JP6380101B2 - ガラス基板及びその徐冷方法 - Google Patents

ガラス基板及びその徐冷方法 Download PDF

Info

Publication number
JP6380101B2
JP6380101B2 JP2014515728A JP2014515728A JP6380101B2 JP 6380101 B2 JP6380101 B2 JP 6380101B2 JP 2014515728 A JP2014515728 A JP 2014515728A JP 2014515728 A JP2014515728 A JP 2014515728A JP 6380101 B2 JP6380101 B2 JP 6380101B2
Authority
JP
Japan
Prior art keywords
glass
glass substrate
slow cooling
less
chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014515728A
Other languages
English (en)
Other versions
JPWO2014163130A1 (ja
Inventor
貴弘 川口
貴弘 川口
松本 直之
直之 松本
妥夫 寺西
妥夫 寺西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Electric Glass Co Ltd
Original Assignee
Nippon Electric Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Glass Co Ltd filed Critical Nippon Electric Glass Co Ltd
Publication of JPWO2014163130A1 publication Critical patent/JPWO2014163130A1/ja
Application granted granted Critical
Publication of JP6380101B2 publication Critical patent/JP6380101B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B25/00Annealing glass products
    • C03B25/02Annealing glass products in a discontinuous way
    • C03B25/025Glass sheets
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B35/00Transporting of glass products during their manufacture, e.g. hot glass lenses, prisms
    • C03B35/14Transporting hot glass sheets or ribbons, e.g. by heat-resistant conveyor belts or bands
    • C03B35/145Transporting hot glass sheets or ribbons, e.g. by heat-resistant conveyor belts or bands by top-side transfer or supporting devices, e.g. lifting or conveying using suction
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/089Glass compositions containing silica with 40% to 90% silica, by weight containing boron
    • C03C3/091Glass compositions containing silica with 40% to 90% silica, by weight containing boron containing aluminium
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/50Glass production, e.g. reusing waste heat during processing or shaping
    • Y02P40/57Improving the yield, e-g- reduction of reject rates

