、またこれらのいくつかは、水中プラズマ・アーキング技術を利用し、そしてこれらのほどんどは、種々様々な安定又は部分的に安定な金コロイド又は金ナノ粒子懸濁液をもたらす。
化学的還元によるコロイド金ナノ粒子
マイケル・ファラデーは、およそ1850年代に化学的還元法によって最初のコロイド金懸濁液を製造した(Faraday, 1857)。Faradayは、エーテル(例えばCH3−CH2−O−CH2−CH3)中に分散されたリン、又は二硫化炭素(すなわちCS2)を還元剤として利用して、水性金塩、クロロアウレート(すなわち金(III)塩)を化学的に還元するために還元化学技術を用いた。
今日、ほとんどのコロイド金は、クエン酸ナトリウムのような還元剤で塩素酸を還元することにより調製され(水素テトラクロロアウレート)、これにより「チンダル紫(Tyndall's purple)」をもたらす。今や、コロイド金を形成するために用いられる種々様々な「典型的」な還元化学法がある。具体的には、いくつかのクラスの合成ルートが存在し、これらのルートのそれぞれが、これにより生成される最終生成物(コロイド金ナノ粒子)における種々異なる特徴を示す。利用される還元剤の強度、量、及びタイプに加えて、安定剤(すなわち溶液相合成プロセスにおいて利用される化学物質)の作用も極めて重要であることも注目されている(Kimling, 2006)。
ファラデーはコロイド金溶液を導入したが、Turkevich及びFrensの均質結晶化法(及びこれらのバリエーション)が今日最も一般的に利用されており、典型的には、粒度範囲全体にわたって大部分が球形である粒子をもたらす(Kimling, 2006)。具体的には、大抵の現行の方法は、金(III)錯体、例えば水素テトラクロロアウレート(又は塩素酸)で出発し、そして添加された化学種還元剤、例えばNaチオシアネート、白リン、Na3シトレート及びタンニン酸、NaBH4、クエン酸、エタノール、Naアスコルベート、Na3シトレート、ヘキサデシルアニリン、及びその他を使用することによって、金錯体中の金を金金属(すなわち金(0)又は金属金)に還元する(Brown, 2008)。しかしながら、別の化学的還元技術は、AuP(Ph3)のための化学種還元剤として水素化ホウ素ナトリウムを使用する(Brown, 2008)。これらの化学還元プロセスに利用される具体的な処理条件に応じて、形成されたこれらの主として球形のナノ粒子のサイズは、直径約1nm〜約64nmであった(Brown, 2008)。加えて、Kimlingによって利用された特定の熱的クエン酸塩還元法は、球形粒子に加えて、僅かな比率の三角形粒子をもたらした。三角形の種は多くても約5%であった(Kimling 2006)。
さらなる研究は、コロイド金属ナノ粒子の形状を制御することに焦点を当てている。生物学者及び生化学者は、タンパク質の機能に関して、「構造は機能を決定づける」と長い間理解してきた。種々異なる形状の金ナノ粒子はまた、種々異なる特性(例えば光学、触媒、生物学など)を有している。ナノ粒子の形状を制御することにより、例えばナノ粒子を光学的に調整するための洗練されたアプローチが提供される。全ての金ナノ粒子は、面心立方である格子を含有しているが、或る特定の処理条件によって許されるのならば、又はこのような処理条件によって引き起こされるならば、金ナノ粒子は、欠損負荷面(例えばステップ)を有する不規則楕円体から、比較的制限された面欠損を有する多面体までの種々様々な結晶形状を採用することができる。種々異なる結晶形態が、種々異なる結晶面(又は結晶面集合)と関連づけられる。しかし、最も一般的な金ナノ粒子形態のうちのいくつかは、単一領域から成るのではなく、双晶面から形成されている(Tao, 2008)。
Yuan他は、金塩(HAuCl4又は金酸)のホウ化水素還元から種晶を提供することにより、非球形の金ナノ粒子を最も容易に達成し得ることに気づいた。次いで種晶を、還元剤及び/又は界面活性剤(例えばキャッピング剤)として添加された化学種NH2OH、CTAB、及びクエン酸ナトリウムを含む溶液中で同じ金塩と接触させた。三角形、切頂三角形、六角形層、及び擬似五角形を含むいくつかの異なる結晶形状を、このアプローチによって形成した。Yuanは、種々異なる化学的還元技術を用いることによって処理に変化を加えるより、結果として生じる粒子の物理・化学特性に影響を与え得るとを結論づけた。研究者らは、キャッピング剤の選択が、ナノ粒子の成長(及び形状)を制御する上での重要なファクタであることに注目した(Yuan, 2003)。
Yuanによって記述され用いられたプロセスは、「不均一核形成」として知られており、ここでは、種粒子が別個の合成工程で製造される。このように、このタイプの形状制御は、オーバーグロース・プロセスと考えることができる(Tao, 2008)。多くの化学的還元技術は、このようなより複雑な二工程の不均一核形成・成長プロセスを利用している。しかし、他の技術は単一工程の均一核形成を利用し、ここでは種晶が先ず核形成され、次いで核形成された種晶からナノ粒子が形成される。典型的には、一連の化学反応が均一核形成において同時に生じる。均一核形成における主な目標は、結晶成長速度に対して核形成速度のバランスをとること、そして粒度を制御することである。なぜならば、核形成及び成長の両方が同じ化学プロセスによって進行するからである(Tao, 2008)。
溶液中の金属ナノ粒子合成は一般に、安定剤及び/又はキャッピング剤として界面活性剤及び/又は両親媒性ポリマーを必要とする。界面活性剤及び/又は両親媒性ポリマーが、分散された粒子のサイズ、形状、及び安定性を制御するための重要な役割を果たすことがよく知られている(Sakai, 2008)。
結晶性金ナノ粒子(例えば不均一核形成プロセス)において観察される最も一般的な結晶形態のいくつかは、単結晶又は単一領域から成るのではなく、しばしば双晶面によって仕切られる複数の結晶領域を含有する粒子から成っている。正十面体(五角両錐体とも呼ばれる)は、三角(III)ファセットによって完全に結合された平衡形であり、これは、五回対称軸に沿って共通のエッジを共有する5つの四面体であると考えることができる。これらの構造は、固体基板上への金属蒸発、及び種晶不均一核形成還元化学アプローチによって合成されたナノ結晶粒子に関して一般に観察される(Tao, 2008)。しかし、Turkevich及びFrensの方法によって合成されたナノ粒子の場合、十面体は観察するのが難しい。なぜならばこれらは、ナノワイヤー及びナノロッドの成長のための好ましい種子として機能するからである(Tao, 2008)。このように、Turkevich及びFrensによる還元化学アプローチ中で添加され使用される界面活性剤及びキャッピング剤の量及びタイプとともに、処理条件を制御することにより、種々様々な形状を達成することができる。
還元化学アプローチによって生成されたコロイド金組成物のそれぞれにおいて、還元剤及び/又は界面活性剤又はキャッピング剤のうちの1種又は2種以上の元素を含む表面被膜が、懸濁された金ナノ粒子の少なくとも一部の上又は中に存在するようになることは明らかである。還元剤の使用は典型的には、液体(例えば水)中にナノ粒子を懸濁させるのを支援する。しかし還元剤被膜又は表面不純物は、界面活性剤被膜又はキャッピング剤に付加されることがあり、又は界面活性剤被膜又はキャッピング剤によって置き換えられることすらある。このような還元剤/界面活性剤被膜又は膜は、金属系ナノ粒子の上及び/又は中に位置する不純物と見なすことができ、金ナノ粒子自体よりも保護被膜又は膜の特性の多くを実際に有しているようなコロイド又はゾルを生じさせることができる(Weise, p.42, 1933)。
例えば、界面活性剤及び両親媒性ポリマーは、ナノ粒子の形成に関与する(ひいてはサイズ及び形状に影響を与える)だけでなく、ナノ粒子自体にも深く関与するようになる。ナノ粒子の表面特性は、還元剤被膜及び/又は界面活性剤被膜によって改変される(Sperling, 2008)。
核形成された粒子の表面上で疎水性尾部基、親水性頭部基、及び或る特定の対イオン(少なくともイオン性界面活性剤を使用した場合)を吸収すること、そして、形成された粒子と一緒に界面活性剤及び/又は両親媒性ポリマーで金属イオンを錯化することは、全てナノ粒子の形状、ナノ粒子の表面に影響を与えることができ、且つ/又はナノ粒子の機能を変えることができる(Sakai, 2008)。
異なる表面化学的性質又は表面膜(例えば還元剤副産組成物の存在及び/又は還元剤副産物の厚さ(例えば膜))は、金ナノ粒子と、例えば生物内の種々様々なタンパク質との種々異なる相互作用をもたらすことができる。タンパク質に対するナノ粒子の生物物理学的な結合力(例えば静電、疎水性、水素結合、ファンデルワールス)は、ナノ粒子のサイズ、形状、及び組成の関数であるだけでなく、ナノ粒子上の表面不純物又は被膜のタイプ及び/又は厚さの関数でもある。金ナノ粒子を製造するためのTurkevich及びFrensの方法(及びそのバリエーション)は、最も幅広く理解され利用されている化学的還元プロセスである。クエン酸又はクエン酸ナトリウム還元剤を使用すると、金ナノ粒子の表面上にクエン酸塩をベースとした化学物質(例えばクエン酸塩をベースとする被膜)が生じる(すなわちクエン酸で安定化されるとも言われる)(Lacerda, 2010)。
さらに、Daniel他は、下記(1)〜(5)を含む化学合成プロセス及び集成プロセスを含む、主要な金ナノ粒子形成技術を概説した:(1)金ナノ粒子に付着した[クエン酸をベースとする]リガンドのかなり緩いシェルをもたらすクエン酸塩還元;(2)クエン酸塩及び両親媒性界面活性剤を使用するクエン酸塩還元法のバリエーション(サイズ制御のため);(3)金を強く束縛するチオール又はチオレート・リガンドをもたらすBrust-Schiffrin法;(4)キサンテート、ジスルフィド、ジチオール、トリチオール、及びレゾルシナレンテトラチオールを含む硫黄含有リガンドをもたらす方法;及び(5)ホスフィン、ホスフィンオキシド、アミン、カルボキシレート、アリールイソシアニド、及びヨウ化物に関連する他のリガンド(クエン酸塩被膜に置き換わることができる)。著者は、形成された金ナノ粒子に関してBrustが述べたことを繰り返した:「結果として得られる物理特性は、バルク金属のものでも、分子化学のものでもなく、これらは粒度、粒子間距離、保護有機シェルの性質、及びナノ粒子の形状に強く依存する」(Daniel, 2004)。
金ナノ粒子上に存在する有機リガンド(例えばクエン酸塩をベースとするリガンド又は被膜又は膜)は液体中の金ナノ粒子を安定化することにより、ナノ粒子が例えば他のナノ粒子に付着し、凝集し、且つ/又は例えば重力に起因して懸濁液から沈降するのを防止する一方、これらの有機系リガンド(例えば有機シェル)は不純物(すなわち下側の金ナノ粒子に対して)であり、生体系内のタンパク質との金ナノ粒子の相互作用に関与する。このような被膜又は膜は、強い生物学的影響を及ぼし得る(Lacerda, 2010)。
さらに、Wang他は、一般に使用されるクエン酸で還元された金ナノ粒子が、還元剤及び安定剤のないコロイド溶液と比べて金ナノ粒子の取り込みを妨害するとを結論づけた(Wang, 2007)。
同様に、Lacerda他も、ナノ粒子の生物学的効果をより良く理解するためには、それ自体をナノ粒子と関連づける生体内タンパク質の結合特性を理解することが必要となると述べている。ナノ粒子上のタンパク質吸収率(又はタンパク質コロナ)は、ナノ粒子サイズ及び表面層の組成及び厚さの関数として変化することができる。Lacerdaは、ナノ粒子を「ドレッシング」するタンパク質層が、ナノ粒子が凝集する傾向を制御し、そして生物学的物質とのこれらの相互作用に強い影響を与えると結論づけた(Lacerda, 2010)。
化学的還元技術によって形成されたコロイド金ナノ粒子のクリーニング
いくつかの事例において、還元剤表面被膜又は膜は、ナノ粒子の表面上の不純物として残ることを許されるが、しかし他の事例では、これはある程度複雑で高価な種々の技術によって除去するように試みられる。除去される場合には、被膜を典型的には、別の組成物又は被膜によって置き換えることにより、ナノ粒子が水和されたときに懸濁液中に残留するのを可能にする。ナノ粒子の化学的性質及び特性に対する純度の影響はしばしば見過ごされるが、しかし今や結果は、精製の程度が顕著な影響を及ぼし得ることを示す(Sweeney, 2006)。これらの研究者は、ナノ粒子の十分な精製が、精製自体、通常は退屈で多大な時間を費やす、無駄の多い手順、例えば大規模な溶剤洗浄及び分別結晶を伴うという点で、より難関であり得ることに注目している。このような精製がなければ、化学的に還元されたナノ粒子の表面上の表面化学的性質に関連する汚染物質の変量が、基本的な構造−機能の関係を理解/制御する能力に影響を及ぼす(Sweeney, 2006)。
後続の処理技術は、一連の洗浄工程、或る特定の濃縮又は遠心分離工程、及び/又は後続の化学反応被覆工程を必要とすることもある。これらの工程の全ては、ナノ粒子及びナノ粒子懸濁液の望ましい結果及び所定の性能特性(例えばリガンド交換に起因する安定化、有効性、など)を得るために必要となる(Sperling, 2009)。他の事例では、過酷なストリッピング法を用いて、極めてクリーンなナノ粒子表面を保証する(Panyala, 2009)。
従って、他の研究者らは、疾患の管理、治療、及び/又は予防における金ナノ粒子の開発が、現行の金ナノ粒子製造方法が概ね化学的還元プロセスに基づくという事実によって妨げられていると結論づけている。具体的には、Robyn Whymanが1996年に、種々の還元化学技術によって製造されたコロイド金の進展を妨害している主なものの1つが、「比較的シンプルな、再現可能な、そして一般に適用可能な合成手順」の欠如であることを見いだした(Whyman 1996)。ファラデーによって教示された元の還元化学技術の多くのバリエーションがある。これらのバリエーションのそれぞれは、種々様々な物理特性(例えば単独又は懸濁液中)及び還元剤被膜を有するコロイド金を精製することができ、これらのバリエーションの全ては、生きている細胞内で又はこれらの細胞と一緒に使用すると、種々異なる有効性/毒性プロフィールをもたらすことができる。これらの技術のうち、Whymanの基準を満たすものはない。従って、金ナノ結晶を形成するための比較的シンプルな、再現可能な、そして一般に適用可能な製造アプローチがあれば歓迎される。さらに、このような製造アプローチがFDA cGMP要件を遵守することができるならば、それはより貴重である。
他の研究者らは、形成されるナノ粒子の有害な物理的/生物学的性能を、ナノ粒子を製造するために用いられる化学的形成(すなわち化学的還元)プロセスから完全に切り離すことはできないことに気づき始めた。この点に関しては、多少複雑、高価であり、そして環境に優しくない洗浄又はクリーニング・プロセスを利用して、還元化学反応によって製造されたナノ粒子の表面を変化させるか又はクリーニングしても、化学プロセスの要素はナノ粒子表面に残ったまま、表面に(ひいてはこれらの機能に)影響を及ぼすことがある。さらに、ナノ粒子形成プロセス中の或る特定の化学物質の存在は、形成するナノ粒子の形態(すなわちサイズ及び/又は形状)にも影響を及ぼす。金系結晶システム内に存在することが知られている、或る特定の考えられ得る望ましい形態(形状)は、これらの還元化学技術によって製造された多くの生成物中では容易には観察されない。
他のコロイド金製造技術
界面活性剤及び還元剤を含まない生成物(例えば金イオン種の還元を実現するために添加される安定剤、キャッピング剤、又は還元剤がない)を得ることは、還元化学アプローチに由来する還元剤/界面活性剤被膜のいくつかの不都合な結果を理解しているらしい研究者らの目標となっている。例えば水性水素テトラクルロラウレート溶液に950kHz周波数を印加する超音波技術が用いられている。20〜60nmの球形金ナノ粒子が、50℃を上回る温度で調製されるのに対して、混合物を50℃未満で処理したときには比較的大きな三角形板及びいくつかの六角形球体が共存した(Sakai, 2008)。
生物医学用途における生体適合性の事項を「台無し」にしないように、還元剤及び安定剤を含まない金ナノ粒子を得るために、HAuCl4のX線照射が開発されている。著者らは、水素のないラジカル電子供与体を形成するために「強力な」X線ビームを使用することによって、Au+の化学的還元のための所要の電子を発生させるという仮説を立てた(Wang, 2007)。
還元剤の必要性を最小化又は排除し、且つ/又は還元剤の望ましくない酸化生成物を最小化するための、より古いより複雑な技術は、線量率1.8x104rad/hの60Co源からのγ線照射を利用する。この場合、先ず水の放射線分解から水和電子を形成し、そして水和電子を利用して金イオンを還元することによってAu(CN)2が還元された。つまり:
aq -+Au(CN)2→Au0+2CN- (Henglein, 1998)。
化学種、例えばポリエチレングリコール(PEG)、又は他の特定のリガンドを添加することによって、金ナノ粒子の表面をさらに処理し得ることが知られている。この点に関しては、癌療法において広範囲な研究が行われており、種々の技術によってPEG被覆金ナノ粒子を誘導することにより、癌又は腫瘍部位に粒子を移動し、その後、例えば赤外線又は電波で粒子を照射することにより、癌細胞を加熱して破壊させる(Panyala, 2009)。表面のPEGイル化はまた、ナノ粒子の血中半減期を増大させることが知られており、ポリソルベート−80はナノ粒子の血液脳関門輸送を改善することができる(Teixido & Giralt, 2008)。
水中アーキングによるコロイド金
水中アーキング法によって金ナノ粒子を製造する方法も当業者に知られている。この方法は1800年代後半にブレーディッヒ(Bredig)によって最初に開発された。ブレーディッヒは直流電流を使用することにより、2つのワイヤー間に水中アークを形成した。ブレーディッヒは、電流5〜10アンペアと、電圧30〜110ボルトとを使用した。いくつかの事例ではブレーディッヒはまた、純水の代わりに0.001N水酸化ナトリウムを使用した。ブレーディッヒは彼のプロセスに関して、金属電極を粉砕するものとして考えた。ブレーディッヒはこのようにして金のヒドロゾルを得た(Weiser, pp.9-17, 45-46, 1933)。
スヴェドベリ(Svedberg)は後に、ブレーディッヒの直流アークの代わりに高周波数アークを利用することによりブレーディッヒのプロセスに改良を加えた。スヴェドベリは、アークが金属ガスの形成を可能にし、続いてこの金属ガスが凝縮してコロイド寸法の粒子になることを指摘している。正確なプロセス・メカニズムを巡って極めて多くの議論が為されたが、金属の気化が重要であると見なされた(Weiser, pp.9-17, 45-46, 1933)。
コロイド溶液を形成するための電気的粉砕プロセスを制御する上でスヴェドベリが最も大きな関心を持つパラメータは、a)粉砕化速度、b)分散された総金属に対する堆積物の比、c)媒体の分解の程度、及びd)電流特性に対する(a)〜(c)の依存度であった。ブレーディッヒ及びスヴェドベリのプロセスによって達成された堆積物の量は、種々の処理条件下で約30%〜約50%であった(Kraemer, 1924)。
パラジウムにおけるブレーディッヒ・プロセスに関する最近の研究が、Mucalo他によって実施された。これらの研究者は、ブレーディッヒ・ゾルの金属粒子が、電解質の電解質分解から生じた不純物及びアーキング中に形成すると考えられる酸化された材料に起因して「不純」であるかどうかに関する理論をテストした(Mucalo, 2001)。これらの研究者は、現代の表面分析技術(すなわちXPS、又は「X線光電子分光法」)を利用して、pHの関数としての表面スペシエーションの差を割り出した。pHが低いと、灰黒色の不安定な材料が生成された。pHが高いと、ゾルはより安定になるが、しかし1〜2週間以内でまだ完全に凝集した。製造されたナノ粒子は不規則な形状の球形から成った。高いpH及び低いpHの両方で製造された材料はほとんど金属の特徴を有したが、これらの不安定なコロイドの表面特性は互いに異なるものであった。よりブレーディッヒ・ゾルのpHが高いほど、より厚い外側酸化物層を不安定なナノ粒子上にもたらした(Mucalo, 2001)。
ブレーディッヒ及びスヴェドベリの方法は、引き続き他者によって改善され、水中アークに基づく種々様々な方法がもたらされた。しかし、これらの水中アーキング法のそれぞれに共通するのは、多少不規則な形状の金属ベース球体という結果である。この点に関して、ブレーディッヒ又はスヴェドベリのプロセスによって製造されたナノ粒子は、非特異的な球状の形状である。このことは、金属をベースとした気化に続いて急速なクエンチ法が施されることによって、ナノ粒子が様々な量の種々異なる酸化物系材料で被覆されている(且つ/又はこのような材料を含有している)ことを示す。
コロイド金ナノ粒子の毒性
金ナノ粒子の毒性に関する再検討がJohnston他によって行われ、2010年に報告された。マウス及びラット双方に関して4つの静脈内曝露経路が要約され、そしてラットに関して気管内アプローチが要約された。要約された4つの静脈内研究に関してJohnston他の報告によれば、蓄積組織部位は量の順で、4つのうちの3つのテストにおいて肝臓−脾臓であり、そして4つのうちの1つのテストにおいて肝臓−肺であった(すなわち最高の金ナノ粒子蓄積部位は肝臓内にあった)。具体的には、Johnston他によって報告された4つの静脈テストが下に要約されている(Johnston, 2010)。
Johnston他は、粒度だけの関数としての毒性に関する特定の結論(他者によって形成された)が正確でないことを含めて、再検討された多数の毒性研究に導入された種々の不確実さに対して批判的であった。具体的には、Johnston他の報告によれば、Pan他(2007)は、1.4nm金ナノ粒子が、1.2nm直径金ナノ粒子を含む一連のナノ粒子サイズからテストされた最も毒性の高い金ナノ粒子であると結論づけている。Pan他は、サイズの関数として毒素プロフィールの差があると考えたが、Johnston他は、1.4nm粒子が研究者自身によって形成され、そして1.2nm粒子が外部企業から得られたものである(従って、両ナノ粒子の異なる表面特性があることを示唆する)ことに注目した。Johnston他は、「凝集状態又は表面化学的性質」が、差異のある性能の理由であり、両者は「粒子の挙動及び毒性を変化させることが知られている」と結論づけた(Johnston, 2010)。
Johnston他は、試験設定が毒性結果に影響を与えること;そして器官内の金ナノ粒子の組織内分布が、曝露経路、並びにナノ粒子のサイズ、形状、及び表面化学的性質の関数であると結論づけた。加えて、彼らは、肝臓が一次蓄積部位であるらしいことを観察し、そして結果が肝臓内のマクロファージの存在に起因すると考えた。彼らはまた、ナノ粒子取り込み量が、おそらくは、サイズ、形状、及びナノ粒子表面被膜の関数であるナノ粒子の表面上に発生するタンパク質結合のタイプ及び程度の結果であることに注目した。具体的には、彼らは、例えばエンドサイトーシスによってナノ粒子を内在化する種々の細胞タイプの能力に注目した。エンドサイトーシス・メカニズムは、粒子形状、並びに粒子表面特性、例えば表面上のタンパク質吸収率の関数であるように思われる。換言すれば、生物学的取り込み量は、形状、サイズ、及び電荷の関数であり、そしてまた血清依存性が極めて高い(Johnston, 2010)。
コロイド金の有効性
Abraham及びHimmelによる研究(1997年に報告)は、他の種々の金ベース治療に以前に反応しなかった10人の患者の治療において、コロイド金を使用することを開示した。この研究に使用されるコロイド金は、Maclagan及びFrensの標準的な「クエン酸塩法」に「いくつかの独自の改変」によって変更を加えることによって形成された。金粒子の自己凝集を防止するために2.5%の濃度でマルトデキストリン(食品等級)を使用した(Abraham, 2008)。製造されたコロイド粒子のサイズは、コロイド懸濁液を20nmフィルタ(Whatman Anotop製)に通すプロセスによって確認して、20nm未満であると報告された。後続のTEM研究によって、Abrahamは、製造された粒子の99%が10nm未満であると結論づけた。安息香酸ナトリウムも添加した(Abraham, 2008)。
コロイド金懸濁液は、濃度1,000mg/L(すなわち1,000pm)をもたらした。それぞれの患者に提供された投与量レベルは、24週間にわたって30mg/日〜60mg/日(大抵の投与量は30mg/日)であった。これらの投与は経口で行われた。前記論文の表1は、患者の性別、年齢、及び以前の状態及び/又は治療を挙げている。論文は10人中9人の患者が「24週間の診療行為によって著しく改善した」と結論づけている(Abraham & Himmel, 1997)。Abrahamはまた、IL−6及びTNFを含む或る特定のサイトカイン濃度を低下させることも報告した(Abraham, 2008)。
ラットにおけるコラーゲン誘導関節炎に関するTsaiによる研究は、ナノ金粒子がタンパク質VEGFに結合すること、そしてこのような結合が、コロイド金を関節内注射されたラットの改善された臨床成績の理由であることを結論づけた。この場合、注射されたコロイド金は、クエン酸ナトリウムで還元された金クロロアウレートを利用する標準的な化学的還元法によって調製された。Tsai他の報告によれば、金ナノ粒子は、透過電子顕微鏡によって測定して、直径がほぼ13nmの球形であった。関節内溶液の濃度は180μg/ml(すなわち180ppm)であった。関節内注射はCIA誘導後7日目又は10日目に一度だけ施された(Tsai, 2007)。
Brown他は、標準的なコロイド金製剤(チンダル紫と呼ばれる)が標準的な化学的還元法によって、つまり塩化金酸をクエン酸ナトリウムで還元することによって調製されることを2007年に開示した。製造された金ナノ粒子の平均粒度は27+/−3nmであった。このコロイド金を等張性ソルビトール中に分散し、そして非経口皮下アプローチで、実験的に誘導関節炎にさせられたラットに注射した。注射投与量は濃度3.3μg/kgであった。Brown他はまた、コロイド金が皮下投与されると、比較ナトリウムアウロチオマレートのほぼ1,000倍の効果を有すると開示した。Brown他はまた、コロイド金が経口投与されると効果がないことを開示し、そしてその効果のなさは、胃液及び塩化ナトリウムの存在において金ナノ粒子が凝固することに起因すると結論づけた(Brown, 2007)。
Brown他は、種々様々なサイズ及び形状を有するコロイド金の別の調製方法を再検討した(Brown, 2008)。Brown他は表2に、「ナノ金ヒドロゾル」と関連する種々の特性を開示した。著者らは、彼らによって行われた(そして彼らによって再検討された)研究が示唆しているのは、金ナノ粒子(Au0)系薬物が、調節マクロファージをターゲットとする将来の臨床医療において役割を果たすことである、と結論づけた(Brown, 2008)。
「背景技術」全体を通して引用された参考文献を下に詳細に挙げる。
Abraham, G.E. & Himmel, P.B. (1997).関節リウマチの管理:コロイド金属金の使用の理論的解釈. J. Nutr. Environ Med. 7,295-305.

Abraham, G.E. (2008).金及び銀ナノコロイドの臨床適用. Original Internist, 132-157.

Agata, N., et al. (2000). 新しいイソクマリンNM-3によるII型コラーゲン誘導関節炎の抑制. Res Commun Mol Pathol Pharmacol., 108 (5-6), 397-309.

Brown, C.L., Whitehouse, M.W., Tiekink, E.R.T., & Bushell G.R. (2008). コロイド金属金は生体不活性ではない. Inflammopharmacology, 16, 133-137.

Brown, C.L., et at. (2007). ナノ金医薬(i)ラットモデルにおける実験的に誘導した関節炎の治療のためのコロイド金の使用.(ii)Swarna bhasmaにおける金の特徴づけ、伝統的インド薬物療法において使用される微粒子. Gold Bulletin, 2007, 40(3), 245-250.

Cheriathundam, E., & Alvares, A. (1996). 抗関節炎剤、金ナトリウムチオマレートの腎臓毒性における種相違. J Biochem Tox, 11(4), 175-81.

Dabrowiak, J. (2009). 関節炎、癌、及びその他の疾患を治療するための金錯体. J. Dabrowiak, Metals in Medicine (pp. 191-217). Chichester UK: John Wiley and Sons.

Daniel, M.C. & Astruc, D.(2004). 金ナノ粒子:アセンブリ、超分子化学、量子サイズ関連特性、及び生物学、触媒、及びナノテクノロジーへの応用. Chem. Rev., 104, 293-346.

Eisler, Ronald. Biochemical, 金及び金採掘における健康及び生態毒学的概観 (Health, and Ecotoxicological Perspectives on Gold and Gold Mining). Boca Raton: CRC Press, 2004.

Faraday, M. (1857). ベーカリアン・レクチャー:金(及び他の金属)と光との実験的関係. Philosoph. Trans. R. Soc. London, 147, 145-181.

Henglein, A. & Meisel, D. (1998). コロイド金ナノ粒子のサイズの放射線分解制御. Langmuir, 14, 7392-7396.

Ho, S., & Tiekink, E. (2005). 金ベース金属療法;使用及び潜在力. M. Gielen, & E. Tiekink, Metallotherapeutic Drugs and Metal-Based Diagnostic Agents (pp. 507-527). Chichester: JH Wiley and Sons.

Johnston, H.J., Hutchinson, G., Christensen, F.M., Peters, S., Hankin, S. & Stone, V. (2010). 銀及び金粒子の生体内及び生体外毒性の再検討:観察された毒性に関与する粒子特質及び生物学的メカニズム. Critical Reviews in Toxicology, 40 (4), 328-346.

Kean, W., & Anastassiades, T. (1979). 長期の金療法;継続時間中の毒性及び有効性の発生. Arthritis Rheum, 22(5), 495-501.

Kean, W., & Kean, I. (2008). 金の臨床薬理学. Immunopharmacology, 16(3), 112-25.

Kimling, J., Maier, M., Okenve, B., Kotaidis, V., Ballot, H. & Plech, A. (2006). 再訪Turkevich金ナノ粒子合成法. J. Phys. Che. B, 110, 15700-15707.

Kraemer, E.O. & Svedberg, T. (1924). 高周波交流アークにおける電気粉砕によるコロイド溶液形成. Journal of the American Chemical Society, 46 (9), 1980-1991.

Leonard, T.B., Graichen, M.E., Dahm, L.J. & Dent, J.G. (1986). 肝臓及び腎臓薬物代謝及びヘム代謝に対する金療養薬Auranofin及び金ナトリウムチオマレートの効果. Biochemical Pharmacology, 35, (18), 3057-3063.

Mucalo, M.R. & Bullen, C.R. (2001). 電気アークで生成した(ブレーディッヒ)パラジウムナノ粒子:異なるpHで調製された試料に対するX線光電子分光法による表面分析. Journal of Materials Science Letters, 20, 1853-1856.

Panyala, N.G., Pena-Mendez, E.M., & Havel, J. (2009). 医薬における金及びナノ金:概説、毒物学及び展望. Journal of Applied Biomedicine, 7, 75-91.

Payne, B., & Arena, E. (1978). 犬におけるSK&F 36914及びSK&F D-39162の亜急性及び慢性毒性. Vet Path, suppl 5, 9-12.

Payne, B., & Arena, E. (1978). ラットにおけるSK&F 36914、SK&F D-39162、及び金ナトリウムチオマレートの亜急性及び慢性毒性. Vet Path, suppl 5, 9-12.

Sadler, P.J. (1976). 金の生化学:金属薬物及び可変原子価を有する重原子ラベル, Structure Bonding, 29, 171-215.

Shaw, C.F. III. (1999a). 抗関節炎、抗腫瘍、及び抗HIV活性を有する金錯体, Uses of Inorganic Chemistry in Medicine, N.C. Farrell編, Royal Society of Chemistry, Cambridge, UK, 26-57.

Shaw, C.F. III. (1999b). 金の生化学, Gold: Progress in Chemistry, Biochemistry and Technology, H. Schmidbaur編, John Wiley & Sons, New York, 260-308.

Sakai, T., Enomoto, H., Torigoe, K., Kakai, H. & Abe, M. (2008). 水溶液中の界面活性剤及び還元剤なしの金ナノ粒子合成. Colloids and Surface A: Physiochemical and Engineering Aspects, 18-26.

Sperling, R.A., Gil, P.R., Zhang, F., Zanella, M., & Parak, W.J. (2008). 金ナノ粒子の生物学的応用. Chem. Soc. Rev, 37, 1896-1908.

Sweeney, S.F., Woehrle, G.H. & Hutchison, J.E. (1978). ダイアフィルトレーションを介した金ナノ粒子の迅速な精製及びサイズ分離. J. Am. Chem. Soc., 128, 3190-3197.

Szabo, K., DiFebbo, M., & Phelan, D. (1978). 妊娠中のウサギ及びその胎児に対する金含有化合物の効果, Vet Path, Suppl 5, 95-105.

Szabo, K., Guerriero, F., & kang, Y. (1978). 妊娠中のラット及びその胎児に対する金含有化合物の効果, Vet Path, 5, 89-86.

Tao, A.R., Habas, S. & Yang Peidong. (2008). コロイド金属ナノ結晶の形状制御. Small, 4(3), 310-325.

Teixido, M. & Giralt, E., (2008). 血液脳関門ナノテクノロジーにおけるペプチドの役割, J. Pept. Sci., 14, 163-173.

Tsai, C., Shiau, A., Chen, S., Chen, Y., Cheng, P., Chang, M., et al. (2007). ナノ金によるラットにおけるコラーゲン誘導関節炎の改善. Arthiritis Rheum, 56(2), 544-54.

Ueda, S. (1998). 金塩、D−ペニシルアミン、及びアロプリノールの腎臓毒性、Clinical Nephrotoxins: Renal Injury from Drugs and Chemicals, M.E. De Broe, G.A. Porter, W.M. Bennett, and G.A. Verpooten編, Kluwer Dordrecht, 223-238.

USFDA (2005). 成人健常有志における治療薬の初期臨床試験における最大安全開始投与量を推定する産業指針. Pharmacology and Toxicology.

Walz, D., DiMartino, M., Intocca, A., & Flanagan, T. (1983). Auranofin(登録商標)の生物学的作用及び薬物動態研究. Am J Med, 759 (6A).

Wang, C.H., et al. (2007). X線照射支援ラジカル還元によって生成される、静電気保護によって安定化される水性金ナノゾル. Materials Chemistry and Physics, 106, 323-329.

Weiser, H.B. Inorganic Colloid Chemistry-Volume I: The Colloidal Elements. New York: John Wiley & Sons, Inc., 1933.

Whyman, R. (1996). 金ナノ粒子、金化学におけるルネッサンス. Gold bulletin, 29(1), 11-15.

Yuan, H., Cai, R.X. & Pang, D.W. (2003).球形金ナノ粒子の成長を制御するためのシンプルなアプローチ. Chinese Chemical Letters, 14(11), 1163-1166.
有機又はその他の不純物又は膜を実質的に含まない(本明細書中で定義される)ナノ結晶表面を有する新規の金ナノ結晶が提供される。具体的には、これらの表面は、溶液中の金イオンから金ナノ粒子を成長させるために化学的還元剤及び/又は界面活性剤を必要とする化学的還元プロセスを用いて形成された表面と比較して「クリーン」である。成長させられた金ナノ結晶の大部分は、固有の識別可能な表面特性、例えば空間的に広がる低指数結晶面{111}、{110}及び/又は{100}、及びこのような面(及びこれらと同等のもの)から成る群を有している。結果として得られる金ナノ結晶懸濁液又はコロイドの望ましいpH範囲は、例えば4.0〜9.5、より典型的には5.0〜9.5であり、そして当該pH範囲に対するゼータ電位値は、−20mV以下、より典型的には−40mV以下、さらにより典型的には−50mV以下である。
下記製造プロセスに従って調製される金ナノ結晶の形状及び形状分布の一例としては、三角形(例えば四面体)、五角形(例えば五角両錐体又は十面体)、六角形(例えば六角両錐体、二十面体、八面体)、ダイヤモンド形(例えば八面体、種々の細長い両錐体、融合四面体、両錐体を側面から見た状態)及び「その他」が挙げられる。(前述の形状を形成する)前述の空間的に広がる低指数結晶面を含み、そして「クリーン」な表面を有するナノ結晶(すなわち本明細書中に示された種々の実施態様によって成長したナノ結晶)の形状分布は独自のものである。さらに、ナノ結晶性懸濁液中に形成された四面体及び/又は五角両錐体のパーセントも独自のものである。
100nm未満の金ナノ結晶の任意の所期平均サイズを提供することができる。最も望ましい結晶サイズ範囲は、主として100nm未満、より典型的には50nm未満、さらにより典型的には30nm未満である平均結晶サイズ又は「モード」(本明細書中に詳細に開示された特定の技術によって測定されて割り出され、「TEM平均直径」として報告される)を有するものを含み、本明細書中に開示された好ましい実施態様の多くにおいて、ナノ結晶サイズ分布のモードは21nm未満であり、8〜18nmのさらに好ましい範囲内にある。
本発明によれば、任意の濃度の金ナノ結晶を提供することができる。例えば、これらの金ナノ結晶の濃度は、数ppm(すなわちμg/ml又はmg/l)〜数百ppmであってよいが、しかし典型的には2〜200ppm(すなわち2μg/ml〜200μg/ml)、しばしば2〜50ppm(すなわち2μg/ml〜50μg/ml)、そしてより典型的には5〜20ppm(約5μg/ml〜20μg/ml)であってよい。
これらの独自の金ナノ結晶を製造するために、新規の方法が提供される。この方法は、水中で金ナノ結晶を形成することを伴う。好ましい実施態様において、水は、添加された「処理増強剤(process enhancer)」を含有している。この処理増強剤は、形成された金ナノ結晶に有意には結合せず、むしろ電気化学的刺激を受ける成長プロセス中の核形成及び/又は結晶成長を容易にする。処理増強剤は、結晶が成長するのを可能にするように、電気化学的溶液中に荷電イオンを提供することを含むプロセスにおいて重要な役割を担う。これらの新規の電気化学的プロセスは、バッチ式、半連続式、又は連続式プロセスで行うことができる。これらのプロセスは制御された金ナノ結晶濃度、制御されたナノ結晶サイズ、及び制御されたナノ結晶サイズ範囲、並びに制御されたナノ結晶形状、及び制御されたナノ結晶形状分布をもたらす。これらの金ナノ結晶を製造するために新規の製造アセンブリが提供される。
病状を治療するために有効量のこれらの金ナノ結晶を含む医薬組成物も提供される。医薬組成物は任意の所期全身投与量、例えば0.1mg/kg/日以下、又は0.05mg/kg/日以下、又はより典型的には0.025mg/kg/日以下、又は最も典型的には0.001mg/kg/日以下の投与量を提供することができる。
これらの金ナノ結晶は以前から利用可能な金ナノ粒子よりも著しくクリーンな表面を有しており、そして新規の結晶形状及び/又は結晶形状分布を形成する、空間的に広がる低指数結晶面を望ましく含有することができる。ナノ結晶は、球状ナノ粒子、並びに、表面汚染物質、例えば化学的還元剤及び/又は伝統的な化学的還元プロセスから生じる界面活性剤を含有するナノ粒子(又はナノ結晶)よりも生物学的に活性であるように見える(そして毒性がより低いことがあり得る)。従って、治療をより低い金投与量で行うことができる。
発明の詳細な説明においてさらに説明するように、経口、静脈内、皮下、動脈内、バッカル、吸入、エアロゾル、駆出剤、又はその他の適宜の液体などを含む、全身的又は局所的な使用に適した医薬組成物が提供される。
実質的に表面がクリーンな、又は表面が純粋なこれらの金結晶は、対応する金療法が知られている任意の障害を治療するために使用することができる。この障害は広範囲な炎症障害及び自己免疫障害、並びに或る特定の感染疾患(例えばHIV、エイズマラリア、及びシャーガス病)及び癌を含む。これらの用途のうちの多くのものは、上記発明の背景において記載されている。
金ナノ結晶がマクロファージ遊走阻止因子(「MIF」)を阻止することが今や驚くべきことに、本発明の一部として発見された。これは、金ナノ結晶(又はナノ粒子)のこのような活性の最初の開示であると考えられ、今日までの金ナノ結晶のための医学的用途範囲を理解するための科学的根拠を提供すると言える。本発明はまた、金ナノ結晶が、マクロファージ遊走阻止因子によって媒介される他の疾患に対して有効であろうと結論づけるための科学的根拠も提供する。加えて、これらの金ナノ結晶がIL−6を阻止してIL−10を阻止しないことが特定された。例えば、MIF及び/又はIL−6は、種々様々な状態及び/又は生物学的シグナル伝達経路において示されているので、このような発見は、新規の金ナノ結晶が、病的細胞活性から生じる疾患又は状態、例えば炎症(慢性炎症を含む)状態、自己免疫状態、或る特定の感染症、過敏反応、及び/又は癌疾患又は状態を治療又は予防するのに効果的となることを裏付ける。
さらに、本発明の電気化学的な製造プロセスに従うことにより、このような金系金属ナノ結晶を液体中で他の金属と合金又は合体させて、金「被膜」が他の金属(他の非金属種、例えばSiO2)上に発生するようにするか、或いは金系ナノ結晶に他の金属によって被覆することができる。このような事例において、コロイド又は懸濁液内部で金系複合体又は合金が生じ得る。さらに、金及びその他の金属の両方を含む特定の複合体を形成することもできる。
さらに、本発明の金系金属ナノ結晶懸濁液又はコロイドを、他の金属系溶液又はコロイドと混合又は合体することにより、新規の溶液混合物又はコロイド混合物を形成することもできる(例えばこの場合、明確な金属種がまだ識別可能である)。
本発明による手動電極集成体を示す概略断面図である。 本発明による手動電極集成体を示す概略断面図である。 本発明による手動電極集成体を示す概略断面図である。 本発明による自動電極制御集成体を示す概略断面図である。 本発明による自動電極制御集成体を示す概略断面図である。 自動装置20によって制御される電極1及び5の4つの選択的な電極制御構造のうちの1つを示す図である。 自動装置20によって制御される電極1及び5の4つの選択的な電極制御構造のうちの1つを示す図である。 自動装置20によって制御される電極1及び5の4つの選択的な電極制御構造のうちの1つを示す図である。 自動装置20によって制御される電極1及び5の4つの選択的な電極制御構造のうちの1つを示す図である。 手動で制御される電極1及び5の4つの選択的な電極構造のうちの1つを示す図である。 手動で制御される電極1及び5の4つの選択的な電極構造のうちの1つを示す図である。 手動で制御される電極1及び5の4つの選択的な電極構造のうちの1つを示す図である。 手動で制御される電極1及び5の4つの選択的な電極構造のうちの1つを示す図である。 電極1のための構造の5つの異なる実施態様のうちの1つを示す図である。 電極1のための構造の5つの異なる実施態様のうちの1つを示す図である。 電極1のための構造の5つの異なる実施態様のうちの1つを示す図である。 電極1のための構造の5つの異なる実施態様のうちの1つを示す図である。 電極1のための構造の5つの異なる実施態様のうちの1つを示す図である。 図5eに相当する電極1の1つの具体的な構造を利用して産出されたプラズマを示す断面概略図である。 利用できる2つの電極集成体のうちの1つを示す断面透視図である。 利用できる2つの電極集成体のうちの1つを示す断面透視図である。 流動方向Fに対して平行な平面を有するように配列された4つの異なる電極集成体のうちの1つを示す概略透視図である。 流動方向Fに対して平行な平面を有するように配列された4つの異なる電極集成体のうちの1つを示す概略透視図である。 流動方向Fに対して平行な平面を有するように配列された4つの異なる電極集成体のうちの1つを示す概略透視図である。 流動方向Fに対して平行な平面を有するように配列された4つの異なる電極集成体のうちの1つを示す概略透視図である。 流動方向Fに対して垂直な平面を有するように配列された4つの異なる電極集成体のうちの1つを示す概略透視図である。 流動方向Fに対して垂直な平面を有するように配列された4つの異なる電極集成体のうちの1つを示す概略透視図である。 流動方向Fに対して垂直な平面を有するように配列された4つの異なる電極集成体のうちの1つを示す概略透視図である。 流動方向Fに対して垂直な平面を有するように配列された4つの異なる電極集成体のうちの1つを示す概略透視図である。 種々のトラフ部材30のうちの1つを示す断面図である。 種々のトラフ部材30のうちの1つを示す断面図である。 種々のトラフ部材30のうちの1つを示す断面図である。 種々のトラフ部材30のうちの1つを示す断面図である。 種々のトラフ部材30のうちの1つを示す断面図である。 種々のトラフ部材30のうちの1つを示す斜視図である。 種々のトラフ部材30のうちの1つを示す斜視図である。 種々のトラフ部材のうちの1つ及び雰囲気制御装置35’を示す斜視図である。 種々のトラフ部材のうちの1つ、雰囲気制御装置35’及び支持装置34を示す斜視図である。 種々のトラフ部材30のうちの1つを示す斜視図である。 種々のトラフ部材30のうちの1つを示す斜視図である。 種々のトラフ部材30のうちの1つを示す斜視図である。 種々のトラフ部材30のうちの1つを示す斜視図である。 電極セット1及び/又は5の周りの雰囲気を局所的に制御するための種々の雰囲気制御装置35のうちの1つを示す図である。 電極セット1及び/又は5の周りの雰囲気を局所的に制御するための種々の雰囲気制御装置35のうちの1つを示す図である。 トラフ部材30のほぼ全体を取り囲む雰囲気を制御するための雰囲気制御装置38を示す図である。 トラフ部材30上に配置された1組の制御装置20を、液体3がトラフ部材を貫流して貯蔵容器41内に入る状態で示す概略断面図である。 トラフ部材30の種々の角度θ1を示す概略断面図である。 トラフ部材30の種々の角度θ2を示す概略断面図である。 トラフ部材30の上側に配置された、電極集成体1及び/又は5を含む種々の制御装置20のうちの1つを示す斜視図である。 トラフ部材30の上側に配置された、電極集成体1及び/又は5を含む種々の制御装置20のうちの1つを示す斜視図である。 トラフ部材30の上側に配置された、電極集成体1及び/又は5を含む種々の制御装置20のうちの1つを示す斜視図である。 本発明の異なる実施態様のとともに使用するためのAC変圧器の電気配線を示す配線図である。 本発明の異なる実施態様とともに使用するためのAC変圧器の電気配線を示す配線図である。 本発明の異なる実施態様とともに使用するためのAC変圧器の電気配線を示す配線図である。 変圧器60を示す概略図である。 同相の2つの正弦波を示す概略図である。 異相の2つの正弦波を示す概略図である。 8組の電極と一緒に使用するための8つの電気配線図を示す概略図である。 8組の電極と一緒に使用するための8つの電気配線図を示す概略図である。 8組の電極と一緒に使用するための8つの電気配線図を示す概略図である。 例8,9及び10と関連する図22aのトラフ区分30bにおいて使用される金線5a及び5bを示す図である。 例5,6及び7と関連する図21aのトラフ区分30bにおいて使用される金線5a及び5bを示す図である。 例16の試料GB−118を形成するために用いられる電極構造を示す図である。 懸濁液GT032、GT031、GT019、及びGT033のために例1〜4において使用され、そして例16の試料GB−139、GB−141、及びGB−144を形成するために使用される装置20を示す図である。 懸濁液GT032、GT031、GT019、及びGT033のために例1〜4において使用され、そして例16の試料GB−139、GB−141、及びGB−144を形成するために使用される装置20を示す図である。 懸濁液GT032、GT031、GT019、及びGT033のために例1〜4において使用され、そして例16の試料GB−139、GB−141、及びGB−144を形成するために使用される装置20を示す図である。 例1〜4及び16において使用される装置20を制御するために用いられる配線図である。 例1〜4及び16において使用される装置20を制御するために用いられる配線図である。 例1〜4及び16において使用される装置20を制御するために用いられる配線図である。 装置20に給電するために用いられる配線図である。 例1〜4及び16において使用される装置20を制御するために使用される配線図である。 装置20に給電するために用いられる配線図である。 装置20の別のデザインを示す図である。 例18で使用される装置20の別のデザインを示す図である。 1つ又は2つ以上のプラズマ4が形成される第1トラフ部材30aを示す図である。第1トラフ部材30aの出力は、図19a及び19bに示すように第2トラフ部材30b内に流入する。 1つ又は2つ以上のプラズマ4が形成される第1トラフ部材30aを示す図である。第1トラフ部材30aの出力は、図19a及び19bに示すように第2トラフ部材30b内に流入する。 1つの変圧器(例8〜10)を利用する、そして2つの変圧器(例5〜7)を利用する、電極5の2つの異なる配線を有する2つのトラフ部材30a及び30bを示す概略図である。 1つの変圧器(例8〜10)を利用する、そして2つの変圧器(例5〜7)を利用する、電極5の2つの異なる配線を有する2つのトラフ部材30a及び30bを示す概略図である。 図19a及び19bに示された装置の、トラフ部材30a’及び30b’が隣接している代替物(やはり、電極5の異なる配線及び/又は異なる電極数を有する)を示す図である。 図19a及び19bに示された装置の、トラフ部材30a’及び30b’が隣接している代替物(やはり、電極5の異なる配線及び/又は異なる電極数を有する)を示す図である。 図19a及び19bに示された装置の、トラフ部材30a’及び30b’が隣接している代替物(やはり、電極5の異なる配線及び/又は異なる電極数を有する)を示す図である。 図19a及び19bに示された装置の、トラフ部材30a’及び30b’が隣接している代替物(やはり、電極5の異なる配線及び/又は異なる電極数を有する)を示す図である。 図19a及び19bに示された装置の、トラフ部材30a’及び30b’が隣接している代替物(やはり、電極5の異なる配線及び/又は異なる電極数を有する)を示す図である。 図19a及び19bに示された装置の、トラフ部材30a’及び30b’が隣接している代替物(やはり、電極5の異なる配線及び/又は異なる電極数を有する)を示す図である。 図19a及び19bに示された装置の、トラフ部材30a’及び30b’が隣接している代替物(やはり、電極5の異なる配線及び/又は異なる電極数を有する)を示す図である。 図19a及び19bに示された装置の、トラフ部材30a’及び30b’が隣接している代替物(やはり、電極5の異なる配線及び/又は異なる電極数を有する)を示す図である。 図20a〜20h及び本明細書中の種々の例と関連する種々のトラフ部材30bのうちの1つを示す。 図20a〜20h及び本明細書中の種々の例と関連する種々のトラフ部材30bのうちの1つを示す。 図20a〜20h及び本明細書中の種々の例と関連する種々のトラフ部材30bのうちの1つを示す。 図20a〜20h及び本明細書中の種々の例と関連する種々のトラフ部材30bのうちの1つを示す。 図20a〜20h及び本明細書中の種々の例と関連する種々のトラフ部材30bのうちの1つを示す。 図20a〜20h及び本明細書中の種々の例と関連する種々のトラフ部材30bのうちの1つを示す。 図20a〜20h及び本明細書中の種々の例と関連する種々のトラフ部材30bのうちの1つを示す。 図19a、19b及び20及び本明細書中の種々の例と関連する種々のトラフ部材30bを示す図である。 図19a、19b及び20及び本明細書中の種々の例と関連する種々のトラフ部材30bを示す図である。 例19で利用される別のトラフ実施態様を示す種々の概略・斜視図のうちの1つである。 例19で利用される別のトラフ実施態様を示す種々の概略・斜視図のうちの1つである。 例19で利用される別のトラフ実施態様を示す種々の概略・斜視図のうちの1つである。 例19で利用される別のトラフ実施態様を示す種々の概略・斜視図のうちの1つである。 第1ステップで、流体3をコンディショニングするためにプラズマ4が形成されるバッチ法で使用される装置を示す概略図である。 図24aに示された装置と連携して、そして本明細書中の例において論じたように、懸濁液(例えばコロイド)中のナノ結晶を形成するためにワイヤー5a及び5bを利用するバッチ法において使用される装置を示す概略図である。 図24aに示された装置と連携して、そして本明細書中の例において論じたように、懸濁液(例えばコロイド)中のナノ結晶を形成するためにワイヤー5a及び5bを利用するバッチ法において使用される装置を示す概略図である。 例5に従って形成された乾燥懸濁液GD−007に由来する金ナノ結晶の代表的なTEM顕微鏡写真である。 例5に従って形成された懸濁液GD−007のナノ結晶のTEM測定から生じた粒度分布ヒストグラムを示す図である。 例5に従って形成された金ナノ結晶の動的光散乱データ(すなわち流体力学半径)を示す図である。 例5で成長させた金ナノ結晶(GD−007)の1つを示す。 溶液GD−007に由来するナノ結晶の問い合せビーム点のエネルギー分散X線パターンを示す。 調節可能なプラズマからの発生分光情報を収集するために使用された試験設定の概略的斜視図である。 調節可能なプラズマを形成するために用いた金電極と関連する放射照度データを示す。 調節可能なプラズマを形成するために用いた金電極と関連する放射照度データを示す。 調節可能なプラズマを形成するために用いた金電極と関連する放射照度データを示す。 調節可能なプラズマを形成するために用いた金電極と関連する放射照度データを示す。 例6に従って形成された乾燥溶液GD−016に由来する金ナノ結晶の代表的なTEM顕微鏡写真である。 例6に従って形成されたナノ結晶のTEM測定から生じた粒度分布を示す図である。 例6に従って形成された金ナノ結晶の動的光散乱データ(すなわち流体力学半径)を示す図である。 例7に従って形成された乾燥溶液GD−015に由来する金ナノ結晶の代表的なTEM顕微鏡写真である。 例7に従って形成されたナノ結晶のTEM測定から生じた粒度分布ヒストグラムを示す図である。 例7に従って形成された金ナノ結晶の動的光散乱データ(すなわち流体力学半径)を示す図である。 例8に従って形成された乾燥溶液GB−018に由来する金ナノ結晶の代表的なTEM顕微鏡写真である。 例8に従って形成されたナノ結晶のTEM測定から生じた粒度分布ヒストグラムを示す図である。 例8に従って形成された金ナノ結晶の動的光散乱データ(すなわち流体力学半径)を示す図である。 例9に従って形成された乾燥溶液GB−019に由来する金ナノ粒子の代表的なTEM顕微鏡写真である。 例9に従って形成されたナノ結晶のTEM測定から生じた粒度分布ヒストグラムを示す図である。 例9に従って形成された金ナノ結晶の動的光散乱データ(すなわち流体力学半径)を示す図である。 例10に従って形成された乾燥溶液GB−020に由来する金ナノ結晶の代表的なTEM顕微鏡写真である。 例10に従って形成されたナノ結晶のTEM測定から生じた粒度分布ヒストグラムを示す図である。 例10に従って形成された金ナノ結晶の動的光散乱データ(すなわち流体力学半径)を示す図である。 例11に従って形成された乾燥溶液1AC−202−7に由来する金ナノ結晶の代表的なTEM顕微鏡写真である。 例11に従って形成されたナノ結晶のTEM測定から生じた粒度分布ヒストグラムを示す図である。 例11に従って形成された金ナノ結晶の動的光散乱データ(すなわち流体力学半径)を示す図である。 例4に従って形成された乾燥溶液GT−033に由来する金ナノ結晶の代表的なTEM顕微鏡写真である。 例4に従って形成された金ナノ結晶の動的光散乱データ(すなわち流体力学半径)を示す図である。 例4に従って形成された金ナノ結晶の動的光散乱データ(すなわち流体力学半径)を示す図である。 例12に従って形成された乾燥溶液1AC−261に由来する金ナノ結晶の代表的なTEM顕微鏡写真である。 例12に従って形成されたナノ結晶のTEM測定から生じた粒度分布ヒストグラムを示す図である。 例13に従って形成された乾燥溶液GB−154(20Hz正弦波)に由来する金ナノ結晶の代表的なTEM顕微鏡写真である。 例13に従って形成されたナノ結晶のTEM測定から生じた粒度分布ヒストグラムを示す図である。 例13に従って形成された乾燥溶液GB−157(40Hz正弦波)に由来する金ナノ結晶の代表的なTEM顕微鏡写真である。 例GB−157に従って形成されたナノ結晶のTEM測定から生じた粒度分布ヒストグラムを示す図である。 例13に従って形成された乾燥溶液GB−159(60Hz正弦波)に由来する金ナノ結晶の代表的なTEM顕微鏡写真である。 GB−159に従って形成されたナノ結晶のTEM測定から生じた粒度分布ヒストグラムを示す図である。 例13に従って形成された乾燥溶液GB−161(80Hz正弦波)に由来する金ナノ結晶の代表的なTEM顕微鏡写真である。 GB−161に従って形成されたナノ結晶のTEM測定から生じた粒度分布ヒストグラムを示す図である。 例13に従って形成された乾燥溶液GB−173(100Hz正弦波)に由来する金ナノ結晶の代表的なTEM顕微鏡写真である。 GB−173に従って形成されたナノ結晶のTEM測定から生じた粒度分布ヒストグラムを示す図である。 例13に従って形成された乾燥溶液GB−156(300Hz正弦波)に由来する金ナノ結晶の代表的なTEM顕微鏡写真である。 GB−156に従って形成されたナノ結晶のTEM測定から生じた粒度分布ヒストグラムを示す図である。 溶液GB−166、GB−165、GB−162、GB−163、及びGB−164中でナノ結晶を生成するために使用される電気的設定を示す概略図である。 溶液GB−166、GB−165、及びGB−162中で利用される電気波形を示す概略図である。 例14に従って形成された乾燥溶液GB−166(60Hz正弦波)に由来する金ナノ結晶の代表的なTEM顕微鏡写真である。 GB−166に従って形成されたナノ結晶のTEM測定から生じた粒度分布ヒストグラムを示す図である。 例14に従って形成された乾燥溶液GB−165(60Hz正弦波)に由来する金ナノ結晶の代表的なTEM顕微鏡写真である。 GB−165に従って形成されたナノ結晶のTEM測定から生じた粒度分布ヒストグラムを示す図である。 例14に従って形成された乾燥溶液GB−162(60Hz正弦波)に由来する金ナノ結晶の代表的なTEM顕微鏡写真である。 GB−162に従って形成されたナノ結晶のTEM測定から生じた粒度分布ヒストグラムを示す図である。 GB−163及びGB−164に従って試料を生成するために利用される三角電気波形を示す概略図である。 例15に従って形成された乾燥溶液GB−163(最大デューティ・サイクル三角波)に由来する金ナノ結晶の代表的なTEM顕微鏡写真である。 GB−163に従って形成されたナノ結晶のTEM測定から生じた粒度分布ヒストグラムを示す図である。 例15に従って形成された乾燥溶液GB−164(最小デューティ・サイクル三角波)に由来する金ナノ結晶の代表的なTEM顕微鏡写真である。 GB−164に従って形成されたナノ結晶のTEM測定から生じた粒度分布ヒストグラムを示す図である。 例16に従って形成された乾燥懸濁液GB−134に由来する金ナノ結晶の代表的なTEM顕微鏡写真である。 例16に従って形成されたナノ結晶のTEM測定から生じた粒度分布ヒストグラムを示す図である。 例16に従って形成された金ナノ結晶の動的光散乱データ(すなわち流体力学半径)を示す図である。 例16に従って形成された乾燥試料GB−098の2つの代表的なTEM顕微鏡写真である。 例16に従って形成された乾燥試料GB−098に相当するナノ結晶のTEM測定から生じる粒度分布ヒストグラムを示す図である。 例16に従って形成された試料GB−098に相当する金ナノ結晶の動的光散乱データ(すなわち流体力学半径)を示す図である。 例16に従って形成された乾燥試料GB−113の2つの代表的なTEM顕微鏡写真である。 例16に従って形成された乾燥試料GB−113に相当するナノ結晶のTEM測定から生じる粒度分布ヒストグラムを示す図である。 例16に従って形成された試料GB−113に相当する金ナノ結晶の動的光散乱データ(すなわち流体力学半径)を示す図である。 例16に従って形成された乾燥試料GB−118の2つの代表的なTEM顕微鏡写真である。 例16に従って形成された乾燥試料GB−118に相当するナノ結晶のTEM測定から生じる粒度分布ヒストグラムを示す図である。 例16に従って形成された試料GB−118に相当する金ナノ結晶の動的光散乱データ(すなわち流体力学半径)を示す図である。 例16に従って形成された乾燥試料GB−120の2つの代表的なTEM顕微鏡写真である。 例16に従って形成された乾燥試料GB−120に相当するナノ結晶のTEM測定から生じる粒度分布ヒストグラムを示す図である。 例16に従って形成された試料GB−120に相当する金ナノ結晶の動的光散乱データ(すなわち流体力学半径)を示す図である。 例16に従って形成された乾燥試料GB−123の2つの代表的なTEM顕微鏡写真である。 例16に従って形成された乾燥試料GB−123に相当するナノ結晶のTEM測定から生じる粒度分布ヒストグラムを示す図である。 例16に従って形成された試料GB−123に相当する金ナノ結晶の動的光散乱データ(すなわち流体力学半径)を示す図である。 例16に従って形成された乾燥試料GB−139の2つの代表的なTEM顕微鏡写真である。 例16に従って形成された乾燥試料GB−139に相当するナノ結晶のTEM測定から生じる粒度分布ヒストグラムを示す図である。 例16に従って形成された試料GB−139に相当する金ナノ結晶の動的光散乱データ(すなわち流体力学半径)を示す図である。 例16に従って形成された試料GB−139の処理時間の関数としての測定電流(アンペア数)を示す図である。 例16に従って形成された乾燥試料GB−141の2つの代表的なTEM顕微鏡写真である。 例16に従って形成された乾燥試料GB−141に相当するナノ結晶のTEM測定から生じる粒度分布ヒストグラムを示す図である。 例16に従って形成された試料GB−141に相当する金ナノ結晶の動的光散乱データ(すなわち流体力学半径)を示す図である。 例16に従って形成された試料GB−141の処理時間の関数としての測定電流(アンペア数)を示す図である。 例16に従って形成された乾燥試料GB−144の2つの代表的なTEM顕微鏡写真である。 例16に従って形成された乾燥試料GB−144に相当するナノ結晶のTEM測定から生じる粒度分布ヒストグラムを示す図である。 例16に従って形成された試料GB−144に相当する金ナノ結晶の動的光散乱データ(すなわち流体力学半径)を示す図である。 例16に従って形成された試料GB−144の処理時間の関数としての測定電流(アンペア数)を示す図である。 例16に従って形成された乾燥試料GB−079の2つの代表的なTEM顕微鏡写真である。 例16に従って形成された乾燥試料GB−079に相当するナノ結晶のTEM測定から生じる粒度分布ヒストグラムを示す図である。 例16に従って形成された試料GB−079に相当する金ナノ結晶の動的光散乱データ(すなわち流体力学半径)を示す図である。 例16に従って形成された乾燥試料GB−089の2つの代表的なTEM顕微鏡写真である。 例16に従って形成された乾燥試料GB−089に相当するナノ結晶のTEM測定から生じる粒度分布ヒストグラムを示す図である。 例16に従って形成された試料GB−089に相当する金ナノ結晶の動的光散乱データ(すなわち流体力学半径)を示す図である。 例16に従って形成された乾燥試料GB−062の2つの代表的なTEM顕微鏡写真である。 例16に従って形成された乾燥試料GB−062に相当するナノ結晶のTEM測定から生じる粒度分布ヒストグラムを示す図である。 例16に従って形成された試料GB−062に相当する金ナノ結晶の動的光散乱データ(すなわち流体力学半径)を示す図である。 例16に従って形成された乾燥試料GB−076の2つの代表的なTEM顕微鏡写真である。 例16に従って形成された乾燥試料GB−076に相当するナノ結晶のTEM測定から生じる粒度分布ヒストグラムを示す図である。 例16に従って形成された試料GB−076に相当する金ナノ結晶の動的光散乱データ(すなわち流体力学半径)を示す図である。 例16に従って形成された乾燥試料GB−077の2つの代表的なTEM顕微鏡写真である。 例16に従って形成された乾燥試料GB−077に相当するナノ結晶のTEM測定から生じる粒度分布ヒストグラムを示す図である。 例16に従って形成された試料GB−077に相当する金ナノ結晶の動的光散乱データ(すなわち流体力学半径)を示す図である。 約250nm〜750nmの問い合わせ波長範囲にわたる、例16に従って形成された14種の懸濁液/コロイド(すなわちGB−098、GB−113及びGB−118);(GB−120及びGB−123);(GB−139);(GB−141及びGB−144);(GB−079、GB−089及びGB−062);及び(GB−076及びGB−077)のそれぞれのUV−Visスペクトル・パターンを示す図である。 約435nm〜635nmの問い合わせ波長範囲にわたる14種の懸濁液のそれぞれのUV−Visスペクトル・パターンを示す図である。 例18に従って形成された乾燥溶液GB−151に由来する金ナノ結晶の代表的なTEM顕微鏡写真である。 GB−151に従って形成されたナノ結晶のTEM測定から生じた粒度分布ヒストグラムを示す図である。 例18に従って形成された乾燥溶液GB−188に由来する金ナノ結晶の代表的なTEM顕微鏡写真である。 GB−188に従って形成されたナノ結晶のTEM測定から生じた粒度分布ヒストグラムを示す図である。 例18に従って形成された乾燥溶液GB−175に由来する金ナノ結晶の代表的なTEM顕微鏡写真である。 GB−175に従って形成されたナノ結晶のTEM測定から生じた粒度分布ヒストグラムを示す図である。 例18に従って形成された乾燥溶液GB−177に由来する金ナノ結晶の代表的なTEM顕微鏡写真である。 GB−177に従って形成されたナノ結晶のTEM測定から生じた粒度分布ヒストグラムを示す図である。 例18に従って形成された乾燥溶液GB−176に由来する金ナノ結晶の代表的なTEM顕微鏡写真である。 GB−176に従って形成されたナノ結晶のTEM測定から生じた粒度分布ヒストグラムを示す図である。 例18に従って形成された乾燥溶液GB−189に由来する金ナノ結晶の代表的なTEM顕微鏡写真である。 GB−189に従って形成されたナノ結晶のTEM測定から生じた粒度分布ヒストグラムを示す図である。 例18に従って形成された乾燥溶液GB−194に由来する金ナノ結晶の代表的なTEM顕微鏡写真である。 GB−194に従って形成されたナノ結晶のTEM測定から生じた粒度分布ヒストグラムを示す図である。 例18に従って形成された乾燥溶液GB−195に由来する金ナノ結晶の代表的なTEM顕微鏡写真である。 GB−195に従って形成されたナノ結晶のTEM測定から生じた粒度分布ヒストグラムを示す図である。 例18に従って形成された乾燥溶液GB−196に由来する金ナノ結晶の代表的なTEM顕微鏡写真である。 GB−196に従って形成されたナノ結晶のTEM測定から生じた粒度分布ヒストグラムを示す図である。 例18に従って形成された乾燥溶液GB−198に由来する金ナノ結晶の代表的なTEM顕微鏡写真である。 GB−198に従って形成されたナノ結晶のTEM測定から生じた粒度分布ヒストグラムを示す図である。 例18に従って形成された乾燥溶液GB−199に由来する金ナノ結晶の代表的なTEM顕微鏡写真である。 GB−199に従って形成されたナノ結晶のTEM測定から生じた粒度分布ヒストグラムを示す図である。 約250nm〜750nmの問い合わせ波長範囲にわたる、例18に従って形成された11種の懸濁液/コロイド(すなわちGB−151、GB−188、GB−175、GB−177、GB−176、GB−189、GB−194、GB−195、GB−196、GB−198、及びGB−199)のそれぞれのUV−Visスペクトル・パターンを示す図である。 約435nm〜635nmの問い合わせ波長範囲にわたる11種の懸濁液のそれぞれのUV−Visスペクトル・パターンを示す図である。 a1とa2は試料Aurora-020の2つの代表的なTEM顕微鏡写真のうちの1つである。 乾燥試料Aurora-020に相当するナノ粒子のTEM測定から生じる粒度分布ヒストグラムを示す図である。 試料Aurora-020に相当する金ナノ粒子の動的光散乱データ(すなわち流体力学半径)を示す図である。 a1とa2は乾燥試料GA−002の2つの代表的なTEM顕微鏡写真のうちの1つである。 乾燥試料GA−002に相当するナノ結晶のTEM測定から生じる粒度分布ヒストグラムを示す図である。 乾燥試料GA−002に相当する金ナノ結晶の動的光散乱データ(すなわち流体力学半径)を示す図である。 a1とa2は乾燥試料GA−003の2つの代表的なTEM顕微鏡写真のうちの1つである。 乾燥試料GA−003に相当するナノ結晶のTEM測定から生じる粒度分布ヒストグラムを示す図である。 乾燥試料GA−003に相当する金ナノ結晶の動的光散乱データ(すなわち流体力学半径)を示す図である。 a1とa2は乾燥試料GA−004の2つの代表的なTEM顕微鏡写真のうちの1つである。 乾燥試料GA−004に相当するナノ結晶のTEM測定から生じる粒度分布ヒストグラムを示す図である。 乾燥試料GA−004に相当する金ナノ結晶の動的光散乱データ(すなわち流体力学半径)を示す図である。 a1とa2は乾燥試料GA−005の2つの代表的なTEM顕微鏡写真のうちの1つである。 乾燥試料GA−005に相当するナノ結晶のTEM測定から生じる粒度分布ヒストグラムを示す図である。 乾燥試料GA−005に相当する金ナノ結晶の動的光散乱データ(すなわち流体力学半径)を示す図である。 a1とa2は乾燥試料GA−009の2つの代表的なTEM顕微鏡写真のうちの1つである。 乾燥試料GA−009に相当するナノ結晶のTEM測定から生じる粒度分布ヒストグラムを示す図である。 乾燥試料GA−009に相当する金ナノ結晶の動的光散乱データ(すなわち流体力学半径)を示す図である。 a1とa2は乾燥試料GA−011の2つの代表的なTEM顕微鏡写真のうちの1つである。 乾燥試料GA−011に相当するナノ結晶のTEM測定から生じる粒度分布ヒストグラムを示す図である。 乾燥試料GA−011に相当する金ナノ結晶の動的光散乱データ(すなわち流体力学半径)を示す図である。 a1とa2は乾燥試料GA−013の2つの代表的なTEM顕微鏡写真のうちの1つである。 乾燥試料GA−013に相当するナノ結晶のTEM測定から生じる粒度分布ヒストグラムを示す図である。 乾燥試料GA−013に相当する金ナノ結晶の動的光散乱データ(すなわち流体力学半径)を示す図である。 代表/比較金ナノ粒子を形成するために利用される比較ブレーディッヒ・アーク装置を示す斜視図である。 代表/比較金ナノ粒子を形成するために利用される比較ブレーディッヒ・アーク装置を示す断面図である。 例21に従って形成された乾燥溶液ARCG−05に由来する金ナノ粒子の代表的なTEM顕微鏡写真である。 ARCG−05に従って形成されたナノ結晶のTEM測定から生じた粒度分布ヒストグラムを示す図である。 例22で論じられた商業的に利用可能な比較コロイド製品の代表的なTEM顕微鏡写真である。 例22で論じられた商業的に利用可能な比較コロイド製品に相当するナノ粒子のTEM測定から生じる粒度分布ヒストグラムを示す図である。 例22で論じられた商業的に利用可能な比較コロイド製品の代表的なTEM顕微鏡写真である。 例22で論じられた商業的に利用可能な比較コロイド製品に相当するナノ粒子のTEM測定から生じる粒度分布ヒストグラムを示す図である。 例22で論じられた商業的に利用可能な比較コロイド製品の代表的なTEM顕微鏡写真である。 例22で論じられた商業的に利用可能な比較コロイド製品に相当するナノ粒子のTEM測定から生じる粒度分布ヒストグラムを示す図である。 例22で論じられた商業的に利用可能な比較コロイド製品の代表的なTEM顕微鏡写真である。 例22で論じられた商業的に利用可能な比較コロイド製品に相当するナノ粒子のTEM測定から生じる粒度分布ヒストグラムを示す図である。 例22で論じられた商業的に利用可能な比較コロイド製品の代表的なTEM顕微鏡写真である。 例22で論じられた商業的に利用可能な比較コロイド製品に相当するナノ粒子のTEM測定から生じる粒度分布ヒストグラムを示す図である。 例22で論じられた商業的に利用可能な比較コロイド製品の代表的なTEM顕微鏡写真である。 例22で論じられた商業的に利用可能な比較コロイド製品に相当するナノ粒子のTEM測定から生じる粒度分布ヒストグラムを示す図である。 例22で論じられた商業的に利用可能な比較コロイド製品の代表的なTEM顕微鏡写真である。 例22で論じられた商業的に利用可能な比較コロイド製品に相当するナノ粒子のTEM測定から生じる粒度分布ヒストグラムを示す図である。 例22で論じられた商業的に利用可能な比較コロイド製品の代表的なTEM顕微鏡写真である。 例22で論じられた商業的に利用可能な比較コロイド製品に相当するナノ粒子のTEM測定から生じる粒度分布ヒストグラムを示す図である。 図22aで論じられた商業的に利用可能な8種の金ナノ粒子懸濁液のうちの7種(Utopia Gold, SNG911219, Nanopartz, Nanocomposix 15nm, Nanocomposix 10nm, Harmonic Gold,及びMesoGold)のそれぞれの、約250nm〜750nmの問い合わせ波長範囲にわたる、UV−Visスペクトル・パターンを示す。 図22aで論じられた商業的に利用可能な8種の金ナノ粒子懸濁液のうちの7種(Utopia Gold, SNG911219, Nanopartz, Nanocomposix 15nm, Nanocomposix 10nm, Harmonic Gold,及びMesoGold)のそれぞれの、約435nm〜635nmの問い合わせ波長範囲にわたる、UV−Visスペクトル・パターンを示す。 ゼータ電位を示すグラフである。 導電率を示すグラフである。 例23aに従って形成されたナノ結晶懸濁液GD−006の動的光散乱データ(すなわち流体力学半径)を示す図である。 種々異なる量のGB−079の存在においてLPSによってアンタゴナイズされたときに、ヒトPBMCによって生成される4種の異なるサイトカインの量のうちの1つを示すグラフである。 種々異なる量のGB−079の存在においてLPSによってアンタゴナイズされたときに、ヒトPBMCによって生成される4種の異なるサイトカインの量のうちの1つを示すグラフである。 種々異なる量のGB−079の存在においてLPSによってアンタゴナイズされたときに、ヒトPBMCによって生成される4種の異なるサイトカインの量のうちの1つを示すグラフである。 種々異なる量のGB−079の存在においてLPSによってアンタゴナイズされたときに、ヒトPBMCによって生成される4種の異なるサイトカインの量のうちの1つを示すグラフである。 対照水、2種の試験混合物(すなわちGT−033及びGD−007)を示す、マウスのコラーゲン誘導関節炎(CIA)モデルからの結果を示し、そして測定された試験結果を、典型的なステロイド・モデル(すなわち、このモデルでは測定されない)からの結果と対比するグラフである。 種々の関節炎段階におけるマウス足関節の断面を示す代表的な顕微鏡写真である。 種々の関節炎段階におけるマウス足関節の断面を示す代表的な顕微鏡写真である。 種々の関節炎段階におけるマウス足関節の断面を示す代表的な顕微鏡写真である。 種々の関節炎段階におけるマウス足関節の断面を示す代表的な顕微鏡写真である。 種々の関節炎段階におけるマウス足関節の断面を示す代表的な顕微鏡写真である。 種々の関節炎段階におけるマウス足関節の断面を示す代表的な顕微鏡写真である。 種々の関節炎段階におけるマウス足関節の断面を示す代表的な顕微鏡写真である。 種々の関節炎段階におけるマウス足関節の断面を示す代表的な顕微鏡写真である。 種々の関節炎段階におけるマウス足関節の断面を示す代表的な顕微鏡写真である。 水対照群1対GB−056処理群2における発症動物のパーセントを示す、Biozziマウスの実験的自己免疫性脳炎(EAE)モデルからの結果を示すグラフである。 水対照群1対GB−056処理群2における平均臨床疾患スコアを示す、Biozziマウスの実験的自己免疫性脳炎(EAE)モデルからの結果を示すグラフである。 例17に従って形成された乾燥溶液GB−056に由来する金ナノ結晶の代表的なTEM顕微鏡写真である。 例17に従って形成された乾燥溶液GB−056に由来する金ナノ結晶の代表的なTEM顕微鏡写真である。 例17に従って形成された乾燥溶液GB−056に由来する金ナノ結晶の代表的なTEM顕微鏡写真である。 例17に従って形成された乾燥溶液GB−056に由来する金ナノ結晶の代表的なTEM顕微鏡写真である。 例17に従って形成された乾燥溶液GB−056に由来する金ナノ結晶の代表的なTEM顕微鏡写真である。 例17に従って形成された金ナノ結晶のTEM測定から生じた粒度分布ヒストグラムを示す図である。 例17に従って形成された金ナノ結晶の動的光散乱データ(すなわち流体力学半径)を示す図である。 例26のEAEテストにおいて24時間にわたってテスト化合物として働いた後、例17に従って形成された乾燥溶液GB−056に由来する同じ金ナノ結晶の代表的なTEM顕微鏡写真である。 例26のEAEテストにおいて24時間にわたってテスト化合物として働いた後、例17に従って形成された乾燥溶液GB−056に由来する同じ金ナノ結晶の代表的なTEM顕微鏡写真である。 例26のEAEテストにおいて24時間にわたってテスト化合物として働いた後、例17に従って形成された乾燥溶液GB−056に由来する同じ金ナノ結晶の代表的なTEM顕微鏡写真である。 例26のEAEテストにおいて24時間にわたってテスト化合物として働いた後、例17に従って形成された乾燥溶液GB−056に由来する同じ金ナノ結晶の代表的なTEM顕微鏡写真である。 例26のEAEテストにおいて24時間にわたってテスト化合物として働いた後、例17に従って形成された金ナノ結晶のTEM測定から生じた粒度分布ヒストグラムを示す図である。 例26のEAEテストにおいて24時間にわたってテスト化合物として働いた後、例17に従って形成された金ナノ結晶の動的光散乱データ(すなわち流体力学半径)を示す図である。 例26のEAEテストにおいて24時間にわたってテスト化合物として働いた後、例17に従って形成された乾燥溶液GB−056に由来する同じ金ナノ粒子の代表的なTEM顕微鏡写真である。 例26のEAEテストにおいて24時間にわたってテスト化合物として働いた後、例17に従って形成された乾燥溶液GB−056に由来する同じ金ナノ粒子の代表的なTEM顕微鏡写真である。 例26のEAEテストにおいて24時間にわたってテスト化合物として働いた後、例17に従って形成された乾燥溶液GB−056に由来する同じ金ナノ粒子の代表的なTEM顕微鏡写真である。 例26のEAEテストにおいて24時間にわたってテスト化合物として働いた後、例17に従って形成されたナノ結晶のTEM測定から生じた粒度分布ヒストグラムを示す図である。 例26のEAEテストにおいて24時間にわたってテスト化合物として働いた後、例17に従って形成された金ナノ結晶の動的光散乱データ(すなわち流体力学半径)を示す図である。 例27に従った長期研究にわたる全てのマウスの平均体重増加を示す図である。 例27に従った長期研究にわたる全てのマウスに関する、治療液及び対照液の平均消費量を示す図である。 例28に従った35日間の研究にわたる全てのマウスの平均体重増加を示す図である。 例28に従った35日間の研究にわたる全てのマウスに関する、治療液及び対照液の平均消費量を示す図である。 例28に従ってマウスの糞中に見いだされた金の量を示す図である。 例28に従ってマウスの糞中に見いだされた金の量を示す図である。 例28に従ってマウスの器官及び血液中に見いだされた金の量を示す図である。
I.新規の金ナノ結晶
有機又はその他の不純物又は膜を実質的に含まないナノ結晶性表面を有する新たな金ナノ結晶が提供される。具体的には、これらの表面は、溶液中で金イオンから金ナノ粒子を形成するために化学的還元剤及び/又は界面活性剤を必要とする化学的還元プロセスを用いて形成された表面と比較して「クリーン」である。新規の金ナノ結晶は、本明細書中に詳細に記載された新規の製造手順を介して製造される。新しい製造手順は、添加される化学的還元剤及び/又は界面活性剤(例えば有機化合物)、又は典型的には粒子内又は粒子上に担持されるか又は化学的に還元された粒子の表面上に被覆される他の物質を事前に使用することを回避する。さもなければ還元剤は続いて、粒子にそれ自体影響を及ぼす望ましくないプロセスを用いてストリッピング又は除去される。
好ましい実施態様の場合、このプロセスは、「処理増強剤(process enhancer又はprocessing enhancer)」(典型的には無機材料又は炭酸塩など)を含有する水中で金ナノ結晶を核形成して成長させることを伴う。この処理増強剤は、形成された金ナノ結晶に有意には結合せず、むしろ電気化学的刺激を受ける成長プロセス中の核形成及び/又は結晶成長を容易にする。処理増強剤は、結晶が成長するのを可能にするように、電気化学的溶液中に荷電イオンを提供することを含むプロセスにおいて重要な役割を担う。処理増強剤は極めて重要なことには、溶液中に残り、且つ/又は被膜(例えば有機被膜)を形成することがなく、且つ/又は形成済ナノ結晶又は形成済懸濁液に不都合な影響を及ぼすことがなく、且つ/又は電気化学的プロセス中に破壊、蒸発されるか、又はその他の形で失われる化合物である。好ましい処理増強剤は、重炭酸ナトリウムである。他の処理増強剤の例は炭酸ナトリウム、重炭酸カリウム、炭酸カリウム、リン酸三ナトリウム、リン酸二ナトリウム、リン酸一ナトリウム、リン酸カリウム、又は他の炭酸塩などである。さらなる処理増強剤は、亜硫酸ナトリウム又はカリウム、又は重亜硫酸ナトリウム又はカリウムを含む塩であってもよい。或る条件下で医学的用途の金ナノ結晶を形成するためのさらに他の処理増強剤は、ナトリウム又はカリウムの他の塩であってよく、或いは、金ナノ結晶表面内又は表面上に実質的に組み込まれることがなく、またナノ結晶又はナノ結晶を含有する懸濁液に毒性を与えることがない、本明細書中に記載される電気化学的成長プロセスを支援する任意の物質であってもよい。
処理増強剤の望ましい濃度範囲は典型的には0.01〜20グラム/ガロン(0.0026〜2.1730mg/ml)、より典型的には0.1〜7.5グラム/ガロン(0.0264〜1.9813mg/ml)、そして最も典型的には0.5〜2.0グラム/ガロン(0.13210〜0.5283mg/ml)を含む。
成長した金ナノ結晶は金金属の「裸の」又は「クリーン」な表面(例えばゼロ酸化状態にある)を有しているので、表面は高反応性であるか又は高い生体触媒作用(並びに高い生体利用性)を有する。ナノ結晶は事実上ウォータージャケットによって取り囲まれている。これらの特徴は、例えば還元化学プロセスに由来する有機材料を含有するナノ粒子表面と比較して生体内有効性を高める。「クリーンな」表面は、被覆又は「ドレッシング」された表面を含有するナノ粒子を凌いで、ナノ結晶の毒性を低減することもできる。これらの「クリーンな」金ナノ結晶の増大した有効性は、治療効果を達成するために必要となる投与量を低減することにより、治療指数を高めることができる。本明細書中の比較マウス・モデル例(例25)が、本発明の金ナノ結晶懸濁液と、商業的に入手可能でありFDAによって承認された金薬物であるAuranofinとを比較する。この例は、マウスにおけるこれらの新規の金ナノ結晶が、関節リウマチの炎症の広く受けいられているコラーゲン誘導関節炎モデルにおけるAuranofinよりも少なくとも5倍高い活性を有することを示す。
具体的には、比較マウス・モデル(例25)は、本発明の結晶懸濁液を使用した場合の有効性を示す投与量レベルと、商業的に入手可能でありFDAによって承認された金系薬物であるAuranofinを使用した場合の有効性を示す投与量レベルとを比較する。例25は、マウスにおけるこれらの新規の金ナノ結晶が、マウスにおける炎症の広く受け入れられているコラーゲン誘導関節炎モデルにおけるAuranofinの有効投与量レベルの少なくとも17分の1以下の投与量レベルで、また有効投与量レベルのAuranofin中に含有される金含量の5分の1で有効性を達成することを示す。このように、新規の金ナノ結晶の相対有効性レベルを、金系薬物Auranofinの相対有効性レベルと比較し、そしてAuranofinの相対有効性レベルの金含量とだけ比較すると、新規の金ナノ結晶の相対効力はAuranofinの17倍であり、またAuranofin中に含有される金の5倍である。
この効力の利点は、治療有効性を著しく低い投与量レベル(Auranofinの17分の1の投与量、Auranofin中に含有される金の5分の1の投与量)で達成でき、或いは、同等の投与量レベルで潜在的に著しく高い有効性を達成できることを意味する。
2つの他の次元、すなわち相対毒性及び効果発現相対速度において、新規のナノ結晶の他の重要な利点がある。動物モデルにおける観測相対毒性及び観測効果発現相対速度の両方に関して、新規の金ナノ結晶は、従来技術においてFDAによって承認された唯一の経口投与金系医薬品であるAuranofinとは著しく異なり、これを大きく凌いでいる。
好ましい実施態様の場合、ナノ結晶は使用前に乾燥させられず、その代わりに結晶がその中に形成されている液体の形態で使用される(すなわち懸濁液を形成)か、或いは、濃縮物又は再構成濃縮物の形態で使用される。懸濁液からこれらの結晶を完全に取り出すこと(例えば完全に乾燥させること)は、或る事例の場合、例えば最初に形成されたウォータージャケットを変化させることによって、結晶の表面特性に影響を及ぼし(例えば部分酸化が発生することがある)、且つ/又は、結晶を再水和させる能力に影響を及ぼすように見える。このことは、製造プロセス中に滅菌医薬等級の水(すなわちUSP)、及び前述の処理増強剤を使用することが最適であることを示唆している。
本発明に従って形成された金ナノ結晶は、金反応性が重要である(例えば触媒的及び/又は電気化学的プロセス)がしかし医薬等級の製品は必要とされない工業用途のために使用することもできる。非医薬用途のために調製するときには、金ナノ結晶はその用途に応じて、より多様な溶媒中で、より多様な処理増強剤とともに形成することができる。
本明細書中のプロセスによれば、金ナノ結晶は、固有の識別可能な表面特性、例えば空間的に広がる低指数結晶面{111}、{110}及び/又は{100}、及びこのような面(及びこれらと同等のもの)から成る群を提供するように、成長させることができる。本明細書中に記載されたプロセスに従って調製される金ナノ結晶の形状の一例としては三角形(例えば四面体)、五角形(例えば五角両錐体又は十面体)、六角形(例えば六角両錐体、二十面体、八面体)、ダイヤモンド形(例えば八面体、種々の細長い両錐体、融合四面体、両錐体を側面から見た状態)及びその他が挙げられる。前述の空間的に広がる低指数結晶面を含み、そして「クリーン」な表面を有するナノ結晶(すなわち本明細書中に示された種々の実施態様によって成長したナノ結晶)のパーセントは、本発明の別の新規の特徴である。さらに、ナノ結晶性懸濁液中に形成された、又は存在する四面体及び/又は五角両錐体のパーセントも固有のものである。
好ましい実施態様の場合、五角両錐体のパーセントは、少なくとも約5%であるか又は約5%〜35%の範囲であり、より典型的には少なくとも約10%であるか又は約10%〜35%の範囲であり、さらにより典型的には少なくとも約15%であるか又は約15%〜35%の範囲であり、そしてさらにより典型的には少なくとも約25%であり、そしていくつかの事例では少なくとも約30%である。
別の好ましい実施態様の場合、四面体のパーセントは、少なくとも5%であるか又は約5%〜35%の範囲であり、より典型的には少なくとも約10%であるか又は約10%〜35%の範囲であり、さらにより典型的には少なくとも約15%であるか又は約15%〜35%の範囲であり、そしてさらにより典型的には少なくとも約25%であり、そしていくつかの事例では少なくとも約30%である。
さらに、五角両錐体と四面体との組み合わせは、少なくとも約15%であるか又は約15%〜50%の範囲であり、より典型的には少なくとも約20%であるか又は約20%〜50%の範囲であり、さらにより典型的には少なくとも約30%であるか又は約30%〜50%の範囲であり、そしてさらにより典型的には少なくとも約35%であり、そしていくつかの事例では少なくとも約45%である。
さらに、五角両錐体と四面体と八面体と六角形の組み合わせは、少なくとも約50%であるか又は約50%〜85%の範囲であり、より典型的には少なくとも約60%であるか又は約60%〜85%の範囲であり、さらにより典型的には少なくとも約70%であるか又は約70%〜85%の範囲であり、そしてさらにより典型的には少なくとも約70%であり、そしていくつかの事例では少なくとも約80%である。
100nm未満の金ナノ結晶の任意の所期平均サイズを提供することができる。最も望ましい結晶サイズ範囲は、主として100nm未満、より典型的には50nm未満、さらにより典型的には30nm未満である平均結晶サイズ又は「モード」(本明細書中に詳細に開示された特定の技術によって測定されて割り出され、「TEM平均直径」として報告される)を有するものを含み、本明細書中に開示された好ましい実施態様の多くにおいて、ナノ結晶サイズ分布のモードは21nm未満であり、8〜18nmのさらに好ましい範囲内にある。
目標pH範囲を有する、又は有するように調節される、結果としての金ナノ結晶性懸濁液又はコロイドを提供することができる。例えば本明細書中に詳細に開示された量の重炭酸ナトリウム・処理増強剤を用いて調製する場合、pH範囲は典型的には8〜9である。この範囲は所望通りに調節することができる。
形成されたナノ粒子又はナノ結晶の表面電荷(すなわち正又は負)の性質及び/又は量は、ナノ粒子/懸濁液又はコロイドの挙動及び/又は効果に多大な影響を与えることもできる。例えば、生体内で形成されるアルブミン・コロナのようなタンパク質コロナに、ナノ粒子の表面電荷又は表面特性によって影響を与えることができる。このような表面電荷は一般に、「ゼータ電位」と呼ばれる。ゼータ電位(正又は負)が大きければ大きいほど、溶液中のナノ粒子の安定性も大きくなる(すなわち懸濁液はより安定になる)ことがよく知られている。形成されたナノ粒子又はナノ結晶の表面電荷の性質及び/又は量を制御することにより、このようなナノ粒子懸濁液の性能を制御することができる。
ゼータ電位は、コロイド系内の運動電位の尺度として知られており、また粒子上の表面電荷を意味する。ゼータ電位は、流体の静止層と、粒子が分散される流体との間に存在する電位差である。ゼータ電位はしばしばミリボルト(すなわちmV)で測定される。ほぼ20〜25mVのゼータ電位値は、分散媒質中で分散粒子が安定しているか否かを見極めるために選ばれた任意の値である。このように、本明細書中で「ゼータ電位」に言及するときには、言うまでもなく、言及されたゼータ電位は、二重層に存在する電荷の規模の記述又は定量化である。
ゼータ電位は、ヘンリーの等式:
(上記式中、zはゼータ電位であり、UEは電気泳動移動度、εは誘電定数であり、ηは粘度であり、f(ka)はヘンリー関数である。スモルコフスキー近似値の場合、f(ka)=1.5である)によって、電気泳動移動度から計算される。
本明細書中の方法に従って調製された金ナノ結晶のゼータ電位(ZP)は、典型的には−20mV以下、より典型的には約−30mV以下、さらにより典型的には約−40mV以下、そしてさらにより典型的には約−50mV以下のZPを有している。
II.新規の金ナノ結晶の使用
本発明の金ナノ結晶は、対応する金療法が効果的であることが知られている任意の障害を治療するために使用することができる。この障害は、広範囲の炎症障害及び自己免疫障害、並びに或る特定の感染病及び癌を含む。これらの用途のうちの多くのものについては上記発明の背景において説明し、他の点についてはより詳細に下で説明する。
治療されるべき患者は、ヒト又は他の動物、例えば哺乳動物であってよい。ヒト以外の患者の一例としては、霊長類、家畜動物(例えば羊、牛、馬、豚、山羊)、飼育動物(例えば犬、猫)、鳥類、及びその他の動物(例えばマウス、ラット、モルモット、ウサギ)が挙げられる。
重要なことは、金ナノ粒子(及び具体的には本明細書中に詳細に記載された金ナノ結晶)が、マクロファージ遊走阻止因子(「MIF」)を阻止することが本発明の一部として今や驚くべきことに発見されたことである。これは、金ナノ結晶(又はナノ粒子)のこのような活性の最初の開示であると考えられ、今日までの金ナノ結晶のための医学的用途範囲を理解するための科学的根拠を提供すると言える。本発明はまた、金ナノ結晶が、マクロファージ遊走阻止因子によって媒介される他の疾患に対して有効であろうと判断するための科学的根拠も提供する。加えて、これらの金ナノ結晶がIL−6を阻止してIL−10を阻止しないことが特定された。MIF及び/又はIL−6は、種々様々な状態及び/又は生物学的シグナル伝達経路において示されているので、このような発見は、新規の金ナノ結晶が、病的細胞活性から生じる疾患又は状態、例えば炎症(慢性炎症を含む)状態、自己免疫状態、或る特定の感染症、過敏反応、及び/又は癌疾患又は状態を治療又は予防するのに効果的となることを裏付ける。
MIFは、数多くの炎症促進事象において重要なマクロファージ由来の多機能性サイトカインである。MIFは当初、マクロファージのランダムな遊走を阻止する活性化Tリンパ球の生成物として記述された。MIFは最初は炎症部位のマクロファージを活性化することが見いだされたが、MIFは今や、免疫系内の一連のシグナル伝達物質を媒介することが判っている。MIFは、感染、炎症、負傷、虚血及び/又は悪性腫瘍を含むヒト及び動物の疾患又は状態において発現されることが判っている。MIFは、細胞増殖、細胞分化、血管形成、及び創傷治癒において重要な役割を有しているように思われる。MIFはまた、抗炎症効果のうちの少なくともいくつかに対抗することによって、グルココルチコイド(ステロイド)活性を媒介するように見える。
例25及び26に示されているように、本発明のナノ結晶組成物は、CIA及びEAEのための動物モデルにおいて極めて効果的である。これらの2つの動物モデル(並びにヒト疾患状態)を結びつけるのが、MIFの存在である。
最近の研究は、MIFのモノクローナル抗体拮抗作用が、敗血症、或る特定タイプの癌、及び遅延型過敏症を治療するのに有用であることを示している。敗血症は炎症及び免疫系の過剰反応によって引き起こされるものと思われる。或る特定の感染症の場合、微生物によって攻撃されると、先天性免疫系が先ず反応し、これにより好中球、マクロファージ、及びナチュラルキラー細胞(NK細胞)が動員される。サイトカイン(及びMIF)はこうして、これらの細胞の活性及び分化を調節するメディエータとしての重要な役割を果たす。最後に、先天性免疫系は、これら及びその他の刺激分子を介して適応的免疫系と相互作用する。このとき、適応的免疫系は、病原体特異的な保護を提供するのに加えて免疫記憶を構築する能力を有する。
MIFは敗血症における主要メディエータと見なされる。それというのも、MIFがTNF、他の炎症促進性サイトカイン及びエイコサノイドの生成を促進し、LPSを認識するTLR−4の発現を誘発し、そして先天性免疫応答を活性化することに抵抗するように見えるからである。MIFとグルココルチコイドとはアンタゴニストとして作用し、炎症反応を調節することに少なくとも部分的に関与する。MIFは、典型的には炎症を阻止するグルココルチコイドに対して阻止効果を有する。
MIFの治療的拮抗作用は、「ステロイド節約」効果を提供することができるか、又は「ステロイド耐性」疾患において治療効果を有することができる。他の炎症促進性分子、例えば或る特定のサイトカインとは異なり、MIFの発現及び/又は放出は、グルココルチコイドと関連する(例えばグルココルチコイドによって誘発され得る)。MIFはグルココルチコイドの効果をアンタゴナイズすることができるように見える。MIFは、炎症促進性サイトカインを調節する上で主要な役割を有する。これは、TNF、IL−1β、IL−6及びIL−8を分泌するマクロファージに当てはまることが判っている。MIFはまたIL−2の放出を調節する。MIFはさらに、T細胞増殖を調節する上で所定の役割を有している。生体内でMIFは、内毒素性ショック及び試験関節炎(例えば本明細書中の後述の例において利用されるもののようなコラーゲン誘導関節炎又は「CIA」モデル、及び、結腸炎、多発性硬化症(すなわち例26においてより詳細に論じるEAEモデル)、アテローム性動脈硬化症、糸球体腎炎、ブドウ膜炎、及び或る特定の癌を含むその他の炎症状態及び免疫疾患)を含むモデルにおいて、強力なグルココルチコイド・アンタゴニスト効果を発揮する。
さらに、MIFは、白血球-内皮細胞相互作用の制御において重要であることが最近判った。白血球は血管内皮細胞と相互作用することによって、血管系から退出して組織内に入る。これらのプロセスにおけるMIFの役割は、白血球-内皮の付着及び移動に影響することであることが示された。これらのプロセスは、ほぼ全ての炎症疾患の主要部分であるように見え、またこのことは、例えばアテローム性動脈硬化症を含むあまりよく特定されていない炎症性疾患にも当てはまる。
MIFはまた、植物においても発現され(従って「MIF」は植物MIFと呼ばれることもある)、そして適当な場合には、本発明による金ナノ結晶懸濁液(例えば水性金系金属ナノ結晶及び/又は金ナノ結晶及びその他の金属の混合物及び/又は金ナノ結晶と他の金属との合金、及び/又は併用療法アプローチを含む)を、植物及び/又は農業用途、例えば作物コントロールにおいて使用してよい。
MIFは、免疫応答の性質を切り換える上で重要なサイトカインである。免疫応答は2つのエフェクタ・メカニズムを有している。Th1免疫応答は、病原体及び損傷/無機能細胞を殺す細胞毒性T細胞を発生させる。Th2免疫応答は、食作用を促進し、そして補体を活性化する抗体を発生させる。免疫系の極性を決定する際のMIFの役割は、他のサイトカイン、例えばIL−10に依存する。IL−10は、Th1細胞上のMIFの作用をブロックし、Th2応答を発生させる強力な抗炎症性サイトカインである。IL−10が存在しないと、MIFはTh1細胞を刺激することにより、細胞毒性応答を生成する。刺激に応答して単球及びB細胞によって、IL−10が生成されるのに対して、MIFは例えば独立して生成され、そして下垂体及びT細胞中に貯えられる。従ってMIFは、T細胞毒性細胞媒介型の疾患、例えば関節リウマチ及びクローン病、及び抗体媒介型疾患、例えば特発性血小板減少症の両方において重要な役割を果たす。
特定の理論又は説明に縛られたくはないが、本明細書中で「1種又は2種以上の信号伝達経路」が言及されたときには、これは、MIF、又はMIFと連携する少なくとも1つのタンパク質(例えばCD74受容体部位のような受容体部位を含む)が先天性免疫系(NK及び食細胞、補体タンパク質(例えばC5a)及び/又は炎症性経路)、及び適応的免疫系(例えばT細胞依存性の細胞毒性(Th1)及び抗体(Th2)経路)に関与することを意味するものとして理解されたい。例えば、MIFがT細胞毒性細胞を発生させるTh1シグナル伝達経路に関与する場合、他のタンパク質、例えばIL6、TNF、及びその他のサイトカインも関与している。
Th1シグナル伝達経路が過剰に作用する場合、種々様々な疾患、例えばリウマチ疾患、結合組織病、血管炎、炎症性状態、血管疾患、眼疾患、肺疾患、癌、腎臓病、神経系障害、感染障害の合併症、アレルギー疾患、骨疾患、皮膚病、1型糖尿病、クローン病、MS及び胃腸疾患などが生じ得る。従って、この特定のTh1シグナル伝達経路と連携するMIF機能の量を低減することにより、慢性病状態を軽減することができる。
対照的に、やはり特定の理論又は説明に縛られたくはないが、Th2シグナル伝達経路が過剰に作用する場合、種々の抗体の生成が、例えば溶血性貧血、ITP(特発性血小板減少性紫斑病)、新生児溶血性疾患などを含む疾患を引き起こす。さらに、このTh2シグナル伝達経路の過剰活性は、Th1経路の活性不足をもたらすことがあり、ひいては種々の寄生生物又は癌の成長を許すおそれがある。例えば、マラリアの場合、MIFの1つ又は2つ以上の相同体の過剰生成が、寄生生物に対して効果のない無効抗体応答を発生させる(それぞれが例えば「普通の」ヒトMIFに対して異なる反応性を有し、そして少なくとも局所的な「免疫特権」環境を形成するように宿主免疫応答を変える種々の細菌、寄生生物、ウィルス、菌類などによって、MIFの種々様々な結晶形態又は相同体(又はこれと同等のもの)が形成又は提供されることには説得力がある)。従って、この特定のTh2シグナル伝達経路と連携するMIF機能の量を低減することによって、他の疾患状態を軽減することができる。
さらに、特定の理論又は説明に縛られたくはないが、MIFはまた、先天性免疫と連携するシグナル伝達経路を駆動する上で所定の役割を有している。この経路は、ナチュラルキラー(NK)細胞、食細胞、及びその他の非特異的病原体細胞タイプ、及び或る特定のタンパク質、例えば補体タンパク質(例えばC5a)の活性化に関与する。過剰のMIF(及び/又はMIF相同体)、又はその同様の作用は、敗血症の結果としての多臓器不全に見られるような、この特定のシグナル伝達経路における望ましくない過剰発現又は過剰反応をもたらすおそれがある。例としては、全身性炎症反応症候群(SIRS)が挙げられる。従って、この特定のシグナル伝達経路と連携するMIF活性の量を低減することによって、多くの炎症性疾患を軽減することができる。
従って、例えば周知の体液測定技術、例えばELISA、分光法などによって測定して内在性MIFが(例えば局所的環境条件下で過剰に)存在するときには、1つ又は2つ以上の先天性又は適応的免疫系シグナル伝達経路が、炎症/免疫的成分を過剰発現、過剰活性化、又は過剰生成することが可能である。例えば存在するMIFの1つ又は2つ以上の形態が、過剰のT細胞毒性応答、又は過剰の抗体応答、又は過剰のNK/食細胞応答を引き起こす場合、ヒトの疾患が生じるおそれがある。例えばあまりにも多くのT細胞毒性細胞が発現されるときには、種々様々な慢性炎症状態が生じるおそれがある。過剰のTh2又は先天性応答がMIFによって促進されると、他の疾患が引き起こされる。
さらに、マラリア原虫、及びその他の寄生生物、例えば線虫及び糸状虫、及びいくつかの癌が、或る特定のタイプの外因性又は非調節MIF又はMIF相同体を生成することも知られている。やはり特定の理論又は説明に縛られたくはないが、MIF、又はその相同体の外因的な発現は、Th2シグナル伝達経路の刺激を招くと考えられ、そしてこのような発現は、免疫応答がMIF又はその相同体によって活性化される状態を作ることによって、活性化された特定のシグナル伝達経路が腫瘍又は寄生生物などに対して有害にならないようにしようとする寄生生物、又は腫瘍(すなわち「インベーダー」)による試みであり得る。
例えばマラリア原虫に関しては、この寄生生物は、T細胞毒性細胞ではなく抗体の生成を引き起こす過剰の外因性MIFを提供することにより、Th2シグナル伝達経路を刺激し得る。しかし、このような抗体は典型的には寄生生物に害を与えることはない。従って、寄生生物は、少なくとも局所的な免疫特権区域を形成するように思われる。これに関して、別の経路、例えばTh1経路、又はナチュラルキラー(NK)細胞経路を再活性化させることができるならば、この寄生生物に損傷が生じることも可能であるはずである(例えば免疫系は寄生生物を除去することができる)。しかしながら、例えば、Th2経路の優先的な活性化の結果として過剰の抗体又は他の免疫/炎症性生成物が形成されると、過剰の抗体は種々の細胞部位に架橋するか、又は他の免疫学的分子を活性化することで終わらせることが可能である。このような架橋又は活性化が生じると、極めて大型の炎症応答がもたらされることがある。特定の理論又は説明に縛られたくはないが、この炎症応答はまさに、マラリアに感染した妊婦において発生する応答であって、妊婦を重度のマラリア、及びマラリア貧血に罹りやすくすることが可能である。妊婦は、Th2応答を促進してこの免疫特権ゾーン内に寄生生物を封鎖する際の胎盤の免疫学的効果に起因して、このような影響を特に受けやすいと考えられる。
ここでもやはり特定の理論又は説明に縛られたくはないが、癌細胞も、免疫応答を少なくとも部分的に制御し、且つ/又は自身の成長を促進しようと、MIFを発現させようとするらしい。このことに関して、癌細胞はまた、癌細胞を損なう又は殺すことができるTh1シグナル伝達経路とは異なり、Th2シグナル伝達経路に従うように免疫系を操作しようと試みているように見える。例えば、局所的免疫特権が形成されるようにすることによって、癌細胞に対する特定のリスクは全く(又はほとんど)ない。対照的に、MIFがTh1シグナル伝達経路を刺激することになるならば、サイトカイン細胞/炎症応答が生じ、癌細胞の損傷又は死をもたらす(例えば腫瘍は免疫系によって自然に排除することができる)。
ここでもやはり特定の理論又は説明に縛られたくはないが、小児は、未熟な免疫系、特に先天性のTh1経路を有している。或る小児におけるこのような未熟さは、変化したMIF代謝をもたらす。従って小児におけるMIFの変調は、結果として、感染又は炎症疾患の予防又は改善をもたらすことができるように思われる。
従って、特定の理論又は説明に縛られたくはないが、本発明の金ナノ結晶懸濁液は、単独で、又はシグナル伝達経路を変調する他の療法とともに、1つ又は2つ以上のシグナル伝達経路(例えばTh1シグナル伝達経路、Th2シグナル伝達経路、及び/又は先天性免疫経路)を修正するために使用することができる。このように、1つ又は2つ以上のシグナル伝達経路と連携するMIF(又はMIF相同体)と相互作用する又はこれを制御することによって、種々の免疫応答をターンオンすることができ、且つ/又はターンオフすることができる。従って、T細胞毒性細胞又は抗体を形成するためのTh1及びTh2シグナル伝達経路に沿った応答をターンオンすることができ、或いはターンオフすることもできる(例えば、呼び出されるいずれかの免疫経路を多かれ少なかれ指示するように、Th1−Th2スイッチを制御することができる)。同様に、未熟な免疫系及びその結果として生じる炎症をターンオンすることができ、或いはターンオフすることができる。
1つ又は2つ以上のシグナル伝達経路をターンオン/オフすることができるという知識によって、極めて重要な治療を行うことができる。例えば、多くの癌を含む種々異なる疾患に対して、種々様々なサロゲート・エンドポイントを監視又は試験することができる。例えば抗原、「癌胎児性抗原」、又は「CEA」は、種々様々な癌に存在する腫瘍量又は全身腫瘍組織量のための周知のサロゲート・エンドポイント・マーカーである。例えば、CEA量が高ければ高いほど、より多くの腫瘍が、卵巣癌、乳癌、大腸癌、直腸癌、膵臓癌、肺癌などと関連して存在する。この点に関して、癌胎児性抗原の量は、例えば採血して、例えばELISA及び所定の分光法技術を含む周知の技術によって、CEAの存在についてテストすることによって測定することができる。これに関連して、採血して、CEA量を割り出すために測定したら、測定されたCEA量の変化を監視することによって、所要の治療範囲(例えば投与量、継続期間及び/又は量)を動かすことができる。例えば10ppmの生成物15〜45mlを1日当たり2〜3回必要とする場合、CEA量を監視することにより、所望の結果に応じて、投与量を増減することができる。
同様に、前立腺癌は、「前立腺特異抗原」又は「PSA」の周知のサロゲート・エンドポイントを有する。このサロゲート・エンドポイントも、採血してELISA技術によってこれを調査することによって監視することができる。
さらに、種々の癌、例えばメラノーマ(例えば眼など)は、抗原、例えば「GP100」及び/又は「Melan−A」をも発現させる。これらのサロゲート・エンドポイントも、患者から採血し、次いで同様のELISA又は分光光学技術によって、存在する抗原量を測定することによって見極めることができる。全てのこのような事例において、抗原の存在は、提供される治療の量を増減させることができる。
下記「表A」は、数多くの周知の「腫瘍マーカー」及び関連する癌、並びにこのようなマーカーを測定するためにどの生物学的試料が引き出されるかを示している。
さらに、炎症マーカー、例えばC反応性タンパク質(CRP)又は赤血球沈降速度(ESR)を使用して、関節リウマチ及びクローン病のような種々の免疫・炎症機能不全疾患を評価することができる。これらのサロゲート・エンドポイントも、患者から採血し、次いで視覚的ELISA又は分光光学技術によって、存在するマーカー量を測定することによって見極めることができる。全てのこのような事例において、炎症/免疫マーカーは、提供される治療の量を増減させることができる。
さらに、溶血性貧血又はRh血液型不適合のような種々の抗体系疾患は、存在する特異的抗体の濃度によって監視することができる。これらのサロゲート・エンドポイントも、患者から採血し、次いで同様のELISA又は分光光学技術によって、存在する抗原量を測定することによって見極めることができる。全てのこのような事例において、抗原の存在は、提供される治療の量を増減させることができる。
MIFの阻止因子又は修飾因子及び/又はMIFのシグナル伝達経路のうちの1つ又は2つ以上を、植え込み型器具、例えばステント内に使用してもよい。従って、さらなる態様において、本発明は、植え込み型器具、好ましくはステントであって、
(i) 金溶液又はコロイド及びこれらの混合物及び合金を含む金属系化合物の少なくとも1種の化合物を含有するリザーバと;
(ii) リザーバから阻止因子又は修飾因子を放出又は溶出するための手段と
を含む植え込み型器具、好ましくはステントを提供する。
従って本発明によれば、本発明のナノ結晶性金ベース療法が、下記のものから成る群から選択された種々の自己免疫疾患、腫瘍、又は慢性又は急性炎症状態及び疾患、障害、症候群、状況、傾向又は素因などに対して望ましい有効性を有することになる様々な兆候がある:
リウマチ疾患(例えば関節リウマチ、骨関節炎、乾癬性関節炎、スティル病を含む)、脊椎関節症(例えば強直性脊椎炎、反応性関節炎、ライター症候群を含む)、結晶性関節症(例えば痛風、偽痛風、カルシウム・ピロリン酸沈着症を含む)、ライム病、リウマチ性多発筋痛を含む;
結合組織病(例えば全身性エリテマトーデス、全身性硬化症、多発性筋炎、皮膚筋炎、シェーグレン症候群を含む);
血管炎(例えば結節性多発性動脈炎、ヴェーゲナー肉芽腫症、チャーグ・ストラウス症候群を含む);
外傷又は虚血の結果を含む炎症状態又は傾向;
サルコイドーシス;
アテローム性血管病及び梗塞、アテローム性動脈硬化症を含む血管疾患、及び血管閉塞病(例えばアテローム性動脈硬化症、虚血性心疾患、心筋梗塞、脳梗塞、末梢血管疾患を含む)、及び血管ステント再狭窄;
ブドウ膜炎、角膜疾患、虹彩炎、虹彩毛様体炎、及び白内障を含む眼病;
自己免疫疾患(例えば糖尿病、甲状腺炎、重症筋無力症、硬化性胆管炎、原発性胆汁性肝硬変を含む);
肺疾患(例えばびまん性間質性肺疾患、塵肺、線維化性肺胞炎、ぜんそく、
気管支炎、気管支拡張症、慢性閉塞性肺疾患、成人呼吸窮迫症候群を含む);
原発性又は転移性癌(例えば前立腺癌、結腸癌、膀胱癌、腎臓癌、リンパ腫、肺癌、黒色腫、多発性骨髄腫、乳癌、胃癌、白血病、子宮頸癌、及び転移性癌を含む);
糸球体腎炎、間質性腎炎を含む腎臓病;
視床下部−下垂体−副腎系軸の障害:
多発性硬化症、アルツハイマー病、パーキンソン病、ハンチントン病を含む神経系障害;
変性血管形成を特徴とする疾患(例えば糖尿病性網膜症、関節リウマチ、癌)及び子宮内膜症;
例えば、HIV、HBV,HCV、結核、マラリア、及び虫を含む、細菌、寄生生物、ウイルス(現在FDAによって、発展途上国世界の無視された疾患として指定されているものを含む)を含む感染性疾患;
内毒素性(敗血性)ショック、外毒素性(敗血性)ショック、感染性(真性敗血性)ショックを含む感染性障害の合併症、マラリアの合併症(例えば脳マラリア及び貧血)、他の感染合併症、及び骨盤炎症性疾患;
移植片拒絶反応、移植片対宿主病;
アレルギー、アトピー性疾患、アレルギー性鼻炎を含むアレルギー疾患;
骨疾患(例えば骨粗鬆症、パジェット病);
乾癬、湿疹、アトピー性皮膚炎、UV(B)誘発性真皮細胞活性化(例えば日焼け、皮膚癌)を含む肌疾患;
糖尿病及びその合併症;
疼痛、精巣機能障害、及び創傷治癒;
炎症性腸疾患を含む胃腸疾患(例えば潰瘍性大腸炎、クローン病を含む)、消化性潰瘍、胃炎、食道炎、肝臓病(例えば肝硬変及び肝炎を含む)。
1実施態様において、疾患又は状態は、関節リウマチ、骨関節炎、全身性エリテマトーデス、潰瘍性大腸炎、クローン病、多発性硬化症、乾癬、湿疹、ブドウ膜炎、糖尿病、糸球体腎炎、アテローム性血管病及び梗塞、ぜんそく、慢性閉塞性肺疾患、HIV、HBV、HCV、結核、マラリア、虫、及び癌から成る群から選択される。
III.医薬組成物
本出願において記載された医学的状態のいずれかを治療するための有効量の金ナノ結晶を含む医薬組成物も提供される。好ましい実施態様の場合、金ナノ結晶は、経口送達液体の形態で投与される。金ナノ結晶は製造水中に残ったままであり、これを濃縮するか又は戻すことができる。しかし、金ナノ結晶表面が完全に乾燥するか、又は、他の形で元の製造状態から変化した表面を有するような時点まで、液体を乾燥させないことが好ましい。
試験に基づいて見ると、本発明の金ナノ結晶は、実質的にクリーンな高活性の結晶表面に起因して、FDA承認の金系医薬品、及びFDA未承認の金コロイドの両方を含む従来の金系材料よりも金の強力な形態である。これを理由として、本発明のナノ結晶の投与量が、経口金製品Auranofinを含む従来技術の組成物によって必要とされる投与量レベルよりも著しく少なくてすむことが予期される。
広く受け入れられているコラーゲン誘導関節炎マウス・モデルにおいて、標準投与量はAuranofin40mg/kg/日であり、これはAuranofinほぼ1mg/マウス/日、及びAuranofin中に含有される金0.30mg金/日に相当する。この標準的なAuranofin投与量レベルは、本発明の金ナノ結晶約0.06mg/日から生じるものと同等の応答を与えると思われる(例25)。従って、このような試験において、本発明のナノ結晶は、Auranofinの17倍強力であり、そしてAuranofin中に含有される金種の5倍強力である。
ヒトにおけるAuranofinの標準的なFDA承認投与量レベルは、6mg/日、又は0.9mg/kg/日である。このAuranofinヒト投与量レベル中に含有される金は1.74mg、又は0.025mg/kgである。生きている動物モデルにおいて実証されるような、Auranofinと比較した新規の金ナノ結晶の相対効力を考えると、新規の金ナノ結晶の概算ヒト投与量レベルは、Auranofinヒト投与量レベルを相対効力係数17Xで割り算するか、又はAuranofin中に含有される金のヒト投与量レベルを相対効力係数5Xで割り算することにより、計算することができる。その結果、新規の金ナノ結晶の概算ヒト投与量レベルは、Auranofinの所要量が6mg/日であり、またAuranofin中に含有される金の所要量は1.74mg/日であるのに対して、0.35mg/日となる。0.35mg/日は、70kgのヒトの場合、0.005mg/kg/日の投与量である。
投与量レベルを構築する上で、推定投与量mg/kgを取り巻く1桁分又は2桁分以上の範囲を確立することが普通である。この場合、概算提案ベース投与量がAuranofinのベース投与量の1/17、又は0.348mg/日、すなわち0.005mg/kg/日である場合、このことは、新規のナノ結晶によってAuranofin様の有効性を得るための有効投与量範囲を、投与量レベル0.005mg/kg/日で達成でき、そしてより高い有効性を0.01mg/kg/日又は0.25mg/kg/日のレベルで達成できることを示唆している。
医薬品の場合、目標は有効性を達成するのに必要な最小投与量を確立して、毒性又は合併症の可能性を最小限に抑えることであることを認識するのは重要である。効力が著しく大きい新規の経口投与製品は、従来技術の製品を下回る投与量レベルで有効性を達成することができ、且つ/又は、同等の投与量レベルで著しく大きい有効性を達成することができる。
さらに、新規ナノ結晶の毒性レベルが、最大投与量レベルでも低いことが動物実験において観察される。このことは、投与量レベルが高くなっても、現行製品、例えばAuranofinを用いるよりも毒性が低いことを意味する。
Auranofinを用いるよりも治療効果が早く見られることもマウスにおいて観察されている。Auranofinは典型的な作用発現が、本発明のナノ結晶の数日後に比べて数週間後である(例25参照)。このことは、本発明のナノ結晶を用いた場合、患者が病状の緩和をより早く楽しむことを意味し、投薬計画を遵守し続ける可能性が極めて高くなり、ひいては製品からの恩恵を受け続けることを意味するので、使用上の主要な利点となる。
さらに、本発明の金ナノ結晶は、有効性を達成するのに必要とされる投与量がより少なく、またこれと関連して毒性もより低いので、Auranofinよりも良好な治療指数を有することも観察されている。
医薬治療としての真価を有するために、Good Manufacturing Practice (GMP)としてFDAによって定義されているような高度な医薬等級製造基準、部品調達基準、及び品質管理基準のもとで製品を製造できなければならないことを認識するのも重要である。コンベンショナルな金ナノ粒子は、種々様々な方法によって形成される。そのほとんどは化学的還元プロセスを伴う。GMPを遵守する金ナノ粒子製造のための現行の化学的還元プロセス又は他のコンベンショナルなプロセスはないようである。これらのプロセスの性質を考えると、GMPコンプライアンスは、可能だとしても極めて困難であり、達成するためには莫大な時間、費用、及び独創的な技術が必要となる。本発明の新規の金ナノ結晶が製造される方法はGMPを遵守するように設計され、本発明の金ナノ結晶の別の主要な違い及び利点を確立する。
治療上有効な投与量を確認するためには臨床実験が必要となるが、本明細書中に記載された状態のうちのいずれかを治療するためには、1投与(1日当たり1回、2回、又は複数回)当たり0.05mg以上(又は0.1,0.5,1.0,2.0mg、又はそれ以上)〜10mg以上の投与量がヒトにおいて効果的であると判断することが妥当である。これらの金ナノ結晶の毒性が低いことを考えると、より厄介な障害に対しては、例えば1投与当たり10mg以上、例えば20mg以上を含むより高い投与量レベルを用いることが適当である。
本発明によれば、任意の濃度の金ナノ結晶を提供することができる。例えば、これらの金ナノ結晶の濃度は、数ppm(すなわちμg/ml又はmg/l)〜数百ppmであってよいが、しかし典型的には2〜200ppm(すなわち2μg/ml〜200μg/ml)の範囲、しばしば2〜50ppm(すなわち2μg/ml〜50μg/ml)の範囲であってよい。典型的な好都合な濃度は約5〜20μg/mlであり、より典型的には約8〜15μg/mlであってよい。
例23において論じた特定のゲル又はクリームを含む、本明細書中でさらに説明するような、経口、静脈内、皮下、動脈内、バッカル、吸入、エアロゾル、駆出剤、又はその他の適宜の液体などを含む、全身的又は局所的な使用に適した医薬組成物が提供される。
或いは、活性成分の好適な投与量は、1投与当たり体重1kg当たり約0.1ng〜約1gの範囲内にあってよい。投与量は典型的には1投与当たり体重1kg当たり1μg〜1gの範囲、例えば1投与当たり体重1kg当たり1mg〜1gの範囲である。1実施態様の場合、投与量は1投与当たり体重1kg当たり1mg〜500mgの範囲である。別の実施態様の場合、投与量は1投与当たり体重1kg当たり1mg〜250mgの範囲である。さらに別の実施態様の場合、投与量は1投与当たり体重1kg当たり1mg〜100mgの範囲、例えば1投与当たり体重1kg当たり最大50mgである。さらに別の実施態様の場合、投与量は1投与当たり体重1kg当たり1μg〜1mgの範囲である。
担当する医師又は獣医師によって、適切な投与量及び投薬計画を決定することができ、これは、阻止活性及び/又は修正活性の所期レベル、治療される具体的な状態、状態の重症度、投与が予防的なものであるか又は治療的なものであるか、患者の全般的な年齢、健康状態、及び体重に依存することがある。
例えば水性媒体、コロイド、懸濁液、発泡体、ゲル、ペースト、液体、又はクリームなどに含有される金ナノ結晶は、単回投与又は一連の投与で投与することができる。金属系ナノ結晶を含有する水性媒質が、例えばコロイド形態を成して単独で投与されることは可能ではあるものの、他の組成物及び/又は他の療法を伴う活性成分混合物を含むことも容認することができる。さらに、種々様々な医薬組成物を、活性成分/懸濁液/コロイドに添加することもできる。
従って、典型的には、本発明の金ナノ結晶懸濁液又はコロイド(例えば水性金系金属及び/又は金と他の金属との混合物及び/又は金と他の金属との合金及び/又は併用療法アプローチを含む)は、第2の治療薬とともに投与される。より典型的には、第2の治療薬はグルココルチコイドを含む。
本発明のさらなる態様において、本発明による金ナノ結晶懸濁液又はコロイド(例えば水性金系金属及び/又は金と他の金属との混合物及び/又は金と他の金属との合金及び/又は併用療法アプローチを含む)を、医薬的に許容し得るキャリア、希釈剤、又は賦形剤と一緒に含む医薬組成物が提供される。このような組成物の製剤は当業者によく知られている。組成物は、医薬的に許容し得る添加剤、例えばキャリア、希釈剤、又は賦形剤を含有していてよい。これらは適切な場合には、あらゆるコンベンショナルな溶媒、分散剤、充填剤、ソリッドアーナー(solid earner)、被覆剤、抗真菌剤及び/又は抗菌剤、皮膚透過剤、イブプロフェン、ケトプロフェン、界面活性剤、等張剤、及び吸収剤などを含む。なお、本発明の組成物は、他の補足的な生理学的活性物質を含んでもよい。さらに、多種多様な栄養補助食品及びホメオパシーキャリアを利用することもできる。具体的には、このような成分は、これらの成分の周知の機能又は用途に一部基づいて選択することにより、本発明の活性成分と組み合わせたときに、相加的又は相乗的作用を達成することができる。
キャリアは、本発明の金ナノ結晶懸濁液中で他の成分と適合性があり、また患者に対して有害(例えば治療的活性量で毒性)でないという意味で医薬的に許容し得るものであるべきである。組成物は、経口、直腸、吸入、鼻腔、経皮、局所(バッカル及び舌下を含む)、膣又は非経口(皮下、筋内、髄腔内、静脈内、及び皮内を含む)投与に適したものを含む。組成物は、単位投与形態で好都合に提供することができ、薬局、ホメオパシー及び栄養補助食品の分野でよく知られている任意の方法によって調製することができる。このような方法は、本発明の金属系ナノ結晶又は懸濁液を、1種又は2種以上の副成分を形成するキャリアと会合させる工程を含む。一般に、組成物は、ネガティブ又は不都合な反応をできるだけ最小化又は排除する適宜の非反応性条件下で、溶液/コロイド中で1種又は2種以上の活性成分を均一且つ密接に会合させることにより調製される。
治療されるべき疾患又は状態に応じて、本発明の金ナノ結晶懸濁液又はコロイドは血液脳関門を横断することが望ましい場合も望ましくない場合もある。
従って、本発明の金ナノ結晶懸濁液又はコロイドは、血液脳関門の横断を支援するのに望ましいサイズ、望ましい結晶面及び/又は望ましい形状又は形状分布など(本明細書中の他の個所で論じる)を有するように製造してよい。
経口投与に適した本発明による金ナノ結晶懸濁液は、典型的には水中の安定な溶液、コロイド、又は部分的に安定な懸濁液として提供される。しかしながら、このような金ナノ結晶は、それぞれが所定の量の例えば金ナノ結晶活性成分を含有する不連続単位、例えば液体カプセル、サシェ剤又は錠剤(例えば当該処理が元の金ナノ結晶表面の機能に不都合な影響を及ぼさない限り、懸濁液又はコロイドを完全に乾かすことにより、活性成分金系ナノ結晶をもたらす)として;粉末又は顆粒として;水性又は非水性液体中の溶液、コロイド、又は懸濁液として;又は水中油液体エマルジョン又は油中水液体エマルジョンとして、非水性液体中に含まれていてもよい。金ナノ結晶活性成分は、ボーラス、舐剤、又はペースト内に合体されてもよい。
本発明の金ナノ結晶懸濁液又はコロイド(例えば水性金系ナノ結晶及び/又は金と他の金属との合金、及び/又は併用療法アプローチを含む)と、他の材料又は化合物とから形成される錠剤は、例えば先ず懸濁液又はコロイドを乾燥させ、残りの乾燥済材料を捕集し、そして圧縮又は成形により粉末を好適な錠剤などにすることにより、形成することができる。例えば圧縮錠剤は、好適な機械内で活性成分ナノ結晶、例えば金属系ナノ結晶を自由流動形態、例えば粉末又は顆粒の形態で、任意にはバインダー(例えば不活性希釈剤、保存剤、崩壊剤(例えばグリコール酸ナトリウム澱粉、架橋ポリビニルピロリドン、架橋カルボキシメチルセルロースナトリウム))、界面活性剤又は分散剤と混合された状態で圧縮することにより調製することができる。成形錠剤は、例えば不活性液体希釈剤で湿潤された粉末化合物の混合物を好適な機械内で成形又はプレスすることによって形成することができる。錠剤は任意には、コーティング又はスコアリングしてよく、また例えば所期放出プロフィールを提供するために種々の比率のヒドロキシプロピルメチルセルロースを使用して、活性成分の徐放又は制御放出を可能にするように製剤してもよい。胃以外の消化管の部分内で放出を可能にするように、錠剤に任意には腸溶性コーティングを施してもよい。
口腔内の局所投与に適した組成物は、フレーバーベース、例えばスクロース及びアカシア又はトラガカントガム中に1種又は2種以上の活性成分金ナノ結晶を含有する懸濁液又はコロイドを含むロゼンジ剤;不活性ベース、例えばゼラチン及びグリセリン、又はスクロース及びアカシアガム中に金ナノ結晶活性成分を含むトローチ剤;及び好適な液体キャリア中に金ナノ結晶活性成分を含むマウスウォッシュ剤を含む。
本発明の金ナノ結晶懸濁液又はコロイド(例えば水性金系金属及び/又は金と他の金属との混合物及び/又は金と他の金属との合金及び/又は併用療法アプローチを含む)は、例えば、溶液又はコロイド中の1種又は2種以上の成分(例えば金ナノ結晶)が例えばミスト又はスプレー中に含有されるようにするアトマイザー、エアロゾル、又はネブライザー手段によって、鼻腔内で又は吸入を介して投与してもよい。
皮膚への局所投与に適した組成物は、任意の好適なキャリア中に懸濁された本発明の金ナノ結晶を含んでよく、そしてローション、ゲル、クリーム、ペースト、及び軟膏などの形態を成していてよい。好適なキャリアは鉱物油、プロピレングリコール、ポリオキシエチレン、ポリオキシプロピレン、乳化ろう、モノステアリン酸ソルビタン、ポリソルベート60、セチルエステル・ワックス、セテアリルアルコール、2−オクチルドデカノール、ベンジルアルコール、カーボポール及び水を含む。経皮器具、例えばパッチを使用して、本発明の化合物を投与することもできる。
直腸投与のための組成物は、例えばココアバター、ゼラチン、グリセリン、又はポリエチレングリコールを含む好適なキャリア・ベースを含む座剤として提供することができる。
膣投与に適した組成物は、活性成分に加えて、適切であることが当業者に知られているようなキャリアを含有するペッサリー、タンポン、クリーム、ゲル、ペースト、フォーム又はスプレーとして提供することができる。
非経口投与に適した組成物は、抗酸化剤、緩衝剤、殺菌剤、及び、所期受容者の血液で組成物を等張性にする溶質を含有してよい水性及び非水性等張滅菌注射懸濁液又はコロイド;及び懸濁剤及び増粘剤を含んでよい水性及び非水性滅菌懸濁液を含む。組成物は、単位投与量又は複数投与量密閉容器、例えばアンプル及びバイアル内で提供してよく、また使用直前に滅菌液体キャリア、例えば注射水を添加すればよいフリーズドライ(凍結乾燥)状態で保存してもよい。前記の種類の滅菌粉末、顆粒、及び錠剤から即席注射溶液、コロイド、及び懸濁液を調製してもよい。
好ましい単位投与量組成物は、活性成分の上記のような一日投与量又は単位、一日細分投与量、又はその適宜の一部を含有する組成物である。
なお、特に上述の金ナノ結晶活性成分に加えて、本発明の組成物は、当該組成物のタイプに関連する技術分野においてコンベンショナルな他の物質を含んでよい。例えば、経口投与に適した物質は、バインダー、甘味剤、増粘剤、香味剤、崩壊剤、被覆剤、保存剤、滑剤、時間遅延剤及び/又はポジション・リリース剤のようなさらなる物質を含んでよい。好適な香味剤は、スクロース、ラクトース、グルコース、アスパルテーム、又はサッカリンを含む。好適な崩壊剤はトウモロコシ澱粉、メチルセルロース、ポリビニルピロリドン、キサンタンガム、ベントナイト、アルギン酸、又は寒天を含む。好適な香味剤は、ペパーミント油、冬緑油、チェリー、オレンジ、又はラズベリーの香味料を含む。好適な被覆剤は、アクリル酸及び/又はメタクリル酸のポリマー又はコポリマー及び/又はこれらのエステル、ワックス、脂肪アルコール、ゼイン、シェラック又はグルテンを含む。好適な保存剤は、安息香酸ナトリウム、ビタミンE、アルファ−トコフェロール、アスコルビン酸、メチルパラベン、プロピルパラベン、又は重亜硫酸ナトリウムを含む。好適な滑剤は、ステアリン酸マグネシウム、ステアリン酸、オレイン酸ナトリウム、塩化ナトリウム、又はタルクを含む。好適な時間遅延剤は、モノステアリン酸グリセリル、又はジステアリン酸グリセリルを含む。
さらに、本発明の電気化学的な製造プロセスに従うことにより、このような金系金属ナノ結晶を液体中で他の金属と合金又は合体させて、金「被膜」が他の金属(他の非金属種、例えばSiO2)上に発生するようにするか、或いは金系ナノ結晶に他の金属によって被覆することができる。このような事例において、コロイド又は懸濁液内部で金系複合体又は合金が生じ得る。さらに、金及びその他の金属の両方を含む特定の複合体を形成することもできる。
さらに、本発明の金系金属ナノ結晶懸濁液又はコロイドを、他の金属系溶液又はコロイドと混合又は合体することにより、新規の溶液混合物又はコロイド混合物を形成することもできる(例えばこの場合、明確な金属種がまだ識別可能である)。
IV.金ナノ結晶の製造方法
これらの独自の金ナノ結晶を製造するために、新規の方法が提供される。この方法は、水中で金ナノ結晶を形成することを伴う。好ましい実施態様において、水は、添加された「処理増強剤(process enhancer)」を含有している。この処理増強剤は、形成された金ナノ結晶に有意には結合せず、むしろ電気化学的刺激を受ける成長プロセス中の核形成及び/又は結晶成長を容易にする。処理増強剤は、結晶が成長するのを可能にするように、電気化学的溶液中に荷電イオンを提供することを含むプロセスにおいて重要な役割を担う。これらの新規の電気化学的プロセスは、バッチ式、半連続式、又は連続式プロセスで行うことができる。これらのプロセスは制御された金ナノ結晶濃度、制御されたナノ結晶サイズ、及び制御されたナノ結晶サイズ範囲、並びに制御されたナノ結晶形状、及び制御されたナノ結晶形状分布をもたらす。これらの金ナノ結晶を製造するために新規の製造アセンブリが提供される。
1つの好ましい実施態様の場合、金系ナノ結晶懸濁液又はコロイドは、バッチ式、半連続式、又は連続式プロセスで電気化学技術によって形成されるか又は成長させられる。量、平均粒度、結晶面及び/又は粒子形状及び/又は粒子形状分布は、高い生物学的活性及び/又は低い細胞/生物学的毒性(例えば高い治療指数)を達成するように制御且つ/又は最適化される。望ましい平均結晶サイズは種々異なる範囲を含むが、しかし最も望ましい範囲は、このような溶液を乾燥させ、そしてTEM測定値から粒度ヒストグラムを構成することによって(後で詳述する)測定して、主に100nm未満、より典型的には、多くの用途では50nm未満、さらにより典型的には、種々様々な用途、例えば経口用途では30nm未満である平均結晶サイズを含み、そして本明細書中に開示された好ましい実施態様の多くの場合、ナノ結晶サイズ分布は21nm未満であり、より好ましい範囲8〜18nmにある。さらに、粒子は望ましくは、結晶面、例えば{111}、{110}及び/又は{100}ファセットを有する結晶を含む望ましい結晶面を含有する。これらの結晶面は望ましい結晶形状、及び望ましい結晶形状分布、及び金の球形又はランダムな形状の粒子よりも良好な性能をもたらすことができる。
さらに、本発明の電気化学的な製造プロセスに従うことにより、このような金系金属ナノ結晶を液体中で他の金属と合金又は合体させて、金「被膜」が他の金属(他の非金属種、例えばSiO2)上に発生するようにするか、或いは金系ナノ結晶に他の金属によって被覆することができる。このような事例において、コロイド又は懸濁液内部で金系複合体又は合金が生じ得る。さらに、金及びその他の金属の両方を含む特定の複合体を形成することもできる。
さらに、本発明の金系金属ナノ結晶懸濁液又はコロイドを、他の金属系溶液又はコロイドと混合又は合体することにより、新規の溶液混合物又はコロイド混合物を形成することもできる(例えばこの場合、明確な金属種がまだ識別可能である)。
本発明による新規の金属系ナノ結晶懸濁液又はコロイドを製造する方法は、概して言えば、ミクロン・サイズ粒子、ナノ結晶、イオン種、及び、その水性組成物を含む、液体中の種々の成分(ナノ結晶/液体、溶液、コロイド又は懸濁液を含む)を連続式、半連続式、及びバッチ式に製造するための新規の方法及び新規の装置に関する。産出された成分及びナノ結晶は、考えられ得る種々様々な組成、濃度、サイズ、液晶面(例えば空間的に広がる低指数結晶面)、及び/又は形状を成すことができ、これらがともに原因となって、本発明による組成物が、新規の興味深い種々様々な物理、触媒、生体触媒、及び/又は生物物理特性を呈するようになる。このプロセス中に使用され、生成/改質される液体は、成分(例えばナノ結晶)を独立して、又はこれらを含有する液体と相乗的に製造し、且つ/又は機能させる上で重要な役割を果たことができる。粒子(例えばナノ結晶)は、例えば好ましくは少なくとも1種の調節可能なプラズマ(例えば少なくとも1つのAC及び/又はDC電源によって生成する)を利用して、少なくとも1種の液体(例えば水)中に存在させられる(例えば生成され、且つ/又は液体に、粒子が存在しやすい性質が与えられる(例えばコンディショニング))ことになる。この調節可能なプラズマは、液体の表面の少なくとも一部と連通する。しかしまた、このようなプラズマを使用せずに、効果的な成分(例えばナノ結晶)懸濁液又はコロイドを得ることもできる。
調節可能なプラズマの形成には、種々の組成及び/又は独自の形態又は配列を有する金属系電極が好ましいが、しかし、プロセスの少なくとも一部にとっては、非金属系電極を利用することもできる。後続の及び/又は実質的に同時に行われる少なくとも1種の調節可能な電気化学処理技術を利用することも好ましい。電気化学処理技術に使用するためには、種々の組成及び/又は独自の形態を有する金属系電極が好ましい。本発明の調節可能なプラズマ及び/又は調節可能な電気化学処理技術によって好都合な影響を与えることができる変数のいくつかの例としては、存在する電界、磁界、電磁界、電気化学特性、pH、ゼータ電位、化学物質/結晶成分などが挙げられる。本発明の処理の利点の多くを達成し、また、好ましい実施態様の教示を実施することから生じる新規なナノ結晶又はナノ結晶組成物の多くを達成して本発明による水溶液、懸濁液及び/又はコロイドのほとんど無制限の組み合わせを形成するために、複数の調節可能なプラズマ及び/又は調節可能な電気化学技術が本発明の多くの実施態様において好ましい。
本発明の連続プロセスの実施態様において、少なくとも1種の液体、例えば水が少なくとも1つのトラフ部材内に流入し、トラフ部材を貫流し、そしてトラフ部材から流出し、そしてこのような液体は、前記少なくとも1種の調節可能なプラズマ及び/又は前記少なくとも1種の調節可能な電気化学技術によって処理され、コンディショニングされ、修正され、且つ/又は影響を与えられる。連続処理の結果は、液体中の新たな成分を含む。これらの成分は、新規の且つ/又は制御可能なサイズ、流体力学半径、濃度、結晶寸法、結晶寸法範囲、結晶面、空間的に展延した低インデックス結晶面、結晶形状、結晶形状の分布、及び、組成、ゼータ電位、pH及び/又は特性を有するミクロン・サイズの粒子、イオン成分、ナノ結晶(例えば金属系ナノ結晶)を含み、このようなナノ結晶/液体混合物は、効率的且つ経済的に製造される。
好ましい実施態様の場合、このプロセスは、「処理増強剤(process enhancer又はprocessing enhancer)」(典型的には無機材料)を含有する水中で金ナノ結晶を核形成して成長させることを伴う。この処理増強剤は、形成された金ナノ結晶に有意には結合せず、むしろ電気化学的刺激を受ける成長プロセス中の核形成及び/又は結晶成長を容易にする。処理増強剤は、結晶が成長するのを可能にするように、電気化学的溶液中に荷電イオンを提供することを含むプロセスにおいて重要な役割を担う。処理増強剤は極めて重要なことには、溶液中に残り、且つ/又は被膜(例えば有機被膜)を形成することがなく、且つ/又は形成済ナノ結晶又は形成済懸濁液に不都合な影響を及ぼすことがなく、且つ/又は電気化学的プロセス中に破壊、蒸発されるか、又はその他の形で失われる化合物である。好ましい処理増強剤は、重炭酸ナトリウムである。他の処理増強剤の例は炭酸ナトリウム、重炭酸カリウム、炭酸カリウム、リン酸三ナトリウム、リン酸二ナトリウム、リン酸一ナトリウム、リン酸カリウム、又は他の炭酸塩などである。さらなる処理増強剤は、亜硫酸ナトリウム又はカリウム、又は重亜硫酸ナトリウム又はカリウムを含む塩であってもよい。或る条件下で医学的用途の金ナノ結晶を形成するためのさらに他の処理増強剤は、ナトリウム又はカリウムの他の塩であってよく、或いは、金ナノ結晶表面内又は表面上に実質的に組み込まれることがなく、またナノ結晶又はナノ結晶を含有する懸濁液に毒性を与えることがない、本明細書中に記載される電気化学的成長プロセスを支援する任意の物質であってもよい。
処理増強剤の望ましい濃度範囲は典型的には0.01〜20グラム/ガロン(0.0026〜2.1730mg/ml)、より典型的には0.1〜7.5グラム/ガロン(0.0264〜1.9813mg/ml)、そして最も典型的には0.5〜2.0グラム/ガロン(0.13210〜0.5283mg/ml)を含む。
例えば、或る処理増強剤は解離して正イオン(カチオン)及び負イオン(アニオン)になってよい。液体組成、イオンの濃度、印加された場、印加された場の周波数、印加された場の波形、温度、pH、ゼータ電位などを含む種々の要因に応じたアニオン及び/又はカチオンは、対向荷電電極に向かってナビゲート又は移動する。前記イオンがこのような電極に又はその近くに位置すると、イオンは、電極及び/又はこのような電極に又はその近くに位置するその他の成分との1種又は2種以上の反応に参加することができる。イオンは電極内の1種又は2種以上の材料と反応することもある(例えばNaClが処理増強剤として使用される場合には、種々の金属塩化物(MCl、MCl2など)が形成されてよい)。このような反応は、いくつかの事例では望ましく、又は他の事例において望ましくない。さらに、電極間で溶液中に存在するイオンは、MCl、MCl2などのような生成物を形成するように反応しない場合があり、むしろ電極内(又は電極の近く)の材料に影響を及ぼすことにより、電極によって提供された材料から「成長」した金属ナノ結晶を形成することもある。例えば、或る特定の金属イオンは液体3に電極5から入り、そして互いに一緒になって(核形成)、液体3内部に成分(例えばイオン、ナノ結晶など)を形成するようにされてよい。
さらに、医薬的許容性を最大限にするために、金ナノ結晶、又は結晶が内在する液体に毒性を与えることのない処理増強剤を選択することが重要である。或る用途では、塩化物イオンは、これが毒性を有するおそれのある塩化金塩を形成する場合には望ましくないことがある。
さらに、具体的な形成済生成物に応じて、乾燥、濃縮及び/又は凍結乾燥を利用することにより、懸濁液体の少なくとも一部、又は実質的に全てを除去し、その結果例えば部分的又は実質的に完全に脱水されたナノ結晶を生じさせることもできる。溶液、懸濁液又はコロイドが完全に脱水される場合には、金属系種は、液体(例えば除去されたものと同様又は異なる組成を有する)を添加することによって再水和可能であるべきである。しかしながら、本発明の全ての組成物/コロイドを、組成物/コロイドの性能に不都合に影響を与えることなしに完全に脱水できるわけではない。例えば液体中に形成された多くのナノ結晶は、乾燥させられると塊形成するか又はくっつき合う(又は表面に付着する)傾向がある。このような塊形成が後続の再水和ステップ中に逆転されないならば、脱水は回避されるべきである。
一般に、組成物を不安定化させることなしに、本発明に従って形成された或る特定の金の溶液、懸濁液、又はコロイドを数倍濃縮することが可能である。しかしながら、完全な蒸発は、例えば凝集効果に起因して達成するのが難しい。本明細書中に開示された実施態様のうちの多くでは、このような凝集効果は、懸濁液又はコロイドから除去される初期又は開始基準体積の30%の概算体積で始まるように見える。加えて、特定の体積の液体を蒸発させ、続いて蒸発させた量の液体を再構成するか又は加え戻すことにより、FAAS、DLS、及びUV−Vis技術によって特徴付けて、極めて類似の生成物を達成することもできる。例えば、具体的には、GB−139(本明細書中の「例」の項で詳述する)に類似の技術によって形成されたナノ結晶コロイド金の500ml懸濁液2つをそれぞれガラスビーカーに入れ、沸騰するまでホットプレート上で加熱した。懸濁液をそれぞれ300mL及び200mLまで蒸発させ、その後、除去された量の液体で(すなわちそれぞれ200mL及び300mLの量の、脱イオン・逆浸透(DI/RO)水によって精製された水で)戻し、続いて特徴付けした。加えて、別の例において、2つのGB−139懸濁液を再び300mL及び200mLまで蒸発させ、ついで再水和なしに特徴付けた。これらの脱水プロセスは、ナノ結晶サイズ又はナノ結晶形状に不都合な影響を及ぼしたとしても僅かであった(すなわち、GB−139コロイドが脱水されたとき、又は脱水されそしてその初期濃度又はppmレベルまで再水和されたときに、ナノ結晶サイズ範囲及びナノ結晶形状分布は急激に変化することはなかった)。
本発明の1つの重要な態様は、少なくとも1つの調節可能なプラズマの生成に関与する。この調節可能なプラズマは、液体(例えば水)の表面の少なくとも一部に隣接して(例えば上方に)位置決めされた少なくとも1つの電極と、液体表面自体の少なくとも一部との間に配置されている。液体は少なくとも1つの第2電極(又は複数の第2電極)と電気的に連通して、液体表面を電極として機能させ、ひいては、調節可能なプラズマの形成に関与する。このような構造は、液体表面がこの構造では活性電極として関与することを除けば、誘電体バリア放電構造と類似のいくらかの特性を有している。
利用される各調節可能なプラズマは、少なくとも1つの導電性電極を液体中(例えば少なくとも部分的に)のどこかに配置することにより、液体表面の上方に配置された少なくとも1つの電極と、液体表面との間に配置することができる。少なくとも1つの電源(好ましい実施態様では、ボルト及びアンペアの少なくとも1つの源、例えば変圧器又は電源)が、液体表面の上方に配置された少なくとも1つの電極と、液体表面と接触する(例えば少なくとも部分的又はほぼ完全に液体中に配置される)少なくとも1つの電極との間に電気的に接続されている。電極は、任意の好適な組成及び好適な物理形態(例えばサイズ及び形状)を有していてよく、その結果、液体表面の上方に配置された電極と、液体表面自体の少なくとも一部との間に望ましいプラズマが形成される。
電極(プラズマを形成するための少なくとも1つの電極として機能する液体表面を含む)間の印加電力(例えばボルト数又はアンペア数)は、AC源及びDC源の双方、及びこれらの変更形及び組み合わせを含む任意の好適な源(例えば変圧器からの電圧)によって発生させることができる。一般に、液体中に配置された(例えば液体表面の下方に少なくとも部分的に配置された)電極又は電極組み合わせは、液体又は溶液に電圧及び電流を提供することにより、プラズマの形成に関与する。しかし、調節可能なプラズマは、実際に、液体表面の上方に配置された電極の少なくとも一部(例えばその先端又は点)と、液体表面自体の1つ又は2つ以上の部分又は区域との間に配置される。これに関しては、電極と液体表面との周り及び/又は間の気体又は蒸気が破壊電圧に達するか、又は維持されるときに、調節可能なプラズマを、上述の電極間(すなわち液体表面の少なくとも一部の上方に配置された電極と、液体表面自体の一部との間)に形成することができる。
本発明の1つの実施態様の場合、液体は水(又は或る特定の処理増強剤を含有する水)を含み、そして水面と水面の上方に位置する電極との間の気体(すなわち、調節可能なプラズマの形成に関与する気体又は雰囲気)は、空気を含む。空気は、種々異なる含水量及び所期湿度を含有するように制御することができ、その結果、成分(例えばナノ結晶)の種々異なる組成、濃度、結晶サイズ分布、及び/又は結晶形状分布を本発明に従って製造することができ(例えば、調節可能なプラズマ中及び/又は溶液又は懸濁液中の或る成分の種々異なる量は、液体表面の上方に位置する空気中の含水量の関数であり得る)、又は液体中の種々の成分の或る特定の濃度を得るために必要となる種々異なる処理時間などをもたらすことができる。調節可能なプラズマ4の具体的な態様は、例5〜7において詳述する。
乾燥空気に対する標準的な圧力及び温度における破壊電界は、約3MV/m又は約30kV/mである。こうして、例えば金属点の周りの局所的電界が約30kV/mを超えると、プラズマを乾燥空気中で発生させることができる。等式(1)は、破壊電界「Ec」と2電極間の距離「d」(メートル)との経験的関係は:
を与える。もちろん、破壊電界「Ec」は、電極間に位置する気体又は蒸気の特性及び組成の関数として変化することになる。このことに関して、水(又は処理増強剤を含有する水)が液体である場合の1つの好ましい実施態様の場合、顕著な水蒸気量が「電極」間(すなわち、液体表面の上方に配置された少なくとも1つの電極と、プラズマ形成の1つの電極として機能する液体表面自体との間)の空気中に固有に存在することが可能であり、またこのような水蒸気は、少なくとも、これらの間にプラズマを生成するために必要となる破壊電界に対して効果を与えるはずである。さらに、調節可能なプラズマと水面との相互作用により、生成されたプラズマ中及びプラズマの周りに局所的により高い濃度の水蒸気を存在させることもできる。生成されたプラズマ中及びプラズマの周りに存在する「湿分」の量は、本明細書中で後で詳しく論じる種々様々な技術によって制御又は調節することができる。同様に、任意の液体中に存在する或る構成要素が、液体表面と、液体表面に隣接して(例えば沿って)配置された電極との間に位置する調節可能なプラズマを形成する成分の少なくとも一部を形成することもできる。調節可能なプラズマ中の成分、並びにプラズマ自体の物理特性は、液体に対して、また処理技術のうちの或るものに対して劇的な影響を与えることができる(本明細書中で後で詳しく論じる)。
電極に、そして電極近くに生成された電界強度は、典型的には電極表面で最大となり、そして典型的にはこの表面からの距離が増大するのに伴って減少する。液体表面と、液体に隣接して(例えば上方に)配置された少なくとも1つの電極との間に、調節可能なプラズマを生成することを伴う事例では、液体表面の上方に配置された電極と、液体表面自体の少なくとも一部との間の気体の体積の一部が、調節可能なプラズマを生成するのに十分な破壊電界を含有することができる。生成されたこれらの電界は、例えば調節可能なプラズマの挙動、液体の挙動(例えば液体の結晶状態に影響を与える)、液体中の成分の挙動などに影響を与えることができる。
これに関連して、図1aは、例えば「F」の方向に流動する液体3の表面2の上方に距離「x」を置いて配置された三角形の断面形状を有する点源電極1の1実施態様を示している。点源電極1と、液体3に連通する電極5(例えば電極5は少なくとも部分的に液体3の表面2の下方にある)との間に適切な電源10が接続されていると、電極1の先端又は点9と液体3の表面2との間に、調節可能なプラズマ4を発生させることができる。
図1aに示された実施態様において生成された調節可能なプラズマ領域4は、典型的には、過程の少なくとも一部にわたって、円錐状構造又は楕円状構造相当する形状を有することができ、本発明のいくつかの実施態様の場合、実質的に全過程にわたってこのような形状(例えば円錐形状)を維持することができる。調節可能なプラズマ4の体積、強度、成分(例えば組成)、活性、正確な位置は、数多くのファクタに応じて変化することになり、これらのファクタの一例としては、距離「x」、電極1の物理的及び/又は化学的な組成、電極1の形状、電源10(例えばDC、AC、整流AC、DC及び/又は整流AC、AC又はDC波形、RFなどの印加極性)、電源によって印加される電力(例えば、典型的には1000〜5000ボルト、より典型的には1000〜1500ボルトの印加されるボルト数、印加されるアンペア数、電子速度など)、適用される電源によって生成される電界及び/又は磁界、周囲の電界、磁界、又は電磁界、音場の周波数及び/又は大きさ、電極1と液体3の表面2との間及び/又はその周りの、自然発生する又は供給された気体又は雰囲気の組成(例えば空気、窒素、ヘリウム、酸素、オゾン、還元性雰囲気など)、温度、圧力、体積、方向「F」における液体3の流量、スペクトル特性、液体3の組成、液体3の導電率、電極1及び5の近く及び周りの液体の断面積(例えば体積)、(例えば液体3が、調節可能なプラズマ4と相互作用することを許される時間量(すなわち滞留時間)、及びこのような相互作用の強度)、液体3の表面2における又は表面2の近くの雰囲気流(例えば空気流)の存在(ファン又は雰囲気運動手段の提供)(本明細書中で後から詳しく論じる)が挙げられる。
図1aの調節可能なプラズマ4の生成に関与する電極1の組成は、本発明の1つの好ましい実施態様の場合、金属系組成物(例えば金、及び/又はこれらの合金又は混合物などのような金属)であるが、しかし電極1及び5は、本明細書中に開示された本発明の種々の特徴(例えば処理パラメータ)と適合性のある任意の好適な材料から形成されていてよい。これと関連して、例えば液体3(例えば水)の表面2の上方の空気中にプラズマ4を生成している間、典型的には、少なくとも若干のオゾン、並びに所定量の窒素酸化物及びその他の成分(本明細書中の別の個所で詳細に論じる)が産出される。これらの産出成分は制御することができ、結果として産出された、液体中の成分(例えばナノ結晶)、及び/又はナノ結晶懸濁液又はコロイドの形成及び/又は性能にとって有用なことも有害なこともあり、本明細書中で後から詳しく論じる種々異なる技術によって制御されることが必要となる場合がある。さらに、例えば例5〜7において示されるような各プラズマ4の発光スペクトルも、同様のファクタの関数である(本明細書中で後から詳しく論じる)。図1aに示されているように、調節可能なプラズマ4は実際には、液体3の表面2と接触する。本発明のこの実施態様の場合、電極1に由来する材料(例えば金属)は、調節可能なプラズマ4の一部を含んでいてよく(例えば、従ってプラズマの発光スペクトルの一部であってよい)、そして、液体3(例えば水)上及び/又は液体3(例えば水)中に「スパッタリング」させられてよい。従って、電極1として金属が使用されるときには、種々様々な成分(例えば例5〜7に示されているもの)を電気的なプラズマ中に形成することができ、その結果、例えば金属、金属イオン、ルイス酸、ブレンステッド−ラウリ酸、金属酸化物、金属窒化物、金属水素化物、金属水和物、及び/又は金属炭化物などを含む、処理液体3(例えば水)の一部となる特定の成分をもたらし、これらの成分は、調節可能なプラズマ4と関連する特定の一連の動作条件、及び/又は後続の電気化学的な処理動作に応じて、液体3中に(例えばプロセスの少なくとも一部にわたって)見いだすことができる(そして同時/後続の反応に関与することができる)。このような成分は、処理液体3中に一時的に存在してよく、或いは半永久的又は永久的であってもよい。このような成分が一時的又は半永久的であるならば、このような形成済成分との後続の反応(例えば電気化学反応)のタイミングは、生成される最終生成物に影響を与えることができる。このような成分が永久的であるならば、これらは、活性成分ナノ結晶の所期性能に不都合な影響を及ぼしてはならない。
さらに、例えば液体3中及び液体3の周りの電界、磁界、及び/又は電磁界の強さ、及びこのような場に晒された液体3の体積(本明細書中で後から詳しく論じる)、電極1及び5の物理的及び化学的な組成、(自然発生する又は供給された)雰囲気、液体組成に応じて、より多量又はより少量の電極材料(例えば金属又は金属の誘導体)を液体3中に見いだすことができる。或る状況では、液体3中(永久的又は一時的)はプラズマ4中に見いだされる材料(例えば金属又は金属複合材料)又は成分(例えばルイス酸、ブレンステッド−ラウリ酸など)が極めて望ましい効果を有することがある。この場合には、このような材料は比較的多量であることが望ましい。これに対して他の事例では、液体3中に見いだされる或る材料(例えば副産物)が望ましくない影響を及ぼすおそれがあり、ひいては、このような材料を最小限にすることが液体ベースの最終生成物において望ましい場合がある。従って、電極の組成は、本明細書中に開示された実施態様に従って形成される材料において重要な役割を果たすことができる。本発明のこれらの成分間の相互作用については、本明細書中で後から詳しく論じる。
さらに、電極1及び5は、液体の種々の組成及び/又は構造、及び/又は本明細書中で後から詳しく論じる特定の効果を達成するために、同様の化学組成(例えば主成分として同じ化学元素を有する)及び/又は機械構造を有するか、又は完全に異なる組成(例えば主成分として異なる化学元素を有する)を有していてもよい。
電極1と5;又は1と1(本明細書中に後で示す)、又は5と5(本明細書中に後で示す)との間の距離「y」は、本発明の1つの重要な特徴である。一般に、作業条件下でプラズマを発生させることができる電源と連携する場合、本発明に使用される電極の最も近い部分の間の最小距離「y」の位置は、(何らかのタイプの電気的絶縁がこれらの間に提供されていない場合)望ましくないアーク又は望まれないコロナ又はプラズマの形成が電極間(例えば電極1と電極5との間)に生じるのを防止するために、距離「x」よりも大きくあるべきである。電極のデザイン、電極の位置、及び種々の電極間の電極相互作用に関する本発明の特徴について、本明細書中で後から詳しく論じる。
電源10を通して印加される電力は、本発明の全ての方法条件下で、望ましい調節可能なプラズマ4を生成する任意の好適な電力であってよい。本発明の1つの好ましい態様において、昇圧器からの交流が利用される。本明細書中に開示された種々の実施態様において使用するための好ましい変圧器60(例えば図16d〜16l参照)は、変圧器60内の磁気分路の使用によって可能にされる、意図的に低い出力電圧調節力を有している。これらの変圧器60はネオンサイン変圧器として知られる。このような形態は、電極1/5内への電流を制限する。出力負荷電圧が大きく変化すると、変圧器60は、比較的狭い範囲内に出力負荷電圧を維持する。
変圧器60は、二次開回路電圧と、二次短絡回路電流とに関して格付けされる。開回路電圧(OCV)は、電気的接続が存在しないときだけ、変圧器60の出力端子に現れる。同様に、短絡が出力端子を横切って存在する場合にだけ、短絡回路電流が出力端子から引き出される(この場合、出力電圧がゼロに等しい)。しかしながら、負荷がこれらの同じ端子を横切って接続されているときに、変圧器60の出力電圧はゼロと定格OCVとの間のいずれかの値でなければならない。事実、変圧器60が適切に負荷されると、電圧はおよそ定格OCVの半分になる。
変圧器60は、平衡中間点参照デザイン(Balanced Mid-Point Referenced Design)(例えば以前は平衡中間点接地としても知られていた)として知られている。これは中電圧から高電圧の格付けを有する変圧器、及びほとんどの60mA変圧器において最も共通に見いだされる。これは、「中間帰線」システムにおいて許容され得る唯一のタイプの変圧器である。「平衡」変圧器60は、1つの一次コイル601と、2つの二次コイル603とを有していて、それぞれの二次コイルが一次コイル601の各側に位置している(図16gの概略図に全体的に示されている)。この変圧器60は様々な意味で、2つの変圧器のように機能することができる。不平衡の中間点参照型のコア及びコイルと同様に、各二次コイル603の一方の端部はコア602に取り付けられ、続いて変圧器容器に取り付けられ、また各二次コイル603の他方の端部は出力リード又は端子に取り付けられている。こうして、コネクタの存在なしに、無負荷時15,000ボルトのこのタイプの変圧器は、各二次端子から変圧器容器まで約7,500ボルトとなるが、しかし2つの出力端子の間では約15,000ボルトとなる。これらの模範的な変圧器60は、本明細書中の例において開示されたプラズマ4を形成するために利用した。しかし、他の適切な変圧器(又は電源)も、本発明の範囲に含まれるものと理解されたい。さらに、これらの変圧器60は本明細書中の例1〜4において専ら利用される。しかし、本明細書中に開示された他の例のほとんどにおける電極5/5’のためには、異なるのAC変圧器50及び50a(本明細書中の他の個所で論じる)を利用する。
別の好ましい実施態様の場合、整流AC源が、正荷電電極1と液体3の負荷電表面2とを形成する。別の好ましい実施態様の場合、整流AC源が、負荷電電極1と液体3の正荷電表面2とを形成する。さらに、他の電源、例えばRF電源及び/又はマイクロ波電源を本発明ととも使用することもできる。一般には、電極構成部材1及び5の組み合わせ、電極1及び5の物理的なサイズ及び形状、電極製造法、電極1及び/又は5の質量、液体3の表面2とその上方の電極1の先端9との間の距離「x」、電極先端9と表面2との間の気体の組成、液体3の(もしあるならば)流量及び/又は流動方向「F」、液体3の提供量、電源10のタイプ、電源の出力の周波数及び/又は波形が全て、そのデザイン、ひいては液体3の表面2と電極先端9との間に制御された又は調節可能なプラズマ4を得るために必要となる電力要件(例えば破壊電界)に関与する。
図1aに示された構造をさらに参照すると、電極ホルダ6a及び6bは、任意の好適な手段によって昇降させることができる(ひいては電極も昇降させることができる)。例えば電極ホルダ6a及び6bは、絶縁部材8(断面で示す)内を通って昇降させることができる。ここに示す機械的な実施態様は雄/雌ねじ山を含む。部分6a及び6bは、例えば付加的な電気絶縁部分7a及び7bによってカバーすることができる。電気絶縁部分7a及び7bは、任意の好適な材料(例えばプラスチック、ポリカーボネート、ポリ(メチルメタクリレート)、ポリスチレン、アクリル、ポリビニルクロリド(PVC)、ナイロン、ゴム、繊維性材料であってよい。)これらの材料は、人が電極ホルダ6a及び6bを調整するとき(例えば電極の高さを調節しようとするとき)に発生するおそれのある望ましくない電流、電圧、アークなどを防止する。同様に、絶縁部材8は、望ましくない電気的事象(例えばアーク形成、溶融など)が発生するのを防止する任意の好適な材料、並びに、本発明を実施するのに構造的且つ環境的に適した任意の材料から形成することもできる。典型的な材料は、構造用プラスチック、例えばポリカーボネート、プレキシガラス(ポリ(メチルメタクリレート))、ポリスチレン、及びアクリルなどを含む。本発明とともに使用するための付加的な好適な材料については、本明細書中の別の個所で詳細に論じる。
図1cは、電極1,5を昇降させるための別の実施態様を示している。この実施態様の場合、各電極の電気絶縁部分7a及び7bが、摩擦機構13a,13b及び13cと、部分7a及び7bとの間に存在するプレス嵌め部によって所定の位置に保持される。摩擦機構13a,13b及び13cは、例えば十分な接触又は接触がその間に維持される限り、例えばばね鋼、可撓性ゴムなどから形成されていてもよい。
電極1,5を自動的に上昇及び/又は降下させる好ましい技術については、本明細書中で後から詳しく論じる。電源10は、電極1及び5に任意の好都合な電気的形式で接続することができる。例えば、部分11a,11b間、ひいては電極1,5間に電気的接続を達成することを主な目的として、電極ホルダ6a,6b(及び/又は電気絶縁部分7a,7b)の少なくとも一部の内部にワイヤー11a及び11bを配置することができる。
図2aは、本発明の好ましい実施態様の別の概略図を示している。ここでは、本発明の制御装置20が電極1及び5に接続されているので、制御装置20は、液体3の表面2に対して電極1,5を遠隔位置から(例えば別の装置又は構成部分からの命令で)上昇及び/又は降下させることができる。本発明の制御装置20については、本明細書中で後から詳しく論じる。本発明のこの1つの好ましい特徴において、電極1及び5は、例えば遠隔位置から降下させ制御することができ、また、適宜のソフトウェア・プログラム(本明細書中で後から詳しく論じる)を含有する好適なコントローラ又はコンピュータ(図2aには示されない)によって監視し制御することもできる。これに関して、図2bは、テイラーコーン「T」が電極5と液体3の表面2(又は実際には有効表面2’)との間の電気的接続のために利用されることを除いて、図2aに示されたものと同様の電極構造を示している。従って、図1a,1b及び1cに示された実施態様は、本発明の技術とともに使用するための手動制御式装置であると考えられるべきであり、これに対して、図2a及び2bに示された実施態様は、適宜の命令に応答して電極1及び5を遠隔位置から昇降させることができる自動的な装置又は集成体20を含むと考えられるべきである。さらに、図2a及び図2bに示す本発明の好ましい実施態様は、表面2から離隔した電極1の先端9(及び電極5の先端9’)の距離「x」をコンピュータで監視し、そしてコンピュータ制御すること;又は電極5が液体3中に/液体を通って進められる速度をコンピュータで監視し且つ/又は制御することを採用することもできる(本明細書中で後から詳しく論じる)。従って、電極1及び5を上昇及び/又は降下させる適宜の命令は、個々の操作者及び/又は好適な制御装置、例えばコントローラ又はコンピュータ(図2aには示されない)から出ることが可能である。
図3aは、図2a及び2bに大部分が相当するが、図3b、3c及び3dは、本発明の或る好ましい実施態様とともに利用し得る種々様々な代わりの電極構造を示している。図3bは図3aに示された電極集成体から、本質的に鏡像電極集成体を示している。具体的には、図3bに示されているように、液体3の流動方向に相当する方向「F」に関して、電極5は、流体3が長手方向「F」で流動するとこの流体3と連通する最初の電極であり、これに続いて、電極1に生成されたプラズマ4との接触が生じる。図3cは、流体3中に配置された2つの電極5a及び5bを示している。この特定の電極構造は、本発明の別の好ましい実施態様に相当する。具体的には、本明細書中で詳しく論じるように、図3cに示された電極構造は単独で、或いは、例えば図3a及び3bに示された電極構造との組み合わせで使用することができる。同様に、考えられ得る第4の電極構造は図3dで示されている。この図3dには、電極5が示されておらず、電極1a及び1bだけが示されている。この場合、電極先端9a及び9bと、液体3の表面2との間に、2つの調節可能なプラズマ4a及び4bが存在している。距離「xa」及び「xb」は、ほぼ同じであってよく、或いは、それぞれの距離「xa」及び「xb」が、電極先端9a/9bと液体3の表面2との間にプラズマ4を形成することができる最大距離を超えない限り、実質的に異なっていてよい。上記のように、図3dに示された電極構造は単独で、或いは、例えば図3a、3b及び3cに示された電極構造のうちの1つ又は2つ以上との組み合わせで使用することができる。流体の流動方向「F」に関して、互いに組み合わされた特定の電極構造を利用することの望ましさについては、本明細書中で後から詳しく論じる。
同様に、図1aに概ね相当する一連の手動制御式の電極構造が図4a、4b、4c及び4dに示されており、これらの全てが部分断面図に示されている。具体的には、図4aは図1aに相当する。さらに、図4bは電極構造において、図3bに示された電極構造に相当し、図4cは図3cに相当し、そして図4dは図3dに相当する。本質的には、図4a〜4dに示された手動電極構造は機能的に、結果として、図3a〜3dに示された遠隔調節可能な(コンピュータ又はコントローラ手段によって遠隔制御される)電極構造に対応して製造される材料と同様の材料を、本発明の或る特徴に従って製造することができる。電極構造の種々の組み合わせを利用することの望ましさについては、本明細書中で後から詳しく論じる。
図5a〜5eは、図1〜4(及びその他の図面、及び本明細書中で後から論じる実施態様)に示された電極1のための種々様々な望ましい電極構造の斜視図を示している。図5a〜5eに示された電極構造は、本発明の種々の実施態様において有用な種々異なる数多くの構造の代表である。電極1に対する適宜の電極選択の基準の一例としては、下記条件、すなわち、極めて明確な先端又は点9の必要性、組成、機械的制限、電極1を含む材料から所定の形状を形成する能力、電極1を含む材料のコンディショニング(例えば熱処理又はアニーリング)、便宜性、プラズマ4内に導入される成分、液体3に対する影響など、が挙げられる。これに関して、例えば図1〜4に示された電極1を含む小さな質量の材料は、本発明に従って調節可能なプラズマ4を生成すると(本明細書中で後から詳しく論じる)、動作温度まで上昇することがある。この温度では、電極1のサイズ及び/又は形状が不都合な影響を受けるおそれがある。これに関しては、例えば、電極1が比較的小さな質量を有しており(例えば電極1が金から形成されておりその重量が約0.5グラム以下である)、そして極めて微細な点を先端9として含むならば、或る種の付加的な相互作用(例えば内部冷却手段又は外部冷却手段、例えばファンなど)がない限り、微細な点(例えば直径が僅か数ミリメートルであり、数100〜数1000ボルトに曝露される細いワイヤー;又は三角形の金属片)は電極1として機能できなくなる(例えば電極1は望ましくない状態に変形するか又は溶融するおそれがある)ことが、本明細書中の種々の実施態様中に用いられる或る一連の条件下ではあり得る。従って、電極1(例えば電極を含む材料)の組成は、例えば融点、感圧性、環境反応(例えば調節可能なプラズマ4の局所的環境は、電極の望ましくない化学的、機械的及び/又は電磁的腐食を生じさせるおそれがある)などに起因して、電極の考えられ得る好適な物理的形状に影響を及ぼすことがある。
さらに、言うまでもなく、本発明の別の好ましい実施態様では、先端9のために明確な鋭利な点が常に必要とされるわけではない。これに関連して、図5eに示された電極1は、丸みを帯びた先端9を含む。なお、部分的に丸みを帯びた又は円弧状の電極が、電極1として機能することもできる。なぜならば、本明細書中に示された本発明の実施態様(例えば図1〜4参照)において生成される調節可能なプラズマ4は、丸みを帯びた電極、又はより鋭利な又はより尖った構成要件を有する電極から生成することができるからである。本発明の技術の実施中、このような調節可能なプラズマは、図5eに示された電極1の種々の点に沿って位置決めするか又は配置することができる。これに関して、図6は種々様々な点「a〜g」を示しており、これらの点は、電極1と液体3の表面2との間に発生するプラズマ4a〜4gの開始点9に相当する。従って、言うまでもなく、電極1に対応する種々のサイズ及び形状を、本発明の教示に従って利用することができる。さらに、ここで種々の図面に示された、それぞれ電極1及び5の先端9,9’は、比較的鋭利な点又は比較的丸みのある端部として示されることがある。これらの電極先端9,9’の具体的な特徴を文脈上より詳細に論じるのでない限り、図面に示す電極先端9,9’の実際の形状はさほど重要でないものとする。
図7aは、トラフ部材30内部に含有される、図2a(及び図3a)に示されているものに相当する電極構造を示す断面斜視図である。このトラフ部材30は、図7aの符号31として示される後ろ側から内部に供給された液体3を有しており、流動方向「F」は、この頁から読者に向かって、また符号32として示された断面区域に向かっている。トラフ部材30はここでは1つの材料から成る一体部分として示されているが、しかし、1つにまとめられ、そして例えば材料を互いに付着させるための任意の許容し得る手段によって固定された(例えば接着、機械的付着など)複数の材料から形成することもできる。さらに、ここに示されたトラフ部材30は長方形又は正方形の断面形状を有しているが、しかし、種々異なる、そしてより望ましい断面形状を含んでいてもよい(本明細書中で後から詳しく論じる)。従って、流体3の流動方向は、この頁から読者に向かっており、そして液体3は電極1及び5のそれぞれを流過する。電極1及び5は、この実施態様の場合、トラフ部材30内部の流体3の長手方向流動方向「F」に対して互いに実質的に一列に配置されている。これにより、液体3は、調節可能なプラズマ4との相互作用(例えばコンディショニング反応)を最初に被り、続いて、コンディショニングされた流体3は、電極5と相互作用することを許される。これらの電極/液体の相互作用及び電極の配置又はトラフ部材30内部の電極の位置の具体的な望ましい特徴については、本明細書中の別の個所で詳細に論じる。
図7bは、図2a(及び図3a)に示された電極構造を示す断面斜視図であるが、これらの電極1及び5は、この頁上では、図2a及び3aに示された電極1及び5に対して90度だけ回転している。本発明のこの実施態様において、液体3は、電極1と液体3の表面2との間に発生する調節可能なプラズマ4と接触し、また、トラフ部材30の長手方向の流動方向「F」(すなわち頁から出る方向)に沿ったほぼ同じ点で電極5と接触する。液体3の流動方向は図7aのように、トラフ部材30に沿って長手方向に、紙から読者に向かっている。この電極構造の種々の望ましい特徴については、本明細書中の別の個所で詳細に論じる。
図8aは、図7aに示されたものと同じ実施態様を示す断面斜視図である。この実施態様では、図7aにおけるように、流体3は、電極1と液体3の表面2との間に生成された調節可能なプラズマ4と最初に相互作用する。その後、調節可能なプラズマ4によって変化(例えばコンディショニング、改質、又は調製)させられた、影響されるか又はコンディショニングを施された流体3は、その後、電極5と連通し、ひいては、種々の電気化学反応が発生するのを可能にする。このような反応は、本明細書中の別の個所で詳細に論じる状態(例えば、流体3(及び流体3中の半永久的又は永久的な成分)の化学組成、pH、物理又は結晶構造、励起状態など)によって影響を受ける。別の実施態様が図8bに示されている。この実施態様は一般的な配列において、図3b及び4bに示された実施態様に本質的に相当する。この実施態様において、流体3は電極5と最初に連通し、そしてその後流体3は、電極1と液体3の表面2との間に生成された調節可能なプラズマ4と連通する。この実施態様では、流体3は電極5と相互作用する前に予め改変されていることがある。
図8cは、2つの電極5a及び5b(図3c及び4cに示された実施態様に相当)を示す断面斜視図である。流体3の長手方向の流動方向「F」は、第1電極5aと接触し、そしてその後、流体の流動方向「F」において第2電極5bに接触する。
同様に、図8dは断面斜視図であり、そして図3d及び4dに示された実施態様に相当する。この実施態様において、流体3は、第1電極1aによって生成された第1の調節可能なプラズマ4aと連通し、その後、第2電極1bと流体3の表面2との間に生成された第2の調節可能なプラズマ4bと連通する。
図9aは断面斜視図を示しており、図7bに示された電極構造に相当する(及び図3a及び4aに示された電極構造にも概ね相当するが、しかし図9aの電極構造は90度だけ回転している)。図9a〜9dに示された電極構造の全ては、図示の電極対は、図7bにおけるように、トラフ部材30に沿ったほぼ同じ長手方向の点に配置されるように構成されている。
同様に、図9bも、図3b及び4bに示された電極構造に概ね相当し、図8bに示された構造に対して90度だけ回転させられている。
図9cも、図3c及び4cに概ね相当する電極構造を示し、図8cに示された電極構造に対して90度だけ回転させられている。
図9dも、図3d及び4dに概ね相当する電極構造を示し、図8dに示された電極構造に対して90度だけ回転させられている。
図7、8及び9に大まかに示された電極構造は全て、種々様々な構成要件の関数として種々異なる結果(流体3の種々異なるコンディショニング効果、流体3中の種々異なるpH、種々異なるナノ結晶サイズ、及びサイズ分布、異なるナノ結晶形状、及びナノ結晶形状分布、及び/又は流体3中に見いだされる成分(例えばナノ結晶物質)の量、流体/ナノ結晶の組み合わせの異なる機能(例えば異なる生物学的/生体触媒効果)、異なるゼータ電位、など)をもたらすことができる。これらの構成要件は、流体流動方向「F」に対する電極の配向及び位置、トラフ部材30の断面形状及びサイズ、及び/又はトラフ部材30内部の液体3の量、及び/又はトラフ部材30内部及び電極5a/5b内/周囲の液体の流量、電極の厚さ、提供される電極対の数、及びトラフ部材30内の相互の位置、並びに、液体3内への電極の深さ(すなわち液体3との接触量)、液体3内へ/液体3を通る電極の運動速度(電極の表面プロフィール又は形状を維持又は調節する)、電極対に印加された電力を含む。さらに、電極の組成、サイズ、具体的な形状、提供される異なるタイプの電極の数、印加されるボルト数、印加される且つ/又は液体3中で達成されるアンペア数、AC源(及びAC源周波数及びAC波形形状、デューティ・サイクルなど)、DC源、RF源(及びRF源周波数、デューティ・サイクルなど)、電極極性などは全て、液体3がこれらの電極1,5と接触、相互作用し、且つ/又はこれらを流過するのに伴って、液体3(及び/又は液体3中に形成又は含有されるナノ結晶)の特性、ひいてはこれから産出される材料(例えば生成されたナノ結晶及び/又は懸濁液又はコロイド)の結果としての特性に影響を与えることができる。加えて、液体を含有するトラフ部材30はいくつかの好ましい実施態様において、図7、8及び9に示された複数の電極組み合わせを含有している。これらの電極集成体は全て同じ構造であってよく、或いは、種々異なる電極構造の組み合わせであってもよい(本明細書中の別の個所で詳細に論じる)。さらに、電極構造は流体「F」と順次連通してよく、或いは同時に、又は並列に流体「F」と連通してもよい。種々異なる好ましい電極構造例について、形成される種々異なる成分(例えばナノ結晶及び溶液又はここから産出されるナノ懸濁液又はコロイド)との関連において、後から付加的な図面に示し、本明細書中で後から詳しく論じる。
図10aは、図7、8及び9に示された、液体を含有するトラフ部材30を示す断面図である。トラフ部材30は、長方形又は正方形に相当する断面を有しており、電極(図10aには示されていない)をトラフ部材30内に適当に位置決めすることができる。
同様に、液体含有トラフ部材30のいくつかの付加的な代わりの実施態様が、図10b、10c、10d及び10eに断面図で示されている。図10a〜10eのそれぞれに示された好ましい実施態様の距離「S」及び「S’」は、例えば約0.25インチ〜約6インチ(約0.6cm〜15cm)である。距離「M」は約0.25〜約6インチ(約0.6cm〜15cm)である。距離「R」は約1/2インチ〜約7インチ(約1.2cm〜17.8cm)の範囲である。これらの実施態様の全て(また、別の実施態様を表す付加的な構造も本発明の範囲に含まれる)は、本発明の他の特徴との組み合わせで利用することができる。なお、液体含有トラフ部材30のそれぞれの内部に含有される液体3の量は、深さ「d」の関数であるだけでなく、実際の断面の関数でもある。手短に言うと、電極1及び5の中及び周りに存在する液体3の量は、液体3に対する調節可能なプラズマ4の1つ又は2つ以上の効果、並びに、電極5と液体3との電気化学相互作用に影響を与えることができる。さらに、電極1及び5の中及び周りの液体3の流量は、結果として生じるコロイド又は懸濁液中に形成されたナノ結晶の特性の多くに影響を及ぼすこともできる。これらの効果は、液体3に対する、調節可能なプラズマ4のコンディショニング効果(例えばプラズマの電界及び磁界の相互作用、プラズマの電磁線の相互作用、液体中の種々の化学種(例えばルイス酸、ブレンステッド−ラウリ酸)の生成、pHの変化、液体の温度変動(例えば液体流が低速であるほど、高い液体温度をもたらし、且つ/又は、電極1/5との又は電極1/5の周りの接触時間又は滞留時間が長いほど、生成された最終生成物、例えば形成済ナノ結晶のサイズ/形状に望ましい影響を与えることもできる、など)を含むだけでなく、濃度、又は調節可能なプラズマ4と液体3との相互作用をも含む。同様に、液体3に対する電極5の多くの特徴の影響(例えば電気化学相互作用、温度など)は、少なくとも部分的には、電極5と並置された液体の量の関数でもある。これらのファクタの全ては、核形成と、液体3中で成長したナノ結晶の成長との間に存在するバランスに影響を与えることができ、その結果例えば、粒子サイズ及びサイズ範囲の制御、及び/又は粒子形状及び形状範囲の制御を行うことができる。
さらに、強力な電磁界濃度はまた、プラズマ4と液体3との相互作用をもたらし、そして電極5と液体3との相互作用をもたらす。これらの重要な相互作用のいくつかの重要な特徴は本明細書中の他の個所でさらに詳しく論じる。さらに、トラフ部材30は、長手方向全長に沿って2つ以上の断面形状を含むことができる。トラフ部材30の長手方向全長に沿って複数の断面形状を組み込む結果、例えば本明細書中に開示された本発明の実施態様(本明細書中の他の個所でさらに詳しく論じる)によって、生成される場又は濃縮効果又は反応効果(例えば液晶成長/核形成効果)の変化がもたらされる。さらに、トラフ部材30は直線形状又は「I字形」ではない場合があり、むしろ「Y字形」又は「Ψ字形」であってもよい。「Y」(又は「Ψ」)の各部分は異なる(又は類似の)断面及び/又は一連の寸法及び/又はそこに発生する一連の反応条件を有していてよい。
また、トラフ部材30内に流入させられる液体3の初期温度は、本明細書中の開示内容に従って生成された生成物の種々の特性に影響を与えることもできる。例えば、液体3の種々異なる温度は、ナノ結晶のサイズ及び形状、種々の形成済成分(例えば一時的、半永久的又は永久的な成分)の濃度又は量、pH、ゼータ電位などに影響を与えることができる。同様に、トラフ部材30の少なくとも一部又は実質的に全ては望ましい効果を有することができる。例えば、局所的な冷却を可能にすることにより、形成済生成物(ナノ結晶サイズ及び/又はナノ結晶形状)の結果としての特性を望ましい状態で制御することができる。処理中の好ましい液体3温度は、氷点と沸点との間、より典型的には室温と沸点との間であり、より典型的には約40〜98℃、より典型的には約50〜98℃である。このような温度は、例えば処理装置の種々の部分又は部分の近くに配置されたコンベンショナルな冷却手段によって制御することができる。
さらに、或る特定の処理増強剤を液体3に添加するか又はこれと混合してもよい。処理増強剤は固体及び液体の両方(及びいくつかの事例では気体)を含む。処理増強剤は、特定の処理利点及び/又は望ましい最終生成物特性を提供することができる。処理増強剤の一部は、例えば、本発明の電気化学的成長プロセスにおいて、望ましい種晶として機能し、影響を与え、又はその部分になることができ(又は所望の種晶を促進するか、又は核形成部位の形成に関与することができる)、且つ/又は結晶面成長促進剤/防止剤として機能し、影響を与え、又はその部分になることもでき;或いは、単に本発明の電気化学プロセスにおける電流又は電力調節剤として機能することもできる。このような処理増強剤は電極1/5及び/又は5/5の間の電流及び/又は電圧条件に望ましい影響を及ぼすこともできる。
好ましい処理増強剤は、重炭酸ナトリウムである。他の処理増強剤の例は炭酸ナトリウム、重炭酸カリウム、炭酸カリウム、リン酸三ナトリウム、リン酸二ナトリウム、リン酸一ナトリウム、リン酸カリウム、又は他の炭酸塩などである。さらなる処理増強剤は、亜硫酸ナトリウム又はカリウム、又は重亜硫酸ナトリウム又はカリウムを含む塩であってもよい。或る条件下で医学的用途の金ナノ結晶を形成するためのさらに他の処理増強剤は、ナトリウム又はカリウムの他の塩であってよく、或いは、金ナノ結晶表面内又は表面上に実質的に組み込まれることがなく、またナノ結晶又はナノ結晶を含有する懸濁液に毒性を与えることがない、本明細書中に記載される電気化学的成長プロセスを支援する任意の物質であってもよい。処理増強剤は、本明細書中に開示された電気化学反応のうちの1つ又は2つ以上を支援してよく、且つ/又は本明細書中の教示内容に従って形成される生成物の1つ又は2つ以上の望ましい特性を達成するのを支援してもよい。
例えば、或る処理増強剤は解離して正イオン(カチオン)及び負イオン(アニオン)になってよい。液体組成、イオンの濃度、印加された場、印加された場の周波数、印加された場の波形、温度、pH、ゼータ電位などを含む種々の要因に応じたアニオン及び/又はカチオンは、対向荷電電極に向かってナビゲート又は移動する。前記イオンがこのような電極に又はその近くに位置すると、イオンは、電極及び/又はこのような電極に又はその近くに位置するその他の成分との1種又は2種以上の反応に参加することができる。イオンは電極内の1種又は2種以上の材料と反応することもある(例えばNaClが処理増強剤として使用される場合には、種々の金属塩化物(MCl、MCl2など)が形成されてよい)。このような反応は、いくつかの事例では望ましく、又は他の事例において望ましくない。さらに、電極間で溶液中に存在するイオンは、MCl、MCl2などのような生成物を形成するように反応しない場合があり、むしろ電極内(又は電極の近く)の材料に影響を及ぼすことにより、電極によって提供された材料から「成長」した金属ナノ結晶を形成することもある。例えば、或る特定の金属イオンは液体3に電極5から入り、そして互いに一緒になって(核形成)、液体3内部に成分(例えばイオン、ナノ結晶など)を形成するようにされてよい。
金の場合、不純物(例えば有機不純物)がこのような成長を阻害又は阻止しない限り、結晶成長が生じ得る起点となる種々の拡大面を利用することができる。金は面心立方(fcc)構造を有することが知られているが、本発明の方法に従って成長させられる金ナノ結晶は、単結晶ではなく、典型的には双晶である結果、種々の望ましい高反応性のナノ結晶形状又は形状分布をもたらす。例えば単結晶面{111}、{100}及び{110}は、最も頻繁に研究され十分に理解された表面である。電気化学結晶核形成及び/又は成長プロセスにおいて或る特定の種、例えばイオン(例えば電極5に添加されるか又は電極5によって供与される)が存在すると、このことはこのような拡大面のうちの1つ又は2つ以上の面の存在又は不存在に影響(例えば特定形状のナノ結晶の核形成及び/又は成長促進、又はナノ結晶形状分布)を与えることができる。或る特定の場条件下での特定のイオン(例えばアニオン)は、他の形状に対して或る特定のナノ結晶形状の存在をもたらす(例えば、他の形状、例えば四面体、二十面体、八面体に対してより多くの十面体形状;又は他の結晶形状に対して或る特定の結晶形状の組み合わせ、など)ことのできる他の結晶面に比べてより多くの{111}拡大面又は拡大平面を存在させるのを支援することができる。このような面の存在又は不存在(例えば相対量)を制御することにより、結晶形状(例えば六角形板、八面体、四面体及び五角両錐体(すなわち十面体))及び/又は結晶サイズ又はこのような面を含有する拡大結晶面、ナノ結晶形状をこうして相対的に制御することができる。ナノ結晶のサイズ及び形状(並びにナノ結晶の表面特性)を制御することにより、生物系を含む種々様々な系におけるこれらの機能を制御することができる。
具体的には、特定の空間的に広がる低指数結晶面を含有する特定のナノ結晶形状(又は形状分布)が存在することにより、種々異なる反応を生じさせることができ(例えば種々異なる生体触媒的及び/又は生物物理学的反応を生じさせ、且つ/又は、種々異なる生物学的シグナル伝達経路を、このような形状のナノ粒子が存在しない場合に対して活性/不活性にさせる)、且つ/又は、種々異なる反応を、実質的に同一の条件下で選択的に発生させることができる。金ナノ粒子の1つの結晶形状(例えば五角両錐体構造、又は十面体、又は{111}面を有する四面体)は、1組の反応を生じさせるのに対して(例えば特定のタンパク質又は相同体に結合し、且つ/又はタンパク質又はサイトカインの特定の生物学的シグナル伝達経路に影響を与える)、異なる結晶形状(例えば同じ又は異なる結晶面、例えば{111}又は{100}を含有する八面体)は、異なる反応エンドポイントをもたらすことができる(すなわち、異なる生物触媒効果又はシグナル伝達経路効果)。より劇的には、拡張結晶成長面が欠けていると、その結果、球形ナノ粒子(例えば古典的な均質化学的還元プロセスによって形成されたもの)が、(例えば拡張面ナノ結晶に対して)ナノ粒子の性能に著しい影響を及ぼすことになる。このような性能差は、表面プラズモン共鳴及び/又はこのような共鳴の強度に起因する場合がある。このように、量(例えば濃度)、ナノ結晶サイズ、特定の拡張成長結晶面の有無、及び/又はナノ結晶形状又は形状分布を制御することによって、或る特定の反応(例えば生物学的反応及び/又は生物学的シグナル伝達経路)に望ましい影響を与え、且つ/又はこれらの反応を制御することができる。このような制御の結果、特定の生物学的反応及び/又はシグナル伝達経路の関数である種々異なる疾患又は兆候を予防及び/又は治療することができる(本明細書において後で論じる)。
さらに、或る特定の処理増強剤は、電荷担体として機能し得る材料を含んでいてもよいが、これら自体はイオンでなくてもよい。具体的には、本明細書中に開示された電気化学処理技術によって導入されるか又はその場で形成される(異質の又は同質の核生成/成長)金属系粒子が、電荷担体、結晶核形成剤及び/又は成長促進剤として機能することもできる。その結果、種々異なる結晶形状(例えば六角形板、八面体、四面体、五角両錐体(十面体)など)を形成することができる。ここでもやはり、特定の粒子結晶サイズ、拡大結晶面及び/又はこのような結晶の形状又は形状分布の存在は、特定の反応の発生に望ましい影響を及ぼすことができる(例えば特定のタンパク質又はタンパク質相同体に結合する、及び/又は、特定の生物学的シグナル伝達経路、例えば炎症経路又はプロテアソーム経路に影響を与える)。さらに、本発明の処理増強剤は、伝統的な還元化学技術において使用される伝統的な有機系分子を考えていないので、このような化学的還元剤(又は添加界面活性剤)が欠けていることは、本発明の成長したナノ結晶の表面が、伝統的な還元化学アプローチによって形成されるナノ粒子と比較して極めて「クリーン」であることを意味する。なお、「クリーン」という用語をナノ結晶表面に関連して使用するとき、又は、「有機不純物又は膜を実質的に含まない」(又は同様の言い回し)を使用するときには、これは、(1)ナノ結晶の機能を変え且つ/又は(2)有意な部分(例えば結晶の少なくとも25%、より典型的には結晶の少なくとも50%)を覆う層、表面、又は膜を形成する化学成分が、形成済ナノ結晶の表面に接着又は付着することがないことを意味する。好ましい実施態様の場合、ナノ結晶表面は、その機能を物質的に変化させるいかなる有機汚染物質も全く含んでいない。なお、本発明のナノ結晶の機能には不都合又は物質的な影響を及ぼすことのない、本発明のナノ結晶に付着させられる偶発的な成分は、本発明の範囲内に含まれるものとなおも考えるべきである。有機不純物又は膜を全く含まないナノ結晶表面の一例が、本明細書中の例5に示されている。
添加化学物質(例えば有機物質)が欠けていることは、拡大結晶面内への金原子の成長を可能にし、その結果、新規の結晶形状分布をもたらし、また、生体内のナノ結晶の性能に影響を与える(例えば、血清中のナノ粒子/ナノ結晶の周りに形成されるタンパク質コロナに影響を与える)。例えば、特定の理論又は説明に縛られたくはないが、タンパク質コロナ形成は、生体内のナノ粒子/ナノ結晶の場所を制御し、また、ナノ粒子/ナノ結晶の表面又は表面近くのタンパク質の折り畳みを制御することもできる。性能のこのような相違は、例えば表面電荷、表面プラズモン共鳴、エピタキシャル効果F、表面二重層、影響範囲、及びその他のものを含むような要因に起因すると言える。
さらに、プロセス中に種晶が発生し、且つ/又は一連の拡大結晶面が成長し始める(例えば同質核形成)か、又は種晶が別々に提供される(例えば異種核形成)と、形成済粒子(例えば金属原子)が電気化学プロセスにおいて1つ又は2つ以上の電極に又は電極の近くに滞留するのを許された時間量は、結果として、時間の関数として増大するこのようなナノ結晶のサイズをもたらすことができる(例えば金属原子はまとまって金属ナノ結晶になることができ、そして液体中の特定の有機成分によって妨害されなければ、結晶は成長して種々の形状及びサイズになることができる)。結晶の核形成/成長条件が存在する時間量は、成長するナノ結晶の形状及びサイズを制御することができる。従って、電極における滞留時間又は電極の周りの滞留時間、液体流量、トラフ断面形状などは全て、本明細書中の他の場所で論じられているようにナノ結晶成長条件に関与する。
好ましい実施態様の場合、五角両錐体のパーセントは、少なくとも約5%であるか又は約5%〜35%であり、より典型的には少なくとも約10%であるか又は約10%〜35%であり、さらにより典型的には少なくとも約15%であるか又は約15%〜35%であり、そしてさらにより典型的には少なくとも約25%であり、そしていくつかの事例では少なくとも約30%である。
別の好ましい実施態様の場合、四面体のパーセントは、少なくとも5%であるか又は約5%〜35%であり、より典型的には少なくとも約10%であるか又は約10%〜35%であり、さらにより典型的には少なくとも約15%であるか又は約15%〜35%であり、そしてさらにより典型的には少なくとも約25%であり、そしていくつかの事例では少なくとも約30%である。
さらに、五角両錐体と四面体との組み合わせは、少なくとも約15%であるか又は約15%〜50%であり、より典型的には少なくとも約20%であるか又は約20%〜50%であり、さらにより典型的には少なくとも約30%であるか又は約30%〜50%であり、そしてさらにより典型的には少なくとも約35%であり、そしていくつかの事例では少なくとも約45%である。
さらに、五角両錐体と四面体と八面体と六角形の組み合わせは、少なくとも約50%であるか又は約50%〜85%であり、より典型的には少なくとも約60%であるか又は約60%〜85%であり、さらにより典型的には少なくとも約70%であるか又は約70%〜85%であり、そしてさらにより典型的には少なくとも約70%であり、そしていくつかの事例では少なくとも約80%である。
本明細書中の好ましい実施態様の多くの場合、1つ又は2つ以上のAC源が利用される。1つの電極の「+」極性から同じ電極の「−」極性への変化速度はヘルツ、Hz、周波数、又は1秒当たりのサイクル数として知られている。米国内では標準出力周波数は60Hzであり、これに対して欧州ではほとんどが50Hzである。本明細書中の「例」に示すように、周波数も、本明細書中の電気化学技術に従って形成されたナノ結晶のサイズ及び/又は形状に影響を及ぼすこともできる。好ましい周波数は5〜1000Hz、より典型的には20〜500Hz、さらに典型的には40〜200Hz、さらにより典型的には50〜100Hzである。例えば、特定の理論又は説明に縛られたくはないが、核形成された結晶又は成長中の結晶は先ず、例えば異符号吸引に起因して、結晶(又は結晶の形成に関与する結晶成長成分、例えばイオン又は原子)に加えられた吸引力を有することができ、次いで(例えば同符号反発に起因して)反発力がこのような成分に加えられる。これらのファクタも明らかに、粒度及び/又は粒子の形状に影響を与え、また、還元剤又は界面活性剤(すなわち、従来技術である還元化学技術に関与するために添加することが必要となるもの)を必要とすることなしに、結晶が形成されるのを可能にして、このような添加化学種をナノ結晶表面が含まないようにすることによって形成される新規のナノ結晶の核形成及び/又は結晶成長に大きな役割を果たす。成長したナノ結晶の表面上に有機系被膜がないことは、これらの生物学的機能を変える(そしていくつかの事例では制御する)。
さらに、特定の周波数のために使用される特定の波形も、ナノ結晶成長条件に影響を与え、ひいてはナノ結晶のサイズ及び/又は形状にも影響を及ぼす。米国が使用する標準AC周波数は60Hzであり、「正弦」波の標準波形も使用する。本明細書中の「例」に示されているように、波形を正弦波から方形波又は三角波へ変化させると、このこともナノ結晶結晶化条件に影響を及ぼし、ひいては、結果として生じるナノ結晶サイズ及び形状にも影響を与える。好ましい波形は、正弦波、方形波、及び三角波を含むが、しかしハイブリッド波形も、本発明の範囲に含まれるものと考えるべきである。
さらに、本明細書中に開示された新規の電気化学技術において印加された電圧も、ナノ結晶のサイズ及び形状に影響を与えることができる。好ましい電圧範囲は20〜2000ボルト、より好ましい電圧範囲は50〜1000ボルトであり、そしてさらにより好ましい電圧範囲は100〜300ボルトである。電圧に加えて、これらの電圧と一緒に使用されるアンペア数は典型的には、0.1〜10アンペア、より好ましいアンペア数範囲は、0.1〜5アンペア、そしてさらにより好ましいアンペア数範囲は、0.4〜1アンペアである。
本明細書中に開示された新規の電気化学技術において印加されたそれぞれの波形に対応して使用される「デューティ・サイクル」も、ナノ結晶のサイズ及び形状に影響を与えることができる。これに関して、特定の理論又は説明に縛られたくはないが、電極が正にバイアスされている時間量は、第1の一連の反応をもたらすことができ、これに対して、電極が負にバイアスされているときには、異なる一連の反応が発生し得る。電極が正又は負にバイアスされている時間量を調節することによって、成長したナノ結晶のサイズ及び/又は形状を制御することができる。さらに、電極が+又は−に変換する速度も、波形形状の関数であり、これもまたナノ結晶のサイズ及び形状に影響を与える。
温度も重要な役割を果たす。本明細書中に開示された好ましい実施態様のいくつかでは、金ナノ結晶が核形成されて成長させられる処理容器の少なくとも一部で、水の沸点温度に近づく。例えば、本明細書中の連続式処理の例における流出水の温度は、約60℃〜99℃である。しかしながら、本明細書中の他の場所で論じたように、異なる温度範囲も望ましい。温度は、結果として生じる生成物(例えばナノ結晶のサイズ及び/又は形状)並びに結果として生じる生成物の量(すなわち、懸濁液又はコロイド中のナノ結晶のppmレベル)に影響を与えることができる。例えば、(本明細書中の「例」のいくつかに開示されているような)種々の周知の技術によってトラフ部材30内の液体3を冷却することが可能ではあるものの、本明細書中の例の多くは液体3を冷却することはなく、その結果、その処理中に液体3の一部を蒸発させる。
図11aは、入口部分又は入口端部31と出口部分又は出口端部32とを含む、図10bに示された1つのトラフ部材30のほぼ全体の1実施態様を示す斜視図である。本明細書中で他の図面において論じた流動方向「F」は、端部31で又は端部31の近くで入り(例えば、入口部分31で又は入口部分31の近くでトラフ部材30内に流体を供給する適宜の手段を利用する)、そして端部32を通ってトラフ部材30を出る液体に相当する。図11bは、トラフ部材30に取り外し可能に取り付けられた3つの制御装置20a,20b及び20cを含有する、図11aのトラフ部材30を示している。電極1及び/又は5を含有する制御装置20a,20b及び20cの相互作用及び動作に関しては、本明細書中で後から詳しく論じる。しかしながら、本発明の好ましい実施態様の場合、制御装置20は、トラフ部材30の上側部分に取り外し可能に取り付けることができるので、制御装置20は、トラフ部材30に沿った種々異なる位置に位置決めすることができ、これにより、或る特定の処理パラメータ、生成される成分(例えばナノ結晶のサイズ及び形状)、生成される成分の反応性、並びにこれから生成されるナノ結晶/流体に影響を与えることができる。
図11cは、雰囲気制御装置カバー35’を示す斜視図である。雰囲気制御装置又はカバー35’には、複数の制御装置20a,20b及び20cが取り付けられている。制御装置20a,20b及び20cは、電極1及び/又は5に制御可能に取り付けられている。カバー35’は、トラフ部材30の長手方向の大部分(長手方向の50%超)の内部及び/又は大部分に沿って雰囲気を制御する能力を提供するように意図されているので、任意の電極1と液体3の表面2との間に生成された任意の調節可能なプラズマ4は、電圧、電流、電流密度、極性など(本明細書中の別の個所で詳細に論じる)、並びに制御された雰囲気の前述のパラメータの関数であり得る(本明細書中の別の個所で詳細に論じる)。
図11dは、トラフ部材30を(その外部で)支持し、また制御装置20(図11dには示されていない)を(少なくとも部分的に)支持するための付加的な支持手段34を含む、図11cの装置を示している。例えば、この開示内容の範囲に含まれるトラフ部材30、雰囲気制御装置(例えばカバー35’)及び外部支持手段(例えば支持手段34)に対して示される断面形状に関して、種々の詳細を変化させることができることは、読者には明らかである(本明細書中の別の個所で詳細に論じる)。
図11eは、トラフ部材30の別の構造を示している。具体的には、トラフ部材30は斜視図で示されており、「Y字形」である。具体的には、トラフ部材30は上側部分30a及び30bと、下側部分30oとを含む。同様に、入口31a及び31bが、出口32とともに設けられている。部分30dは、30aと30bとが30oに合体する点に相当する。
図11fは、図11eの部分30dがここではより明確な混合区分30d’として示されていることを除けば、図11eに示されているのと同じ「Y字形」トラフ部材を示している。これに関して、例えば部分30a,30b及び/又は30cのうちの1つ又は全てにおいて液体3中で製造又は産出される特定の成分は、点30d(又は30d’)で混ぜ合わされるのが望ましい場合がある。このような混合は、図11eに示された交差点30dで自然に発生してよく(すなわち特定の又は特別な区分30d’は必要でない)、或いは、部分30d’で、より特定的に制御されてもよい。言うまでもなく、部分30d’を任意の効果的な形状、例えば正方形、円形、長方形などに成形することもでき、トラフ部材30の他の部分に対して同じ又は異なる深さを有することもできる。これに関して、区域30dは混合ゾーン又は後続の反応ゾーン、又は処理増強剤を添加できるゾーンであってもよい。相互作用30d及び30d’のより詳細については、本明細書において後で論じる。
図11g及び11hは、「Ψ字形」トラフ部材30を示している。具体的には、新しい部分30cが加えられている。図11g及び11hの他の構成要件は、図11e及び11fに示された構成要件と同様である。
言うまでもなく、トラフ部材30のためには種々異なる形状及び/又は断面が存在し得る。これらの形状のいずれか1つが、設計及び製造上の種々様々な考慮事項の関数として、望ましい結果をもたらすことができる。例えば、部分30a,30b及び/又は30c内で生成される1種又は2種以上の成分は一時的(例えば種晶又は核生成の時点)且つ/又は半永久的(例えばコロイド中に存在する成長したナノ結晶)であってよい。例えば部分30a内で製造されたこのような成分を、例えば部分30b内で製造された1種又は2種以上の成分と望ましい状態で且つ制御可能に反応させることができるならば、このような混合から生じる最終生成物(例えば最終生成物の特性)は、部分30a及び30b内で形成された成分がいつ混合されるかの関数となり得る。また、区分30d(又は30d’)に流入する液体の温度を監視/制御することにより、最終生成物の或る望ましい特性を最大化し、且つ/又は或る望ましくない特性を最小化することができる。さらに、部分30a,30b,30c,30d及び/又は30oのうちの1つ又は2つ以上において(又はトラフ部材30内に任意の選択された点又は部分で)処理増強剤を選択的に利用してもよい。
図12aは、局所的雰囲気制御装置35を示す斜視図である。この雰囲気制御装置35は、電極セット1及び/又は5の周りの局所的雰囲気を制御する手段として機能するので、種々の局所的な気体を利用することにより、例えば電極1と液体3の表面2との間の調節可能なプラズマ4中の或る成分を制御し且つ/又はこれに影響を与え、また、電極5における及び/又は電極の周りの調節可能な電気化学反応に影響を与えることができる。雰囲気制御装置35内に示された貫通孔36及び37は、装置35の一部内を通って外部と連通するのを可能にするように設けられている。具体的には、孔又は入口37は、任意の気体種が装置35の内側に導入されるように入口接続部として設けられている。孔36は、これを貫通して延びる電極1及び/又は5のための連通ポートとして設けられている。これらの電極は、例えば装置35の上方に配置された制御装置20に接続されている。入口37を通って導入される気体は、局所的な外部雰囲気に対して正圧で提供すればよく、任意の好適な手段又は経路によって逃すことが許されてよい。気体を逃すことは、例えば、装置35の部分39a及び/又は39bが例えば少なくとも部分的に液体3の表面2の下方に沈められたときに、このような部分39a及び/又は39bの周りで発泡させることを含む。或いは、雰囲気制御装置35内の他の場所に、第2の孔又は出口(図示せず)を設けることもできる。一般には、部分39a及び39bは、液体3の表面2を分割することができ、これにより、表面2は、電極セット1及び/又は5の周りに局所的な雰囲気を形成するためのシール部分として効果的に作用させられる。所望される気体の正圧が入口ポート37を通って入るときに、小さな気泡を、例えば部分39a及び/又は39bを通過するように発生させることができる。或いは、気体は雰囲気制御装置35内の好適な出口を通って、例えば孔36を通って出ることもできる。
図12bは、支持ハウジング34内部に含まれるトラフ部材30の前景に設けられた第1の雰囲気制御装置35aを示す斜視図である。第2の雰囲気制御装置35bが含まれ、この上に配置された制御装置20が示されている。「F」は、トラフ部材30を通る液体3の長手方向流動方向を示している。所望の場合には、異なる電極セット1及び/又は5の周りの雰囲気(例えば実質的に同じ化学成分、例えば空気又は窒素から成る雰囲気、又は実質的に異なる化学成分、例えばヘリウム及び窒素から成る雰囲気)を局所制御することができる。
図13は、別の雰囲気制御装置38を示す斜視図である。ここでは、トラフ部材30全体と支持手段34とが雰囲気制御装置38内部に含まれている。この場合、例えば気体出口37a(37a’)と一緒に、気体入口37(37’)を設けることができる。雰囲気制御装置38上に気体入口37(37’)及び気体出口37a(37a’)を正確に位置決めすることは、便宜上の事柄であり、装置内部に含有される雰囲気の組成に応じて行われる。これに関して、気体が空気よりも重い又は空気よりも軽い場合、入口及び出口の位置はこれに応じて調節することができる。これらのファクタの特徴について、本明細書中で後から詳しく論じる。
図14は、本発明の好ましい実施態様のうちのいくつかの教示内容に従って利用される一般的な装置を示す概略図である。具体的には、この図14は、液体3を含有するトラフ部材30を示す側面概略図である。トラフ部材30の上側に、複数の制御装置20a〜20dが載置されており、これらの制御装置はこの実施態様では、取り外し可能にトラフ部材30に取り付けられている。制御装置20a〜20dはもちろん、本発明の種々の実施態様を実施するときに、永久的に所定の位置に固定されていてよい。制御装置20(及び対応する電極1及び/又は5並びにこのような電極の構造)の正確な数、及び制御装置20(及び対応する電極1及び/又は5)の位置決め又は配置は、本明細書中の他の個所で詳しく論じる本発明の種々の好ましい実施態様の関数である。しかしながら、一般には、流入液体3(例えば水又は純水)は、液体搬送手段40(例えば液体ポンプ、液体3をポンピングするための重力、液体ポンピング手段)、例えば液体3をトラフ部材30内にその第1端部31でポンピングするための蠕動ポンプ40に提供される。正確にどのように液体3が導入されるかについては、本明細書中の他の個所で詳しく論じる。液体搬送手段40は、例えば重力送り手段又は静水圧手段、ポンピング手段、調節手段又は弁手段などを含む、液体3を動かすための任意の手段を含んでいてよい。但し、液体搬送手段40は、既知量の液体3をトラフ部材30内に信頼性高く且つ/又は制御可能に導入できなくてはならない。液体3がトラフ部材30内部(例えば1つ又は2つ以上の電極1/5又はその周り)に含有されている時間量も、生成される生成物に影響を与える(例えば成長したナノ結晶のサイズ及び/又は形状)。
一旦、液体3がトラフ部材30内に提供されると、トラフ部材30内部で液体3を連続して動かす手段が必要とされることも必要とされないこともある。しかしながら、液体3を連続して動かす単純な手段は、トラフ部材30が、これが載置された支持面に対して僅かな角度θ(低粘度流体3、例えば水の場合には1度未満〜数度)を成して設置されることを含む。例えば、液体3の粘度が余りにも高くない限り(例えば水の粘度付近の任意の粘度は、一旦このような流体がトラフ部材30内部に含有又は配置されたら、重力流によって制御することができる)、支持面に対して約6フィート(約1.8メートル)だけ間隔を置いて設けられた入口部分31と出口部分32との間に1インチ未満の鉛直方向高さの差を形成するだけで済む。これに関して、図15a及び15bは、水のような低粘度流体を含む種々の粘度を処理することができるトラフ部材30に対する、2つのそれぞれ許容し得る角度θ1及びθ2を示している。より大きい角度θは、粘度が水よりも高い液体3を処理する結果として、また、液体3がより高速でトラフ30を通過する必要があるときなどに、必要となることがある。さらに、液体3の粘度が重力単独では不十分なほど増大するときには、静水圧ヘッド圧又は静水圧を具体的に用いるように他の現象を利用して、望ましい流体流を達成することもできる。さらに、トラフ部材30に沿って液体3を動かすための付加的な手段を、トラフ部材30内部に設けることもできる。流体を動かすためのこのような手段は、機械手段、例えばパドル、ファン、プロペラ、オーガーなど、音響手段、例えばトランスデューサ、熱手段、例えばヒータ及び/又は冷却器(付加的な処理上の利益を有することができる)などを含み、これらは、本発明と一緒に使用するのに望ましい。
図14はまた、トラフ部材30の端部32に設けられた貯蔵タンク又は貯蔵器41を示している。このような貯蔵器41は、例えばトラフ部材30内部に産出された液体3(又は液体中に含有される成分)と不都合に相互作用することのない1種又は2種以上の材料から成る任意の許容し得る容器及び/又はポンピング手段であってよい。許容し得る材料の一例としては、プラスチック、例えば高密度ポリエチレン(HDPE)、ガラス、金属(例えば特定の等級のステンレス鋼)などが挙げられる。さらに、この実施態様では貯蔵タンク41が示されているが、タンク41は、トラフ部材30内で処理された流体3を分配するか又は直接にボトリング又はパッケージングするための手段を含むものとして理解されるべきである。
図16a,16b及び16cは、本発明の1つの好ましい実施態様の斜視図を示している。これらの図16a,16b及び16cにおいて、8つの別個の制御装置20a〜hがより詳細に示されている。このような制御装置20は、例えば図8a,8b,8c及び8dに示された電極構造のうちの1つ又は2つ以上を利用することができる。制御装置20(及び対応する電極1及び/又は5)の正確な位置決め及び作業については、本明細書中の別の個所で詳細に論じる。図16bは、2つの空気分配装置又は空気処理装置(例えばファン342a及び342b)を使用することを含む。これらの空気処理装置は、例えば電極1/5の周りに生成された湿った空気を除去するのを支援することができる。具体的には、ある程度の湿度が望ましい場合があるが、しかし他の事例では、過度の局所的湿度は望ましくないこともある。同様に、図16cは、2つの別の空気分配装置又は空気処理装置342c及び342dを使用することを含む。
例えば図2、3、14、及び16に全体的に示された電極制御装置は、図17d、17e、17f、17m、及び17nに詳細に示されている。具体的には、これらの図17d、17e、17f、17m、及び17nは、本発明の制御装置20の1実施態様を示す斜視図である。
先ず、特に図17d、17e、及び17fを参照する。これら3つの図のそれぞれにおいて、ベース部分25が設けられており、前記ベース部分は上側部分25’と下側部分25’’とを有している。ベース部分25は、例えば構造用プラスチック、樹脂、ポリウレタン、ポリプロピレン、ナイロン、テフロン、ポリビニルなどから形成された材料を含む好適な剛性プラスチック材料から成っている。2つの電極調節集成体の間に隔壁27が設けられている。隔壁27は、ベース部分25を含む材料と同様の又は異なる材料から形成することができる。ベース部分25の表面25’に、2つのサーボ−ステッピングモータ21a及び21bが固定されている。ステッピングモータ21a,21bは、ステッピングモータ21a/21bの周方向運動が、モータと連通する電極1又は5を鉛直方向に昇降させるように、僅かに運動可能な(例えば360度を基準として、1度よりも僅かに小さく運動可能又は僅かに大きく運動可能な)いかなるステッピングモータであってもよい。これに関して、第1のホイール状の構成部分23aが、駆動モータ21aの出力軸231aに結合された駆動輪であるので、駆動軸231aが回転すると、駆動輪23aの周方向運動が形成される。さらに、追従輪24aが駆動輪23aに押しつけられるので、これらの間に摩擦接触が存在する。駆動輪23a及び/又は追従輪24aは、電極1,5を収容するのを助けるためにその外側部分に切欠き又は溝を含んでいてよい。追従輪24aは、追従輪24aに取り付けられた部分241a及び261aの間に配置されたばね285によって、駆動輪23aに押しつけられる。具体的には、ブロック261aから延びる軸262aの部分の周りにコイルばね285を配置することができる。ばねは、駆動輪23aと追従輪24aとの間に妥当な摩擦力を生じさせるのに十分な張力を有することにより、軸231aが所定の量だけ回転すると、電極集成体5a,5b,1a,1bなどがベース部分25に対して鉛直方向に動くようになるべきである。駆動輪23aのこのような回転運動又は周方向運動の結果、図示の電極1,5を直接、鉛直方向に移動させる。駆動輪23aの少なくとも一部が、電気絶縁材料から形成されているべきであり、これに対して追従輪24aは、導電性材料又は電気絶縁材料から、しかし好ましくは電気絶縁材料から形成することができる。
駆動モータ21a/21bは、小さく回転することができる(例えば1°/360°を僅かに下回るか又は1°/360°を僅かに上回る)ので、駆動軸231aの小さな回転変化は、電極集成体の小さな鉛直方向の変化に変換される。好ましい駆動モータは、RMS Technologies製の駆動モータ、モデル1MC17-S04ステッピングモータを含む。これはDC作動型駆動モータである。このステッピングモータ21a/21bはそれぞれRS-232接続部22a/22bを含む。この接続部は、ステッピングモータが、遠隔制御装置、例えばコンピュータ又はコントローラによって駆動されるのを可能にする。
部分271,272及び273はトラフ部材30に対するベース部分25の高さを調節する、主に高さ調節部分である。部分271,272及び273は、ベース部分25と同じ、類似の、又は異なる材料から形成することができる。部分274a/274b及び275a/275bも、ベース部分25と同じ、類似の、又は異なる材料から形成することができる。但しこれらの部分は、これらが電圧及び電流を電極集成体1a/1b,5a/5bなどに供給することに関連する種々のワイヤー構成部材を収容する点で、電気絶縁部分であるべきである。
図17dに具体的に示された電極集成体は、電極5a及び5b(例えば、図3cに示された電極集成体に相当)を含む。しかしこの電極集成体は電極1だけ、電極1及び5、電極5及び1、又は電極5だけを含むこともできる。これに関しては、図17eは、図17dに示された2つの電極5a/5bの代わりに2つの電極1a/1bが設けられている集成体を示している。図17eに示された全ての他の要素は、図17dに示されたものと同様である。
図17d、17e及び17fに示された制御装置20のサイズに関して、寸法「L」及び「W」は、ステッピングモータ21a/21bのサイズ及びトラフ部材30の幅を収容する任意の寸法であってよい。これに関して、図17fに示された寸法「L」は、この寸法「L」が少なくともトラフ部材30の幅と同じ長さであるように、また典型的には僅かに長く(例えば10〜30%)なるのに十分である必要がある。図17fに示された寸法「W」は、ステッピングモータ21a/21bを収容するのに十分に幅広であり、しかも、トラフ部材30の長さに沿った長手方向スペースを不必要に遊ばせておくほどには幅広でないことが必要である。本発明の1つの好ましい実施態様の場合、寸法「L」は約7インチ(約19ミリメートル)であり、寸法「W」は約4インチ(約10.5ミリメートル)である。ベース部材25の厚さ「H」は、ベース部材25のために構造的、電気的及び機械的剛性を提供するのに十分な任意の厚さであり、約1/4インチ〜3/4インチ(約6mm〜19mm)のオーダーであるべきである。これらの寸法はさほど重要ではないが、これらの寸法は、本発明の1つの好ましい実施態様の特定の構成部分の大まかなサイズを理解することを可能にする。
さらに、図17d、17e及び17fに示された本発明の実施態様のそれぞれにおいて、ベース部材25(及びこれに装着された構成部分)を、好適なカバー290(図17fに示される)によってカバーすることにより、電気的に絶縁し、またベース部材25に取り付けられた構成部分の全てのための局所的な保護環境を形成することができる。このようなカバー290は、好適な安全性及び動作柔軟性を提供する任意の好適な材料から形成することができる。材料の例は、トラフ部材30の他の部分及び/又は制御装置20のために使用されるものと同様のプラスチックを含み、好ましくは透明である。カバー部材290は、ベース部分25を形成するために使用されるものと同じタイプ材料から形成することもできる。カバー部材290は、2つの貫通孔291及び292を有するものとして示されている。具体的には、これらの貫通孔は例えば、電極5の余剰部分と整列させることができる。これらの余剰部分は、例えば電極ワイヤーのスプールに接続することができる(これらの図面に示されていない)。
図17m及び17nは、制御装置20の別の形態を示す。これらの装置において、同じ符号を有する構成部分は、図17d、17e及び17fに示された構成部分と事実上同じである。図17m及び17nに示された制御装置20の主要な違いは、図17d、17e及び17fの実施態様に示された追従輪24a又は24lを設けるのではなく、同様のマスタープーリ又は駆動プーリ23aが設けられている一方、図17mに示されているように弾性電気コンタクト装置242(図17nでは242a/242b)が設けられていることである。この点に関して、部分242,242a及び242bは、その間に設けられるようになっているワイヤー5a又は5bのために弾性張力を提供する。加えて、この制御装置のデザインによって、電源50/60と電極1/5との間に電気的な接続が生じる。サーボモータ21aは上述のように機能するが、しかし、単一の電極(図17m)又は2つの電極(図17n)が単一のサーボ駆動モータ21aによって駆動される。従って、図17nに示された実施態様において、単一の駆動モータ21aが2つの駆動モータの代わりとなることができる。さらに、電気コンタクトをワイヤー1/5と電源50/60との間に設けることにより、頂面上に全ての電気接続部が提供される(すなわちこの表面は液体3から大きく離れ、設計及び製造上の或る特定の利点をもたらす)。
図17d及び17eは耐火材料構成部材29を示している。構成部材29は、例えば酸化アルミニウムなどを含む好適な耐火成分から形成されている。耐火部材29は、電極1及び/又は5との電気的な接続を可能にする横方向貫通孔を有していてよい。さらに、長手方向貫通孔が耐火部材29の長さに沿って存在しているので、電極集成体1/5がこれを貫通して延びることができる。
図17eは、制御装置20の底部を示す斜視図である。図17eにおいて、1つの電極1aは、第1耐火部分29aを通って延びるものとして示されており、そして1つの電極5aは、第2耐火部分29bを通って延びるものとして示されている。従って、本明細書中に明示的に開示された、また本明細書中で言及された電極集成体のそれぞれは、ここに示された制御装置の好ましい実施態様との組み合わせで利用することができる。
制御装置20を作動させるためには、2つの大まかなプロセスが行われることが必要である。第1プロセスは、電極1及び/又は5を電気的に活性化する(例えば、好ましい電源10から電力を印加する)ことを伴い、また、第2の大まかなプロセスの発生は、例えばどれだけ多くの電力を電極に印加するかを割り出し、このような割り出した値に応じて電極1/5の高さを適切に調節する(例えば電極1/5の高さを手動及び/又は自動で調節する)こと、あるいは、時間の関数として、電極高さを調節するか又は電極を液体3と接触しもしくは接触しないように単純に動かす(すなわち、電極5を液体3を通して漸進的に動かす)こと、を伴う。制御装置20を利用する場合、好適な支持が、RS-232ポート22a及び22bを介してステッピングモータ21に伝えられる。制御装置20の構成部分、並びに電極活性化プロセスの重要な実施態様については、本明細書中で論じる。
本発明の好ましい実施態様は、種々の図面に示された自動制御装置20を利用する。例えば図17d〜17f及び17m〜17nに示されたステッピングモータ21a及び21bは、図17g〜17j(例えばプラズマ4を形成する電極セット1/5又は電極セット5/5に対応)のそれぞれに示された電気回路によって制御されるか、又は本明細書中のいくつかの実施態様の場合、電極セット5/5に対応して図17k及び17lのそれぞれに示された電気回路によって制御される。
具体的には、この実施態様では、図17jの電気回路は電圧監視回路である。具体的には、変圧器60内の二次コイル603の出力脚部のそれぞれから出力された電圧が、点「P−Q」及び点「P’−Q’」にわたって監視される。具体的には、「RL」によって示された抵抗器は、マルチメータ測定装置(図示せず)の内部抵抗に相当する。点「P−Q」及び「P’−Q’」の間で測定された出力電圧は典型的には、本明細書中で後から「例」の項で示すいくつかの好ましい実施態様の場合、約200ボルト〜約4,500ボルトである。しかしこれよりも高い、またこれよりも低い電圧も、本明細書中に開示された実施態様の多くと連携することができる。本明細書中の後述の例1〜4において、トラフ部材30に沿った各位置における各電極セット1及び/又は5毎に、望ましいターゲット電圧が割り出されている。このような望ましいターゲット電圧は、例えば図17g、17h及び17iに示された回路制御を利用することによって、実際の印加電圧として達成される。これら図17g及び17hにはVelleman K8056回路集成体(マイクロチップPIC16F630-I/Pを有する)によって制御されたリレーセットを示している。具体的には、「P−Q」又は「P’−Q’」の位置を横切って、電圧が検出され、そしてこのような電極は、所定の基準電圧と比較される(実際にターゲット電圧範囲と比較)。例えば点「P−Q」を横切る測定電圧が、所定の電圧ターゲット範囲の最高値に接近しつつあると、例えば、Velleman K8056回路集成体により、サーボモータ21(図17fを具体的に参照)が、電極5aを流体3に向かって且つ/又は流体3中に降下させるように、時計回り方向に回転させられる。これとは対照的に、点「P−Q」又は「P’−Q’」のいずれかを横切る測定電圧がターゲット電圧の最低値に接近しつつあると、例えばここでもまた図17fを参照して、サーボモータ21aにより、駆動輪23aが反時計回りに回転させられ、これにより、流体3に対して電極5aを上昇させる。
本発明の例1〜4におけるそれぞれの電極セットは、確立されたターゲット電圧範囲を有している。許容範囲のサイズ又は規模は、ターゲット電圧の約1%と、約10%〜15%との間の量だけ変換する。本発明のいくつかの実施態様は、電圧の変化に対してより鋭敏であり、これらの実施態様の許容電圧範囲は典型的にはより狭くなり、これに対して本発明の他の実施態様は、電圧に対してさほど鋭敏ではなく、これらの実施態様の許容電圧範囲は典型的にはより広くなる。従って、図17jに示された回路図を利用することにより、変圧器60の二次コイル603から出力された実電圧が、「RL」で(端子「P−Q」又は「P’−Q’」を横切って)測定され、そして次いで所定の電圧範囲と比較される。サーボモータ21は、必要に応じて、時計回り方向又は反時計回り方向で所定の量だけ回転することにより応答する。さらに、具体的に図17g〜17jを参照して、各電極の電極を割り出し、(必要であれば)高さを調節し、次いで次の電極に進むことにより、問い合わせ手順が順次生じることに注目すべきである。換言すれば、各変圧器60は、図17jに示された形式で電気的に接続される。各変圧器60及び関連する測定点「P−Q」又は「P’−Q’」が、個々のリレーに接続されている。例えば、点「P−Q」は、図17gのリレー501に相当し、点「P’−Q’」は、図17gのリレー502に相当する。従って、2つのリレーが各変圧器60に対して必要となる。各リレー501,502などは順次、二次コイル603の第1脚部からの第1出力電圧を問い合わせ、次いで二次コイル603の第2脚部からの第2出力電圧を問い合わせ、そしてこのような問い合わせは、第2変圧器60bの二次コイル603の第1脚部からの第1出力電圧に対して、次いで二次コイル603の第2脚部に対して、以下同様に続けられる。
開示された電極高さ調節技術のためのコンピュータ又は論理制御は、例えば、好ましい実施態様の場合、PC内で利用される標準的なビジュアル・ベーシック・プログラミング・ステップを含む任意のコンベンショナルのプログラム又はコントローラによって達成される。このようなプログラミング・ステップは、問い合わせ、読み取り、比較、及び適切な作動符号の送信を行うことにより、電圧を増減する(例えば液体3の表面2に対して電極を昇降させる)ことを含む。このような技術は、当業者には明らかなはずである。
さらに、電極セット5/5’のための例16において利用される本発明の別の好ましい実施態様の場合、自動制御装置20は、例えば図17h,17i,17k及び17lの電気回路によって制御される。具体的には、図17lの電気回路は、電流を測定するための電圧監視回路である。この場合、電圧及び電流は、抵抗器の選択により同じ数値である(本明細書中で後から論じる)。具体的には、変圧器50のそれぞれから出力された電圧が、点「P−Q」及び点「P’−Q’」にわたって監視される。具体的には、「RL」によって示された抵抗器は、マルチメータ測定装置(図示せず)の内部抵抗に相当する。点「P−Q」及び「P’−Q’」の間で測定された出力電圧は典型的には、本明細書中で後から例において示すいくつかの好ましい実施態様の場合、約0.05ボルト〜約5ボルトである。しかしこれよりも高い、またこれよりも低い電圧も、本明細書中に開示された実施態様の多くと連携することができる。トラフ部材30b’に沿った各位置における各電極セット5/5’毎に、望ましいターゲット電圧が割り出されている。このような望ましいターゲット電圧は、例えば図17h,17i,17k及び17lに示された回路制御を利用することによって、実際の印加電圧として達成される。これらの図17は、Velleman K8056回路集成体(マイクロチップPIC16F630-I/Pを有する)によって制御されたリレーセットを示している。
具体的には、例16の実施態様において、サーボモータ21は、望ましい電極5プロフィールを維持するために、具体的な所定の時点で回転させられる。サーボモータ21は、時計回り方向で所定の量だけ回転することにより応答する。具体的には、サーボモータ21は、電極5が雌受容体部分o5(例えば、図20及び21のうちのいくつかに示されている)に向かってそしてその内に約0.009インチ(0.229mm)前進させられる。こうして、電極5は液体3を通って徐々に前進させられる。本明細書中で論じられた1つの好ましい実施態様の場合、このような電極5運動は、約5.8分毎に生じる。従って、各電極5の雌受容体部分o5内への鉛直運動速度は、8時間毎に約3/4インチ(約1.9cm)である。従って、実質的に一定の電極5の形状又はプロフィールは、液体3内及び液体3を通って電極を一定に又は徐々に前進させることによって維持される。さらに、電極5の前端部が雌受容体部分o5内の長手方向端部に達したら、電極5を処理装置から取り外すことができる。或いは、電極の「使用済」部分を捕集するための電極捕集手段を設けることもできる。
電極5を捕集するためのこのような手段の一例としては、巻き取り又はスプール装置、及び延長部分o5、ワイヤークリッピング装置、又はワイヤー切断装置などが挙げられる。しかし、種々異なる電流/電圧プロフィール、ひいては種々異なるナノ結晶サイズ及び/又は形状を達成するために、他の電極運動速度も本発明の範囲に含まれる。
さらに、図17h,17i,17k及び17lを具体的に参照すると、各電極の電圧を割り出すことにより、問い合わせ手順が順次生じることに注目すべきである。この電圧は例16の実施態様では、アンペア数と等価である。なぜならば、図17lでは、抵抗器Ra及びRbはほぼ1オームであり、従ってV=1であるからである。換言すれば、各変圧器50は、図17h,17i,17k及び17lに示されている形式で電気的に接続される。各変圧器50及び関連する測定点「P−Q」又は「P’−Q’」が、2つの個々のリレーに接続されている。例えば、点「P−Q」は、図17kのリレー501及び501’に相当し、点「P’−Q’」は、図17kのリレー502及び502’に相当する。従って、リレーが各電極セット5/5に対して必要となる。各リレー501/501’及び502/502’などは順次、変圧器50からの出力電圧を問い合わせ、次いで同じ変圧器50からの第2電圧を問い合わせ、以下同様に続ける。
開示された電極高さ調節技術のためのコンピュータ又は論理制御は、例えば、好ましい実施態様の場合、PC内で利用される標準的なビジュアル・ベーシック・プログラミング・ステップを含む任意のコンベンショナルなプログラム又はコントローラによって達成される。このようなプログラミング・ステップは、読み取り、及び適切な作動符号の送信を行うことにより、液体3の表面2に対して電極を降下させることを含む。このような技術は、当業者には明らかなはずである。
定義
本発明の目的上、明細書及び特許請求の範囲に現れる下記用語及び表現は、下記の意味を有するものとする:
本明細書中の例23に使用される「カルボマー」は、使用しやすさのために自己湿潤性が増強された効率的なレオロジー改質をもたらす、合成的に誘導された架橋型ポリアクリル酸ポリマーのクラスを意味する。一般に、カルボマー/溶媒混合物を塩基、例えばトリエタノールアミン又は水酸化ナトリウムで中和してポリマーを完全に開くことにより、クリーム又はゲルを形成するための所望の増粘、懸濁、及びエマルジョン安定化特性を達成する。
本明細書中に使用される「実質的にクリーン」という用語は、ナノ結晶表面を記述するために使用されるときには、本明細書の「例」に示された金ナノ結晶の重要な特性のうちの少なくとも1つつにおいてナノ結晶の機能を物質的に変化させるような量で、化学成分が結晶表面に接着又は付着されることがないことを意味する。或いは、金ナノ結晶は、有意な部分(例えば結晶の少なくとも25%、又は別の実施態様では結晶の少なくとも50%)を覆う層、表面、又は膜を有さない。この用語はまた、ナノ結晶表面が、その機能を物質的に変化させるいかなる有機汚染物質も、裸の金結晶表面上に全く含んでいないことを意味することもできる。なお、本発明のナノ結晶の機能には不都合又は物質的な影響を及ぼすことのない、本発明のナノ結晶に付着させられる偶発的な成分は、本発明の範囲内に含まれるものとなおも考えるべきである。この用語はまた、本発明の成長したナノ結晶の表面上に伝統的な有機系分子(すなわち伝統的な還元化学技術において使用される分子)がないことを意味する相対的な用語であると理解されたい。
本明細書中に使用される「診断有効量」という用語は、疾患又は状態の診断が可能になるように、MIF化合物複合体の検出を可能にするためにMIFに結合するのに十分な量を意味する。
本明細書中に使用される「有効量」という用語は、例えば所期投薬計画に従って投与されたときに、所期MIFサイトカイン阻止活性又は処置活性又は治療活性、又は疾患/状態予防又はMIFシグナル伝達経路を提供する溶液又は化合物の量を意味する。投薬は、分、時間、日、週、月、又は年単位のインターバルで、或いはこれらの期間のうちのいずれか1期間にわたって連続的に行ってよい。
本明細書中に使用される「免疫特権」は、免疫系から応答(例えば炎症免疫応答)を正常に引き出す抗原の存在を容認する、生物系(例えば身体)内の領域又は部位を意味する。
ステントに「動作可能に被覆する」という用語は、被覆済ステントが施されたときに、治療されるべき周囲の組織内への本発明の金属系ナノ結晶(水性金系金属、及び/又は金と他の金属との混合物、及び/又は金と他の金属との合金を含む)の適時の放出を可能にするように、ステントに被覆を施すことを意味する。
本明細書中に使用される「処理増強剤(process enhancer又はprocessing enhancer)」又は「処理増強された」という用語は、少なくとも1種の材料(固体、液体及び/又はガス)、典型的には無機材料であって、形成された金ナノ結晶に有意には結合せず、むしろ電気化学的刺激を受ける成長プロセス中の核形成及び/又は結晶成長を容易にするものを意味する。材料は、結晶が成長するのを可能にするように、電気化学的溶液中に荷電イオンを提供することを含むプロセスにおいて重要な役割を担う。処理増強剤は極めて重要なことには、溶液中に残り、且つ/又は被膜(1実施態様では有機被膜)を形成することがなく、且つ/又は形成済ナノ結晶又は形成済懸濁液に不都合な影響を及ぼすことがなく、且つ/又は電気化学的プロセス中に破壊、蒸発されるか、又はその他の形で失われる化合物である。
本明細書中に使用される「ステロイド節約」という用語は、兆候を治療/予防するのに効果的であることが必要とされるステロイド量を低減する併用療法においてステロイド以外の物質を提供することを意味する。
本明細書中に使用される「トラフ部材」という表現は、ここに開示された電気化学プロセスと適合し得る限り、管、半管、材料又は物体中に存在する通路又は溝、導管、ダクト、チューブ、シュート、ホース及び/又は樋を含む多種多様の流体処理装置を意味するものと理解されたい。
下記例は、本発明の或る実施態様を説明するのに役立つが、しかし添付の特許請求の範囲において定義された開示内容の範囲を限定するものとして解釈するべきではない。
例1〜4
金系ナノ粒子/ナノ粒子溶液
GT032,GT031,GT019及びGT033の製造

一般に、例1〜4のそれぞれは、図16b、16c及び16gに大まかに示された装置と関連する本発明の或る実施態様を利用する。処理及び装置の具体的な差異は、各例において明らかになる。トラフ部材30はプレキシガラスから形成した。プレキシガラスの全ての厚さは約3mm〜4mm(約1/8インチ)であった。支持構造34も、約1/4インチ厚(約6mm〜7mm厚)であるプレキシガラスから形成した。トラフ部材30の断面形状は、図10bに示された形状に相当した(すなわち切頂「V」)。切頂「V」のベース部分「R」は約0.5インチ(約1cm)であり、そして各サイド部分「S」,「S’」は約1.5インチ(約3.75cm)であった。V字形トラフ部材30のサイド部分「S」,「S’」を離隔する距離「M」は約(2+1/4)インチ〜(2+5/16)インチ(約5.9cm)(内側から内側まで測定)であった。各部分の厚さはまた、約1/8インチ(約3mm)厚であった。V字形トラフ部材30の長手方向長さ「LT」(図11a参照)は、点31から点32まで、約6フィート(約2メートル)長であった。トラフ部材30の端部31から端部32までの鉛直方向高さの差は、その6フィートの全長(約2メートル)にわたって、約1/4インチ〜1/2インチ(約6〜12.7mm)(すなわち1°未満)であった。
例1の流入液体3として、精製水(本明細書中で後から論じる)を使用した。例2〜4では、トラフ部材30内に流入させられる液体3に、処理増強剤を添加した。添加される具体的な処理増強剤、並びにその具体的な量はこれらの例において効果的であった。しかしながら、他の処理増強剤及びその量も、この開示内容の範囲に含まれるものと見なすべきであり。また、これらの具体例は本発明の範囲を限定するものと見なされるべきではない。V字形トラフ部材30内の水3の深さ「d」(図10b参照)は、トラフ部材30に沿った種々の点において、約7/16インチ〜約1/2インチ(約11mm〜約13mm)であった。深さ「d」は、ダム80(図15a及び15bに示す)を使用することによって部分的に制御した。具体的に、ダム80は端部32の近くに設けられ、約7/16インチ〜約1/2インチ(約11mm〜約13mm)の深さになるように深さ「d」(図10bに示す)を形成するのを助けた。ダム80の高さ「j」は約1/4インチ(約6mm)であり、また長手方向長さ「k」は約1/2インチ(約13mm)であった。幅(図示せず)は、トラフ部材30の底部寸法「R」を完全に横切る。従って、動作中のV字形トラフ部材30内の水3の総体積は、約26立方インチ(約430ml)であった。
トラフ部材30内への水3の流量は約90ml/分であった。トラフ部材30内部で或る程度蒸発することにより、トラフ部材30の流出量は僅かに少なく、約60〜70ml/分であった。トラフ部材30内への水3のこのような流量は、定格0.1馬力、10-600rpmのMasterflex(登録商標) L/Sポンプ駆動装置40を利用することにより得られた。Masterflex(登録商標)ポンプ40のモデル番号は77300-40であった。ポンプ駆動装置は、Easy-Load Model No. 7518-10として知られている、これもMasterflex(登録商標)製のポンプヘッドを有した。一般的に言うと、ポンプ40のためのヘッドは蠕動ヘッドとして知られている。ポンプ40及びヘッドは、Masterflex(登録商標) LS Digital Modular Driveによって制御された。Digital Modular Driveのモデル番号は77300-80である。Digital Modular Driveの正確な設定値は例えば、1分間当たり90ミリリットルであった。蠕動ヘッド内に、直径1/4インチ(すなわちサイズ06419-25)のTygon(登録商標)管を入れた。管は、Masterflex(登録商標)のためにSaint Gobainによって製造された。管の一方の端部をトラフ部材30の第1の端部31に、その中に配置された流れ拡散手段の傍らで供給した。流れ拡散手段は、トラフ部材30内に導入された水中3の攪乱及び気泡、並びに、蠕動ポンプ40によって発生したパルス状態を最小限にする傾向があった。これに関して、小型リザーバが拡散手段として役立ち、これをトラフ部材30の端部31の鉛直方向上方の点に設けたので、リザーバがオーバーフローしたときに、比較的定常的な水3の流れが、V字形トラフ部材30の端部31内に流入した。
図16b及び16cに関して、8つの別個の電極セット(セット1、セット2、セット3〜セット8)を、8つの別個の制御装置20に取り付けた。表1a〜1dのそれぞれは、8つの電極セットのそれぞれを「セット#」と呼ぶ。さらに、いかなるセット#の内部でも、図3a及び3cに示された電極集成体と同様の電極1及び5を利用した。8つの電極セットの各電極を、特定のターゲット電圧範囲内で動作するように設定した。実際のターゲット電圧を表1a〜1dのそれぞれに挙げる。各電極セットの中心線と隣接電極セットとの距離「c−c」(図14参照)も表す。さらに、任意の電極1と関連する距離「x」も報告する。いずれの電極5’に関しても、距離「x」は報告しない。他の関連距離は、表1a〜1dのそれぞれに報告する。
各電極に対する電源はAC変圧器60であった。具体的には、図16dは、変圧器60に接続されたAC電源62を示している。加えて、例えば回路内の損失係数を調節できるように、キャパシタ61が設けられている。変圧器60の出力は、制御装置20を介して電極1/5に接続される。本発明とともに使用するための好ましい変圧器は、容易に磁束を導くコア602内に交流磁束を確立するために、一次コイル601内に流れる交流電流を使用する変圧器である。
二次コイル603が一次コイル601及びコア602の近くに位置していると、この磁束は二次コイル603を一次コイル601にリンクすることになる。二次コイル603のこのようなリンクは、二次端子を横切る電圧を誘導する。二次端子における電圧の大きさは、一次コイルの巻き数と二次コイルの巻き数との比に対して直接に関連する。一次コイル601よりも二次コイル603の巻き数が多いと、電圧が増大するのに対して、巻き数が少ないと電圧が減少する。
これらの例において使用するための好ましい変圧器60は、変圧器60内の磁気分路の使用によって可能にされる、意図的に低い出力電圧調節力を有している。これらの変圧器60はネオンサイン変圧器として知られる。このような形態は、電極1/5内への電流を制限する。出力付加電圧が大きく変化すると、変圧器60は、比較的狭い範囲内に出力付加電圧を維持する。
変圧器60は、二次開回路電圧と、二次短絡回路電流とに関して格付けされる。開回路電圧(OCV)は、電気的接続が存在しないときだけ、変圧器60の出力端子に現れる。同様に、短絡が出力端子を横切って存在する場合にだけ、短絡回路電流が出力端子から引き出される(この場合、出力電圧がゼロに等しい)。しかしながら、負荷がこれらの同じ端子を横切って接続されているときに、変圧器60の出力電圧はゼロと定格OCVとの間のいずれかの値でなければならない。事実、変圧器60が適切に付加されると、電圧はおよそ定格OCVの半分になる。
変圧器60は、平衡中間点参照デザイン(Balanced Mid-Point Referenced Design)(例えば以前は平衡中間点接地としても知られていた)として知られている。これは中電圧から高電圧の格付けを有する変圧器、及びほとんどの60mA変圧器において最も共通に見いだされる。これは、「中間帰線」システムにおいて許容され得る唯一のタイプの変圧器である。「平衡」変圧器60は、1つの一次コイル601と、2つの二次コイル603とを有していて、それぞれの二次コイルが一次コイル601の各側に位置している(図16gの概略図に全体的に示されている)。この変圧器60は様々な意味で、2つの変圧器のように機能することができる。不平衡の中間点参照型のコア及びコイルと同様に、各二次コイル603の一方の端部はコア602に取り付けられ、続いて変圧器容器に取り付けられ、また各二次コイル603の他方の端部は出力リード又は端子に取り付けられている。こうして、コネクタの存在なしに、無負荷時15,000ボルトのこのタイプの変圧器は、各二次端子から変圧器容器まで約7,500ボルトとなるが、しかし2つの出力端子の間では約15,000ボルトとなる。
ライン力率1(又は100%)を処理する交流(AC)回路において、電圧及び電流はそれぞれゼロで始まり、頂点まで上昇し、ゼロまで降下し、負の頂点へ行き、そしてゼロまで戻る。これにより、典型的な正弦波の1サイクルが完結される。このサイクルは典型的な米国の適用では1秒当たり60回生じる。こうして、このような電圧又は電流は、1秒当たり60サイクルの特徴的な「周波数」(又は60ヘルツ)の電力を有する。力率は、電流波形に対する電圧波形の位置に関連する。両波形が一緒にゼロを通過し、これらの頂点を一緒に通過する場合、これらの波形は同相であり、力率は1又は100%である。図16hに示す2つの波形「V」(電圧)及び「C」(電流)は互いに同相であり、力率1又は100%であるのに対して、図16iに示す2つの波形「V」(電圧)及び「C」(電流)は互いに異相であり、力率1又は約60%であり、両波形は同時にゼロを通過することはない。波形は異相であり、これらの力率は100%未満である。
大抵のこのような変圧器60の標準力率は主として、磁気分路604及び二次コイル603の効果に起因する。磁気分路604及び二次コイル603は、変圧器60の回路の出力内にインダクタを加えることにより、電極1/5への電力を制限する。力率は、変圧器60の一次コイル601を横切るように配置されたキャパシタ61を使用することにより、より高い力率に増大させることができる。キャパシタ61は、電圧波及び電流波をより同相にする。
本発明において使用されるべき任意の変圧器60の無負荷電圧、並びに変圧器の内部構造は重要である。本発明において使用するのに望ましい無負荷変圧器は、約9,000ボルト、10,000ボルト、12,000ボルト及び15,000ボルトである変圧器を含む。しかし、これらの特定の無負荷ボルト変圧器の測定値は、付加的な実施態様として許容し得る電源の範囲を限定するものとして見るべきではない。本明細書中に開示された本発明の種々の実施態様と一緒に使用するための具体的な望ましい変圧器は、Franceformer製のCatalog No. 9060-P-Eである。これは一次側では120ボルト、60Hz、及び二次側では9,000ボルト、60mAで動作する。
図16e及び16fは本発明の別の実施態様を示している(すなわちこの例では使用されない)。電極集成体1/5内へ入力される変圧器60の出力は、ダイオード集成体63又は63’によって整流されている。その結果、一般には、AC波はDC波とほぼ同様になる。換言すれば、ほとんど平らなラインDC出力が生じる(実際には僅かな120Hzパルスを時々得ることができる)。この特定の集成体により、本発明の(例えば電極の配向に関して)2つの付加的な好ましい実施態様が達成される。これに関して、実質的に正の端子又は出力と、実質的に負の端子又は出力とが、ダイオード集成体63から生成される。ダイオード集成体63’によって反対の極性が達成される。このような正及び負の出力は、電極1及び/又は5のいずれかに入力することができる。従って、電極1は実質的に正又は実質的に負であってよく、且つ/又は、電極5は実質的に負及び/又は実質的に正であってよい。
図16jは、8つの別個の変圧器60a〜60hを示しており、変圧器のそれぞれは、対応する制御装置20a〜20hにそれぞれ接続されている。変圧器60と制御装置20とから成るこのセットは、これらの例1〜4で利用される。
図16kは、8つの別個の変圧器60a’〜60h’を示しており、変圧器のそれぞれは、図16eに示された整流変圧器配線図に相当する。この変圧器集成体も、一組の制御装置20a〜20hと連通しており、そして本発明の好ましい実施態様として使用することができるが、しかしこれらの例では使用しなかった。
図16lは、8つの別個の変圧器60a’’〜60h’’を示しており、変圧器のそれぞれは、図16fに示された整流変圧器配線図に相当する。この変圧器集成体も、一組の制御装置20a〜20hと連通しており、そして本発明の好ましい実施態様として使用することができるが、しかしこれらの例では使用しなかった。
従って、各変圧器集成体60a〜60h(及び/又は60a’〜60h’;及び/又は60a’’〜60h’’)は、同じ変圧器であってよく、又は異なる変圧器(並び異なる極性)の組み合わせであってもよい。変圧器の選択肢、力率、キャパシタ61、極性、電極のデザイン、電極の位置、電極の組成、トラフ部材30の断面形状、局所的又は全体的な電極組成、雰囲気、局所的又は全体的な液体3の流量、液体3の局所的成分、トラフ部材30内の種々の場に局所的に曝露される液体3の体積、近隣(上流側及び下流側の両方)の電極セット、局所的な場の濃度、任意の膜の使用及び/又は位置及び/又は組成、などは全て、処理条件、並びに液体3中で産出された成分の組成及び/又は体積、本明細書中に開示された種々の実施態様により形成されるナノ結晶及びナノ結晶/懸濁液又はコロイドに影響を与えるファクタである。従って、数多くの実施態様を、本明細書中に提供した詳細な開示内容に従って実施することができる。
利用される各電極1のサイズ及び形状は、ほぼ同じであった。各電極1の形状は、寸法約14mm x 23mm x 27mmの直角三角形であった。各電極1の厚さは約1mmであった。各三角形電極1はまた、ベース部分に貫通孔を有した。この貫通孔は、23mmの辺と27mmの辺とによって形成された点が水3の表面2を指し示すのを可能にする。各電極1を含む材料は、明細書中で特に断りのない場合には、純度99.95%(すなわち3N5)であった。各電極1のために金を使用する場合には、各電極の重量は約9グラムであった。
各三角形電極1を変圧器60に取り付けるために使用されるワイヤーは、例1〜3に対しては直径約1mmの純度99.95%(3N5)白金線であった。
各電極5のために使用されるワイヤーは、それぞれ直径が約0.5mmの純度99.95%(3N5)金ワイヤーを含んだ。電極1/5のための全ての材料は、1050 Benson Way, Ashland, Oregon 97520在、ESPIから入手した。
トラフ部材30内へ流入させるものとして例1に使用される水3(及び例2〜4では処理増強剤との組み合わせで使用される)を、逆浸透法及び脱イオン化法によって製造した。本質的には、逆浸透(RO)は、溶解された種及び/又は懸濁物質を地下水から分離する圧力駆動膜分離法である。これは、自然の浸透流(膜の両側の物質の濃度を平衡させようとする)を逆転させるために圧力が加えられるので「逆」浸透と呼ばれる。加えられた圧力は水が強制的に膜を通るようにし、膜の一方の側に汚染物質を残し、そして他方の側に精製水を残す。逆浸透膜は、互いに結合されてプラスチック管の周りに螺旋形態を成して巻き付けられたいくつかの薄層膜又は薄板膜を利用した(これは薄膜複合体又はTFC膜としても知られている)。溶解された種の除去に加えて、RO膜はまた、水中に存在し得る微生物を含む懸濁物質を分離する。RO処理後、混床脱イオン化フィルタを使用した。両処理後の総溶解溶媒量(「TDS」)は、Accumet(登録商標) AR20 pH/導電率メータによって測定して、約0.2ppmであった。
これらの例は、8つの電極セットのために金電極を使用する。これに関して、表1a〜1dは、金系ナノ粒子/ナノ粒子溶液を形成するのに利用される8つの電極セットにおける16個の電極のそれぞれに関連する適切な動作パラメータを示している。
表1aは、電極セット#1及び電極セット#4のために「1/5」電極構造が利用され、他の全てのセットは5/5構造を有していることを示している。これに対して、表1b、1c及び1dは、電極セット#1が、1/5構造を利用する唯一の電極セットであり、他の全てのセットは5/5構造を有していることを示している。
さらに、製造準備の下記の差異も利用した。
例1:GT032:トラフ部材30内への流入水3は、約2℃の温度に達するまで冷蔵ユニット内で冷却し、次いでトラフ部材30内にポンピングした。
例2:GT031:水3をトラフ部材30内に流入させる前に、流入水3に処理増強剤を添加した。具体的には、約0.145グラム/ガロン(すなわち約38.3mg/リットル)の化学式NaHCO3の炭酸水素ナトリウム(「ソーダ」)を水3に添加し、これと混合した。Alfa Aesarからソーダを入手し、このソーダは式量84.01であり密度約2.159g/cm3であった(すなわちストック#14707、ロットD15T043)であった。
例3:GT019:水3をトラフ部材30内に流入させる前に、流入水3に処理増強剤を添加した。具体的には、約0.17グラム/ガロン(すなわち約45mg/リットル)の化学式NaClの塩化ナトリウム(「塩」)を水3に添加し、これと混合した。
例4:GT033:水3をトラフ部材30内に流入させる前に、流入水3に処理増強剤を添加した。具体的には、約0.145グラム/ガロン(すなわち約38.3mg/リットル)の化学式NaHCO3の炭酸水素ナトリウム(「ソーダ」)を水3に添加し、これと混合した。Alfa Aesarからソーダを入手し、このソーダは式量84.01であり密度約2.159g/cm3であった(すなわちストック#14707、ロットD15T043)であった。乾燥溶液GT033の代表的なTEM顕微鏡写真を図32aに示す。また、図32bは、溶液GT033の動的光散乱データ(すなわち流体力学半径)を示している。
例3に使用された塩は、Fisher Scientific (ロット#080787)から入手した。この塩は、式量58.44であり、以下のような実際の分析値を有した:
表1eは、3種の溶液GT032、GT031及びGT019のそれぞれに対する物理特性結果を要約する。GT019の全特徴付けが完全に行われたわけではないが、しかし本明細書中に論じられた処理条件下では、両処理増強剤(すなわちソーダ及び塩)が、GT032に対する溶液GT031及びGT019中の金の測定ppmを高くしたことは明らかである。
例5〜7
金系ナノ結晶/ナノ結晶懸濁液
GD−007,GD−016,及びGD−015の製造

一般に、例5〜7のそれぞれは、図17b,18a,19a及び21aに大まかに示された装置と関連する本発明の或る実施態様を利用する。処理及び装置の具体的な差異は、各例において明らかになる。トラフ部材30a及び30bはそれぞれ1/8インチ(約3mm)厚のプレキシガラス、及び1/4インチ(約6mm)厚のポリカーボネートから形成した。支持構造34も、約1/4インチ厚(約6mm〜7mm厚)であるプレキシガラスから形成した。図18aに示されたトラフ部材30aの断面形状は、図10bに示された形状に相当した(すなわち切頂「V」)。切頂「V」のベース部分「R」は約0.5インチ(約1cm)であり、そして各サイド部分「S」,「S’」は約1.5インチ(約3.75cm)であった。V字形トラフ部材30aのサイド部分「S」,「S’」を離隔する距離「M」は約(2+1/4)インチ〜(2+5/16)インチ(約5.9cm)(内側から内側まで測定)であった。各部分の厚さはまた、約1/8インチ(約3mm)厚であった。V字形トラフ部材30aの長手方向長さ「LT」(図11a参照)は、点31から点32まで、約3フィート(約1メートル)長であった。
精製水(本明細書中の他の個所で論じる)を、約0.396g/LのNaHCO3と混合し、これをトラフ部材30a内に流入させられる液体3として使用した。使用されるNaHCO3の量は効果的ではあるが、この量は本発明の範囲を限定するものと見なすべきではなく、また他の量も本開示内容の範囲に含まれる。V字形トラフ部材30a内の水3の深さ「d」(図10b参照)は、トラフ部材30aに沿った種々の点において、約7/16インチ〜約1/2インチ(約11mm〜約13mm)であった。深さ「d」は、ダム80(図18aに示す)を使用することによって部分的に制御した。具体的に、ダム80は端部32の近くに設けられ、約7/16インチ〜約1/2インチ(約11mm〜約13mm)の深さになるように深さ「d」(図10bに示す)を形成するのを助けた。ダム80の高さ「j」は約1/4インチ(約6mm)であり、また長手方向長さ「k」は約1/2インチ(約13mm)であった。幅(図示せず)は、トラフ部材30aの底部寸法「R」を完全に横切る。従って、動作中のV字形トラフ部材30a内の水3の総体積は、約6.4立方インチ(約105ml)であった。
トラフ部材30a内への水3の流量は約150ml/分であった(注:トラフ部材30a内の蒸発は最小限であった)。トラフ部材30a内への水3のこのような流量は、定格0.1馬力、10-600rpmのMasterflex(登録商標) L/Sポンプ駆動装置40を利用することにより得られた。Masterflex(登録商標)ポンプ40のモデル番号は77300-40であった。ポンプ駆動装置は、Easy-Load Model No. 7518-10として知られている、これもMasterflex(登録商標)製のポンプヘッドを有した。一般的に言うと、ポンプ40のためのヘッドは蠕動ヘッドとして知られている。ポンプ40及びヘッドは、Masterflex(登録商標) LS Digital Modular Driveによって制御された。Digital Modular Driveのモデル番号は77300-80である。Digital Modular Driveの正確な設定値は例えば、1分間当たり150ミリリットルであった。蠕動ヘッド内に、直径1/4インチ(すなわちサイズ06419-25)のTygon(登録商標)管を入れた。管は、Masterflex(登録商標)のためにSaint Gobainによって製造された。管の一方の端部をトラフ部材30aの第1の端部31に、その中に配置された流れ拡散手段の傍らで供給した。流れ拡散手段は、トラフ部材30a内に導入された水中3の攪乱及び気泡、並びに、蠕動ポンプ40によって発生したパルス状態を最小限にする傾向があった。これに関して、小型リザーバが拡散手段として役立ち、これをトラフ部材30aの端部31の鉛直方向上方の点に設けたので、リザーバがオーバーフローしたときに、比較的定常的な水3の流れが、V字形トラフ部材30aの端部31内に流入した。
例5〜7では5つの電極セットが使用され、1つのセットはトラフ部材30a内に配置された単一の電極セット1a/5aであった。電極1aからのトラフ部材30a内のプラズマ4は、図5eに示されたものの形状と類似する、重量9.2gの電極1aで形成された。この電極は純度99.95%の金であった。他方の電極5aは、液体3’中に約9mm浸された、約14mm x 23mm x 27mm及び1mm厚の直角三角形の白金板であった。プラズマ4を形成するために使用されるAC変圧器は、図16dに示され、本明細書の他の個所で論じられる変圧器60であった。他の電極セット5/5にはAC変圧器50(下で論じる)を接続した。他の全ての適切な運転条件は表2a、2b及び2cに示されている。
処理増強されたコンディショニング済の水3’の流出水をリザーバ41内に捕集し、続いて、ポンプ40とほぼ同じ速度で、別のポンプ40’によって第2トラフ部材30b内にポンピングした(例えばトラフ部材30a内で発生する蒸発は最小限である)。第2トラフ部材30bは30インチ長さ X 1.5インチ幅 X 5.75インチ高さであり、その中に約2500mlの水3’’を含有した。電極セット5b,5b’−5e,5e’のそれぞれは、直径約0.5mm及び長さ約5インチ(約12cm)の純度99.95%の金ワイヤーを含み、ほぼ真直ぐであった。約4.25インチ(約11cm)のワイヤーを、深さ約4.5インチ(約11cm)の水3’’中に浸した。
図19a及び21aに関して、図19aに示されているように、2つの別個の変圧器装置50及び50aに4つの別個の電極セット(セット2、セット3、セット4及びセット5)を取り付けた。具体的には、図19aに示した配線図に従って、変圧器50及び50aを各電極セットに電気的に接続した。各変圧器装置50,50aは、互いに位相を120℃ずらした別個のAC入力ラインに接続した。変圧器50及び50aは、単一の電気回路に過負荷を与えて例えば上流側の回路遮断器が解除されないような形式で電気的に接続した(例えば、これらの条件下で利用されると、単一の変圧器50/50aは、上流側の電気的な問題を引き起こすのに十分な電流を引き込むことがある)。各変圧器50/50aは、ワイヤーの単一コイル/巻線から構成された可変AC変圧器であった。この巻線は、一次巻線及び二次巻線の両方の一部として作用する。入力電圧は巻線の固定部分を横切って印加される。出力電圧は、巻線の一方の端部と、巻線に沿った別の接続部との間で取り出される。巻線の一部を露出させ、スライディング・ブラシを使用して二次接続部を形成することにより、連続変動比を得ることができる。入力電圧に対する出力電圧の比は、これらが接続する巻線の巻き数の比に等しい。具体的には、それぞれの変圧器は、Mastech TDGC2-5kVA, 10A 電圧調節器, 出力0-250Vであった。
表2a〜2cのそれぞれは、トラフ30b内の「セット#」によって表される4つの電極セットのそれぞれに関する処理情報を含む。トラフ30b内の4つの電極セットのそれぞれの電極を、特定のターゲット電圧で動作するように設定した。表2a〜2cのそれぞれに挙げられた実際の動作電圧約255ボルトを、電極セットを横切って印加した。各電極セットの中心線と隣接電極セットとの距離「c−c」(図14参照)も表す。さらに、トラフ30a内で利用される電極1と関連する距離「x」も報告する。いずれの電極5’に関しても、距離「x」は報告しない。他の関連距離は、表2a〜2cのそれぞれに報告する。
電極1/5のための全ての材料は、1050 Benson Way, Ashland, Oregon 97520在、ESPIから入手した。
例5〜7に使用される水3を、逆浸透法及び脱イオン化法によって製造し、NaHCO3処理増強剤と混合し、そして一緒にトラフ部材30a内に流入させた。本質的には、逆浸透(RO)は、溶解された種及び/又は懸濁物質を地下水から分離する圧力駆動膜分離法である。これは、自然の浸透流(膜の両側の物質の濃度を平衡させようとする)を逆転させるために圧力が加えられるので「逆」浸透と呼ばれる。加えられた圧力は水が強制的に膜を通るようにし、膜の一方の側に汚染物質を残し、そして他方の側に精製水を残す。逆浸透膜は、互いに結合されてプラスチック管の周りに螺旋形態を成して巻き付けられたいくつかの薄層膜又は薄板膜を利用した(これは薄膜複合体又はTFC膜としても知られている)。溶解された種の除去に加えて、RO膜はまた、水中に存在し得る微生物を含む懸濁物質を分離する。RO処理後、混床脱イオン化フィルタを使用した。両処理後の総溶解溶媒量(「TDS」)は、Accumet(登録商標) AR20 pH/導電率メータによって測定して、約0.2ppmであった。
これらの例5〜7のそれぞれに従って形成されたそれぞれの乾燥懸濁液から、透過電子顕微鏡法(TEM)による代表的な顕微鏡写真(図25a,26a及び27a)を撮影した。
透過電子顕微鏡法
具体的には、網目サイズ200の、炭素で安定化されたFormvar被覆グリッドを利用することにより、TEM試料を調製した。グリッドを先ず真空下でプラズマ処理することにより前処理した。グリッドを、方形の濾紙でライニングされた顕微鏡スライド上に置き、次いで、必要なプラズマ発生器付属品が取り付けられたDenton Vaccum装置内に入れた。真空を75mTorrで維持し、そしてプラズマを開始し、30秒間にわたって運転した。完了したら、システムを通気し、グリッドを取り除いた。グリッドは、湿度条件に応じて7〜10日間まで安定であったが、しかし全ての事例において12時間以内で使用した。
ほぼ1μLの本発明のそれぞれのナノ粒子溶液を各グリッド上に置き、室温で20〜30分間にわたって、又は液滴が蒸発するまで室温で空気乾燥させておいた。蒸発が完了したら、TEM分析を実施するまで、グリッドをホルダー板上に置いた。
Philips/FEI Tecnai 12透過電子顕微鏡を使用して、全ての調製済試料に対して問い合わせを行った。機器を、加速電圧100keVで運転した。ビームの整列後、630,000xまでの種々の倍率で試料を試験した。付属のOlympus Megaview III横置きカメラを介して画像を収集した。このカメラは、それぞれカメラ及びTEM機器の両方の制御を可能にするiTEM及びTecnai User Interfaceソフトウェアを備えたPCに、直接に画像を伝送した。
iTEMソフトウェア内部では、円形基準平面上の十字線の位置を調節することにより、グリッドの周りをランダムに動くことが可能であった。十字線を選択して動かすことにより、グリッドの周りをナビゲートすることができる。この機能を用いて、円形基準の4つの象限で試料を分析し、試料をバイアスされていない状態で表すのを可能にした。その後、ImageJ 1.42ソフトウェアで画像を分析した。別の同様のソフトウェア・プログラムで、スペーサ・バー内の既知の画素数に対して各粒子を横切る画素数を測定した。それぞれの個々の粒子を測定する前にソフトウェアを較正する方法として、画像上でスケールバーを使用して粒子を測定した。較正したら、次のパラメータに基づいて粒子を測定した。すなわち、三角形の頂点から底辺へ四面体粒子を測定した。グリッド上の粒子配向に応じて、ダイヤモンド形の頂点から頂点へ、又は五角形の頂点から五角形の底辺へ、五角両錐体を測定した。六角形粒子の2つの面間の最長距離を用いて二十面体を測定した。球形又は不規則形状の粒子を、最長軸線に沿って測定した。各試料セットから収集されたデータをExcelにエクスポートし、そして最小値5nm及び最大値50nmを有する50ビンの単純なヒストグラム関数を使用して、ヒストグラムを生成した。続いて、Excel内部で生成されたデータをPrism (GraphPad(登録商標))にエクスポートして、2つのモデルのうちの一方、つまりそれぞれ固有の確率密度関数(PDF)を有する正規分布又は対数正規分布に対してフィットさせた。Prism内部では、正規分布として知られた分布を生成するデータに対して非線形フィットを実施することにより、ヒストグラム・データを分析することが可能であった。さらに、非線形データセット上で対数変換を実施することにより、データセットを生成し、次いでこのデータセットを非線形モデルに対してフィットさせ、そして次いでこれを指数変換を介して変換することによりデータの対数正規フィットを生成した。次いで2つのモデルをヒストグラムと視覚的に比較し、そしてデータとより良好な程度にフィットするモデルを選んだ。上記の、そしてここで多くのヒストグラム図面及び表で報告された上記粒径は、PDFモードであり、これは対数正規又は正規PDF曲線の最大値として定義される。このPDF曲線は全てのヒストグラム図面上にオーバーレイされる。モード値はすぐ上方に表示、本文中ではTEM平均直径と呼ばれる。
例えば、図25b、26b及び27bは、例5,6及び7に相当する乾燥溶液GD−007、GD−016及びGD−015に相当するTEM顕微鏡写真から測定された結晶サイズ分布ヒストグラムである。これらのヒストグラム上で報告された数のそれぞれは上記考察内容に相当する。
図25a、26a及び27aは、それぞれ例5、6及び7に相当する乾燥溶液GD−007、GD−016及びGD−015に相当する代表的なTEM顕微鏡写真である。
図25d及び25eに示された結果は、エネルギー分散X線分光検出器(EDS)を備えたPhilips 420ST透過電子顕微鏡を使用して得た。顕微鏡は、Johns Hopkins UniversityのElectron Microbeam Analytical Facilityに配置されており、熟練オペレーターの指導のもとで操作した。手短に述べると、1μLのGD−007ナノ結晶懸濁液をFormvar炭素被覆200正方形メッシュ・ニッケル・グリッド上に置き、約20〜30分間にわたって、又は液滴が蒸発するまで、室温で空気乾燥させておいた。完全に蒸発したら、グリッドをTEM試料ホルダ内に入れ、加速電圧120keVで問い合わせた。顕微鏡のEDSシステムは次の構成部分から成った:Oxford光電子検出器、Oxford XP3パルス・プロセッサ、及びMacintoshコンピュータに接続された4 piマルチチャネル・アナライザ。エネルギー分散X線分光法を介して粒子組成を割り出した。電子の高エネルギービームがナノ結晶表面に向けられ、その結果、内殻内部の電子が放出され、これにより、外殻電子が「落ち込む」のに利用できる部位を形成し、ひいては特徴的なX線を放つ。X線は次いで、分解能173.00eVの検出器によって検出される。
図25dは、例5に従って成長させられた金ナノ結晶(すなわちGD−007)の1つを示す。ナノ結晶を、本明細書中で論じた電子ビームを用いて問い合わせた。
図25eは、溶液GD−007に由来するナノ結晶の問い合わせビーム点のエネルギー分散X線パターンを示す。この測定技術は、およそ単原子層まで正確なので、ナトリウム・ピークに相当するパターンの欠如は、ナトリウム系単層が結晶の表面上に存在しないことを示す。同様に、有意な炭素系ピークが観察できないことは、炭素系単層がないことを示す。注目されるのは、下側のニッケル・グリッドに相当する酸素ピークの存在である。従ってこれら図25d及び25eは、1)これらの分子上には有機物質は存在していないこと、そして2)ナノ結晶は、不都合な分子又は被膜のない比較的クリーンな表面を含有していることを示す。
さらに、本明細書の例に従って生成された結晶サイズの指標(例えば流体力学半径)を得るために動的光散乱技術も利用した。図25c、26c及び27cは、別個の動的光散乱データセットのグラフィカルな結果を示している。
動的光散乱
具体的には、VISCOTEK 802 DLS機器で動的光散乱(DLS)測定を行った。DLSにおいて、レーザー光が小型粒子及び/又は小型粒子(波長よりも小さい)の周りの組織化水構造に衝突すると、光は全ての方向に散乱し、その結果、散乱強度の時間依存性変動が生じる。強度変動は、散乱粒子のブラウン運動/水構造の組み合わせに起因し、そして粒度分布に関する情報を含む。
試験前の少なくとも30分間、機器をウォームアップさせておいた。12μlの石英セルを使用して測定を行った。下記手順を用いた:
1. 先ず、1mlマイクロピペットを使用して、1mlのDI水をセル内に加え、次いでセルから水を廃棄物用ビーカーに注ぎ、そして水の残りをセル測定キャビティから振り落とした。このステップをさらに2回繰り返すことにより、セルを十分に濯いだ。
2. 200μlマイクロピペットを使用して、100μlの試料をセル内に加えた。その後、同じピペットで、同じピペットチップを使用してセルから全ての液体を取り除き、そして廃棄物用ビーカー内に排出した。同じチップを使用して100μlの試料を再び加えた。
3. 試料を含むセルを、Viscotek機器の温度制御されたセルブロック内に、セルの凍結側が左に向くように入れた。Viscotek OmniSIZEソフトウェアにおける新しい試験を開始した。温度が平衡化され、レーザー出力が適正な値に減衰されてから1分後に、測定を開始した。全てのランが終わった後、結果を保存した。
4. セルを機器から取り出し、そして同じピペット及びステップ2で使用したチップを使用して、試料をセルから取り出した。
5. ステップ2〜4を試料毎にさらに2回繰り返した。
6. 新しい試料の場合には、200μlのピペットのための新しいピペットチップを採用して、前の試料による汚染を回避し、ステップ1〜5を繰り返した。
OmniSIZEソフトウェア、バージョン3,0,0,291でデータの収集及び処理を実施した。次のパラメータを全ての試験のために使用した:ラン継続時間−3秒;試験数−100;溶媒−水、0mmol;粘度−1cP;屈折率−1.333;スパイク・トレランス−20%;ベースライン・ドリフト−15%;ターゲット減衰−300kカウント;ブロック温度−+40℃。各試験毎のデータを保存した後、その結果をソフトウェアの「結果」の頁で見た。粒度分布(すなわち流体力学半径)を、「強度分布」グラフで分析した。そのグラフでは、0.1nm〜10μmの範囲から外れたいかなるピークも、アーチファクトと見なした。具体的には、清浄水(粒子がない)は、0.1nm〜10μmの範囲内ではピークをもたらさず、0.1nm未満で幅広いピークをもたらす。このピークは機器のノイズ・ピーク(ノイズ流)と見なされる。濃度が極めて低く、又は懸濁ナノ粒子のサイズが極めて小さい試料が、「強度分布」グラフにおいて測定可能なノイズピークを示すことがある。0.1nm〜10μmの範囲内のピークの強度がノイズピークよりも高い場合には、考えられるこれらのピークは真であり、その他の場合には、ピークは疑問の余地があり、データ処理のアーチファクトであるおそれがある。
図25cは、例5(すなわちGD−007)の代表的なViscotek出力データセットに相当するグラフィック・データを示し、図26cは、例6(すなわちGD−016)の代表的なViscotek出力データセットに相当するグラフィック・データを示し、そして図27cは、例7(すなわちGD−015)の代表的なViscotek出力データセットに相当するグラフィック・データを示す。図25c、26c及び27cのそれぞれにおけるピークの頂点で報告された数値は、粒子の平均流体力学半径に相当し、このような粒子の周りで散乱した光を各溶液中で検出した。なお、複数(例えば数百)のデータポイントを試験することにより、「s字形」曲線によって表されるような各データセットにおいて報告された数値を提供する(すなわち、各曲線は一連の収集データポイントを表す)。各データセットにおける報告「透過率%」は、動的光散乱データを達成するために必要な問い合わせビームの強度に相当する。一般に、いつもというわけではないが、報告「透過率%」は50%未満である場合には、極めて強力な粒子及び/又は粒子/秩序化水構造が存在する。また、「透過率%」が100%に近づく場合には、しばしばイオン及び/又は極めて小さな粒子(例えばピコサイズの粒子)が存在し、報告された流体力学半径が、実際の固形粒子よりも秩序化又は構造化された水を含むことがある。
なお、動的光散乱粒度の情報は、TEMで測定されたヒストグラムとは異なる。なぜならば、動的光散乱は、ナノ結晶が全て球体(これらはそうではない)であることを想定するアルゴリズムを使用し、また、流体力学半径の尺度となるからである(例えば、水に対するナノ結晶の影響も検出され、粒子の実際の物理的半径に加えて報告される)。従って、ちょうど本明細書中に含まれる他の例におけるように、TEMヒストグラム・データ中で報告された値と、動的光散乱データ中で報告された値との間で、報告粒度に差異があることは、驚くべきことではない。
原子吸光分光法
Perkin Elimer AAnalyst 400 SpectrometerシステムからAAS値を得た。
I) 原理
フレーム原子吸光分析の技術は、液体試料が吸引され、エアロゾル化され、そして可燃性ガス、例えばアセチレン及び空気と混合されることを必要とする。混合物は温度約2100〜約2400℃の火炎中で着火される。燃焼中、試料中の当該元素の原子は還元されて、遊離した非励起基底状態原子になる。これらの原子は固有波長で光を吸収する。固有波長は元素特異的であり、0.01〜0.1nmに対して正確である。元素特異的波長を提供するために、被測定元素から形成されたカソードを有する中空陰極ランプ(HCL)からの光ビームが火炎を通過するようにする。光検出器が、被分析物による吸収に起因する光強度の低下量を検出する。光検出器の前面にモノクロメータを使用することにより、バックグラウンド周囲光を低減し、そして検出のために必要となるHCLから特異的波長を選択する。加えて、重水素アーク灯が、原子雲中の非原子種によって引き起こされるバックグラウンド吸収を補正する。
II) 試料調製
10mLの試料、0.6mLの36%v/vの塩酸及び0.15mLの50%v/vの硝酸をガラスバイアル内で混ぜ合わせ、約10分間にわたって70℃の水浴内でインキュベートした。金濃度が10ppmを上回ることが予想される場合には、酸の添加前に試料をDI水で希釈することにより、最終金濃度を1〜10ppmの範囲にする。例えば、100ppm前後の金濃度の場合、酸の添加前に、0.5mLの試料を9.5mLのDIで希釈する。調節可能なマイクロピペット及び正確の量の試料でアリコートを行い、そしてOhaus PA313 microbalanceによってDI水及び酸を測定する。成分の重量を用いて、DI水及び酸による希釈のための測定濃度を補正する。各試料を3部調製し、水浴内でのインキュベーション後、測定を行う前に室温まで冷ましておく。
III) 機器の設置
Perkin Elimer AAnalyst 400 Spectrometerシステムのために、下記設定を用いる:
a) バーナーヘッド:2ppmのCu基準で最大吸収度を得るために、製造手順に従って3つの軸で整列された10cmシングル・スロットタイプ。
b) ネブライザ:衝撃ビードの前面にスペーサを有するプラスチック。
c) ガス流:オキシダント(空気)流量約12L/分、燃料(アセチレン)流量約1.9mL/分。
d) ランプ/モノクロメータ:Au中空陰極ランプ、10mA動作電流、1.8/1.35mmスリット、242.8nm波長、バックグラウンド補正(重水素灯)がオンである。
IV) 分析手順
a) Auランプ及び火炎をほぼ30分間にわたって運転することより、システムをウォームアップする。
b) 3.7%v/vの塩酸のマトリックス中の1ppm、4ppm及び10ppmのAu標準で機器を較正する。3.7%v/vの塩酸をブランクとして使用する。
c) 4ppm基準を試料として測定することにより、較正スケールを検証する。測定された濃度は、3.88ppm〜4.12ppmであるべきである。この範囲から外れている場合には、ステップb)を繰り返す。
d) 試料の3つの複製を測定する。複製間の標準偏差が5%を上回る場合には、測定を繰り返し、そうでなければ次の試料に進む。
e) 6つの試料を測定した後又はより高い頻度で、検証ステップc)を実施する。検証が失敗した場合には、ステップb)及びc)を実施し、最後に成功した検証後に測定された試料全てを再測定する。
V)データ分析
各複製の測定濃度値を、水及び酸による希釈に対して補正することによって、実際の試料濃度を計算する。報告されたAuのppm値は、個々の複製に対応する3つの補正値の平均である。
プラズマ放射照度及び特徴付け
この例は、金電極1を利用して、調節可能なプラズマ4の分光分析を提供する。これらのプラズマの全ては、本明細書中の例において利用した。感度の高い3つの異なる分光計を使用して、プラズマ4に関するスペクトル情報を収集した。具体的には、いくつかの金電極プラズモンに対して分光分析を行った。プラズマ4中の種々異なる種、並びに、これらの種のうちのいくつかの種々異なる強度を観察した。このような種の有無は、処理パラメータ及び本明細書中の教示内容に従って形成された生成物に(例えばポジティブ及びネガティブに)影響を及ぼし得る。
これに関連して、図25fは、本明細書中に利用された調節可能なプラズマ4からの発光分光情報を収集するために使用された試験設定の概略的な斜視図を示している。
具体的には、プラズマ発光データ(放射照度)を収集するための試験設定が図25fに示されている。一般に、3つの分光計520,521及び522がUV光ファイバー523を通して分光分析データを受信する。このUV光ファイバーは、集成体524によって捕集された、コリメート・スペクトル放出を光路527に沿って伝送する。集成体524は、X−Z段525を有する集成体524を動かすことにより、調節可能なプラズマ4内部の種々異なる鉛直方向位置でスペクトル放出を捕集するように、鉛直方向に位置決めすることができる。従って、プラズマ種の有無及び強度は、プラズマ4内部の問い合わせ位置の関数として割り出すことができる。分光計520,521及び522の出力は、コンピュータ528内に設けられた適切なソフトウェアによって分析した。非反射材料530にほぼ対向するように位置決めされた穴531を通して、全ての放射照度データを収集した。穴531の底部を、液体3の上面に配置した。放射輝度を収集するための装置のさらなる詳細は下記の通りである。
集成体524は、170−2400nmのための再フォーカシング集成体(LF−10U100)を備えた1つのUVコリメータ(LC−10U)を含んだ。集成体524はまたMultimode Fiber Optics, Inc.製のSMA雌コネクタを含んだ。それぞれのLC−10U及びLF−10U100には、石英ガラスレンズが連携した。集成体524内に含まれたLF−10U100内のレンズのボルテックスから約100mmのところでLF−10U100によって、調節可能なフォーカシングが提供された。
調節可能なプラズマ4の両端部におけるコリメータの視野は、455μmファイバーコア直径のソラリゼーション抵抗性UV光ファイバー523によって(180〜900nmの範囲、Mitsubishi製)によって測定して、直径約1.5mmであった。UV光ファイバー523は、SMA雄コネクタ(Ocean Opticsによって販売;QP450-1-XSR)によって各端部で終わっていた。
UVコリメータ−ファイバーシステム523及び524は、調節可能なプラズマ4中に種々異なる位置で水平方向に配向された1.5mm直径のプラズマ・シリンダーから来るプラズマ放射に対して180〜900nmの範囲の感度を提供した。
X−Z段525は、X及びZ軸に沿ったUVコリメータ524の運動を保持しし制御するThorlabs Inc.によって形成された2つの線状段(PT1)を含んだ。このように、調節可能なプラズマ4をそれぞれ水平方向及び鉛直方向に走査することが可能である。
UVコリメータ−ファイバーシステム523,524によって捕集されたプラズマ放射を、StellarNet, Inc.製の、ファイバーにカップリングされた3つの分光計520,521又は522(すなわち、180〜295nm、2400g/mm回折格子のためのEPP2000-HR、290〜400nm、1800g/mm回折格子のためのEPP2000-HR、395〜505nm、1200g/mm回折格子のためのEPP2000-HR)のいずれかに供給した。各分光計520,521及び522は、7μm入射スリット、0.1nmの光学分解能、及び2048画素CCD検出器を有した。測定された機器スペクトル線広がりは、313.1nmにおいて0.13nmである。
StellarNet製のWindows/XP用SpectraWizソフトウェアによって、スペクトルデータ取得を制御した。3つの全てのEPP2000-HR分光計520,521及び522は、4つのUSBポートを備えた1つのパーソナルコンピュータ528と連携した。種々のスペクトル範囲の積分時間及び平均数、及びプラズマ放電を、できる限り良好なSN比を有する不飽和信号強度を提供するように適宜に設定した。典型的には、スペクトル積分時間は1秒オーダーであり、数平均スペクトルは1〜10であった。記録された全てのスペクトルは、光学バックグラウンドを差し引いて取得した。それぞれ同一のデータ取得パラメータを有する対応測定値集合を取得する前に、光学バックグラウンドを取得した。
各UVファイバー−分光計システム(すなわち523/520,523/521及び523/522)を、Avantes製のAvaLight-DH-CAL放射照度較正光源(図示せず)で較正した。較正後、所得した全てのスペクトル強度をスペクトル放射照度(mW/m2/nm)の(絶対)単位で表し、またUVファイバー−分光計の非線形応答に関して補正した。200〜1100nmのAvaLight-DH-CAL放射照度較正光源の相対誤差は10%以下である。
金属電極1の先端9に対してUVコリメータ集成体524の視野を、それぞれの一連の測定の前に整列させた。2つの線状段を整列させ、そしてUVコリメータ−ファイバーシステム523,524を通る光を各金属電極1の中心に送ることにより、UVコリメータ集合体524の視野の中心を先端9に置いた。
X−Z段525を利用することにより、調節可能なプラズマ4の概ね水平方向の中心部分内に集成体524を動かす一方、集成体524を鉛直方向に動かすことにより、調節可能なプラズマ4内の種々異なる鉛直方向高さで発生するスペクトル放出を分析できた。これに関して、第1の高さが電極1の先端9のできる限り近くに位置するような種々異なる高さに、集成体524を位置決めし、その後、先端9から特定の量だけ離れるようにこれを動かした。プラズマの発光分光は、問い合わせ位置の関数としてしばしば変化した。
例えば、図25g〜25jは、調節可能なプラズマ4を形成するために利用された金(Au)電極1と関連する放射照度データを示している。前述の図面25g〜25jのそれぞれは、調節可能なプラズマ4内部の3つの異なる鉛直方向問い合わせ位置と関連する発光データを示している。鉛直方向位置「0」(0nm)は、電極1の先端9のすぐ近くで収集された発光分光データに相当し、鉛直方向位置「1/40」(0.635nm)は、先端9から0.635mm離れて、水3の表面に向いた個所の発光分光データに相当し、そして鉛直方向「3/20」(3.81mm)は、先端9から3.81mm離れて、水3の表面に向いた個所の発光分光データに相当する。
表2dは、金電極1を利用してプラズマ4を形成した場合に、調節可能なプラズマ4内で同定されたスペクトル線のそれぞれを具体的に示している。
金金属電極1と関連する様々な種が表2dにおいて識別されている。これらの種は例えば、電極1からの金、並びにNO、OH、N2などを含む共通の種を含む。興味深い点は、いくつかの種の存在及び/又は強度(例えば量)が、調節可能なプラズマ内部の位置の関数であることである。従って、このことは、本発明の種々様々な処理条件(例えば電極1の出力、位置、組成など)の関数として様々な種を生じさせることができることを示唆している。
例8〜10
金系ナノ結晶/ナノ結晶懸濁液
GB−018,GB−019,及びGB−020の製造

一般に、例8〜10のそれぞれは、図17a、18a、19b及び22a(例えば、テーパートラフ部材30b)に大まかに示された装置と関連する本発明の或る実施態様を利用する。処理及び装置の具体的な差異は、各例において明らかになる。トラフ部材30a及び30bはそれぞれ1/8インチ(約3mm)厚のプレキシガラス、及び1/4インチ(約6mm)厚のポリカーボネートから形成した。支持構造34も、約1/4インチ厚(約6mm〜7mm厚)であるプレキシガラスから形成した。図18aに示されたトラフ部材30aの断面形状は、図10bに示された形状に相当した(すなわち切頂「V」)。切頂「V」のベース部分「R」は約0.5インチ(約1cm)であり、そして各サイド部分「S」,「S’」は約1.5インチ(約3.75cm)であった。V字形トラフ部材30aのサイド部分「S」,「S’」を離隔する距離「M」は約(2+1/4)インチ〜(2+5/16)インチ(約5.9cm)(内側から内側まで測定)であった。各部分の厚さはまた、約1/8インチ(約3mm)厚であった。V字形トラフ部材30aの長手方向長さ「LT」(図11a参照)は、点31から点32まで、約3フィート(約1メートル)長であった。
精製水(本明細書中の他の個所で論じる)を、0.396g〜0.528g/Lの範囲のNaHCO3と混合し、これをトラフ部材30a内に流入させられる液体3として使用した。使用されるNaHCO3の量は効果的ではあるが、この量は本発明の範囲を限定するものと見なすべきではない。V字形トラフ部材30a内の水3の深さ「d」(図10b参照)は、トラフ部材30aに沿った種々の点において、約7/16インチ〜約1/2インチ(約11mm〜約13mm)であった。深さ「d」は、ダム80(図18aに示す)を使用することによって部分的に制御した。具体的に、ダム80は端部32の近くに設けられ、約7/6インチ〜1/2インチ(約11mm〜約13mm)の深さになるように深さ「d」(図10bに示す)を形成するのを助けた。ダム80の高さ「j」は約1/4インチ(約6mm)であり、また長手方向長さ「k」は約1/2インチ(約13mm)であった。幅(図示せず)は、トラフ部材30aの底部寸法「R」を完全に横切る。従って、動作中のV字形トラフ部材30a内の水3の総体積は、約6.4立方インチ(約105ml)であった。
トラフ部材30a内への水3の流量は約150ml/分〜少なくとも280ml/分であった。水3のこのような流量は、定格0.1馬力、10-600rpmのMasterflex(登録商標) L/Sポンプ駆動装置40を利用することにより得られた。Masterflex(登録商標)ポンプ40のモデル番号は77300-40であった。ポンプ駆動装置は、Easy-Load Model No. 7518-10として知られている、これもMasterflex(登録商標)製のポンプヘッドを有した。一般的に言うと、ポンプ40のためのヘッドは蠕動ヘッドとして知られている。ポンプ40及びヘッドは、Masterflex(登録商標) LS Digital Modular Driveによって制御された。Digital Modular Driveのモデル番号は77300-80である。Digital Modular Driveの正確な設定値は例えば、1分間当たり150ミリリットルであった。蠕動ヘッド内に、直径1/4インチ(すなわちサイズ06419-25)のTygon(登録商標)管を入れた。管は、Masterflex(登録商標)のためにSaint Gobainによって製造された。管の一方の端部をトラフ部材30aの第1の端部31に、その中に配置された流れ拡散手段の傍らで供給した。流れ拡散手段は、トラフ部材30a内に導入された水中3の攪乱及び気泡、並びに、蠕動ポンプ40によって発生したパルス状態を最小限にする傾向があった。これに関して、小型リザーバが拡散手段として役立ち、これをトラフ部材30aの端部31の鉛直方向上方の点に設けたので、リザーバがオーバーフローしたときに、比較的定常的な水3の流れが、V字形トラフ部材30aの端部31内に流入した。
例8〜10では5つの電極セットが使用され、1つの電極セットはトラフ部材30a内に配置された単一の電極セット1a/5aであった。電極1aからのトラフ部材30a内のプラズマ4は、図5eに示されたものの形状と類似する、重量9.2gの電極1で形成された。この電極は純度99.95%の金であった。他方の電極5aは、液体3’中に約9mm浸された、約14mm x 23mm x 27mm及び1mm厚の直角三角形の白金板であった。プラズマ4を形成するために使用されるAC変圧器は、図16dに示され、本明細書の他の個所で論じられる変圧器60であった。他の電極セット5/5にはAC変圧器50(本明細書の他の個所で論じる)を接続した。他の全ての適切な運転条件は表3a、3b及び3cに示されている。
処理増強されたコンディショニング済の水3’の流出水をリザーバ41内に捕集し、続いて、ポンプ40とほぼ同じ速度で、別のポンプ40’によって第2トラフ部材30b内にポンピングした(例えばトラフ部材30a内で発生する蒸発は最小限である)。図22aに示された第2トラフ部材30bはテーパされていて、高さ約3.75インチ、その端部32では幅が約3.75インチ、またその端部31では幅が約1インチであり、こうしてテーパ形状を形成する。トラフ部材30bは、深さ約2.5インチの約1450mlの液体3’’を含有した。4つの電極セット5b,5b’−5e,5e’のそれぞれは、長さ約5インチ(約13cm)、そして例8及び9では直径約0.5mm、例10では直径約1.0mmの純度99.95%の金ワイヤーを含んだ。例8〜10のそれぞれにおいて、約4.25インチ(約11cm)のワイヤーを、深さ約2.5インチ(約6cm)の水3’’中に浸した。それぞれの電極セット5a,5a’−5d,5d’は、図17aに示されているように「J」字形に成形された。図17aに示された距離「g」は約1〜8mmであった。
図19b及び22aに関して、単一の変圧器装置50に4つの別個の電極セット(セット2、セット3、セット4及びセット5)を取り付けた。具体的には、変圧器50は、例5〜7に使用されたものと同じ変圧器であるが、しかし図19bに示した配線図に従って、各電極セットに電気的に接続した。対照的に、この配線形態は、例5〜7に使用されたものとは異なり、本発明のトラフ30bのデザインの所要アンペア数が低い(液体3と接触しているワイヤが少ない)ので、単一の変圧器50しか必要とならなかった。
表3a〜3cのそれぞれは、「セット#」によって表される4つの電極セットのそれぞれに関する処理情報を含む。トラフ30b内の4つの電極セットのそれぞれの電極を、特定のターゲット電圧で動作するように設定した。表3a〜3cのそれぞれに挙げられた実際の動作電圧約255ボルトを、4つの電極セットに印加した。各電極セットの中心線と隣接電極セットとの距離「c−c」(図14参照)も表す。さらに、トラフ30a内で利用される電極1と関連する距離「x」も報告する。電極5’に関しては、距離「x」は報告しない。他の関連距離は、表3a〜3cのそれぞれに報告する。
電極1/5のための全ての材料は、1050 Benson Way, Ashland, Oregon 97520在、ESPIから入手した。
例8〜10に使用される水3を、逆浸透法及び脱イオン化法によって製造し、NaHCO3処理増強剤と混合し、そして一緒にトラフ部材30a内に流入させた。本質的には、逆浸透(RO)は、溶解された種及び/又は懸濁物質を地下水から分離する圧力駆動膜分離法である。これは、自然の浸透流(膜の両側の物質の濃度を平衡させようとする)を逆転させるために圧力が加えられるので「逆」浸透と呼ばれる。加えられた圧力は水が強制的に膜を通るようにし、膜の一方の側に汚染物質を残し、そして他方の側に精製水を残す。逆浸透膜は、互いに結合されてプラスチック管の周りに螺旋形態を成して巻き付けられたいくつかの薄層膜又は薄板膜を利用した(これは薄膜複合体又はTFC膜としても知られている)。溶解された種の除去に加えて、RO膜はまた、水中に存在し得る微生物を含む懸濁物質を分離する。RO処理後、混床脱イオン化フィルタを使用した。両処理後の総溶解溶媒量(「TDS」)は、Accumet(登録商標) AR20 pH/導電率メータによって測定して、約0.2ppmであった。
図28a、29a及び30aは、乾燥懸濁液GB−018、GB−019及びGB−020に相当する代表的なTEM顕微鏡写真であり、例8、9及び10のそれぞれにおいて、金結晶が成長しているのを示している。
図28b、29b及び30bは、それぞれ例8、9及び10から撮影された乾燥懸濁液に相当するTEM顕微鏡写真から測定した(すなわち、例5〜7で前述したソフトウェアを使用)粒度分布ヒストグラムである。
図28c、29c及び30cはそれぞれ、例8、9及び10において形成された金ナノ粒子懸濁液の動的光散乱データ(すなわち流体力学半径)を示している。これらの図面のそれぞれは、動的光散乱データセットのグラフィカルな結果を示している。
なお、動的光散乱粒度の情報は、TEMで測定されたヒストグラムとは異なる。なぜならば、動的光散乱は、結晶が全て球体(これらはそうではない)であることを想定するアルゴリズムを使用し、また、流体力学半径の尺度となるからである(例えば、水に対する結晶の影響も検出され、結晶の実際の物理的半径に加えて報告される)。従って、ちょうど本明細書中に含まれる他の例におけるように、TEMヒストグラム・データ中で報告された値と、動的光散乱データ中で報告された値との間で、報告結晶サイズに差異があることは、驚くべきことではない。
例11
金系ナノ粒子/ナノ粒子溶液又はコロイド
IAC−202−7のバッチ法による製造
この例は、本発明によるバッチ法を利用する。図24aは、液体3をコンディショニングするために使用される装置を示す。液体3’が一旦コンディショニングされたら、これを図24bに示された装置内で処理した。
表4aが示すマトリックスにおいて、ソーダ(すなわちNaHCO3)をベーキングする処理増強剤の量は約1グラム/ガロンから約2グラム/ガロンへ(すなわち約0.264g/Lから約0.528g/Lへ)変化し、そして図24aの装置内の、表4aに反映された滞留時間(すなわち処理増強剤を含む水3がプラズマ4に曝露される時間量)を、図24cに示された装置内の後続の処理前に、約20分間から約60分間に変化させる。電極1によって形成された各プラズマ4のための印加電圧は約750ボルトであった。この電圧は、本明細書中の他の個所で論じられた変圧器60(すなわち平衡中間点参照デザイン(Balanced Mid-Point Referenced Design)によって達成した。図24cに示された電極5a/5bに、第2の異なる変圧器を電気的に接続した。この変圧器は、電圧範囲0〜300V、周波数範囲47〜400Hz及び最大出力定格1kVAのhy AC電源であった。表4a及び4bにおけるそれぞれの識別ランに対する印加電圧は約250ボルトであった。電流は、表4bで報告された最小及び最大ボルトとの時間の関数として変化した。他の全てのプロセス変数は一定のままであった。
従って、表4aは、多数の変数(例えば処理増強剤及び所定の滞留時間)が水中の金ナノ結晶の量又は濃度、及び金ナノ結晶のサイズ分布の両方に影響を及ぼすことを示している。一般に、処理増強剤の濃度が約1g/ガロン(0.264g/L)から約2g/ガロン(0.528g/L)へ増大するにつれて、濃度(すなわち「ppm」)は所与の一連の処理条件下で多かれ少なかれ増大する。しかしながら、いくつかの事例において、粒度分布(「psd」)は好ましくなく増大するので、形成されたナノ粒子はもはや安定ではなく、時間の関数として「沈降」した(例えば、不安定な懸濁液が形成された)。これらの沈降条件は即座に作用するものではなく、従ってこのことは、水中のこのようなナノ粒子懸濁液をすぐに処理して有用な生成物、例えばゲル又はクリームにすることができることを示唆した。この例は、多数の処理変数の種々様々な重要な効果を明示している。これらの変数は、本明細書中の他の個所で開示された本発明の連続法に少なくとも指示的に転換することができる。これらのデータは一例であり、本発明の範囲を限定するものとして見なすべきではない。さらに、これらの本発明のデータは、追求すべき優れた操作上の指示を当業者に提供するはずである。
特定の例として、表4cは、第1の電極セット#1(すなわち図24a)は約750ボルトの電圧で動作することによりプラズマ4を形成したことを示している。これは、本明細書中の他の個所で報告された他のプラズマ4と同様である。但し、電極セット#2(すなわち図24c)は上記hy−AC源によって給電された。
図31aは、この例11に従って形成された溶液から乾燥させられた金結晶の代表的なTEM顕微鏡写真を示している。
図31bは、例11に従って形成された乾燥金ナノ結晶のTEM測定に基づく粒度分布ヒストグラムを示している。
図31cは、この例11からのグラフィカル動的光散乱粒度データ(すなわち流体力学半径)を示している。具体的には、本明細書中の他の個所で報告されているものと同様の代表的なViscotekデータセットが、この図面に示されている。
なお、動的光散乱粒度の情報は、TEMで測定されたヒストグラムとは異なる。なぜならば、動的光散乱は、ナノ結晶が全て球体(これらはそうではない)であることを想定するアルゴリズムを使用し、また、流体力学半径の尺度となるからである(例えば、水に対するナノ結晶の影響も検出され、ナノ結晶の実際の物理的半径に加えて報告される)。従って、ちょうど本明細書中に含まれる他の例におけるように、TEMヒストグラム・データ中で報告された値と、動的光散乱データ中で報告された値との間で、報告ナノ結晶サイズに差異があることは、驚くべきことではない。
例12
金系ナノ粒子/ナノ粒子溶液又はコロイド
IAC−261のバッチ法による製造
この例は、本発明によるバッチ法を利用する。図24aは、液体3をコンディショニングするために使用される装置を示す。液体3’が一旦コンディショニングされたら、これを図24cに示された装置内で処理した。
ソーダ(すなわちNaHCO3)をベーキングする処理増強剤の量は約1.5グラム/ガロン(すなわち約0.396g/L)であった。処理増強剤を含む水3がプラズマ4に曝露される時間量は、図24cに示された装置内の後続の処理前に、約60分間であった。
電極1によって形成される各プラズマ4のための印加電圧は約750ボルトであった。この電圧は、本明細書中の他の個所で論じられた変圧器60(すなわち平衡中間点参照デザイン(Balanced Mid-Point Referenced Design)によって達成した。
図24cに示された電極5a/5bに、第2の異なる変圧器を電気的に接続した。この変圧器は、電圧範囲0〜300V、周波数範囲47〜400Hz及び最大出力定格1kVAのhy AC電源であった。印加電圧は約300ボルトであった。電流は、時間の関数として変化し、60分間の動作時間にわたって最小アンペアは0.390アンペアであり、最大アンペアは0.420アンペアであった。金ワイヤー電極の直径は1mmであった。
懸濁液中に生成された金ナノ粒子の量は、本明細書の他の個所で論じられた原子吸収分光技術によって測定して、約13.7ppmであった。この例に従って形成されたナノ粒子のサイズ及び形状は、本明細書中の表12に十分に論じられている。
図33aは、この例12に従って形成された懸濁液1AC−261から乾燥させられた金結晶の代表的なTEM顕微鏡写真を示している。
図33bは、例12に従って形成された乾燥金ナノ結晶のTEM測定に基づく粒度分布ヒストグラムを示している。
例13
金系ナノ結晶/ナノ結晶懸濁液GB−154−20Hz,
GB−157−40Hz,GB−159−60Hz,
GB−161−80Hz,GB−173−100Hz,
及びGB−156−300Hzの製造
大まかに述べると、この例は、例16においてGB−134を形成するために使用されたものと同じ製造設定を用いた。簡潔さのために、使用したトラフ装置の仕様は例16において詳細に論じる。この例において懸濁液又はコロイドを形成する際の主な違いは、電極5a/5bへの電気的な入力として、プログラミング可能なAC源からの異なる正弦波形周波数を使用したことである。
具体的には、低くは20Hz、高くは300Hzの正弦波AC周波数を利用して、本明細書中の教示内容に従ってナノ結晶懸濁液又はコロイドを形成した。AC電源501ACは、Chroma 61604プログラミング可能AC源を利用した。印加された電圧は300ボルトであった。波形は、6つの異なる周波数、つまり20,40,60,80,100及び300Hzの正弦波であった。印加電流は4.2アンペア〜4.8アンペアであった。
図34aは、懸濁液GB−154から乾燥させた金ナノ結晶の代表的なTEM顕微鏡写真を示し、そして図34bは、懸濁液GB−154からの乾燥金ナノ結晶のTEM測定に基づく粒度分布ヒストグラムを示す。
図35aは、懸濁液GB−157から乾燥させた金ナノ結晶の代表的なTEM顕微鏡写真を示し、そして図35bは、懸濁液GB−157からの乾燥金ナノ結晶のTEM測定に基づく粒度分布ヒストグラムを示す。
図36aは、懸濁液GB−159から乾燥させた金ナノ結晶の代表的なTEM顕微鏡写真を示し、そして図36bは、懸濁液GB−159からの乾燥金ナノ結晶のTEM測定に基づく粒度分布ヒストグラムを示す。
図37aは、懸濁液GB−161から乾燥させた金ナノ結晶の代表的なTEM顕微鏡写真を示し、そして図37bは、懸濁液GB−161からの乾燥金ナノ結晶のTEM測定に基づく粒度分布ヒストグラムを示す。
図38aは、懸濁液GB−173から乾燥させた金ナノ結晶の代表的なTEM顕微鏡写真を示し、そして図38bは、懸濁液GB−173からの乾燥金ナノ結晶のTEM測定に基づく粒度分布ヒストグラムを示す。
図39aは、懸濁液GB−156から乾燥させた金ナノ結晶の代表的なTEM顕微鏡写真を示し、そして図39bは、懸濁液GB−156からの乾燥金ナノ結晶のTEM測定に基づく粒度分布ヒストグラムを示す。
この例から、粒子サイズ「モード」及び粒度分布の両方が、この例の条件下でAC正弦波形周波数を高くする関数として増大したことが明らかである。
例14
金系ナノ結晶/ナノ結晶懸濁液(GB−166−正弦,
GB−165−方形,GB−162−三角)の製造
大まかに述べると、この例は、例16においてGB−134を形成するために使用されたものと同じ製造設定を用いた。簡潔さのために、使用したトラフ装置の仕様は例16において詳細に論じる。この例において懸濁液又はコロイドを形成する際の主な違いは、3つの異なるタイプの波形(すなわち正弦波、方形波、及び三角波)が、BK Precision 4040 20MHz関数発生器 501FGによって生成されることであった。波形出力をChroma 61604プログラミング可能AC源、501AC内に入力した。正弦波(SI)及び方形波(SQ)に対応する印加電圧は300ボルトであるのに対して、三角波形(TR)に対応する印加電圧は250ボルトであった。これらの波形のそれぞれを図41に示す。具体的には、電極5a/5bへの電気的な入力として、GB−166は正弦波を利用し、GB−165は方形波を利用し、そしてGB−162は三角波を利用した。
図42aは、懸濁液GB−166から乾燥させた金ナノ結晶の代表的なTEM顕微鏡写真を示し、そして図42bは、懸濁液GB−166からの乾燥金ナノ結晶のTEM測定に基づく粒度分布ヒストグラムを示す。
図43aは、懸濁液GB−165から乾燥させた金ナノ結晶の代表的なTEM顕微鏡写真を示し、そして図43bは、懸濁液GB−165からの乾燥金ナノ結晶のTEM測定に基づく粒度分布ヒストグラムを示す。
図44aは、懸濁液GB−162から乾燥させた金ナノ結晶の代表的なTEM顕微鏡写真を示し、そして図44bは、懸濁液GB−162からの乾燥金ナノ結晶のTEM測定に基づく粒度分布ヒストグラムを示す。
例15
金系ナノ粒子/ナノ粒子懸濁液
(GB−163及びGB−164)の製造
大まかに述べると、この例は、例16においてGB−134を形成するために使用されたものと同じ製造設定を用いた。簡潔さのために、使用したトラフ装置の仕様は例16において詳細に論じる。この例において懸濁液又はコロイドを形成する際の主な違いは、信号波発生器501FG及びプログラミング可能AC電源501AC(すなわち例14において論じたもの)からの三角波形に対して2つの異なるデューティーサイクルを使用することであった。それぞれの三角波形の印加電圧は250ボルトであった。具体的には、GB−166及びGB−164のそれぞれが、電極5a/5bへの電気的な入力として図45に示された三角形の波形TR−1,TR−2,及びTR−3を利用した。波形TR−2が最大デューティーサイクルであるのに対して、TR−3は最小デューティーサイクルであった。
図46aは、懸濁液GB−163から乾燥させた金ナノ結晶の代表的なTEM顕微鏡写真を示し、そして図46bは、懸濁液GB−163からの乾燥金ナノ結晶のTEM測定に基づく粒度分布ヒストグラムを示す。
図47aは、懸濁液GB−164から乾燥させた金ナノ結晶の代表的なTEM顕微鏡写真を示し、そして図47bは、懸濁液GB−164からの乾燥金ナノ結晶のTEM測定に基づく粒度分布ヒストグラムを示す。
例16
金系ナノ結晶/ナノ結晶懸濁液(GB−134);
(GB−098,GB−113及びGB−118);
(GB−120及びGB−123);(GB−139);
(GB−141及びGB−144);
(GB−079,GB−089及びGB−062);
及び(GB−076及びGB−077)の製造
一般に、この例16は、図20c〜h、21b〜g及び22bに大まかに示された装置と関連する本発明の或る実施態様を利用する。加えて、表5は、図20c〜h、21b〜g及び22bと関連して使用される主要処理パラメータを要約している。また、表5は、1)結果として生じる「ppm」(すなわち金ナノ粒子濃度)、2)図49c〜61(本明細書中後で論じる)のそれぞれにおいて示される3つの最高振幅ピークの平均から求められた「流体力学半径」に対応する単一の数値(本明細書中で後で論じる)、及び3)図49b〜61bに示されたTEMヒストグラム・グラフによって測定して、最も頻繁に発生する粒子直径に相当するモードである「TEM平均直径」を開示する。これらの物理的特徴付けは、本明細書中の他の個所で論じられているように実施した。
前述の図面における全てのトラフ部材30a’及び30b’を、それぞれ1/8インチ(約3mm)厚のプレキシガラス、及び1/4インチ(約6mm)厚のポリカーボネートから形成した。支持構造34(図面の多くでは示されていないが、しかし本明細書中の他の個所で論じられている)も、約1/4インチ厚(約6mm〜7mm厚)であるプレキシガラスから形成した。図19a及び19bに示された実施態様とは対照的に、各部材30aはトラフ部材30b’と一体的であり、これを30a’と呼ぶ(例えば前の特定例におけるように、トラフ部材30aの後には別個のポンプ手段は設けられていない)。この例で使用された各トラフ部材30a’の断面形状は、図10bに示された形状に相当した(すなわち台形断面)。各トラフ部材部分30b’の該当寸法を、「M1」(すなわちトラフ部材30b’の入口部分におけるトラフの内幅)、「M2」(すなわちトラフ部材30b’の出口部分におけるトラフの内幅)、「LT」(すなわちトラフ部材30b’の横方向長さ又は流動方向長さ)、「S」(すなわちトラフ部材30b’の高さ)、及び「d」(すなわちトラフ部材30b’内部の液体3’’の深さ)として、表5で報告する。いくつかの実施態様の場合、トラフ部材30b’のサイド部分「S」,「S’」(図10a参照)を離隔する距離「M」は同じである。これらの事例では、表5は「M1」の値寸法だけを表し、「M2」の記入欄は「N/A」と表す。換言すれば、いくつかのトラフ部材30b’は長手方向長さに沿ってテーパされており、他の事例では、トラフ部材30b’はその長手方向長さに沿ってほぼ真直ぐである。また各側壁部分の厚さは約1/4インチ(約6mm)厚であった。3つの異なる長手方向長さ「LT」を、トラフ部材30b’に関して報告する(すなわち610mm、914mm又は1219mm)が、しかし他のLTも本発明のトラフの範囲に含まれるものと考えるべきである。
表5は、処理増強剤NaHCO3が精製水(本明細書中の他の個所で論じる)に約0.4mg/ml又は0.53mg/mlの量で添加されたことを示している。なお、他の量のこのような処理増強剤も本発明の範囲内で機能する。精製水/NaHCO3混合物を、トラフ部材30a’内に流入させられる液体3として使用した。トラフ部材30a’(すなわちここでプラズマ4が形成されている)内の液体3の深さ「d」は、トラフ部材30a’に沿った種々の点において、約7/16インチ〜約1/2インチ(約11mm〜約13mm)であった。深さ「d’」は、ダム80(図18a及び18bに示す)を使用することによって部分的に制御した。具体的に、ダム80はトラフ部材30a’の流出端部32の近くに設けられ、約7/16インチ〜約1/2インチ(約11mm〜約13mm)の深さになるように深さ「d」(図10bで「d」として示す)を形成するのを助けた。ダム80の高さ「j」は約1/4インチ(約6mm)であり、また長手方向長さ「k」は約1/2インチ(約13mm)であった。幅(図示せず)は、トラフ部材30a’の底部寸法「R」を完全に横切る。従って、動作中のトラフ部材30a’内の液体3’の総体積は、約2.14立方インチ(約35ml)〜約0.89立方インチ(約14.58ml)であった。
トラフ部材30a’内及びトラフ部材30b’ 内へ入る水3’の流量は、形成済試料のうちの1つ(すなわち約110ml/分のGB−144)を除いて約150ml/分であり、点32におけるトラフ部材30b’から出る流量は、約62ml/分のGB−144を除く全ての試料に関して、約110ml/分であった(すなわち蒸発に起因する)。GB−144に発生する蒸発の量は、他の試料よりもパーセンテージが高い。なぜならば、トラフ部材30b’内の液体3’’の滞留時間が、この実施態様に従って形成された他の試料と比べて長いからである。他の許容し得る流量も本発明の範囲に含まれると考えるべきである。
液体3’のこのような流量は、定格0.1馬力、10-600rpmのMasterflex(登録商標) L/Sポンプ駆動装置40を利用することにより得られた。Masterflex(登録商標)ポンプ40のモデル番号は77300-40であった。ポンプ駆動装置は、Easy-Load Model No. 7518-10として知られている、これもMasterflex(登録商標)製のポンプヘッドを有した。一般的に言うと、ポンプ40のためのヘッドは蠕動ヘッドとして知られている。ポンプ40及びヘッドは、Masterflex(登録商標) LS Digital Modular Driveによって制御された。Digital Modular Driveのモデル番号は77300-80である。Digital Modular Driveの正確な設定値は例えば、例えば110ml/分であるGB−144を除いた全ての試料に関して、1分間当たり150ミリリットルであった。蠕動ヘッド内に、直径1/4インチ(すなわちサイズ06419-25)のTygon(登録商標)管を入れた。管は、Masterflex(登録商標)のためにSaint Gobainによって製造された。管の一方の端部をトラフ部材30a’の第1の端部31に、その中に配置された流れ拡散手段の傍らで供給した。流れ拡散手段は、トラフ部材30a’内に導入された水中3の攪乱及び気泡、並びに、蠕動ポンプ40によって発生したパルス状態を最小限にする傾向があった。これに関して、小型リザーバが拡散手段として役立ち、これをトラフ部材30a’の端部31の鉛直方向上方の点に設けたので、リザーバがオーバーフローしたときに、比較的定常的な液体3’の流れが、V字形トラフ部材30a’の端部31内に流入した。
表5は、単一の電極セット1a/5a、又は2つの電極セット1a/5aがこの例18で利用された。プラズマ4は、図5eに示されたものの形状と類似する、重量9.2gの電極1で形成された。この電極は純度99.95%の金であった。他方の電極5aは、液体3’中に約9mm浸された、約14mm x 23mm x 27mm及び1mm厚の直角三角形の白金板であった。他の全ての該当する条件は表5に示されている。
図20c〜hに示されているように、トラフ部材30a’からの流出物は、コンディショニング済の液体3’であり、このコンディショニング済液体3’を第2のトラフ部材30b’内に直接に流入させた。図21b〜g及び22b内に示された第2のトラフ部材30b’は、表5で報告されている測定値を有した。このトラフ部材30b’はトラフの寸法及び液体3’’の深さ「d’’」に応じて、約600mlの液体3’’〜約1100mlの液体3’’を含有した。図20c〜h、21b〜22g及び22bと関連する表5は、種々異なる電極構造を示している。例えば、本明細書中の前の例は、4つの電極セット5/5と1つの電極セット1/5とを使用することを開示した。この例では、8つ又は9つの電極セット(例えば、1つの1/5セットと、7つ又は8つの5/5’セット;又は2つの1/5セットと、7つの5/5’セット)を使用した。表5で報告されているように、電極セット5/5’のそれぞれは、直径約0.5mm又は1.0mmの純度99.99%の金ワイヤーを含んだ。液体3’’と接触している各ワイヤー電極5の長さ(表5の「WL」として報告する)は、約0.5インチ(約13mm)長〜約2.0インチ(約51mm)長であった。2つの異なる電極セット構造5/5’を利用した。図21b、21c、21e、21f、21g及び22bは全て、一平面に沿って配向された電極セット5/5’(例えば、液体3”の流動方向に沿って線状に配列されている)を示す。これに対して、図21dは電極セット構造5/5’が、前述の電極セット5/5’に対して約90℃回転させられているのを示している。さらに、図20a〜20hに示された実施態様は、電極セット構造1/5及び5/5’が全て同じ平面に沿って配置されていることを示している。しかし、各電極セット構造1/5及び5/5’の電極間で形成された仮想平面が液体3’’の流動方向に対して平行であること、又は液体3’’の流動方向に対して垂直であること、又は液体3’’の流動方向に対して所定の角度を成すことも可能であることに注意すべきである。
図20c〜h、21b〜g及び22bに関して、これらの図に示されているように、変圧器装置50及び50aにそれぞれ別個の電極セット5/5’(セット2、セット3〜セット8又はセット9)を電気的に接続した。具体的には、図20c〜hに示した配線図に従って、変圧器50及び50aを各電極セットに電気的に接続した。正確な配線は例によって異なるので、具体的な電気的接続情報に関しては図20c〜gを参照されたい。ほとんどの事例において、各変圧器装置50,50aは、互いに位相を120℃ずらした別個のAC入力ラインに接続した。変圧器50及び50aは、単一の電気回路に過負荷を与えて例えば上流側の回路遮断器が解除されないような形式で電気的に接続した(例えば、これらの条件下で利用されると、単一の変圧器50/50aは、上流側の電気的な問題を引き起こすのに十分な電流を引き込むことがある)。各変圧器50/50aは、ワイヤの単一コイル/巻線から構成された可変AC変圧器であった。この巻線は、一次巻線及び二次巻線の両方の一部として作用する。入力電圧は巻線の固定部分を横切って印加される。出力電圧は、巻線の一方の端部と、巻線に沿った別の接続部との間で取り出される。巻線の一部を露出させ、スライディング・ブラシを使用して二次接続部を形成することにより、連続変動比を得ることができる。入力電圧に対する出力電圧の比は、これらが接続する巻線の巻き数の比に等しい。具体的には、それぞれの変圧器は、Mastech TDGC2-5kVA, 10A 電圧調節器, 出力0-250Vであった。
表5は、「セット#」(例えば「セット1」〜「セット9」)によって表される電極セットのそれぞれに関する。1/5又は5/5電極セットのそれぞれの電極を、特定の電圧範囲内で動作するように設定した。表5に挙げられた電圧は、それぞれの電極セットのために使用された電圧である。各電極セットの中心線と隣接電極セットとの距離「c−c」(図14参照)も報告する。さらに、それぞれ電極1と関連する距離「x」も報告する。電極5に関しては、距離「x」は報告しない。試料GB−118は、本明細書中の他の例とは僅かに異なる電極5a/5b配列を有した。具体的には、それぞれ、電極5a/5bのチップ又は端部5t及び5t’が、電極5a/5bの他の部分よりも互いに近接して配置された。先端5t及び5t’間の距離「dt」は、約7/16インチ(例えば1.2cm)及び約2インチ(約5cm)である。他の関連距離も表5に報告する。
電極1/5のための全ての材料は、1050 Benson Way, Ashland, Oregon 97520在、ESPIから入手した。ランGB−139、GB−141、GB−144、GB−076、GB−077、GB−079、GB−089、GB−098、GB−113、GB−118、GB−120、及びGB−123における電極5/5のための全ての材料を、26 Parkridge Road, Ward Hill, MA 01835在、Alfa Aesarから得た。ランGB−062における電極5/5のための全ての材料は、1050 Benson Way, Ashland, Oregon 97520在、ESPIから入手した。
図49a〜61aは、表5で参照された各懸濁液又はコロイドから乾燥させられ、例16に従って形成された金ナノ結晶のそれぞれに対応する2つの代表的なTEM顕微鏡写真である。
図49b〜61bは、表5で参照され例16に従って形成された各乾燥溶液液又はコロイドに対して、例5〜7において前に論じたTEM機器/ソフトウェアを使用することにより測定された金ナノ結晶の測定サイズ分布を示している。
図49c〜61cは、表5で参照され例16に従って形成された各懸濁液又はコロイドに対する3つの動的光散乱データ測定値集合(すなわち流体力学半径)をグラフィカルに示している。なお、動的光散乱粒度の情報は、TEMで測定されたヒストグラムとは異なる。なぜならば、動的光散乱は、粒子が全て球体(これらはそうではない)であることを想定するアルゴリズムを使用し、また、流体力学半径の尺度となるからである(例えば、水に対する粒子の影響も検出され、粒子の実際の物理的半径に加えて報告される)。従って、ちょうど本明細書中に含まれる他の例におけるように、TEMヒストグラム・データ中で報告された値と、動的光散乱データ中で報告された値との間で、報告粒度に差異があることは、驚くべきことではない。
試料GB−139、GB−141及びGB−144を形成するために使用される構造の代表である図20c、20h、21e、21f及び20gをここで参照する。これらの試料を形成するのに使用されるトラフ部材30b’は、この例16で使用される他のトラフ部材30b’とは異なっていた。その理由は:1) 例えば各電極セット1/5における各電極の高さを自動調節する制御装置20及び20a〜20g(すなわち図20h)に、8つの電極セット1/5及び5/5を全て接続したこと;及び2) 所望されたとき、そして所望の場合に、各電極セット5/5内の電極を各雌受容管内に取り外し可能に挿入することができるように、雌受容管o5a/o5a’−o5g/o5g’をトラフ部材30b’の底部に接続したこと、である。それぞれの雌受容管o5をポリカーボネートから形成し、雌受容管o5は内径が約1/8インチ(約3.2mm)であり、溶媒型接着剤によってトラフ部材30b’の底部の所定の位置に固定した。トラフ部材30b’の底部に穴が設けられていることにより、管o5の一方の端部がトラフ30b’の底部の表面と同一平面になるように、各管o5の外径がその中に固定されるのを可能にした。管o5の内径は、任意の顕著な量の液体3’’が雌受容管o5内に入るのを効果的に防止した。しかし、多少の液体が雌受容管o5のうちの1つ又は2つ以上の内部に流入することがある。この例において使用された各雌受容管o5の長さ又は鉛直方向高さは、約6インチ(約15.24cm)であったが、これよりも短い又は長い長さもこの開示内容の範囲に含まれる。さらに、雌受容管o5がほぼ真直ぐなものとして示されているが、このような管をJ字形又はU字形に湾曲させることにより、所望の場合には、トラフ部材30b’から離反した管開口が、液体3’’の上面よりも上方に位置するようにすることもできる。
図21e、f及びgを参照すると、液体が丁度雌受容管o5に入るように各電極5/5’を先ず液体3’’と接触させた。所定の処理時間後、金金属を各ワイヤー電極5から取り出した。このことは電極5を薄くした(すなわち直径が小さくなる)。これにより金ナノ粒子が形成される際の電流密度及び/又は速度が変化した。従って、電極5を雌受容管o5に向かって動かし、その結果新鮮なより厚い電極5が液体3’’の上面部分に入る。本質的には、或る程度の処理時間が経過した後、電極5上に腐食プロフィール又はテーパリング効果が形成され(すなわち、液体3’’の表面近くのワイヤー部分は典型的には雌受容管o5の近くの部分よりも厚い)、そしてこのようなワイヤー電極のプロフィール又はテーパリングは、所望の場合には、製造過程全体にわたって本質的に一定のままであることが可能であり、その結果、本質的に同一の生成物が、生産工程中の初期前平衡段階後の任意の時点で生産され、例えばそのプロセスが現行のFDAガイドライン下のcGMPであること、及び/又はISO 9000に準拠していることを可能にする。
雌受容管o5内への電極5の運動は、時間の関数として変化する種々の特定プロセル・パラメータ(例えば電流、アンペア数、ナノ結晶濃度、光学濃度又は色、導電率、pHなど)を監視することによるか、或いは、固定的な運動速度をもたらすように種々の時間間隔で所定の量だけ動かすことによるかの、処理環境全体においてより好都合であるいずれかで行うことができる。これに関して、図54d、55d及び56dは、電流がそれぞれ試料GB−139、GB−141及びGB−144を形成するのに使用される16個の電極のそれぞれに対応する時間の関数として監視/制御され、電極5の雌受容管o5内への鉛直方向運動を引き起こしたことを示している。これらの処理条件下で、各電極5は、図54d、55d及び56dに報告された電流を維持するように、8時間毎に約3/4インチ(約2.4mm/時間)の速度で動かされた。図55d及び56dは、電流が0.2〜0.4アンペア前後で始まり、約20〜30分後に約0.4〜0.75まで増大する典型的な立ち上がり段階又は前平衡段階を示している。試料は平衡段階だけから収集した。前平衡段階が発生するのは、液体3’’中で産出されたナノ結晶の濃度が、これが平衡状態に達するまでは時間の関数として増大するという理由による(例えば装置内で実質状コンスタントに核生成及び成長する状況)。この平衡状態は、本明細書中に開示された制御過程に起因する処理の残り全体を通して実質的に一定であり続ける。
UV−VIS分光法を用いて、例16の試料に対してエネルギー吸収スペクトルを得た。この情報は、波長範囲190nm〜1100nmを走査することができるデュアルビーム走査モノクロメータ・システムを使用して獲得された。Jasco V-530 UV−VISスペクトロメータを使用することにより、吸収スペクトルを収集した。数多くの石英ガラス試料ホルダ又は「キュベット」のうちの1つを使用して、低濃度液体試料の測定を支援するために、機器を配置した。種々のキュベットは、データが10mm、1mm又は0.1mmの試料光路で収集されるのを可能にする。250〜900nmの検出器を用いて、次のパラメータ、すなわち帯域幅2nm、データピッチ0.5nm、水ベースライン・バックグラウンドを伴うシリコン・フォトダイオードのパラメータで、上記波長範囲にわたってデータを獲得した。主要エネルギー源として、走査速度400nm/mmの重水素「D2」及びハロゲン(WI)源の両方を使用した。これらのスペクトロメータの光路を、エネルギービームが試料キュベットの中心を通過するを可能にするように設定した。試料の調製は、キュベットを充填してキャップし、次いで、完全密閉された試料区分内部のキュベット・ホルダ内に試料を物理的に入れることに制限した。当該材料によるエネルギーの光吸収を割り出した。出力データを測定し、そして波長に対する吸収度単位(ランベルト・ベールの法則による)として表示した。
例16で産出された溶液/コロイドのそれぞれに対して、UV−可視範囲のスペクトル・パターンを得た。
具体的には、図61dは、約250nm〜750nmの波長範囲内の14種の懸濁液/コロイドの(GB−134);(GB−098,GB−113及びGB−118);(GB−120及びGB−123);(GB−139);(GB−141及びGB−144);(GB−079,GB−089及びGB−062);及び(GB−076及びGB−077)のそれぞれに対応するUV−Visスペクトル・パターンを示している。
図61eは、約435nm〜635nmの波長範囲にわたる14種の懸濁液/コロイドのそれぞれに対応するUV−Visスペクトル・パターンを示している。
一般に、UV−Vis分光法は、試料による近紫外線及び可視線の吸収波長及び吸収強度を測定することである。紫外線及び可視線は、外部電子をより高いエネルギーレベルに促進するのに十分に高いエネルギーを有する。UV−Vis分光法は、溶液又は懸濁液中の分子及び無機イオン又は錯体に適用することができる。
UV−Visスペクトルは、試料同定のために使用することができる広範囲の特徴を有するが、しかし定量測定にも有用である。所定の波長における吸光度を測定し、そしてランベルト・ベールの法則を適用することにより、溶液中の被分析物の濃度を割り出すことができる。
例17
金系ナノ結晶/ナノ結晶懸濁液GB−056の製造

一般に、例17は、図17a、18a、20b及び22aに大まかに示された装置と関連する本発明の或る実施態様を利用する。トラフ部材30a(30a’)及び30bはそれぞれ1/4インチ(約6mm)厚のプレキシガラス、及び1/8インチ(約3mm)厚のポリカーボネートから形成した。支持構造34も、約1/4インチ厚(約6mm〜7mm厚)であるプレキシガラスから形成した。図20bに示されているように、トラフ部材30aはトラフ部材30b’と一体化されており、これを30a’と呼ぶ(例えば前の特定例におけるように、トラフ部材30aの後には別個のポンプ手段は設けられていない)。図18a及び20bに示されたトラフ部材30a’の断面形状は、図10bに示された形状に相当した(すなわち切頂「V」)。切頂「V」のベース部分「R」は約0.5インチ(約1cm)であり、そして各サイド部分「S」,「S’」は約1.5インチ(約3.75cm)であった。V字形トラフ部材30のサイド部分「S」,「S’」を離隔する距離「M」は約(2+1/4)インチ〜(2+5/16)インチ(約5.9cm)(内側から内側まで測定)であった。また各側壁部分の厚さは約1/8インチ(約3mm)厚であった。V字形トラフ部材30a’の長手方向長さ「LT」(図11a参照)は、点31から点32まで、約1フィート(約30cm)長であった。
精製水(本明細書中の他の個所で論じる)を約0.396g/LのNaHCO3と混合し、そしてトラフ部材30a’内に流入させられる液体3として使用した。V字形トラフ部材30a’内の液体3’の深さ「d」(図10b参照)は、トラフ部材30a’に沿った種々の点において、約7/16インチ〜約1/2インチ(約11mm〜約13mm)であった。深さ「d」は、ダム80(図18aに示す)を使用することによって部分的に制御した。具体的に、ダム80は端部32の近くに設けられ、約7/16インチ〜約1/2インチ(約11mm〜約13mm)の深さになるように深さ「d」(図10bに示す)を形成するのを助けた。ダム80の高さ「j」は約1/4インチ(約6mm)であり、また長手方向長さ「k」は約1/2インチ(約13mm)であった。幅(図示せず)は、トラフ部材30a’の底部寸法「R」を完全に横切る。従って、動作中のV字形トラフ部材30a’内の液体3’の総体積は、約2.14立方インチ(約35ml)であった。
トラフ部材30a’内への液体3’の流量は約150ml/分であり、点32におけるトラフ部材30b’の流出量は僅かに少なく、約110ml/分であった(すなわち蒸発に起因する)。液体3’のこのような流量は、定格0.1馬力、10-600rpmのMasterflex(登録商標) L/Sポンプ駆動装置40を利用することにより得られた。Masterflex(登録商標)ポンプ40のモデル番号は77300-40であった。ポンプ駆動装置は、Easy-Load Model No. 7518-10として知られている、これもMasterflex(登録商標)製のポンプヘッドを有した。一般的に言うと、ポンプ40のためのヘッドは蠕動ヘッドとして知られている。ポンプ40及びヘッドは、Masterflex(登録商標) LS Digital Modular Driveによって制御された。Digital Modular Driveのモデル番号は77300-80である。Digital Modular Driveの正確な設定値は例えば、1分間当たり150ミリリットルであった。蠕動ヘッド内に、直径1/4インチ(すなわちサイズ06419-25)のTygon(登録商標)管を入れた。管は、Masterflex(登録商標)のためにSaint Gobainによって製造された。管の一方の端部をトラフ部材30a’の第1の端部31に、その中に配置された流れ拡散手段の傍らで供給した。流れ拡散手段は、トラフ部材30a’内に導入された水中3の攪乱及び気泡、並びに、蠕動ポンプ40によって発生したパルス状態を最小限にする傾向があった。これに関して、小型リザーバが拡散手段として役立ち、これをトラフ部材30a’の端部31の鉛直方向上方の点に設けたので、リザーバがオーバーフローしたときに、比較的定常的な液体3’の流れが、V字形トラフ部材30a’の端部31内に流入した。
例17では単一の電極セット1a/5aが利用された。プラズマ4は、図5eに示されたものの形状と類似する、重量9.2gの電極1で形成された。この電極は純度99.95%の金であった。他方の電極5aは、液体3’中に約9mm浸された、約14mm x 23mm x 27mm及び約1mm厚の直角三角形の白金板であった。他の全ての該当する条件は表10に示されている。
図20bに示されているように、トラフ部材30a’からの流出物は、コンディショニング済の液体3’であり、このコンディショニング済液体3’を第2のトラフ部材30b’内に直接に流入させた。図22a内に示された第2のトラフ部材30b’は、その端部32では高さが約3.75インチ、幅が約3.75インチであり、またその端部31では幅が約1インチであった。このトラフ部材30b’は、約2.5インチ深さの約1450mlの液体3’’を含有した。この例において、4つの電極セット5a,5a’〜5d,5d’のそれぞれは、直径約0.5mmの純度99.95%の金ワイヤーを含んだ。各ワイヤーの長さは約5インチ(約12cm)であった。液体3’’は深さが約2.5インチ(約6cm)であって、約4.25インチ(約11cm)のJ字形ワイヤーがその中に浸されている。各電極セット5b,5b’〜5e,5e’は、図17aに示されているように「J」字形であった。図17aに示された距離「g」は約1〜8mmであった。
図20b及び22aに関して、図20bに示されているように、2つの別個の変圧器装置50及び50aに4つの別個の電極セット(セット2、セット3、セット4及びセット5)を取り付けた。具体的には、図19aに示した配線図に従って、変圧器50及び50aを各電極セットに電気的に接続した。各変圧器装置50,50aは、互いに位相を120℃ずらした別個のAC入力ラインに接続した。変圧器50及び50aは、単一の電気回路に過負荷を与えて例えば上流側の回路遮断器が解除されないような形式で電気的に接続した(例えば、これらの条件下で利用されると、単一の変圧器50/50aは、上流側の電気的な問題を引き起こすのに十分な電流を引き込むことがある)。各変圧器50/50aは、ワイヤの単一コイル/巻線から構成された可変AC変圧器であった。この巻線は、一次巻線及び二次巻線の両方の一部として作用する。入力電圧は巻線の固定部分を横切って印加される。出力電圧は、巻線の一方の端部と、巻線に沿った別の接続部との間で取り出される。巻線の一部を露出させ、スライディング・ブラシを使用して二次接続部を形成することにより、連続変動比を得ることができる。入力電圧に対する出力電圧の比は、これらが接続する巻線の巻き数の比に等しい。具体的には、それぞれの変圧器は、Mastech TDGC2-5kVA, 10A 電圧調節器, 出力0-250Vであった。
表6は、「セット#」によるそれぞれ4つの電極セットを表す。4つの電極セットのそれぞれの電極を、特定の電圧範囲内で動作するように設定した。表10に挙げられた実電圧は約255ボルトであった。各電極セットの中心線と隣接電極セットとの距離「c−c」(図14参照)も表す。さらに、利用される電極1と関連する距離「x」も報告する。電極5に関して、距離「x」は報告しない。他の関連距離は、表6で報告する。
電極1/5のための全ての材料は、1050 Benson Way, Ashland, Oregon 97520在、ESPIから入手した。
図100a〜eは、この例16に従って形成された溶液/コロイドGB−056から乾燥させられた金ナノ結晶の5つの代表的なTEM顕微鏡写真を示している。
図101aは、この例5〜7において前に論じたTEM機器/ソフトウェアを使用することにより測定された懸濁液/コロイドから乾燥させられた金ナノ結晶の測定サイズ分布を示している。
図101bは、この例17に従って形成されたナノ結晶に対する3つの動的光散乱データ測定値集合(すなわち流体力学半径)をグラフィカルに示している。なお、動的光散乱粒度の情報は、TEMで測定されたヒストグラムとは異なる。なぜならば、動的光散乱は、ナノ結晶が全て球体(これらはそうではない)であることを想定するアルゴリズムを使用し、また、流体力学半径の尺度となるからである(例えば、水に対するナノ結晶の影響も検出され、ナノ結晶の実際の物理的半径に加えて報告される)。従って、ちょうど本明細書中に含まれる他の例におけるように、TEMヒストグラム・データ中で報告された値と、動的光散乱データ中で報告された値との間で、報告ナノ結晶サイズに差異があることは、驚くべきことではない。
図102a〜102dは、例17に従って形成された同じ懸濁液/コロイドGB−056の付加的な代表的TEM顕微鏡写真を示しているが、しかしこの懸濁液/コロイドは、例26において論じられる処理群Bにおいて給水瓶を介してマウスに曝露された。なお、これらの代表的なTEMナノ結晶画像は、乾燥溶液GB−056の画像であるので、何らかの乾燥条件が画像に影響を及ぼし得る。金ナノ結晶のある程度の集団化が例えば乾燥中に発生したことが明らかである。しかし、図103aは、図101aに示されたものとほぼ同様のナノ結晶サイズ分布を示している。これに関して、図102及び103に示されたデータは、例26EAE研究の2日目と3日目との間の24時間にわたってマウスの飲用瓶内にあった懸濁液に相当する。図103bを図101bと比較すると興味深い。これに関して、動的光散乱データは変化している。具体的には、図101bに示された最大流体力学半径は約16.8nmであるのに対して、図103bでは、約20.2nmである。明らかに、動的光散乱データは、図102a〜102dに示された乾燥懸濁液/金ナノ結晶TEM顕微鏡写真によっても表された懸濁液中のナノ結晶の一種の集団化を認識している。
同様に、図104a〜104c;図105a;及び図105cは全て、例26で論じられたEAE研究の4日目と5日目との間の24時間にわたって飲用瓶内にあった懸濁液/コロイドGB−056に相当する。やはりこの場合も、ナノ結晶の一種の集合化が発生していたことが明らかである。
図101a、103a及び105aは全て、TEM測定ナノ結晶サイズに関してはほぼ同様であるが、ナノ結晶の動的光散乱半径(例えば流体力学半径)は、図101bで報告されたより小さな流体力学半径と比較して、ちょうど図103bにおいて拡大したのと同様に、図105bにおいても拡大したことが明らかである。
総合すると、これらのデータは、例えばマウス唾液中の或る特定の成分に対して、本明細書中に開示された本発明の組成物を曝露すると、液体中に懸濁されたナノ結晶が集合化又は凝集し得ることを示唆している。従って、或る特定のタンパク質に対する長時間の曝露は、これらの本発明の組成物に対して「変性」効果をもたらすことがある。この「変性」効果は管理することができ、そして特定の理論又は説明に縛られたくはないが、極めて「クリーン」な表面に起因するこのような反応性が望ましい生体内活性(例えば、特定の蛋白質結着メカニズム)をサポートする点で、このような効果は極めて望ましいと言える。
例18
金系ナノ結晶/ナノ結晶懸濁液(GB−151,GB−188,
GB−175,GB−177,GB−176,GB−189,
GB−194,GB−195,GB−196,
GB−198及びGB−199)の製造
一般に、この例は、図18a及び21dに大まかに示された装置と関連する本発明の或る実施態様を利用する。電極1/5及び5/5に制御装置20(図21dには示されていない)が接続されているが、しかしそれぞれの「Run ID」のラン時間が短いことにより、制御装置20を作動させる必要はなかった。従って、図3c及び図9cに示されているように、電極5a及び5bの端部9’は、トラフ部材30b’の底部と並置させられた。加えて、表7は、図18a及び21dと関連して使用される主要処理パラメータを要約している。また、表7は、1)結果として生じる「ppm」(すなわち金ナノ結晶濃度)、2)図62b〜72bに示されるTEMヒストグラムによって測定して、最も頻繁に発生する結晶直径に相当するモードである「TEM平均直径」を開示する。これらの物理的特徴付けは、本明細書中の他の個所で論じられているように実施した。
図18a及び21dにおける全てのトラフ部材30a’及び30b’を、それぞれ1/8インチ(約3mm)厚のプレキシガラス、及び1/4インチ(約6mm)厚のポリカーボネートから形成した。支持構造34(図面では示されていないが、しかし本明細書中の他の個所で論じられている)も、約1/4インチ厚(約6mm〜7mm厚)であるプレキシガラスから形成した。図19a及び19bに示された実施態様とは対照的に、各部材30aはトラフ部材30b’と一体的であり、これを30a’と呼ぶ(例えば前の特定例におけるように、トラフ部材30aの後には別個のポンプ手段は設けられていない)。この例で使用された各トラフ部材30a’の断面形状は、図10bに示された形状に相当した(すなわち台形断面)。各トラフ部材部分30b’の該当寸法を、「M1」(すなわちトラフ部材30b’の入口部分におけるトラフの内幅は、トラフ部材30b’の出口部分におけるトラフの内幅と同じであった)、「LT」(すなわちトラフ部材30b’の横方向長さ又は流動方向長さ)、「S」(すなわちトラフ部材30b’の高さ)、及び「d」(すなわちトラフ部材30b’内部の液体3’’の深さ)として、表7で報告する。また各側壁部分の厚さは約1/4インチ(約6mm)厚であった。2つの異なる長手方向長さ「LT」を、トラフ部材30b’に関して報告する(すなわち762mm又は914mm)が、しかし他のLTも本発明のトラフの範囲に含まれるものと考えるべきである。
表7は、処理増強剤NaHCO3が精製水(本明細書中の他の個所で論じる)に約0.26mg/ml又は0.53mg/mlの量で添加されたことを示している。なお、他の量のこのような処理増強剤(又他の処理増強剤)も本発明の範囲内で機能する。精製水/NaHCO3混合物を、トラフ部材30a’内に流入させられる液体3として使用した。トラフ部材30a’(すなわちここでプラズマ4が形成されている)内の液体3’の深さ「d」は、トラフ部材30a’に沿った種々の点において、約7/16インチ〜約1/2インチ(約11mm〜約13mm)であった。深さ「d’」は、ダム80(図18a及び18bに示す)を使用することによって部分的に制御した。具体的に、ダム80はトラフ部材30a’の流出端部32の近くに設けられ、約7/16インチ〜約1/2インチ(約11mm〜約13mm)の深さになるように深さ「d」(図10bで「d」として示す)を形成するのを助けた。ダム80の高さ「j」は約1/4インチ(約6mm)であり、また長手方向長さ「k」は約1/2インチ(約13mm)であった。幅(図示せず)は、トラフ部材30a’の底部寸法「R」を完全に横切る。従って、動作中のトラフ部材30a’内の液体3’の総体積は、約2.14立方インチ(約35ml)〜約0.89立方インチ(約14.58ml)であった。
トラフ部材30a’内及びトラフ部材30b’内へ入る液体3’の流量は変動し(表7に示す)、そしてトラフ部材30b’の点32からの流量も、異なる流量の流入及び蒸発に起因して変動した。他の許容し得る流量も本発明の範囲に含まれると考えるべきである。
液体3’のこのような流量は、定格0.1馬力、10-600rpmのMasterflex(登録商標) L/Sポンプ駆動装置40を利用することにより得られた。Masterflex(登録商標)ポンプ40のモデル番号は77300-40であった。ポンプ駆動装置は、Easy-Load Model No. 7518-10として知られている、これもMasterflex(登録商標)製のポンプヘッドを有した。一般的に言うと、ポンプ40のためのヘッドは蠕動ヘッドとして知られている。ポンプ40及びヘッドは、Masterflex(登録商標) LS Digital Modular Driveによって制御された。Digital Modular Driveのモデル番号は77300-80である。Digital Modular Driveの正確な設定値は例えば、例えば110ml/分であるGB−144を除いた全ての試料に関して、1分間当たり150ミリリットルであった。蠕動ヘッド内に、直径1/4インチ(すなわちサイズ06419-25)のTygon(登録商標)管を入れた。管は、Masterflex(登録商標)のためにSaint Gobainによって製造された。管の一方の端部をトラフ部材30a’の第1の端部31に、その中に配置された流れ拡散手段の傍らで供給した。流れ拡散手段は、トラフ部材30a’内に導入された水中3の攪乱及び気泡、並びに、蠕動ポンプ40によって発生したパルス状態を最小限にする傾向があった。これに関して、小型リザーバが拡散手段として役立ち、これをトラフ部材30a’の端部31の鉛直方向上方の点に設けたので、リザーバがオーバーフローしたときに、比較的定常的な液体3’の流れが、V字形トラフ部材30a’の端部31内に流入した。
表7は、単一の電極セット1a/5aがこの例18で利用された。プラズマ4は、図5eに示されたものの形状と類似する、重量9.2gの電極1で形成された。この電極は純度99.95%の金であった。他方の電極5aは、液体3’中に浸された99.95%の1mm金ワイヤーを含んだ。他の全ての該当する試験条件は表7に示されている。
トラフ部材30a’からの流出物は、コンディショニング済の液体3’であり、このコンディショニング済液体3’を第2のトラフ部材30b’内に直接に流入させた。図21dに示された第2のトラフ部材30b’は、表7で報告されている測定値を有した。このトラフ部材30b’はトラフの寸法及び液体3’’の深さ「d’’」に応じて、約260mlの液体3’’〜約980mlの液体3’’を含有した。図21dと関連する表7は、種々異なる電極構造を示している。例えば、本明細書中の前の例は、4つの電極セット5/5と1つの電極セット1/5とを使用することを開示した。この例では、8つの電極セット(例えば、1つの1/5セットと、7つ又は8つの5/5’セット)を使用した。表7で報告されているように、電極セット5/5’のそれぞれは、直径約0.5mm又は1.0mmの純度99.99%の金ワイヤーを含んだ。液体3’’と接触している各ワイヤー電極5の長さ(表7の「WL」として報告する)は、約0.75インチ(約19mm)長〜約1インチ(約25mm)長であった。図21dは、電極セット5/5’が図5cに示されているように配列されたことを示している。
各電極セット5a/5bを、Chroma 61604プログラミング可能AC電源(図示していないが本明細書中の他の個所で論じる)に接続した。印加電圧を表7に報告した。表7は、「セット#」(例えば「セット1」〜「セット8」)によって表される電極セットのそれぞれに関する。1/5又は5/5電極セットのそれぞれの電極を、特定の電圧範囲内で動作するように設定した。表7に挙げられた電圧は、それぞれの電極セットのために使用された電圧である。各電極セットの中心線と隣接電極セットとの距離「c−c」(図14参照)も報告する。さらに、それぞれ電極1と関連する距離「x」(例えば図2a参照)も報告する。他の関連パラメータも表7で報告する。
電極1/5のための全ての材料は、23 Lewis Street, Fort Erie, Ontario L2A2P6, Canada在、Hi-Rel Alloysから入手した。
図62a〜72aは、表7で参照された各溶液又はコロイドから乾燥させられ、例18に従って形成された金ナノ粒子のそれぞれに対応する2つの代表的なTEM顕微鏡写真である。
図62b〜72bは、表7で参照され例18に従って形成された各乾燥懸濁液又はコロイドに対して、例5〜7において前に論じたTEM機器/ソフトウェアを使用することにより測定された金ナノ結晶の測定サイズ分布を示している。
UV−VIS分光法を用いて、例18の試料に対してエネルギー吸収スペクトルを得た。この情報は、波長範囲190nm〜1100nmを走査することができるデュアルビーム走査モノクロメータ・システムを使用して獲得された。Jasco V-530 UV−VISスペクトロメータを使用することにより、吸収スペクトルを収集した。数多くの石英ガラス試料ホルダ又は「キュベット」のうちの1つを使用して、低濃度液体試料の測定を支援するために、機器を配置した。種々のキュベットは、データが10mm、1mm又は0.1mmの試料光路で収集されるのを可能にする。次のパラメータ、すなわち帯域幅2nm、データピッチ0.5nm、水ベースライン・バックグラウンドを伴うシリコン・フォトダイオードのパラメータで、250〜900nmを使用した波長範囲にわたってデータを獲得した。主要エネルギー源として、走査速度400nm/mmの重水素「D2」及びハロゲン(WI)源の両方を使用した。これらのスペクトロメータの光路を、エネルギービームが試料キュベットの中心を通過するを可能にするように設定した。試料の調製は、キュベットを充填してキャップし、次いで、完全密閉された試料区分内部のキュベット・ホルダ内に試料を物理的に入れることに制限した。当該材料によるエネルギーの光吸収を割り出した。出力データを測定し、そして波長に対する吸収度単位(ランベルト・ベールの法則による)として表示した。
例18で産出された溶液/コロイドのそれぞれに対して、UV−可視範囲のスペクトル・パターンを得た。
具体的には、図72cは、約250nm〜750nmの波長範囲内の11種の懸濁液/コロイドの(GB−151,GB−188,GB−175,GB−177,GB−176,GB−189,GB−194,GB−195,GB−196,GB−198及びGB−199)のそれぞれに対応するUV−Visスペクトル・パターンを示している。
図72dは、約435nm〜635nmの波長範囲にわたる11種の懸濁液/コロイドのそれぞれに対応するUV−Visスペクトル・パターンを示している。
一般に、UV−Vis分光法は、試料による近紫外線及び可視線の吸収波長及び吸収強度を測定することである。紫外線及び可視線は、外部電子をより高いエネルギーレベルに促進するのに十分に高いエネルギーを有する。UV−Vis分光法は、溶液中の分子及び無機イオン又は錯体に適用することができる。
UV−Visスペクトルは、試料同定のために使用することができる広範囲の特徴を有するが、しかし定量測定にも有用である。所定の波長における吸光度を測定し、そしてランベルト・ベールの法則を適用することにより、溶液中の被分析物の濃度を割り出すことができる。
例19
金系ナノ粒子/ナノ粒子懸濁液又はコロイド
Aurora−002、Aurora−004、Aurora−006、
Aurora−007、Aurora−009、Aurora−011、
Aurora−012、Aurora−013、Aurora−014、
Aurora−016、Aurora−017、Aurora−019、
Aurora−020、Aurora−021、Aurora−022、
Aurora−023、Aurora−024、Aurora−025、
Aurora−026、Aurora−027、Aurora−028、
Aurora−029、及びAurora−030の製造
一般に、例19は、本明細書中に開示された他の例のいずれとも異なる、トラフ部材30及び電極1/5の組み合わせを利用する。具体的には、この例は、トラフ部材30a’内の4つの電極1と単一の電極5aとから成る第1セットを利用する。これらの電極は複数のプラズマ4を形成し、結果としてコンディショニング済液体3’をもたらす。コンディショニング済液体3’は、長手方向のトラフ部材30b’内に流入し、これを通過する。トラフ部材30b’の実質的に長手方向長さ全体又は流路全長に沿って、平行に配置された電極5b/5b’が位置決めされている。本発明のこの実施態様の種々の概略図及び斜視図を示す図23a、23b、23c及び23dを具体的に参照されたい。加えて、表8は、本発明のこの実施態様と関連する処理パラメータを含んでいる。
図23aを参照すると、図示のように、2つのAC電源60及び60aが電気的に接続されており、第1トラフ部材部分30a’内で、4つの対応する電極1a,1b,1c及び1dにおいて4つの別個のプラズマ4a,4b,4c及び4dを形成する。図23aに示されているように、単一の電極5aだけが全ての4つの電極1に電気的に接続されている。これらの電源60及び60aは、本明細書中の他の例で報告したものと同じ電源である。4つのプラズマ4a〜4dが表13で報告されているものをコンディショニングする前に、2種の異なる量の処理増強剤NaHCO3を液体3に添加した。報告された処理増強剤の量及びタイプは、本発明を限定するものと解釈すべきではない。トラフ部材30a’に対して流入・流出する液体3/3’、並びにトラフ部材30b’内に流入する液体3/3’の流量も、表8で報告されている。トラフ部材30b’から流出する流量は、蒸発時の液体損失により、ほぼ5%〜50%低くなり、電極5b/5b’で入力された電力が高ければ高いほど蒸発量は高くなる。本明細書中に従って、液体3/3’の流量の変化を利用することができる。
この特定の実施態様では、唯1つの電極セット5b/5b’を利用した。本明細書の他の例に記載されているように、これらの電極5b/5b’はAC電源50に接続した。この具体例に使用された金ワイヤー電極セット5b/5b’は、本明細書中で報告された他の例で使用されたものと同じ金ワイヤーであり、表8で報告された寸法を有していた。しかしながら、比較的長い(すなわち本明細書中の他の例と比較して)金ワイヤー電極を、トラフ部材30b’の長手方向長さLTに沿って配置した。電極5b/5b’のワイヤ長さを表8に報告する。2つの異なるワイヤ長さ50インチ(127cm)又は54インチ(137cm)を利用した。さらに、ワイヤ5b/5b’間の種々異なる横方向間隔も報告する。2つの別々の横方向間隔、つまり0.063インチ(1.6mm)及び0.125インチ(3.2mm)をここで報告する。電極5b/5b’の種々異なる長さ、並びに電極5b/5b’間の種々異なる複数の横方向間隔も利用可能である。
ワイヤー電極5b/5b’は、トラフ部材30b’内の液体3’’中に、流入端部31の近くでは装置Gb、Gb’、T8,T8’、Tb及びTb’(図23c参照)、及び流出端部32の近くでは対応装置Gb、Gb’、Cb、Cb’、Cbb及びCb’b’(図23d参照)によって空間的に配置された。なお、電極5b/5b’がトラフ部材30b’に沿って連続的に配置されるようにするために、種々の装置を利用することができ、ここで報告されているものは一例にすぎない。電極5b/5b’を配置するための重要な要件は、液体3’’と接触する長さ全体に沿って電極間に所望の横方向分離を維持する能力を含む(例えば電極相互の接触は電気的な短絡を招くことがある)。具体的には、電極5b/5b’は、流入端部31の近くではポリカーボネートから、流出端部32の近くではガラスから形成されたガイド部材Gb及びGb’を通して引かれる。トラフ部材30b’の各端部にある部材Gb及びGb’は、トラフ部材30b’の流出端部32の近くではコンパスCbb、Cb’b’によって、そしてトラフ部材30b’の反対側の端部では同様のコンパスCb、Cb’によって所定の位置に調節される。トラフ部材30b’の流出端部32では、ガイド部材Gb及びGb’の頂部近くで電極5b/5b’の電気的接続が行われた。引張りばねTb及びTb’を利用することにより、固定された相互の空間関係に電極を維持するように、教示された電極ワイヤ5b/5b’を保持する。このことに関して、電極5b/5b’は全長に沿ってほぼ平行であってよく、又は一方の端部で互いに接近していてもよい(例えばこれらの長さ全体に沿って異なる横方向距離を形成する)。電極5b/5b’間の横方向距離を制御すると、電流、電流密度、濃度、電圧などが影響を及ぼされる。もちろん、他の位置決め手段も当業者には明らかであり、これらも本発明の範囲に含まれる。
表8は種々の関連処理条件、並びに例えば「流体力学r」(すなわち流体力学半径(ナノメートルで報告))、及び電極5b/5b’を横切って印加されたプロセス電流を含む特定の結果を示している。加えて、種々の処理条件に関して、結果として生じたppmレベルも報告する。下限は約0.5ppmであり上限は約128ppmであった。
図73aは、溶液又はコロイドAurora−020から乾燥させられた金ナノ粒子の2つの代表的なTEM顕微鏡写真である。Aurora−020は、合成の翌日に測定して128ppm濃度の金を報告した。2週間でその試料の濃度は107ppmまで低下し、さらに5週間後には濃度は72ppmまで低下した。
図73bは、乾燥Aurora−020に相当する、例5〜7において前述したTEM機器/ソフトウェアを使用することにより測定された金ナノ粒子の測定サイズ分布を示している。
図73cは、表8で参照されたAurora−020に従って形成され合成から7週間後に測定されたナノ結晶の動的光散乱データ測定値集合(すなわち流体力学半径)をグラフィカルに示している。強度分布グラフの主要ピークは23nm付近である。新鮮なAurora−020試料に対する動的光散乱測定(示さず)は主要ピークは31nmであった。なお、動的光散乱粒度の情報は、TEMで測定されたヒストグラムとは異なる。なぜならば、動的光散乱は、粒子が全て球体(これらはそうではない)であることを想定するアルゴリズムを使用し、また、流体力学半径の尺度となるからである(例えば、水に対する粒子の影響も検出され、粒子の実際の物理的半径に加えて報告される)。従って、ちょうど本明細書中に含まれる他の例におけるように、TEMヒストグラム・データ中で報告された値と、動的光散乱データ中で報告された値との間で、報告粒度に差異があることは、驚くべきことではない。
従って、種々の処理パラメータが、産出される結果としての生成物に影響を与え得ることが、この連続処理法から明らかである。
例20
金系ナノ粒子/ナノ粒子懸濁液又はコロイド
GA−002、GA−003、GA−004、GA−005、GA−009、
GA−0011及びGA−0013のバッチ式プロセスによる製造
この例は、本発明によるバッチ式プロセスを利用する。図24aは、この例において液体3をコンディショニングするために使用される装置を示している。コンディショニングが施されたら、図24cに示された装置内で液体3’を処理した。この例における主要な目標は、種々異なる処理増強剤を示すことであった(表9で「PE」として挙げる)。具体的には、表9は、電極1及び5のそれぞれのために使用される電圧、図24aの装置内のプラズマ4に曝露される液体3の滞留時間;図24a及び24cのそれぞれにおいて利用される液体の体積;図24aにおけるプラズマ4を形成するために用いられる電圧、及び図24cにおける電極5a/5bのために用いられる電圧を示している。
利用した報告処理増強剤(PE)に関しては、各溶液に対して同様の導電率を有すること(また例えば液体3/3’中に存在するカチオンのモル量を同様のものにすること)を目的として、種々異なるmg/mlの量を利用した。各例において用いた電極ワイヤー直径は同じ、つまり約1.0mmであり、ワイヤーは本明細書中の他の個所で報告したように、1050 Benson Way, Ashland, Oregon 97520在、ESPIから入手した。
例24cに示された装置内の液体3’と接触する電極量はそれぞれの事例で同じ、つまり0.75インチ(19.05mm)であった。
表9はまた、同じ処理増強剤、つまりNaHCO3に対する横方向電極分離(すなわち図24cに示された実質的に平行な電極5a/5bの間の距離「b」)の効果を示している。電極配置が密であればあるほど、電極の電流及び対応する最終液体温度が低くなった(すなわち「b」値がより小さい)ことが明らかである。
電圧源60(本明細書中の他の個所で論じた)を使用することにより、図24aに示されたプラズマ4を形成した。電圧源50(本明細書中の他の個所で論じた)を使用することにより、図24cに示された電極5a/5bの間の電圧及び電流を形成した。
表9は、測定された流体力学半径を報告する(すなわち、図74c〜80cのそれぞれにおいて示される3つの最高振幅ピークの平均から求められた「流体力学半径」に対応する単一の数値、及び図74b〜80bに示されたTEMヒストグラム・グラフから計算した、平均測定金ナノ結晶サイズに相当する「TEM平均直径」)。
図74a1,a2〜80a1,a2は、この例に従って形成された表9で参照された各溶液又はコロイドから乾燥させられた金ナノ結晶のそれぞれの2つの代表的なTEM顕微鏡写真である。
図74b〜80bは、この例に従って形成された表9で参照された各懸濁液又はコロイドに対して、例5〜7で前述したTEM機器/ソフトウェアを使用することにより測定された金ナノ結晶の測定サイズ分布を示している。
図74c〜80cは、この例に従って形成された表9で参照された各溶液又はコロイドに従って製造されたナノ結晶の動的光散乱データ測定値集合(すなわち流体力学半径)をグラフィカルに示している。なお、動的光散乱粒度の情報は、TEMで測定されたヒストグラムとは異なる。なぜならば、動的光散乱は、ナノ結晶が全て球体(これらはそうではない)であることを想定するアルゴリズムを使用し、また、流体力学半径の尺度となるからである(例えば、水に対するナノ結晶の影響も検出され、ナノ結晶の実際の物理的半径に加えて報告される)。従って、ちょうど本明細書中に含まれる他の例におけるように、TEMヒストグラム・データ中で報告された値と、動的光散乱データ中で報告された値との間で、報告ナノ結晶に差異があることは、驚くべきことではない。
比較例21
金系ナノ粒子/ナノ粒子懸濁液
のブレーディッヒ/スヴェドベリ・プロセスによる製造
この例は、ブレーディッヒ及びスヴェドベリ(「背景技術」において論じた)によって形成されたものと同様の金ナノ粒子懸濁液を形成する試みにおいて、2つの金電極間に形成された水中ACプラズマを利用する。
具体的には、図81aは、スヴェドベリのACプラズマ装置のように機能するために構成された装置を示す斜視図である。図81bは同じ装置の断面図を示している。これらの図面のそれぞれにおいて、それぞれの直径が1mmの金電極e1及びe2を水3中に沈めた。約1ガロンの水3をガラス容器内に含ませた。電気絶縁スリーブ部材s1及びs2は、望ましくない場所での電気的アーキングを防止した。電極e1及びe2を、本明細書の他の個所で論じたものと同じ変圧器60を用いて励起した。電極e1を「Sh」で示した領域で電極e2の端部に近接させた。電極e1の端部「ea」を叩いてこれをほぼ平らにした。次いでフラットな端部eaを、部分Shの近くで電極e2の端部とに近接させた。電極端部eaが部分Shに接近すると、水中プラズマ4wが形成された。安定化されたら、水中プラズマ4wを約2.5時間運転させておくことにより、約1グラムのコロイドを形成した。2.5時間の運転の結果を図82a及び82bに示す。
図82aは、この例に従って形成された金ナノ粒子の代表的なTEM顕微鏡写真である。図82bは、この例に従って形成されたナノ粒子のTEM測定から生じた粒度分布ヒストグラムを示す図である。TEM顕微鏡写真から明らかなように、本発明のものと類似するナノ結晶は存在しない。
比較例22a
商業的に入手可能なコロイド系ナノ粒子懸濁液
比較のために、商業的に入手可能な8種のコロイド金溶液を入手した。商品名及び供給元を下記表10に挙げる:
表90cは、図22aで論じられた商業的に利用可能な8種の金ナノ粒子懸濁液のうちの7種(Utopia Gold, SNG911219, Nanopartz, Nanocomposix 15nm, Nanocomposix 10nm, Harmonic Gold,及びMesoGold)のそれぞれの、約250nm〜750nmの問い合わせ波長範囲にわたる、UV−Visスペクトル・パターンを示す。
図90dは、図22aで論じられた商業的に利用可能な8種の金ナノ粒子懸濁液のうちの7種(Utopia Gold, SNG911219, Nanopartz, Nanocomposix 15nm, Nanocomposix 10nm, Harmonic Gold,及びMesoGold)のそれぞれの、約435nm〜635nmの問い合わせ波長範囲にわたる、UV−Visスペクトル・パターンを示す。
粒度及び粒子形状の分析
例5〜7で参照したソフトウェアを用いて視覚的に観察することにより、透過電子顕微鏡(TEM)画像を分析した。光学顕微鏡に示された二次元投影に従って5つの群のうちの1つに、個々の粒子/結晶を割り当てた。5つのカテゴリーは、三角形、五角形、六角形、ダイヤモンド及びその他であった。これらのカテゴリーは、文献、及び傾斜試料ホルダを利用した事前TEM研究において解明された三次元形態に相当する。粒子/結晶形状カテゴリーの2D/3D対応関係を表11に挙げる。
或る特定のナノ結晶形は複数の二次元投影を呈することができる。例えば金ナノ結晶の可能な形状である二十面体は、六角形、不規則七角形、又は回転楕円体としてTEM顕微鏡写真に現れることができる。二次元投影で見るときに六角形、八角形、及び他の形状を識別するように注意したが、このようなナノ結晶の真の形に関する確定的な情報は二次元投影でいつも識別できるわけではない。従って四面体及び五角両錐体(すなわち十面体)のカテゴリーだけが絶対的に識別できるものである。六角形、ダイヤモンド形、及びその他のカテゴリーは一緒にグループ分けする。
五角両錐体ナノ結晶はその側方で見た場合、ダイヤモンド形として投影されることがあった。このことは、試料基体の平面の性質を考えると、また、分析全体にわたってカウントされるダイヤモンド形が極めて小数であることを考えると、ありそうにない。五角形二次元投影を介してカウントされた十面体は、この前者の群自体からは区別され、これらのカウントは、性能指数、又は従来技術のものから本発明の結晶を区別する方法と見なされた。同様に、三角形又は四面体も容易に区別可能であり、比較目的で使用することもできる。
粒子又はナノ結晶の集合化及び凝集がコロイド中で、又はTEM試料調製/分析のために必要とされる乾燥プロセスのアーチファクトとして発生し得る。高密度の凝集及びより大型の集合化(ほぼ50個を上回る粒子/ナノ結晶)は、カウント・エラーの可能性があるため分析しなかった。より小さな凝塊の結晶/粒子数及び粒子/結晶形状、及び視覚的に分解可能な集塊を分析した。加えて、良好に分解された画像だけを調査のために使用した。
本発明に従って製造された全ての懸濁液又はコロイドのTEM顕微鏡写真の分析中、極めて慎重であるために、疑わしい結晶は「その他」のラベルが付けられた群に割り当てた。疑わしい結晶は、十分に定義された結晶カテゴリーに属する可能性があるものではあるが、しかし何らかの不確実さが存在する(例えば1つの角部が隣接する粒子によって邪魔されている小さな五角形)。これとは対照的に、商業的に入手可能なコロイド中の粒子を分析するときには、疑わしい形状の粒子に対して「疑わしきは罰せず」の方針をとり、これらの粒子を、実際の結晶構造の不確かさにかかわらず「六角形」のカテゴリーに割り当てた。このように、結晶/粒子形状の比較は偏りがなく、そして商業的に入手可能なコロイドと、本発明に従って形成されたナノ結晶性コロイドとの間に生じ得る相違に関して極めて慎重である。
表12から明らかなように、形状が五角両錐体及び/又は四面体に相当するナノ結晶の存在は、商業的に入手可能なコロイド及びARCG−05とは全く異なる。さらに、これらのナノ結晶は、本明細書中の他の個所で論じられ、示され、そして定義されているように、実質的に「クリーン」な表面を有している。
例22b
ゼータ電位の例
形成されたナノ粒子上の表面電荷(すなわち正又は負)の性質及び/又は量は、ナノ粒子/懸濁液又はコロイドの挙動及び/又は効果に多大な影響を与えることもできる。例えば、タンパク質コロナに、ナノ粒子の表面電荷によって影響を与えることができる。このような表面電荷は一般に、「ゼータ電位」と呼ばれる。ゼータ電位(正又は負)が大きければ大きいほど、溶液中のナノ粒子の安定性も大きくなる(すなわち懸濁液はより安定になる)ことがよく知られている。しかしながら、形成されたナノ粒子の表面電荷の性質及び/又は量を制御することにより、種々のシステムにおけるこのようなナノ粒子溶液の性能を制御することができる。当業者には明らかなように、化学組成、反応性雰囲気、電力強度、温度などを僅かに調節することによって、種々異なる化合物(半永久的及び一時的の両方)、ナノ粒子(及びナノ粒子成分)、並びに種々異なるナノ粒子/溶液(例えば液体3(例えば水)自体の構造を改変することを含む)を形成することができる。従って、この例は、本発明に従って形成されたいくつかの懸濁液、並びにいくつかの一般に利用可能なコロイド金懸濁液のゼータ電位を測定する。
「ゼータ電位」は、コロイド系内の運動電位の尺度として知られている。ゼータ電位はまた、粒子上の表面電荷を意味する。ゼータ電位はまた、流体の静止層と、粒子が分散される流体との間に存在する電位差として知られている。ゼータ電位はしばしばミリボルト(すなわちmV)で測定される。ほぼ25mVのゼータ電位値は、分散媒質中で分散粒子間に安定性が存在するか否かを見極めるために選ばれた任意の値である。このように、本明細書中で「ゼータ電位」に言及するときには、言うまでもなく、言及されたゼータ電位は、二重層に存在する電荷の規模の記述又は定量化である。
ゼータ電位は、ヘンリーの等式:
(上記式中、zはゼータ電位であり、UEは電気泳動移動度、εは誘電定数であり、ηは粘度であり、f(ka)はヘンリー関数である。スモルコフスキー近似値の場合、f(ka)=1.5である)によって、電気泳動移動度から計算される。
電気泳動移動度は、レーザードップラー速度計測(「LDV」)を使用して、印加電界内の粒子の速度を測定することによって得られる。LDVの場合、入射レーザービームは、折りたたまれた毛管セル内部の粒子懸濁液にフォーカシングされ、粒子から散乱した光は基準ビームと組み合わされる。このことは変動する強度信号を生成する。変動率は、粒子の速度(すなわち電気泳動移動度)に対して比例する。
この例において、Malvern Instruments製のゼータ・サイザー(Zeta-Sizer)「Nano-ZS」を利用することにより、ゼータ電位を割り出した。各測定毎に、透明な使い捨てゼータセルDTS1060C内に1mlの試料を充填した。Dispersion Technology Software, version 5.10を使用することにより、ゼータ・サイザーを運転し、そしてゼータ電位を計算した。下記設定値を使用した:分散剤−水、温度−25℃、粘度−0.8872cP、屈折率−1.330、誘電定数−78.5、近似モデル−スモルコフスキー。100回の反復のうちの1つのランを各試料に対して実施した。
図91は、2種のコロイドナノ結晶溶液(GB−134及びGB−151)のゼータ電位をpHの関数として示す。pHは、酢酸の1wt%溶液を滴定することにより変化させた。測定は、25℃の折りたたまれた毛管セルCTS 1060内でMalvern Instruments製のゼータ・サイザーNano-ZS90上で実施した。1測定当たり20及び50のサブ・ランをそれぞれ低pH及び高いpHで用いた。
図92は、ゼータ電位に関して試験されたものと同じコロイド溶液の導電率測定値を示している。導電率測定値は、ゼータ電位を割り出したときに同時にMalvern Instruments製のゼータ・サイザーNano-ZS90上で得た。
例23a
この例13aは、例5〜7に示されたものと同様の一連の処理条件を利用した。この例は、図17b、18a、19及び21に示されたものと同様の装置を利用した。表8は、この例の特定の処理条件を示す。これらの条件は、例5〜7において示された処理条件との差異を示している。この例における主な差異は、液体3に添加された処理増強剤がより多いこと、そして流入させられる液体3の流量がより多いことである。
図93は、例23aに従って産出された溶液に対応する代表的なViscotek出力を示す。報告された数値は、溶液中のナノ結晶の流体力学半径に相当する。
例23b
この例23bは、ゲル又はクリーム生成物を製造するために例23aの懸濁液を利用した。具体的には、例13aに従って形成された約1,300グラムの懸濁液を、約30分間にわたって約60℃まで加熱した。懸濁液を金属ホットプレート上の1リットルPyrex(登録商標)ビーカー内で加熱した。プラスチックのスクイレル(squirrel)回転ペイント・ミキサーを使用してコンスタントに攪拌しながら、加熱された懸濁液に、約9.5gのCarbopol(登録商標)(ETD 2020、Noveon,Inc., Cleveland, OHによって製造されたカルボマー)をゆっくりと添加した。この混合は、大きなCarbopol塊が溶解されるまで約20分間行われた。
約15グラムの高純度の液体ラノリン(Now Personal Care, Bloomingdale, IL)を懸濁液に添加し、そして前述の攪拌機で混合した。
次いで約16グラムの高純度ホホバ油を懸濁液に添加して混ぜた。
約16グラムの高純度ココアバター塊(Soap Making and Beauty Supplies, North Vancouver, B.C.)を、別個の500mL Pyrex(登録商標)ビーカー内で加熱し、そして塊が液体になるまでホットプレート上に置き、次いで液体ココアバターを前述の懸濁液に添加して混ぜた。
次いで、約16グラムの水酸化カリウム(18%溶液)を前述の成分に添加して混ぜ合わせることにより、懸濁液をゲル化させた。その後、懸濁液全体をプラスチックのスクイレル回転ミキサーで連続的に混合することにより、クリーム又はゲルが形成された。約15分間にわたるこの最終混合中、付加的な香料「トロピカル・アイランド」(2mL)を添加した。結果はピンクがかったクリーム状ゲルであった。
例23c
この例23cは、例7に従って形成された溶液を利用した。具体的には、この例は、例7の生成物(すなわちGD−015)を利用して、ゲル又はクリーム生成物を製造した。具体的には、例7に従って形成された約650グラムの溶液を、約30分間にわたって約60℃まで加熱した。懸濁液を、金属ホットプレート上の1リットルPyrex(登録商標)ビーカー内で加熱した。プラスチックのスクイレル(squirrel)回転ペイント・ミキサーを使用してコンスタントに攪拌しながら、加熱された懸濁液に、約9.6gのCarbopol(登録商標)(ETD 2020、Noveon,Inc., Cleveland, OHによって製造されたカルボマー)をゆっくりと添加した。この混合は、大きなCarbopol塊が溶解されるまで約20分間行われた。
約7グラムの高純度の液体ラノリン(Now Personal Care, Bloomingdale, IL)を溶液に添加し、そして前述の攪拌機で混合した。
次いで約8グラムの高純度ホホバ油を懸濁液に添加して混ぜた。
約8グラムの高純度ココアバター塊(Soap Making and Beauty Supplies, North Vancouver, B.C.)を、別個の500mL Pyrex(登録商標)ビーカー内で加熱し、そして塊が液体になるまでホットプレート上に置き、次いで液体ココアバターを前述の懸濁液に添加して混ぜた。
Advil(登録商標)液体ゲルキャップ(例えば液体イブプロフェン及びカリウム)中に含有された約45グラムの液体を懸濁液に添加し、これと十分に混ぜ合わせた。
次いで、約8グラムの水酸化カリウム(18%溶液)を添加して混ぜ合わせることにより、懸濁液をゲル化させた。その後、溶液全体をプラスチックのスクイレル回転ミキサーで連続的に混合することにより、クリーム又はゲルが形成された。約15分間にわたるこの最終混合中、付加的な香料「トロピカル・アイランド」(2mL)を添加した。結果はピンクがかったクリーム状ゲルであった。
例23d
この例23dは、ゲル又はクリーム生成物を製造するために、GB−139と同等の溶液を利用した。具体的には、約650グラムの懸濁液を、約30分間にわたって約60℃まで加熱した。懸濁液を、金属ホットプレート上の1リットルPyrex(登録商標)ビーカー内で加熱した。プラスチックのスクイレル(squirrel)回転ペイント・ミキサーを使用してコンスタントに攪拌しながら、加熱された懸濁液に、約6gのCarbopol(登録商標)(ULTREZ、Noveon,Inc., Cleveland, OHによって製造されたカルボマー)をゆっくりと添加した。この混合は、大きなCarbopol塊が溶解されるまで約20分間行われた。
約7グラムの高純度の液体ラノリン(Now Personal Care, Bloomingdale, IL)を懸濁液に添加し、そして前述の攪拌機で混合した。
次いで約8グラムの高純度ホホバ油を懸濁液に添加して混ぜた。
約8グラムの高純度ココアバター塊(Soap Making and Beauty Supplies, North Vancouver, B.C.)を、別個の500mL Pyrex(登録商標)ビーカー内で加熱し、そして塊が液体になるまでホットプレート上に置き、次いで液体ココアバターを前述の懸濁液に添加して混ぜた。
次いで、約8グラムの水酸化カリウム(18%溶液)を前述の成分に添加して混ぜ合わせることにより、懸濁液をゲル化させた。その後、懸濁液全体をプラスチックのスクイレル回転ミキサーで連続的に混合することにより、クリーム又はゲルが形成された。結果はピンクがかったクリーム状ゲルであった。
例23e
この例23eは、ゲル又はクリーム生成物を製造するために、1AC−261と同等の懸濁液を利用した。具体的には、約450グラムの懸濁液を、約30分間にわたって約60℃まで加熱した。懸濁液を、金属ホットプレート上の1リットルPyrex(登録商標)ビーカー内で加熱した。プラスチックのスクイレル(squirrel)回転ペイント・ミキサーを使用してコンスタントに攪拌しながら、加熱された溶液に、約4.5gのCarbopol(登録商標)(ULTREZ、Noveon,Inc., Cleveland, OHによって製造されたカルボマー)をゆっくりと添加した。この混合は、大きなCarbopol塊が溶解されるまで約20分間行われた。
次いで、約6.5グラムの水酸化カリウム(18%溶液)を前述の成分に添加して混ぜ合わせることにより、懸濁液をゲル化させた。その後、懸濁液全体をプラスチックのスクイレル回転ミキサーで連続的に混合することにより、クリーム又はゲルが形成された。結果はピンクがかったクリーム状ゲルであった。
例24
単球サイトカイン生成に対する金ナノ結晶製剤GB−079の
影響の生体外研究
要約
この生体外例は、4つの異なるサイトカイン/ケモカインに対する金ナノ結晶懸濁液GB−079の効果を割り出すために設計された。具体的にこの例では、細菌性リポ多糖類(LPS)の(本明細書中で開示されたような)存在又は不存在において、4種の異なる濃度又はppmレベルの金ナノ結晶懸濁液GB−079(すなわち、本明細書中の1つの例の開示内容に従って形成された懸濁液又はコロイド)のそれぞれの存在又は不存在において、ヒト末梢血単核細胞(hPBMC)を培養した。
細菌性リポ多糖類が、多数の異なる免疫系細胞上に発現される受容体であるTLR4に結合することが知られており、そしてこのような結合は、典型的にはNFkB依存(すなわち核因子kB依存)的に、一連のサイトカインの活性化及び/又は発現をトリガするのが典型的である。約5%のCO2及び相対湿度約95%の加湿雰囲気において約37℃で約24時間の培養条件の後、上澄みを取り出し、そしてMIF、TNFα、IL−6及びIL−10を含む一連の異なるサイトカイン/ケモカインの存在に関してアッセイした。hPBMC個体群中のこれらのサイトカインの源だけではなくその大部分が、単球であることが予期される。LPSの不存在における培養は、治療がこれらのサイトカイン/ケモカインの生成を誘発するかどうかを示し、これに対して、LPSの存在におけるこれらの培養は、治療が、炎症性刺激に反応してサイトカインの生成を変調できるかどうかを示すことになる。サイトカイン・アッセイは、Luminex(登録商標)細胞外アッセイ・プロトコルによって行った。Luminexシステムは、抗体で被覆されたミクロスフェアを使用し、これらのミクロスフェアは、アッセイされるサイトカインに特異的に結合する。レーザー光によって励起されると、抗原に結合しているミクロスフェアが測定され、そしてこれは、生成されるサイトカインの量の直接の評価であり、そしてデータは生データとして提供され、そしてそれぞれのサイトカイン/ケモカインの絶対量が測定された。
ヒトの血液の採取
健常有志の血液をシリンジ内に引き込み、これを50mlファルコン・チューブ内に入れた。3.3mlのクエン酸塩抗凝血剤(ACD, Sigma)を滅菌状態で50mlファルコン・チューブに添加した。チューブを反転させて混合した。
細胞調製法
1. 10x RPMI+補足物(25ml 10x RPMI+2.5ml Penstrep+2.5ml L-グルタミン+5 ml HEPES+6.7ml 重炭酸ナトリウム(7.5 %))をファルコン・チューブ内で混合した。これをここでは「培地」と呼ぶ。
2. 等堆積の1x RPMI 1640(EFW中の10x RPMIから希釈−200mlを調製[180ml中20ml])中に血液を再懸濁させ、そしてファルコン・チューブ内で反転させることにより混合した。
3. histopaqueを室温(RT)まで予熱し、そして20mlを50mlファルコン・チューブ内に添加した。
4. histopaqueを30ml血液/培地と静かに重ね、次いで混合した。
5. histopaque血液混合物試料をRTで約25分間にわたってベンチトップ遠心分離器内で1600rpmで回転させた(ブレーキなし)。
6. 培地とhistopaqueとの間の界面層内にPBMCを分離し、50mlファルコン・チューブ内に吸引することにより細胞を取り出し、そして10mlの培地をそれに添加した。
7. 細胞試料をRTで約10分間にわたって1800rpmで回転させた。
8. 細胞試料を30mlのRPMIで2回洗浄し、そして培地(上記のように補足されたRPMI=RPMI/血清なし)内で再懸濁した。
9. 回転中、5%AB血清を補足したRPMIを調製した。
10. 細胞試料を、2ml RPMI+補足物+血清中に再懸濁した。
11. 細胞カウントを完成させ、Nucleocounter (すなわち細胞生存率カウンター)を使用して、生存率評価を実施した。
12. 細胞を1xRPMI中に再懸濁することにより最終濃度2.5x106細胞/mlをもたらした。
13. 500μlの細胞を24ウェル・プレート内に移した。
14. 10x RPMI+補足物(500μl PenStrep+500μl L-グルタミン+1ml HEPES+2.5ml AB血清)を、ファルコン・チューブ内で一緒に混合することにより調製し、これにより「テスト培地」を形成した。
15. 本発明によるGB−079金ナノ結晶懸濁液を24ウェル・プレート内のウェルに添加した(900μl総体積)。
16. 100μl 10xRPMI+補足物をcostar 24ウェル・プレートの各ウェルに添加した。
17. 24ウェル・プレートを、37℃/5%CO2で1時間にわたって加湿インキュベータ内に入れた。
18. 1xRPMI中4x最終濃度でLPSを調製した。
19. 1ウェル当たり500μlのLPSを添加するか、又はLPSを受容しないウェルに500μlの培地を添加し、各ウェルへの材料の総ウェル体積を2mlにした。
20. プレートを、37℃/5%CO2で約24時間にわたって加湿インキュベータ内に入れた。
21. 1800μl(3x600μlのアリコート)の上澄みをELISA分析及びLuminex分析のために取り出した。
22.Luminex(登録商標)システム内でアッセイするまで、上澄みを−80℃で保存した。
Luminex(登録商標)アッセイ・システム
下記アドレス:
http://www.invitrogen.com/etc/medialib/en/filelibrary/pdf.Par.1540.File.dat/Luminex%20Extracellular%20Protocol.pdf
で2010年1月11日にアクセスしたLuminex(登録商標)細胞外アッセイ・プロトコルに従って、上澄みをアッセイした。
LPS(高投与量1mg/ml及び低投与量10ng/ml)で細胞を刺激し、次いで24時間後に上澄みを捕集し、そして本明細書中で論じた4種のサイトカインの存在量に関して分析した。対照ウェルは細胞及び本発明によるテスト化合物GB−079を含有したが、LPSは含有しなかった。他のサイトカイン/ケモカインのそれぞれに対して得られた結果を図94a〜94dに示す。
図94aは、ヒト末梢血単核細胞(hPBMC)によるIL−6生成に対するGB−079の効果を示す。図94aから明らかなように、IL−6レベルは、LPSで刺激されたPBMC中でGB−079によって低減された。また5つの異なる濃度レベルにおいてLPS刺激が存在しない場合、最高濃度のGB−079で多少のIL−6生成が観察された。
図94bは、hPBMCによるIL−10生成に対するGB−079の効果を示す。図94bから明らかなように、全ての濃度レベルにおいて、GB−079を添加することによってIL−10のレベルが影響されることは観察されなかった。
図94cは、hPBMCによるMIF生成に対するGB−079の効果を示す。具体的には、図94cは、LPS刺激に続いて、MIFレベルは用量依存的に低減された。このような低減は希釈レベル1:5及び1:10で観察されたのに対して、1:20濃度のGB−079によって、MIFレベルは対照試料のレベルに戻った。
図94dは、最高濃度のGB−079がTNFαレベル(両試験投与量のLPSを伴う)を、ビヒクル対照で刺激された試料のレベルを上回って増大させることを示す。また、LPS刺激が存在しない場合、最大投与量のGB−079で多少のTNFα生成が観察された。
例25
マウスにおけるコラーゲン誘導関節炎(CIA)研究
要約
この例は、マウスCIAモデルにおける本発明の金ナノ結晶組成物のうちの2種(すなわちGT033及びGD−007)の有効性を実証する。具体的には、完全フロインド・アジュバント(CII/CFA)中に乳化された100μgのニワトリII型コラーゲンを研究0日目に、雄DBA/1マウス(週齢12)に、尾の付け根に注射することによって与えた。14日目から終了日である42日目まで週に3回、臨床的な関節腫脹をスコアリングした。これらの結果を図95にまとめる。下記プロトコルに従って処理を行った。0日目及び42日目に採血した。終了時に動物から採血し、後肢を取り出し、足首関節を組織病理学的試験のために調製した。組織病理学的結果を表6及び表7に示す。
方法
動物
種: マウス
系統: DBA/1
源: Harlan
性別及び数: 雄、30
齢: 研究開始時週齢約12
識別: 各マウスに固有の識別番号を与えた。
飼育: 全ての動物を受け取ったときに健康障害の外的兆候に関して検査し、全ての不健康動物をさらなる評価から排除した。動物ユニットのサーモスタットでモニタリングされた室(22±4℃)内に、特定病原体を持たない(spf)条件下で5匹から成る群に分けて動物を収容した。使用前の少なくとも72時間にわたって標準的な畜舎条件下で動物を均衡化した。この期間全体を通して動物の健康状態を監視し、そして研究開始前に試験使用に対するそれぞれの動物の適合性を評価した。
ハウジング: 制御された室内で1ケージ当たり10匹から成る群で動物を収容することにより、研究時間にわたって正確な温度、湿度、及び12時間明暗サイクルを確保した。
食餌: 保持期間、順化期間、及び投与後期間全体を通して、照射ペレット食餌及び水を随時利用可能にした。
化合物及び試薬
ニワトリ・コラーゲンII型(Sigma, C9301)
不完全フロインド・アジュバント(IFA)(Sigma, FF5506)
ヒト型結核菌H37Ra (BD Biosciences, 231141)
リン酸緩衝生理食塩水(PBS)
試験化合物、金ナノ結晶製剤GT033及びGD−077
ビヒクル:水
処理群及び投与
対照群1、第1処理「群2」、及び第2処理「群3」はそれぞれ、1群当たり10匹の動物を含んだ。
群1:0日目 CII/CFA、0〜42日目に通常の飲料水を与える。
群2:0日目 CII/CFA、0〜42日目に飲料水として金ナノ結晶製剤(GT033;例4/表1d;金ppm2.0)
群3:0日目 CII/CFA、0〜42日目に唯一の飲用液として金ナノ結晶製剤(GD−007;例5/表2a;金ppm14.8)
プロトコル
1. 動物が到着したら、全ての動物の健康状態をチェックし、健康テストに合格した後、それぞれの動物を固有の耳標でナンバリングした。
2. 動物を少なくとも72時間にわたって順化させておいた。
3. 0.1M酢酸中約16mg/mlの濃度の懸濁液を得るように、ニワトリII型コラーゲンを調製した。4℃で一晩にわたって溶解させた後、この溶液を低温PBSで希釈することにより、濃度約8mg/mlの懸濁液を得た。
4. 新鮮なマイコバクテリウムを、これを乳鉢及び乳棒で微粉砕し、そして約7mlのIFAを一滴ずつ添加することにより調製することによって、最終濃度約5mg/mlのCFAのエマルジョン又は懸濁液を形成した。
5. ニワトリII型コラーゲン及びCFAのエマルジョンを、それぞれほぼ等しい体積を使用して調製することにより、CFA中のコラーゲンの注射懸濁液(すなわちCII/CFA)を得た。
6. 0日目に、50μlのCII/CFA溶液を、動物の尾の付け根に注射した。
7. 42日目まで上記スケジュールに従って、金ナノ結晶製剤GT033(すなわち群2)及び金ナノ結晶製剤GD−007(すなわち群3)を使用した処理を施した。具体的には、一日おき又は二日おきに必要に応じて、通常の飲料水、GT033又はGD−007を含有するそれぞれの給水瓶をいっぱいにした。瓶は42日間の試験中、特に洗浄せず、又は特に空にしなかった。
8. 14日目から研究終了時まで週に3回、肢スコアを見極めた。4つの肢のそれぞれに、下記に従ってスコアを与えた:
0=正常
1=関節全体の僅かな腫脹、又は個々の指の炎症
2=赤みを伴う関節全体の中程度の腫脹及び/又は2本以上の指の炎症
3=重症の関節炎症、及び複数の指に広がる赤み
4=重症の関節炎症、及び複数の指に広がる赤み;骨再形成の顕在的兆候。
9. 0日目及び42日目に全ての動物から採血し、回収した血清を任意の分析のために保存した。
10. 42日目に動物を犠牲にし、足首関節を取り出し、そして組織病理分析に向けて中性緩衝ホルマリン中に入れた。
11. これらの切片を処理し、そしてヘマトキシリン及びエオシン染色剤(H&E)で染色し、そして浸潤及び損傷の程度を半定量的測定を用いて、資格のある(そして実験的にブラインドの)組織病理学者によってこれらをスコアリングした。
図95は、肢スコアリングCIAテストの結果を示すグラフである。これから明らかなように、測定金濃度が約14.8ppmの金ナノ結晶製剤GD−007(群3)は最良に機能し、おそらく典型的なステロイド治療と同等(又はこれよりも良好)であった。ステロイド治療の結果も図95に記載しておいた(実際には測定されていないが)。水中に懸濁された金ナノ結晶濃度が約2.0ppmのときに、金ナノ結晶製剤GT033(群2)は、対照群1よりも良好に機能した。
群1(対照)及び群3(GD−007)における10匹のマウスのそれぞれの左右の足に対して組織病理分析を行った。群2のマウスに対して組織病理分析は行わなかった。
それぞれの足対に病理学数字コードを割り当て(例えば群1内の1匹のマウスにはR0248-09)、そして肢を、ナンバリングされたそれぞれの動物の左(L)又は右(R)として区別した。
組織病理分析/方法:
・足から皮膚を切り離した。
・切除した試料を脱灰することにより、セクショニングを可能にした。
・脱灰された試料を規定通りに処理し、セクショニングし、そして1つのH&E染色切片を試験のために調製した。これは、ヘミセクショニングされる各試験片の両半部を含んだ。
・それぞれの組織病理用の足を、下記のようにスコアリングした。試料は、実験プロトコル又は群の同一性に関する知識を有することなしに、ブラインド方式でスコアリングされた。
・複数の趾節関節及び足根関節が概ね各切片に存在した。各事例においてこれらの関節のうち最も重症のものに関連してスコアリングした。
表15
スコアリング・システム
この事例では、3つの関節病理学特徴を個別にスコアリングすることにより、複合スコア(可能な最大スコア=9)をもたらした。このように、数値が高ければ高いほど、損傷は大きい。上述のグレード0〜3に相当する関節の顕微鏡写真をそれぞれ図96a〜96dに示す。これらのグレード0〜3を集めた代表的なものが、図97a(すなわちグレード0)から図97e(すなわちグレード9)に示されている。
このタイプのマウスCIAモデルには典型的であるように、GD−007による処理「群3」における1匹の動物(すなわちR0266-09)は、関節炎の有無の点で、右側及び左側の関節の相関関係の欠如を呈した。対照マウスのうちのいくつかでは同様の不一致が生じ、また、同じマウスにおける異なる関節間で関節炎の重症度に差異が生じた(例えばR0250-09)。
しかしながら、最も重症の病状が対照群1(すなわち飲料水)に発生し、最も軽度の病状が第1の「処理群2」(すなわち金ナノ結晶製剤GD−007)に発生したことが明らかである。
処理群3における1匹の動物(すなわちR0267-09)が骨折し、これがその高いスコアの原因となった。この動物を排除すると、平均スコアが0.22になった。さらに、組織病理学データは、10匹のマウスのうちの8匹において、結果としての損傷が生じなかったことを示唆している(すなわち16の総足関節が試験された)。明らかに、金ナノ結晶製剤GD−007は、このCIAテストにおいて有意なポジティブな結果をもたらした。
本発明に従って製造された金ナノ結晶製剤が、対照と比較して、CIAモデルにおける誘導関節炎のネガティブな作用を著しく低減したことが明らかである。過剰なIL−6の低減及び/又は過剰なMIFの低減の両方が、関節炎状態のネガティブな作用を低減することが判る。従って、特定の理論又は説明に縛られたくはないが、過剰のMIF、及び/又はMIFと関連する1つ又は2つ以上のシグナル伝達経路を低減することにより、関節炎状態を低減することができる。金ナノ結晶製剤GD−007は、対照と比較して著しく改善された結果を示した。これらの結果は、本明細書中の生体外の例及びEAEマウス・モデル例に示された結果とともに、本発明の金ナノ結晶組成物がMIF、及び/又はMIFと関連する1つ又は2つ以上のシグナル伝達経路、並びにIL−6を変化させ得ることを示唆している。
例:投与量比較
上記のように、金ナノ結晶試験において、それぞれのマウスは唯一の飲用液源としてGD−077溶液にアクセスした。一日当たりマウスによって消費される金の投与量を計算するために、下記等式を用いた:

投与量=消費体積(ml) x 濃度(mg/L)
動物の体重(kg)

上記式中、
・投与量は、一日当たりマウス一匹当たり消費されるナノ結晶金(mg/kg/日)である。
・体積は、一日当たり一匹のマウスによって飲まれるGB134溶液の平均量(mL/日)である。
・濃度は、GD−007中のナノ結晶金の量(mg/mL)である。
・体重は、マウスの体重(kg)である。
下記想定値を用いて、ナノ結晶金投与量を計算した:
・体積=4mL
・濃度=0.0148mg/mL
・重量=0.025kg
これは、2.4mg/kg/日のナノ結晶金投与量をもたらす。
下記は、II型コラーゲン誘導関節炎マウス・モデルにおけるAuranofin治療のために典型的に使用された投与量における金含量の比較である。典型的なAuranofin投与量は、40mg/kg/日である(Agata他、2000)。Auranofin中の金含有率は29%なので、これはほぼ12mg/kg/日の金投与量をもたらす。
金ナノ粒子を使用した唯一の周知のヒト研究(Abraham他、1997, 2008)では、体重108〜280 lbの患者のために30mg/日の金ナノ粒子投与量を用いた。これは、ほぼ0.24〜0.61mg/kg/日の金ナノ粒子投与量に相当する。
Auranofin中の金含量、金ナノ粒子中の金、及び新規の金ナノ結晶の投与量レベルの比較を、下記表17aに示す。これは、本発明の新規の金ナノ結晶が、Auranofin中の分子形態であれ、Abraham他におけるようなナノ粒子形態であれ、コンベンショナルな金とは基本的に異なっており、そしてこれとは極めて異なる形でこれよりも著しく高い効力レベルで性能を発揮することを実証する。
例26
実験的自己免疫脳炎(EAE)の急性マウス・モデル
要約
この例は、マウスEAEモデルにおける本発明の金ナノ結晶組成物GB−056の有効性を実証する。週齢7〜8の雌Biozziマウスの脇腹に、CFA中のマウス脊髄ホモジネートで研究0日目に、尾の付け根に注射することによりチャレンジした。10匹の処理群マウスに、金ナノ粒子懸濁液治療薬GB−056(すなわち例17において論じたもの)を、標準的な給水瓶を使用することにより唯一の飲用液として経口投与した。清潔な給水瓶とともに、新鮮な金ナノ結晶製剤GB−056を毎日提供した。対照群マウスには、普通の水道飲料水を提供した。1日目から終了日である28日目まで0〜5.0のスコアをつける標準的なスコアリング・システムによって、このEAEテストにおける臨床スコアリングを完了した。これらの結果を表9a及び9b、並びに図98〜99に示す。下記プロトコルに従って治療を施した。
方法
動物
種: マウス
系統: BIOZZI
源: Harlan
性別及び数: 雌、20
齢: 研究開始時週齢約7〜8
識別: 各マウスに固有の識別番号を与えた。
飼育: 全ての動物を受け取ったときに健康障害の外的兆候に関して検査し、全ての不健康動物をさらなる評価から排除した。動物ユニットのサーモスタットでモニタリングされた室(22±4℃)内に、特定病原体を持たない(spf)条件下で5匹から成る群に分けて動物を収容した。使用前の少なくとも72時間にわたって標準的な畜舎条件下で動物を均衡化した。この期間全体を通して動物の健康状態を監視し、そして研究開始前に試験使用に対するそれぞれの動物の適合性を評価した。
ハウジング: 制御された室内で1ケージ当たり10匹から成る群で動物を収容することにより、研究時間にわたって正確な温度、湿度、及び12時間明暗サイクルを確保した。
食餌: 保持期間、順化期間、及び投与後期間全体を通して、照射ペレット食餌及び水を随時利用可能にした。
化合物及び試薬
組織内で製造されたマウス・脊髄ホモジネート(MSCH)
不完全フロインド・アジュバント(IFA)(Sigma, FF5506)
ヒト型結核菌H37Ra (BD Biosciences, 231141)
組織内で製造されたリン酸緩衝生理食塩水(PBS)
試験化合物、金ナノ結晶懸濁液GB−056(本明細書中の他の個所で論じられる)
ビヒクル:水
処理群及び投与
対照群1及び処理群2はそれぞれ、1群当たり10匹の動物を含んだ。
群1:0日目 MSCH/IFA/結核菌の混合物(下記プロトコル参照)を各マウスの尾の付け根に注射し、そして0日目〜28日目にそれぞれのマウスに、給水瓶からディスペンシングされた通常の飲料水を与えた。
群2:0日目 MSCH/CFA/結核菌の混合物を各マウスの尾の付け根に注射し、そして0日目〜28日目にそれぞれのマウスに、新鮮なGB−056を毎日提供された、毎日洗浄された給水瓶からディスペンシングされた金ナノ結晶製剤(GB−056)を、唯一の飲用液として与えた。
プロトコル
動物が到着したら、全ての動物の健康状態をチェックし、健康テストに合格した後、それぞれの動物を固有の耳標でナンバリングした。
1. 動物を少なくとも72時間にわたって順化させておいた。
2. ヒト型結核菌H37RAを含有するPBS中で脊髄を戻した。
その結果として、6.6mg/mlのMSCHと400μg/mlのH37RAとをもたらした。等体積のフロインド不完全アジュバントをこの混合物に添加することにより、最終免疫源(3.3mg/mlのSCH及び200μg/mlのH37RA)を形成した。この混合物は、マイコバクテリウムの量が極めて少量なので、完全フロインドと考えることはできなかった。
3. 0日目に、ステップ3で論じた溶液50μlを動物の尾の根元に注射した。
4. 28日目まで上記スケジュールに従って、金ナノ結晶製剤GB−056を使用した治療を施した。新鮮なGB−056を毎日提供した(すなわちほぼ24時間毎に交換した)。
5. 1日目から研究終了時まで毎日、スコアを見極めた。それぞれのマウスのスコアリングは下記に従って行った:
0=正常
0.5=麻痺した尾
1.0=弛緩した尾
1.5=立ち直り反射が遅い且つ/又はない
2.0=一方の後肢が麻痺
2.5=一方の後肢が麻痺、そして異常歩行
3.0=2本の後肢が麻痺
3.5=2本の後肢が麻痺+一方の前肢が麻痺
4.0=2本の後肢が麻痺+一方又は2本の前肢が麻痺
5.0=瀕死
6. 28日目に動物を犠牲にし、脳及び脊髄を取り出し、そして組織病理分析に向けて中性緩衝ホルマリン中に入れた。
7. これらの切片を処理し、そしてヘマトキシリン及びエオシン染色剤(H&E)で染色した。表9a及び9bはこのEAE研究における20匹のマウスのそれぞれに対する生スコアリングを示している。
図98は、対照群1及び金ナノ結晶処理群2(すなわちGB−056)のそれぞれにおける疾患のいずれかの症状を発現させる動物のパーセントを示すグラフである。対照群1は、マウスの90%が少なくとも何らかの症状を発現させているのに対して、何らかのレベルの症状を発現させている処理群2のマウスは40%でしかない。
図99は、それぞれの群のEAEスコアリング平均を示している。注目すべきなのは、金ナノ結晶処理群2においていずれの症状も開始が2日だけ遅れ、処理群2に対するスコアリング全てが対照群1における報告平均よりも著しく低くかったことである。明らかに、測定金濃度が約12ppmの金ナノ結晶製剤GB−056は、このEAEテストにおいて対照群1よりも性能が著しく優れていた。
このEAEモデルにとっては典型的であるように、処理群2における1匹の動物(すなわち動物4)が死亡し、これに対して対照群1における3匹の動物が死亡した。
最も重症の病状は対照群1において発生し、最も軽症の病状は処理群2において発生した。
処理群2における死亡した1匹の動物(すなわち動物4)は、この群のスコアを著しく高くした。本発明の金ナノ結晶懸濁液GB−056は、このEAEテストにおいて顕著なポジティブな効果を有したことは明らかである。特定の理論又は説明に縛られたくはないが、この例の結果は、マウスCIAモデル及び生体外MIFサイトカイン分析の結果との組み合わせにおいて、MIF、及び/又はMIFシグナル伝達経路が、本発明の金ナノ結晶組成物によって好ましい影響を与えられていることを強く示唆している。
例27
マウスにおける金ナノ結晶懸濁液GD−013の長期曝露
この例の目的は、マウスが唯一の液体源として金ナノ結晶懸濁液GD−013を長期間にわたって随意に飲んだときに、マウスにネガティブな毒性作用が発生するのであれば、それを観察することである。
全部で25匹の雌マウスをこの例において使用し、5匹を対照群に、そして10匹を2つの処理群のそれぞれに使用した。対照群は飲用瓶内の正規の瓶入り水を受容した。2つの処理群は、唯一の飲料液として、2つの異なる濃度のGD―013を受容した。第1処理群は50%のGD―013結晶懸濁液(他の50%は精製DI/RO水である)を受容し、これに対して第2処理群は100%のGD−013結晶懸濁液を受容した。全ての群を、望むだけ多く又は望むだけ少なく飲むことを許した。食物も随意に提供した。各動物の体重、及び消費した液体の平均量を毎週記録した。研究の23週目に、6匹のマウスを検視及び病理分析のために犠牲にした(GD−013結晶懸濁液処理群のそれぞれから3匹のマウス)。残りのマウスは、46週間にわたって2種の治療懸濁液を消費し続けた。
材料及び方法
このタイプの曝露研究では、毒性をテストする目的で、一方の性だけ、つまり雌だけを使用することが受け入れられる。他の研究のデータは、概ね性差がないことを示しているが、しかし一方の性がより強く反応する場合、それは典型的には雌である。雄は、雄がより強い反応を有することを示すエビデンスの何らかの形があるときにのみ使用される。このように雄が影響されることを示すような情報がないので、雌だけを使用した。使用する雌は成体、未経産、非妊娠状態であった。非近交系マウスのSwiss Webster系統をこの例で使用した。この系統が選ばれたのは、これが一般目的及び毒性試験において広く使用されているからである。データ収集を潜在的に妨害する有害な遺伝的欠損がないことも知られている。
投与物調製
この研究に関与する全ての処理群は、給水瓶内の上記GD−013ナノ結晶懸濁液を受容した。マウスは自由選択で飲むことを許された。対照群は精製された瓶入り水を受容した。
ハウジング及び食餌
マウス研究区域に立ち入る全ての研究員は、防護衣類(すなわち手袋、フェイスマスク、及びシューズカバー)を着用した。マウスはHarlan Laboratoriesから購入した。マウスを受け取ったら、マウスにテール・タトゥー(Harvard Apparatus Tattoo)の形の永久識別を与えた。次いでマウスをランダムに指定し、そして1ケージ当たり5匹から成る群によって収容した。ケージは、5個体に十分な空間を許すのに十分に広く、そしてそれぞれの動物の明瞭な観察を妨げるほどには小さくなかった。マウスを1週間にわたってラボ環境に順化させた。ハウジング区域は一定の温度22℃(±3℃)に維持し、そして相対湿度を30%〜50%で維持した。人工的なフルスペクトル照明を使用した(PureLite 60w, 120vバルブ)。タイマーを使用して12時間明・12時間暗サイクルを達成した。食物を随意に提供した(Purina Certified Rodent Diet 5002)。標準的なトウモロコシ穂軸ベッドをケージ内に設けた。週に一回ケージ交換を行った。動物が死んでいるのが見つけたら、死亡した動物を取り出した後すぐに、収容されていたケージを交換した。
手順及び観察
順化期間後、両処理群はその給水瓶内の上記GD−013ナノ結晶懸濁液を受容し始めた。対照群は精製飲用水を受容し続けた。治療第1日に、それぞれマウスを秤量し、体重を記録した。それぞれの週の始まりに、マウスの全てを再び秤量し、体重を記録した。また水及びGD−013結晶懸濁液の概算消費量を毎週記録した。研究全体を通してマウスを異常又は苦痛に関して観察した。
体重増加
研究開始時には、マウスの全てはほぼ同じ体重であった。毎週それぞれの動物を秤量し、その体重を記録した。次いで、群におけるそれぞれの動物の個々の体重を平均し、図106にグラフとしてプロットすることにより、研究経過全体にわたる全ての群の平均体重増加を示す。23週目の縦線が図106に示されており、これは組織病理分析が行われた時点を表している。
平均一日消費量
それぞれの群の(1)水、(2)50%GD−013、及び(3)100%GD−013の消費量を毎週測定した。前の一週間の液体、50%精製水の消費量が割り出されたら、その週の経過全体にわたる動物一匹当たりの概算一日摂取量を見いだすために計算を行った。46週間にわたる液体消費データを図107に示す。
結果/結論
体重増加
群の平均体重の統計学的分析を実施することにより、群間の体重増加及び/又は減少に差があるかどうかを見極めた。各処理群を対照群と比較し、2つの処理群も互いに比較した。全体的に見て、100%GD−013処理群と対照群との間には統計的に有意な体重減少があった(P<0.05)。2つの処理群の間、又は50%GD−013処理群と対照群との間には統計的に有意な体重増加/減少はなかった。
平均一週間消費量
3つの全ての群は一日の通常の液体量と考えられるものを消費したので、脱水の問題はなかった。ここでもやはり、それぞれの群の消費量値の統計学的分析を行って、消費量に有意な差があるかどうかを見極めた。両処理群を対照群と比較し、また両処理群を互いに比較した。対照群の消費量は両処理群よりも著しく少なかった(P<0.05)。両処理群によって消費される量には有意な差はなかった(P>0.05)。健康状態、挙動、又は脱水に関連する問題には、目立った差はなかった。
死亡
研究中には各処理群から1件ずつ、2件の死亡例があった。第1の死亡例は20週目の50%GD−013群において発生した。第2の死亡例は100%GD−013群において22週目に発生した。50%GD−013処理群のマウスは、残りのマウスよりも著しく小さく、体重増加がなかった。その原因は不明である。他方のマウスは苦痛又は不健康の兆候を示していなかった。これら2匹のマウスに対しては病理分析はできなかった。
病理
各処理群の3匹のマウスに対して23週目に病理分析を行った。下記器官に組織病理評価を施した:心臓、胸腺、肺、肝臓、腎臓、脾臓、胃、十二指腸、空腸、回腸、盲腸、結腸、膀胱、卵巣、横紋筋、毛皮、骨髄(大腿/脛骨)、下垂体、及び脳。病理学的所見は、異常のうちのいくつかが注目されるものの、全ては個体間の通常の変動、及び通常の摩滅と関連する偶発的所見であると結論づけた。病理報告における所見のうち、ターゲット器官に対していかなる程度の毒性を示すものもなかった。病理学者は、研究中にマウスがどのような処理を受容するかに対して完全にブラインドであり、また、病理学者は、病理所見において生じ得るバイアスを排除するために、対照マウスにおける処理に関しても知識を持たなかった。
前記の全ての組織を肉眼で検査し、そして脾臓及び肝臓だけが最小限から軽度の色の変化を有することが判った。特定の組織病理所見だけを表21に報告する。50%GD−013の列の数字「2−3」、「2−5」及び「4−7」は、3つの異なるマウスを意味し、これらのマウスに対して「コメント」が記載されている。同様に、脾臓に関連する組織病理「コメント」が3匹のマウス「3−3」、「5−9」、及び「5−10」に対して記載されており、これに対して肝臓に関する「コメント」は唯一のマウス(すなわち「5−10」)に当てはまる。全ての肉眼検査は、安楽死及び/又は脂肪蓄積からのうっ血と一致し、正常範囲内にあると考えられた。肉眼的病変は認められなかった。
例28
35日間摂取・分布・急性毒性研究
この35日間研究の目的は、2種の結晶懸濁液(GB−134及びGB−151)の摂取及び分布及び(もしあれば)急性毒性を割り出し、そしてその結果を商業的に入手可能なMesogold製品と比較することであった。この研究には13匹のマウスが関与した。金の濃度を試験動物の尿及び糞中、並びに特定の生命の維持に重要な器官内や血液で割り出した。加えて、いくつかの個体の選択された器官を組織病理試験することにより、異常があるかどうかを見極めた。さらに、この研究のために犠牲にされる時点まで、全てのマウスに液体を飲ませておいた。例えば金の正確な血中濃度を確実に見極めるように、この手順に従った。
材料及び方法
投与物調製
この研究に関与する全ての処理群は、給水瓶内の溶液を受容した。マウスは自由選択で飲むことを許された。各群は:(1)Mesogold、(2)GB−134、又は(3)GB−151(これら全ては希釈されない)を給水瓶で受容した。
手順及び観察
動物が1日間にわたってそれぞれの治療を受容した後、尿及び糞の代謝ケージ捕集を開始した。1週間当たり全部で9匹の動物を代謝ケージ内に収容し、尿及び糞を集めた。代謝ケージ内で、被験マウスは、飲むように割り当てられた液体を給水瓶で受容し続けた。24時間中の液体消費量も測定して記録した。次いで尿及び糞の試料を集めてAu濃度に関してテストした。排泄された尿の体積及び集められた糞の重量も測定して記録した。
研究終了時に、肉眼的検視及び病理報告を実施するために、13匹全ての動物をTaconic Laboratories (Rockville, MD)に送るか、又は器官及び血液試料を集めて、さらなる分析(本明細書中で後述する)のために戻した。顕微鏡評価を次の組織において行った:心臓、肺、肝臓、脾臓、腎臓、脳、胃、十二指腸、空腸、回腸、盲腸、結腸。加えて、特定の心臓、肺(左及び右)、肝臓、脾臓、腎臓(左及び右)、及び脳を集め、そしてさらなる濃度分析のために空の滅菌ガラスバイアル内に戻した。
糞及び尿試料の分解手順
糞及び尿中の金の量を割り出すために特定の方法を開発した。PTFE試料カップ及びマイクロ波分解ボンベをFisher Scientificに発注し、Parr Instrument Company (Www.parrinst.com)から入手した。23mL PTFE試料カップ(Fisher Cat No. 0102322A)及びParr 4781マイクロ波分解ボンベ(Fisher Cat No. 0473155)を分解のために使用した。
使用するマイクロ波は、Panasonic 1300 ワット、モデルNo. NN-SN667W、シリアルNo. 6B78090247であった。
尿
1.5グラムの尿をPTFE試料カップ内で秤量した。尿がその質量を上回るときには、さらなる分解を行った。尿試料の質量が1.5グラムを下回るときには、適量のDI水を添加して質量をほぼ約1.5グラムにした。0.24mLの50% v/v HNO3を試料カップに添加し、続いて0.48mLの36% v/v HClを添加した。試料カップを密閉してマイクロ波ボンベ内部に入れた。マイクロ波ボンベを密閉し、マイクロ波の中心に置いた。テフロン・インジケータ・スクリュがボンベの上部から1mm持ち上がるまで、試料を照射した。ボンベがマイクロ波中で費やす時間は、尿試料に応じて30〜60秒間であった。マイクロ波分解ボンベをマイクロ波から取り出し、そしてテフロン・インジケータ・スクリュが元の位置に降下するまで、20〜30分間にわたって冷却した。試料カップをマイクロ波分解ボンベから取り出し、そして液体試料をテストのためにバイアルに移した。
(1ペレット試料):
単一の糞塊(fecal pellet)をPTFE試料カップ内で秤量した。5mLのDI水を試料カップに添加した。0.8mLの50% v/v HNO3を試料カップに添加し、続いて1.6mLの36% v/v HClを添加した。試料カップを密閉してマイクロ波ボンベ内部に入れた。マイクロ波ボンベを密閉し、マイクロ波の中心に置いた。テフロン・インジケータ・スクリュがボンベの上部から1mm持ち上がるまで、試料を照射した。ボンベがマイクロ波中で費やす時間は、1糞塊試料の質量に応じて20〜30秒間であった。マイクロ波分解ボンベをマイクロ波から取り出し、そしてテフロン・インジケータ・スクリュが元の位置に降下するまで、20〜30分間にわたって冷却した。試料カップをマイクロ波分解ボンベから取り出し、そして液体試料をテストのためにバイアルに移した。
バルク糞試料
約0.300グラムの糞をPTFE試料カップ内で秤量した。5mLのDI水を試料カップに添加した。0.8mLの50% v/v HNO3を試料カップに添加し、続いて1.6mLの36% v/v HClを添加した。試料カップを密閉してマイクロ波ボンベ内部に入れた。マイクロ波ボンベを密閉し、マイクロ波の中心に置いた。テフロン・インジケータ・スクリュがボンベの上部から1mm持ち上がるまで、試料を照射した。ボンベがマイクロ波中で費やす時間は、バルク糞試料の質量に応じて20〜40秒間であった。マイクロ波分解ボンベをマイクロ波から取り出し、そしてテフロン・インジケータ・スクリュが元の位置に降下するまで、20〜30分間にわたって冷却した。試料カップをマイクロ波分解ボンベから取り出し、そして液体試料をテストのためにバイアルに移した。元の試料中に存在する糞全てを分解するために、バルク糞試料は数回の分解を必要とすることがある。
注:試料が十分に分解されていないように見える(すなわち固形物がまだ存在する/PTFE試料カップの側壁の変色)場合には、第2の分解を行った。このことは、好適な試料のために特定された体積のDI水、50% v/v HNO3、及び36% v/v HClの第2の添加を必要とした(正確な体積に関しては上記手順参照)。次いで試料を再びマイクロ波処理し、そしてテストのために試料バイアルに移す前に、20〜30分間にわたって冷ましておいた。
*DI水=脱イオン水
*PTFE=ポリテトラフルオロエチレン
全ての試料はこれらが分解したら、本明細書中上述した原子吸光分光技術を用いて分析した。
35日間研究の病理所見を表24に示す。全ての組織を肉眼で検査し、そして脾臓及び肝臓だけが最小限から軽度の色の変化を有することが判った。全ての肉眼検査は、安楽死及び/又は脂肪蓄積からのうっ血と一致し、正常範囲内にあると考えられた。肉眼的病変は認められなかった。コメントは特定のマウスに対して記載され、表24に示される。符号「M−3」は、Mesogold群における1匹のマウスを意味し、これに対して「GB−134−7」は「GB−134」群における1匹のマウスを意味し、そして「G151−9」は「GB−151」群における1匹のマウスを意味する。
図108は、群のうちのいずれかの間に体重増加の有意な差は見いだされなかったことを示す(全てP>0.05)。
図109は、群のうちのいずれかの間に流体消費量の有意な差は見いだされなかったことを示す(全てP>0.05)。
図110は、Mesogold群と、両GB−134群及びGB−151群との間に、Au量の著しい差が見いだされたことを示す(P<0.01)。GB−134群とGB−151群との間には有意な差は見いだされなかった(全てP>0.05)。表25は、実際の記録された結果を示す。
図111は、群のいずれかの間に、尿中に見いだされた平均金量に有意な差がなかったことを示す(全てP>0.05)
組織試料及び血液の中性子放射化分析測定の手順
心臓、肝臓、脾臓、腎臓、脳、及び血液の特定の試料を、金含量に関して分析した。具体的には中性子放射化分析を利用した。機器中性子放射化分析(NAA)は、単一の試料中の多くの元素を正確に割り出すためのその感度及び能力が特に強力である。NAAは、化学的処理又は特別な化学的な試料調製を必要とせず、ひいては、例えば損失、汚染、及び任意の不完全な組織試料分解の可能性を最小限にする。
NAA法は、ポリエチレン・バイアル内で組織試料を秤量することを伴う。各バイアルに不活性物質を添加することにより、蒸発損失を防止する。各バイアルを、各バイアルのベースに固定されたバーコード及び中性子束モニターで固有に識別する。核反応器からの中性子で照射するために、これらのバイアルを1フィート長のバンドル内にスタックする。バンドルは、ランダムに選択された二部ずつの試料を含有し、そして金基準(又は既知濃度の金)をバンドル内のランダムな位置に挿入する。
全てのバンドルを同様に処理する。バンドルを、核反応器の中性子束に当てる。具体的には核反応器のコア内に約45分間にわたってバンドルを挿入する。照射中にバンドルを回転させて、水平方向のフラックス変化がないようにする(鉛直方向フラックス変化は、個々のフラックス・モニターでモニタリングされる)。この照射により、試料中に存在するいずれの金も放射性になり、次いで金は、金固有のエネルギー(又は波長)(例えばAu 198,411.8keV)を有する貫通性ガンマ線の形態の輻射線を放出し始める。
約6日の崩壊期間後、照射された試料をカウント・システム上にローディングする。具体的には、高分解能同軸ゲルマニウム検出器を有するガンマ線分光計に隣接して、照射され部分的に崩壊されたそれぞれの試料を置いた。それぞれの試料からガンマ線が連続的に放射され(金が存在する限り)、放射されたガンマ線と検出器との相互作用により、入射ガンマ線エネルギーに対して高さが比例する不連続電圧パルスが生じる。特別に開発された多チャネル分析装置が、検出器からの電圧パルスをそのサイズに応じて選別し、そして、ガンマ線エネルギーのスペクトル対強度をデジタル構成する。カウント時間は1試料当たり約45分である。スペクトル・ピークの位置及び面積とライブラリ基準とを比較することによって、金は定性的及び定量的に同定される。分析の結果を下記に示す。
下記表27との関連において、図112は、マウス器官タイプと特定されたマウスによって経口消費されたコロイドとによる棒グラフを示している。各コロイド識別符号の終わりに記載された番号は、特定のマウスを意味する。具体的には2匹のマウス、GB−151−4及びGB−151−5の器官を試験した。GB−151−4は、マウス#4がGB−151を消費したことを意味する。別のマウスGB−134−3(すなわち懸濁液GB−134を消費したマウス#3)の器官も同様に試験した。別のマウス、すなわちマウス#2(Meso-2)の器官は、商業的に入手可能なコロイド金を消費した。試料サイズは比較的小さかったが、差は明らかである。
2つの脳試料GB−151−6及びGB−134−3中では金は検出されなかった。GB−151−6及びGB−134−3の検出限界はそれぞれ0.35ppb及び0.25ppbであった。血液試料GB−151−5及びGB−134−3は、分析のために利用可能な量が不十分なため分析しなかった。
以下に、本発明の実施態様を示すが、本発明はこれらの態様に限定されない。
(態様1)
金ナノ結晶であって:
有機不純物又は有機膜を実質的に含まない表面と;
{111}、{110}、及び{100}、及びこれらと同等のものから成る群から選択された、空間的に広がる少なくとも1つの低指数結晶面と
を含む、金ナノ結晶。
(態様2)
該ナノ結晶はその最長次元が20nm未満である、態様1に記載の金ナノ結晶。
(態様3)
該ナノ結晶が、四面体及び十面体のうちの少なくとも一方の成形結晶を含む、態様2に記載の金ナノ結晶。
(態様4)
該ナノ結晶が、水中の電気化学反応を含むプロセスによって形成される、態様1に記載の金ナノ結晶。
(態様5)
該ナノ結晶が水中に懸濁される、態様2に記載の金ナノ結晶。
(態様6)
複数の成形結晶が水中に懸濁されている、態様3に記載の金ナノ結晶。
(態様7)
前記水中の前記成形結晶のパーセントが5〜35%であり、これにより懸濁液を形成する、態様6に記載の金ナノ結晶。
(態様8)
前記水中の前記成形結晶のパーセントが5〜35%である、態様6に記載の懸濁液。
(態様9)
四面体及び十面体を含む両成形結晶が存在する、態様8に記載の懸濁液。
(態様10)
四面体及び十面体を含む両成形結晶が存在する、態様8に記載の懸濁液。
(態様11)
四面体及び十面体を含む両成形結晶が15%〜50%の範囲で存在する、態様10に記載の懸濁液。
(態様12)
前記成形結晶の平均結晶サイズは20nm未満である、態様11に記載の懸濁液。
(態様13)
水中の金ナノ結晶の懸濁液であって:
モード粒子サイズが20nm以下の結晶;
前記水中の他のナノ粒子に対して16〜66数パーセントの組み合わされた量で存在する四面体形状の結晶及び十面体形状の結晶;及び
有機不純物又は有機膜を実質的に含まない表面を有する結晶
を含む、水中の金ナノ結晶の懸濁液。
(態様14)
前記表面が有機不純物又は有機膜を実質的に完全に含まない、態様13に記載の懸濁液。
(態様15)
前記表面が有機不純物又は有機膜を完全に含まない、態様13に記載の懸濁液。
(態様16)
前記結晶が少なくとも30%の量で存在する、態様15に記載の懸濁液。
(態様17)
前記結晶が少なくとも40%の量で存在する、態様15に記載の懸濁液。
(態様18)
前記結晶が1ミリリットル当たり少なくとも5マイクログラムの量で存在する、態様15に記載の懸濁液。
(態様19)
前記結晶が1ミリリットル当たり約2〜100マイクログラムの量で存在する、態様13に記載の懸濁液。
(態様20)
前記組成物を関節炎の治療のために利用することを含む、態様13に記載の組成物。
(態様21)
前記組成物を多発性硬化症の治療のために利用することを含む、態様13に記載の組成物。
(態様22)
前記組成物を、炎症状態、慢性炎症状態、自己免疫状態、過敏反応、及び癌疾患又は状態から成る群から選択された少なくとも1つの兆候を治療するために利用することを含む、態様13に記載の組成物。
(態様23)
前記組成物を、MIFが示された任意の疾患を治療するために利用することを含む、態様13に記載の組成物。
(態様24)
水中で金ナノ結晶を成長させる方法であって:
前記水に少なくとも1種の処理増強剤を添加し;
少なくとも1組の金電極を前記水と接触させ;
前記少なくとも1組の金電極にAC電圧を印加することにより、金ナノ結晶が、四面体及び十面体から成る群から選択された少なくとも1つの形状になるように成長するのを可能にする
ことを含む、水中で金ナノ結晶を成長させる方法。
(態様25)
前記金ナノ結晶のモード粒子サイズが20nm以下である、態様24に記載の方法。
(態様26)
前記AC電圧が20〜2000ボルトの電圧を含む、態様24に記載の方法。
(態様27)
前記AC電圧が100〜300ボルトの電圧を含む、態様24に記載の方法。
(態様28)
前記水がトラフ部材内に含有されている、態様24に記載の方法。
(態様29)
前記AC電圧が印加されると、前記水は前記トラフ部材を連続的に貫流する、態様28に記載の方法。
(態様30)
前記トラフ部材を連続的に貫流する前記水は、少なくとも8のpHで前記トラフ部材を出る、態様29に記載の方法。
(態様31)
前記水には有機化合物が添加されない、態様24に記載の方法。

Claims (15)

  1. a)医薬級の水と、
    b)重炭酸ナトリウムを含む少なくとも1種の処理増強剤と、
    c)前記水に懸濁して懸濁液を形成している金ナノ結晶であって、i)(1)表面に接着又は付着した有機化学成分が存在しない、及び/又は(2)実質的にクリーンで水又は前記処理増強剤以外に表面に接着又は付着した、前記ナノ結晶の機能を変化させる化学成分が存在しない、の少なくともいずれか一方の特性を有する表面を有し、ii)100nmより小さいモード粒径を有し、iii)前記懸濁液中に2〜200ppmの濃度で存在する、金ナノ結晶と
    を含み、前記懸濁液が4.0〜9.5のpHと、-20mV以下のゼータ電位を有する、医薬的に許容可能な懸濁液。
  2. 前記懸濁液が5.0〜9.5のpHを有する、請求項に記載の懸濁液。
  3. 前記懸濁液が、-40mV以下のゼータ電位を有する、請求項1又は2に記載の懸濁液。
  4. 前記懸濁液が、-50mV以下のゼータ電位を有する、請求項に記載の懸濁液。
  5. a)重炭酸ナトリウムを含む少なくとも1種の処理増強剤を含み5〜9.5のpHを有する医薬級の水と、
    b)懸濁液を形成している前記水中の金ナノ結晶であって、前記懸濁液が-20mV以下のゼータ電位を有し、前記金ナノ結晶が、i)(1)表面に接着又は付着した有機化学成分が存在しない、及び/又は(2) 実質的にクリーンで水又は処理増強剤以外に表面に接着又は付着した、前記ナノ結晶の機能を変化させる化学成分が存在しない、の少なくともいずれか一方の特性を有する表面を有し、 ii)50nmより小さいモード粒径を有し、iii)前記懸濁液中に2〜200ppmの濃度で存在する、懸濁液。
  6. 前記懸濁液が、-40mV以下のゼータ電位を有する、請求項に記載の懸濁液。
  7. 水に、少なくとも1種の処理増強剤(ここで処理増強剤は電気化学的刺激による結晶成長方法において核形成/結晶成長を促進する剤を指称するが、有機化学成分を含む処理増強剤を除く。)を提供し、
    前記水を少なくとも1つのトラフ部材の中を流し、前記水は上方表面と流動方向を有し、
    少なくとも1つのプラズマ形成電極を提供し、
    前記少なくとも1つのプラズマ形成電極と前記流れる水の前記上方表面の間に少なくとも1つのプラズマを形成し、
    前記流れる水に接触し前記少なくとも1つのプラズマ形成電極から前記流動方向の下流方向の位置に少なくとも1セットの金電極を提供し、
    前記少なくとも1セットの金電極に少なくとも1つの電気化学反応を行ない、懸濁液を形成する水に懸濁された金ナノ結晶を形成させることを含む、水に懸濁された金ナノ結晶を形成する方法であり、
    その金ナノ結晶は、i)(1)表面に接着又は付着した有機化学成分が存在しない、及び/又は(2)実質的にクリーンで水又は処理増強剤以外に表面に接着又は付着した、前記ナノ結晶の機能を変化させる化学成分が存在しない、の少なくともいずれか一方の特性を有する表面を有する。
  8. 関節炎状態の患者を治療するための請求項1〜のいずれか1項に記載の懸濁液。
  9. 金療法に受容性の状態を持つ患者を治療するための請求項1〜のいずれか1項に記載の懸濁液。
  10. 前記状態がクローン病である請求項に記載の懸濁液。
  11. 前記状態が痛みである請求項に記載の懸濁液。
  12. 前記状態が自己免疫疾患である請求項に記載の懸濁液。
  13. 前記状態が炎症状態である請求項に記載の懸濁液。
  14. 経口投与可能である請求項8〜13のいずれか1項に記載の懸濁液。
  15. 請求項1〜のいずれか1項に記載の懸濁液を用いて、関節炎状態の患者を治療するための懸濁液を製造する方法。
JP2016160686A 2009-07-08 2016-08-18 医学的治療のための新規の金系ナノ結晶、及び該金系ナノ結晶のための電気化学的製造方法 Active JP6383763B2 (ja)

Applications Claiming Priority (14)

Application Number Priority Date Filing Date Title
US22394409P 2009-07-08 2009-07-08
US61/223,944 2009-07-08
US22615309P 2009-07-16 2009-07-16
US61/226,153 2009-07-16
US22825009P 2009-07-24 2009-07-24
US61/228,250 2009-07-24
US23557409P 2009-08-20 2009-08-20
US61/235,574 2009-08-20
US24980409P 2009-10-08 2009-10-08
US61/249,804 2009-10-08
US26364809P 2009-11-23 2009-11-23
US61/263,648 2009-11-23
US29469010P 2010-01-13 2010-01-13
US61/294,690 2010-01-13

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2012519739A Division JP6059015B2 (ja) 2009-07-08 2010-07-08 医学的治療のための新規の金系ナノ結晶、及び該金系ナノ結晶のための電気化学的製造方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2018147599A Division JP6703052B2 (ja) 2009-07-08 2018-08-06 医学的治療のための新規の金系ナノ結晶、及び該金系ナノ結晶のための電気化学的製造方法

Publications (2)

Publication Number Publication Date
JP2017075390A JP2017075390A (ja) 2017-04-20
JP6383763B2 true JP6383763B2 (ja) 2018-08-29

Family

ID=43429549

Family Applications (4)

Application Number Title Priority Date Filing Date
JP2012519739A Active JP6059015B2 (ja) 2009-07-08 2010-07-08 医学的治療のための新規の金系ナノ結晶、及び該金系ナノ結晶のための電気化学的製造方法
JP2016160686A Active JP6383763B2 (ja) 2009-07-08 2016-08-18 医学的治療のための新規の金系ナノ結晶、及び該金系ナノ結晶のための電気化学的製造方法
JP2018147599A Active JP6703052B2 (ja) 2009-07-08 2018-08-06 医学的治療のための新規の金系ナノ結晶、及び該金系ナノ結晶のための電気化学的製造方法
JP2020079822A Active JP7014851B2 (ja) 2009-07-08 2020-04-28 医学的治療のための新規の金系ナノ結晶、及び該金系ナノ結晶のための電気化学的製造方法

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2012519739A Active JP6059015B2 (ja) 2009-07-08 2010-07-08 医学的治療のための新規の金系ナノ結晶、及び該金系ナノ結晶のための電気化学的製造方法

Family Applications After (2)

Application Number Title Priority Date Filing Date
JP2018147599A Active JP6703052B2 (ja) 2009-07-08 2018-08-06 医学的治療のための新規の金系ナノ結晶、及び該金系ナノ結晶のための電気化学的製造方法
JP2020079822A Active JP7014851B2 (ja) 2009-07-08 2020-04-28 医学的治療のための新規の金系ナノ結晶、及び該金系ナノ結晶のための電気化学的製造方法

Country Status (15)

Country Link
US (5) US9603870B2 (ja)
EP (1) EP2451284B8 (ja)
JP (4) JP6059015B2 (ja)
KR (3) KR102051248B1 (ja)
CN (1) CN102548417B (ja)
AU (1) AU2010271298B2 (ja)
CA (1) CA2767428C (ja)
DK (1) DK2451284T3 (ja)
ES (1) ES2623504T3 (ja)
IL (1) IL217408A (ja)
MX (1) MX350309B (ja)
PH (1) PH12017501884A1 (ja)
RU (1) RU2568850C2 (ja)
SG (4) SG10202108051XA (ja)
WO (1) WO2011006007A1 (ja)

Families Citing this family (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3889102A3 (en) * 2007-07-11 2022-01-05 Clene Nanomedicine, Inc. Continuous methods for treating liquids and manufacturing certain constituents (e.g., nanoparticles) in liquids, apparatuses and nanoparticles and nanoparticle/liquid solution(s) resulting therefrom
US9387452B2 (en) 2009-01-14 2016-07-12 Gr Intellectual Reserve, Llc. Continuous methods for treating liquids and manufacturing certain constituents (e.g., nanoparticles) in liquids, apparatuses and nanoparticles and nanoparticle/liquid solution(s) resulting therefrom
US9067263B2 (en) 2009-01-15 2015-06-30 Gr Intellectual Reserve, Llc Continuous, semicontinuous and batch methods for treating liquids and manufacturing certain constituents (e.g., nanoparticles) in liquids, apparatuses and nanoparticles and nanoparticle/liquid solution(s) and colloids resulting therefrom
KR102051248B1 (ko) * 2009-07-08 2019-12-02 클레네 나노메디슨, 인크. 의학적 치료를 위한 신규한 금계 나노결정 및 이를 위한 전기화학 제조 방법
US9346832B2 (en) * 2010-06-17 2016-05-24 University Of Kwazulu-Natal Gold complexes for use in the treatment of cancer
US20130323166A1 (en) * 2010-09-10 2013-12-05 William Beaumont Hospital Radiation Therapy for Treating Alzheimer's Disease
ES2564672T3 (es) * 2011-03-30 2016-03-28 Gr Intellectual Reserve, Llc Nuevas suspensiones de nanocristales bimetálicos de base de oro y platino, procesos de preparación electroquímica de las mismas y usos para las mismas
EP2735389A1 (de) * 2012-11-23 2014-05-28 Universität Duisburg-Essen Verfahren zur Herstellung reiner, insbesondere kohlenstofffreier Nanopartikel
CA2913205C (en) * 2013-05-08 2023-01-03 Gr Intellectual Reserve, Llc Methods and treatment for certain demyelination and dysmyelination-based disorders and/or promoting remyelination
GB2529185B (en) 2014-08-12 2021-03-03 Kathrein Se Method and system for relaying telecommunications signals wtih efficient joint capacity
EP3689234A1 (en) 2014-10-30 2020-08-05 Kardium Inc. Systems and methods for ablating tissue
KR102328995B1 (ko) * 2014-11-26 2021-11-23 나노리소스 주식회사 폭발형 나노다이아몬드의 분리 방법
CN104867267B (zh) * 2015-03-15 2017-10-27 李洪 节能减灾装置
CN104759753B (zh) * 2015-03-30 2016-08-31 江苏大学 多系统自动化协调工作提高激光诱导空化强化的方法
EP3291846A4 (en) * 2015-05-07 2018-12-05 The Regents of The University of Michigan Process for electro-hydrodynamically enhanced destruction of chemical air contaminants and airborne inactivation of biological agents
JP6590309B2 (ja) * 2015-07-31 2019-10-16 学校法人関東学院 導電層付プラスチック基板及びその製造方法
WO2017210060A2 (en) * 2016-05-25 2017-12-07 University Of Florida Research Foundation, Inc. Light-driven synthesis of plasmonic nanoparticles and nanomaterials
CN107684560B (zh) * 2016-08-05 2021-05-11 深圳深见医药科技有限公司 含金团簇的物质在制备预防和治疗阿兹海默病药物中的应用
US10300551B2 (en) 2016-11-14 2019-05-28 Matthew Fagan Metal analyzing plasma CNC cutting machine and associated methods
US10195683B2 (en) * 2016-11-14 2019-02-05 Matthew Fagan Metal analyzing plasma CNC cutting machine and associated methods
US10029019B1 (en) 2017-01-20 2018-07-24 Xueyun Gao Method for mitigating osteoporosis using metallic gold cluster molecules
CN108569483A (zh) * 2017-03-13 2018-09-25 富泰华工业(深圳)有限公司 智能取液系统
CN107217279B (zh) * 2017-05-31 2018-10-02 东北大学 一种电解法制备金属纳米颗粒的方法
CN107290422B (zh) * 2017-07-20 2019-04-19 浙江大学 一种基于电化学增强反射光谱信号的生化检测系统及方法
TWI651095B (zh) * 2017-10-18 2019-02-21 晶碩光學股份有限公司 具有抗敏舒緩效果的眼用產品
EP3727349A1 (en) 2017-12-19 2020-10-28 Nanobiotix Nanoparticles for use for treating a neuronal disorder
MX2020006361A (es) 2017-12-19 2020-08-17 Nanobiotix Nanoparticulas para su uso en la potenciacion del rendimiento cerebral o en el tratamiento del estres.
EP3696534A1 (en) * 2019-02-14 2020-08-19 SmartDyeLivery GmbH Method for determining physicochemical properties of nanoscale systems (nss)
CN110905454B (zh) * 2019-11-29 2022-01-04 南通仁隆科研仪器有限公司 一种水合物储层井间电学动态监控模拟实验装置
RU2725197C1 (ru) * 2020-02-12 2020-06-30 федеральное государственное бюджетное образовательное учреждение высшего образования «Ижевская государственная медицинская академия» Министерства здравоохранения Российской Федерации Метод оценки висцеральной гиперчувствительности
KR102408166B1 (ko) * 2020-04-02 2022-06-10 아주대학교산학협력단 세포 배양이 가능한 세포 유래물 분석용 센서칩, 및 이를 이용한 세포 활성도 정량 분석 방법
CN112571790A (zh) * 2020-11-04 2021-03-30 即时智造科技(上海)有限公司 一种sls3d打印自动冷却装置
CN112683710B (zh) * 2020-12-02 2024-04-16 大连理工大学 一种氯离子侵蚀下钢筋混凝土桥板加速腐蚀的试验装置
CN115351289B (zh) * 2022-09-01 2023-12-29 杭州师范大学 一种利用三元表面活性剂制备微型金纳米棒的方法及其产品

Family Cites Families (59)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR432101A (fr) 1910-10-26 1911-11-29 I S Petzholdt Maschinen Fabrik Procédé et machine destinés au traitement du cacao fluide
JPS529615B1 (ja) 1970-03-31 1977-03-17
JPS5747272B2 (ja) 1974-12-13 1982-10-08
DE2854946A1 (de) 1978-12-20 1980-07-10 Agfa Gevaert Ag Fotografisches farbdiffusionsuebertragungsverfahren
US6638413B1 (en) 1989-10-10 2003-10-28 Lectro Press, Inc. Methods and apparatus for electrolysis of water
CA2104355C (en) 1993-08-18 1997-06-17 Ion I. Inculet Method and apparatus for ozone generation and treatment of water
DE19522619C2 (de) 1995-06-22 1998-11-12 Fischer & Krecke Gmbh & Co Verfahren zur Herstellung von Bodenbeuteln mit Innenriegel
US5876663A (en) 1995-11-14 1999-03-02 The University Of Tennessee Research Corporation Sterilization of liquids using plasma glow discharge
ZA9610018B (en) 1995-11-28 1997-05-28 Austech Pty Ltd Liquid sterilisation apparatus
AUPO502297A0 (en) 1997-02-10 1997-03-06 Austech Pty Ltd Liquid purification apparatus
US5965994A (en) 1997-06-20 1999-10-12 Seo; Dong Il Automatic vertical moving systems and control methods therefor
US6558638B2 (en) 1998-03-14 2003-05-06 Splits Technologies Limited Treatment of liquids
US7527787B2 (en) * 2005-10-19 2009-05-05 Ibc Pharmaceuticals, Inc. Multivalent immunoglobulin-based bioactive assemblies
CA2272596A1 (en) 1999-05-21 2000-11-21 Lawrence A. Lambert Waste water treatment method and apparatus
US7135195B2 (en) 1999-06-01 2006-11-14 American Silver, Llc Treatment of humans with colloidal silver composition
US6214299B1 (en) 1999-06-01 2001-04-10 Robert J. Holladay Apparatus and method for producing antimicrobial silver solution
AU2002239726A1 (en) 2001-05-25 2002-12-09 Northwestern University Non-alloying core shell nanoparticles
US6962679B2 (en) 2001-07-11 2005-11-08 Battelle Memorial Institute Processes and apparatuses for treating halogen-containing gases
US7135054B2 (en) 2001-09-26 2006-11-14 Northwestern University Nanoprisms and method of making them
TWI255695B (en) 2001-10-12 2006-06-01 Phild Co Ltd Method and device for producing ultrafine dispersion of noble metal
TW561085B (en) 2001-10-29 2003-11-11 Phild Co Ltd Method and device for producing metal powder
US7972390B2 (en) 2002-03-21 2011-07-05 Gr Intellectual Reserve, Llc Methods for controlling crystal growth, crystallization, structures and phases in materials and systems
GB0208263D0 (en) 2002-04-10 2002-05-22 Dow Corning Protective coating composition
US7118852B2 (en) 2002-04-11 2006-10-10 Throwleigh Technologies, L.L.C. Methods and apparatus for decontaminating fluids
US6749759B2 (en) 2002-07-12 2004-06-15 Wisconsin Alumni Research Foundation Method for disinfecting a dense fluid medium in a dense medium plasma reactor
US20040022702A1 (en) 2002-07-30 2004-02-05 Christensen Herbert E. Apparatus and method for automatically feeding the silver electrode into the solutiion
JP2004124155A (ja) 2002-10-01 2004-04-22 Sumitomo Electric Ind Ltd 微小金属粉末の製造方法および微小金属粉末の製造装置
US6802981B2 (en) 2002-11-05 2004-10-12 Aquapure Technologies Ltd. Method for purification and disinfection of water
AU2004212824A1 (en) * 2003-02-20 2004-09-02 Shetech Co., Ltd. Medicament comprising noble metal fine particles
JP2007524755A (ja) 2003-04-02 2007-08-30 ノースウエスタン ユニバーシティ ナノ粒子の成長制御方法
US20060249705A1 (en) 2003-04-08 2006-11-09 Xingwu Wang Novel composition
WO2005059952A2 (en) 2003-07-28 2005-06-30 The Regents Of The University Of California Langmuir-blodgett nanostructure monolayers
US7883606B2 (en) 2003-09-10 2011-02-08 Nahum Parkansky Production of nanoparticles and microparticles
US7276283B2 (en) 2004-03-24 2007-10-02 Wisconsin Alumni Research Foundation Plasma-enhanced functionalization of carbon-containing substrates
US7486705B2 (en) 2004-03-31 2009-02-03 Imra America, Inc. Femtosecond laser processing system with process parameters, controls and feedback
US20060068026A1 (en) * 2004-08-11 2006-03-30 Hu Michael Z Thermal electrochemical synthesis method for production of stable colloids of "naked" metal nanocrystals
US8512436B2 (en) 2004-09-15 2013-08-20 Kyoto University Metal fine particles and manufacturing method therefor
US20080089839A1 (en) 2004-09-16 2008-04-17 Guo-Quan Lu Preparation of Stable High Concentration Coloidal Metal Particulate System
CN101035550B (zh) * 2004-10-05 2010-05-05 爱脑备库司株式会社 用于治疗或预防精神病学症状的组合物及方法
WO2006065762A2 (en) * 2004-12-13 2006-06-22 University Of South Carolina Surface enhanced raman spectroscopy using shaped gold nanoparticles
BRPI0519604A2 (pt) 2005-01-05 2009-02-25 Robert Holladay composiÇÕes À base de prata/Água, gÉis de prata e prata; e processos para a produÇço e para a utilizaÇço das mesmas
US7588624B2 (en) * 2005-03-10 2009-09-15 Northwestern University Method of producing gold nanoprisms
CN100467118C (zh) 2005-08-08 2009-03-11 鸿富锦精密工业(深圳)有限公司 纳米粒子制备装置
KR100726713B1 (ko) 2005-08-26 2007-06-12 한국전기연구원 액중 전기폭발에 의한 나노분말 제조 방법 및 장치
KR101333243B1 (ko) 2005-10-06 2013-11-26 파이오네틱스 코포레이션 유체의 전기화학적 이온교환 처리
US7758846B2 (en) 2005-12-16 2010-07-20 Battelle Memorial Institute Methods of producing hydrogen via the water-gas shift reaction over a Pd-Zn catalyst
US20070267289A1 (en) 2006-04-06 2007-11-22 Harry Jabs Hydrogen production using plasma- based reformation
US8088193B2 (en) 2006-12-16 2012-01-03 Taofang Zeng Method for making nanoparticles
US7862782B2 (en) 2007-01-12 2011-01-04 Wisconsin Alumni Research Foundation Apparatus and methods for producing nanoparticles in a dense fluid medium
EP3889102A3 (en) * 2007-07-11 2022-01-05 Clene Nanomedicine, Inc. Continuous methods for treating liquids and manufacturing certain constituents (e.g., nanoparticles) in liquids, apparatuses and nanoparticles and nanoparticle/liquid solution(s) resulting therefrom
JP2009032756A (ja) * 2007-07-25 2009-02-12 Sony Corp 半導体製造装置
WO2009126341A2 (en) 2008-01-14 2009-10-15 Taofang Zeng Method for making nanoparticles or fine particles
EP2123262A1 (en) * 2008-05-20 2009-11-25 Consorzio per il Centro di Biomedica Moleculare Scrl Polyelectrolyte-encapsulated gold nanoparticles capable of crossing blood-brain barrier
US9067263B2 (en) * 2009-01-15 2015-06-30 Gr Intellectual Reserve, Llc Continuous, semicontinuous and batch methods for treating liquids and manufacturing certain constituents (e.g., nanoparticles) in liquids, apparatuses and nanoparticles and nanoparticle/liquid solution(s) and colloids resulting therefrom
US8246714B2 (en) 2009-01-30 2012-08-21 Imra America, Inc. Production of metal and metal-alloy nanoparticles with high repetition rate ultrafast pulsed laser ablation in liquids
KR102051248B1 (ko) * 2009-07-08 2019-12-02 클레네 나노메디슨, 인크. 의학적 치료를 위한 신규한 금계 나노결정 및 이를 위한 전기화학 제조 방법
EP2275137A1 (en) 2009-07-10 2011-01-19 Nanobiotix Metallic nanoparticles, preparation and uses thereof
US8858676B2 (en) 2010-02-10 2014-10-14 Imra America, Inc. Nanoparticle production in liquid with multiple-pulse ultrafast laser ablation
US8802234B2 (en) 2011-01-03 2014-08-12 Imra America, Inc. Composite nanoparticles and methods for making the same

Also Published As

Publication number Publication date
AU2010271298A2 (en) 2012-04-12
MX350309B (es) 2017-09-01
US9603870B2 (en) 2017-03-28
WO2011006007A1 (en) 2011-01-13
JP6059015B2 (ja) 2017-01-11
JP6703052B2 (ja) 2020-06-03
US20200188429A1 (en) 2020-06-18
KR20190133298A (ko) 2019-12-02
EP2451284A4 (en) 2014-01-22
IL217408A (en) 2017-12-31
US20130259903A1 (en) 2013-10-03
BR112012000311A2 (pt) 2017-06-13
KR20180135119A (ko) 2018-12-19
KR20120052967A (ko) 2012-05-24
JP2012532992A (ja) 2012-12-20
PH12017501884A1 (en) 2020-11-23
JP7014851B2 (ja) 2022-02-01
KR102131575B1 (ko) 2020-07-08
SG10201908339RA (en) 2019-10-30
CN102548417B (zh) 2015-09-09
ES2623504T3 (es) 2017-07-11
JP2019014969A (ja) 2019-01-31
RU2012104247A (ru) 2013-08-20
US20210236542A1 (en) 2021-08-05
EP2451284A1 (en) 2012-05-16
CN102548417A (zh) 2012-07-04
KR101931381B1 (ko) 2018-12-20
JP2017075390A (ja) 2017-04-20
RU2568850C2 (ru) 2015-11-20
JP2020128596A (ja) 2020-08-27
CA2767428A1 (en) 2011-01-13
EP2451284B8 (en) 2017-05-24
IL217408A0 (en) 2012-02-29
AU2010271298A1 (en) 2012-03-01
EP2451284B1 (en) 2017-03-29
US20210361699A1 (en) 2021-11-25
KR102051248B1 (ko) 2019-12-02
US10980832B2 (en) 2021-04-20
SG10201403497QA (en) 2014-10-30
US10449217B2 (en) 2019-10-22
MX2012000489A (es) 2012-07-30
CA2767428C (en) 2018-03-13
SG10202108051XA (en) 2021-09-29
BR112012000311A8 (pt) 2017-12-05
US20170348350A1 (en) 2017-12-07
DK2451284T3 (en) 2017-05-01
SG177565A1 (en) 2012-02-28
AU2010271298B2 (en) 2015-12-17

Similar Documents

Publication Publication Date Title
JP6383763B2 (ja) 医学的治療のための新規の金系ナノ結晶、及び該金系ナノ結晶のための電気化学的製造方法
AU2019204420B2 (en) Novel gold-based nanocrystals
JP6121985B2 (ja) 新規の金−白金系バイメタルナノ結晶懸濁液、その電気化学的製造方法、及びその使用
BR112012000311B1 (pt) Nanocristais com base em ouro para tratamentos médicos e processos eletroquímicos para a fabricação dos mesmos

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20170130

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20171019

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171031

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20180130

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180501

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180605

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20180704

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180806

R150 Certificate of patent or registration of utility model

Ref document number: 6383763

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250