Description

本発明は、ガラス基板の徐冷技術に関する。
近年、スマートフォンやタブレット型端末の登場に伴って、フラットパネルディスプレイ(以下では、FPDという。)の薄型化及び軽量化と共に、高精細化が進んでいる。
FPD用の基板としてはガラス基板が広く用いられており、上記の薄型化や軽量化などの要請を受け、ガラス基板の薄板化が推進されている。
ガラス基板の成形方法としては、成形されるガラス基板の平滑性が優れているなどの理由から、オーバーフローダウンドロー法に代表されるダウンドロー法が広く利用されている。
このダウンドロー法では、ガラスの板引き速度を速くすることで、ガラス基板の薄板化に対処しているのが現状である。
しかしながら、ダウンドロー法の場合、ガラス基板の元となる長尺ガラスを下方に移行させながら徐冷ゾーンを通過させるため、板引き速度を速くすると、徐冷ゾーンでの滞在時間が短くなり、ガラスが急冷状態で固化される。その結果、このようなガラス基板をFPDに用いると、その製造工程に含まれる熱処理時に、ガラス基板の熱収縮が大きくなるという問題がある。
詳細には、FPDの製造工程では、ガラス基板の表面に薄膜電気回路を形成する際に、ガラス基板が高温で熱処理を受ける。この際、ガラス基板の熱収縮が大きいと、ガラス基板の表面に形成される回路パターンが設計からずれ、所望の電気的性能を維持できなくなるという重大なトラブルを招くおそれがある。
また、FPDの高精細化に伴って、ガラス基板に形成される薄膜電気回路の回路パターンも微細化されている。そのため、微小異物等の表面欠陥が、薄膜電気回路の形成に悪影響を与える可能性も高くなっている。
そこで、特許文献1には、(1)FPDの製造工程の前に、成形されたガラス基板を徐冷炉に入れて再度徐冷すること、(2)この徐冷炉内に、複数枚の耐熱性ガラスセラミックス(結晶化ガラス)板からなる防塵壁を設け、耐火物や発熱体から生じる微小異物等がガラス基板に付着するのを防止することが開示されている。
特開平5−330835号公報
しかしながら、特許文献1のように、複数枚の耐火性ガラスセラミック板を並べて防塵壁を構成する場合、ガラスセラミック板同士を溶接によって固定できないため、板の継ぎ目が必然的に形成されてしまう。この継ぎ目を通して、耐火物や発熱体から生じる微小異物が侵入し得るため、これら微小異物がガラス基板の表面に付着するのを確実に防止することができない。
特に、発熱体として金属製のヒーターを用いた場合、防塵壁の継ぎ目を通して酸化された金属粉が浸入し、ガラス基板の表面に金属異物からなる表面欠陥が形成されるおそれがある。そして、このような金属異物の表面欠陥は導電性を有するため、ガラス基板に形成される薄膜電気回路にショートなどが生じ、非金属異物の表面欠陥に比して電気特性に致命的なトラブルを招きやすい。
なお、耐火性ガラスセラミック板の継ぎ目を耐火物で塞ぐことも考えられるが、その塞いだ耐火物から微小異物が生じるため、却ってガラス基板の表面を汚染するおそれがあり、実用的ではない。
また、同文献では、徐冷炉内で、耐熱鋼からなる搬送コンベアでガラス基板を移動させながら徐冷しているが、搬送コンベアからも金属異物が発生し得る。そのため、金属製のヒーターを用いた場合と同様に、ガラス基板に金属異物の表面欠陥が形成され得る。
ここで、徐冷工程でガラス基板の表面に付着した微小異物等は、徐冷時の熱処理によって、ガラス基板の表面に焼き付くなどし、事後的な洗浄によっても除去することが困難となる。そのため、これら微小異物は、FPDの組立工程時などの各種工程においても、ガラス基板の表面欠陥として残存する可能性が高い。
したがって、特許文献1の徐冷方法により製造されたガラス基板では、高性能ディスプレイ用途のガラス基板に対応することが難しくなる。すなわち、高性能ディスプレイ用途のガラス基板には、(1)厚みが薄いこと、(2)FPDの製造工程における熱収縮が小さいこと、(3)表面欠陥が少ないことが要求されるが、同文献に開示の徐冷方法により製造されたガラス基板では、これら3つの要件を全て満足することが極めて難しくなる。
以上の実情に鑑み、本発明は、高精細ディスプレイ用途にも問題なく対応できるガラス基板を提供することを技術的課題とする。
上記課題を解決するために創案された本発明に係るガラス基板は、厚みが0.5mm以下で、一辺が300mm以上のガラス基板であって、常温から5℃/分で昇温した後に500℃で1時間保持し、5℃/分で降温したときの熱収縮率の絶対値が10ppm以下であって、且つ、表面欠陥の個数が200個/m2以下である。なお、表面欠陥には、ガラス粉・金属粉などの微小異物や、微小傷が含まれる。
このような構成によれば、熱収縮率と、表面欠陥の個数の双方が適正な範囲で管理された状態となる。そのため、高精細ディスプレイ用のガラス基板として用いても、その製造工程に含まれる熱処理時にガラス基板の熱収縮や表面欠陥が問題となることがなく、良好な電気特性を実現できる。付言すれば、特許文献1に開示の徐冷方法などの従来の方法では、上記のような熱収縮率と表面欠陥の個数を同時に達成できるガラス基板を得ることはできない。
ここで、熱収縮率は、次のような方法で測定した値とする(以下、同様)。すなわち、図5Aに示すように、まず、ガラス基板の試料として160mm×30mmの短冊状試料Gを準備する。この短冊状試料Gの長辺方向の両端部のそれぞれに、#1000の耐水研磨紙を用いて、端縁から20〜40mm離れた位置でマーキングMを形成する。その後、図5Bに示すように、マーキングMを形成した短冊状試料GをマーキングMと直交方向に沿って2つに折り割って、試料片Ga,Gbを作製する。そして、一方の試料片Gbのみを所定条件で熱処理した後、図5Cに示すように、熱処理を行っていない試料片Gaと、熱処理を行った試料片Gbを並列に配列した状態で、2つの試料片Ga,GbのマーキングMの位置ずれ量(△L1,△L2)をレーザー顕微鏡によって読み取り、下記の式により熱収縮率を算出する。なお、式中のl0は、初期のマーキングM間の距離である。
熱収縮率=[{ΔL1(μm)+ΔL2(μm)}×103]/l0(mm) (ppm)
また、表面欠陥の個数は、日立ハイテクノロジー株式会社製の表面検査装置(型番:GI−7200)を用いてガラス基板の欠陥数を測定し、その欠陥数をガラス基板の面積で除算した値とする(以下、同様)。
上記の構成において、前記表面欠陥に含まれる金属異物の個数が、10個/m2以下であることが好ましい。
上記の構成において、前記表面欠陥の個数は、150個/m2以下であることが好ましく、100個/m2以下であることがより好ましい。なお、表面欠陥の個数の下限値は、例えば、1個/m2以上である。1個/m2未満まで表面欠陥の個数を減少させようとすると、製造条件を過度に厳格に管理する必要が生じ、ガラス基板の製造効率が悪化するおそれがある。
上記の構成を備えたガラス基板は、薄膜電気回路を形成するための基板として好適である。
上記課題を解決するために創案された本発明に係るガラス基板の徐冷方法は、一体化されたガラスからなるガラスチャンバーの内部に設けられた徐冷空間に、上下方向に多段状に設けられた収容部を有するガラス棚を配置すると共に、前記収容部のそれぞれに、支持ガラスの上にガラス基板を重ねてなる積層体を収容し、然る後に、前記ガラスチャンバーの外部から前記徐冷空間を加熱して、前記ガラス基板を徐冷する。
このような構成によれば、ガラス基板の徐冷が、一体化されたガラスからなるガラスチャンバー内の徐冷空間で行われる。すなわち、一体化されたガラスは継ぎ目がないので、徐冷空間を形成するガラスチャンバーの内表面は、隙間なく連続している。その結果、ガラスチャンバーの外部から徐冷空間内に、ガラスチャンバーを通じて外部から金属異物を含む微小異物が侵入することがない。また、ガラスチャンバーの徐冷空間には、ガラス棚の収容部に、支持ガラスによって支持されたガラス板が配置されるが、これらの部材は全てガラスであるため、徐冷空間において金属異物が発生することがない。したがって、この状態で、ガラスチャンバーの外部から徐冷空間を加熱してガラス基板を徐冷すれば、熱収縮が小さく且つ表面欠陥が少ないガラス基板、すなわち、既に説明した熱収縮率の絶対値が10ppm以下であって且つ表面欠陥の個数が100個/m2以下のガラス基板を製造することができる。ここで、ガラス棚の収容部には、支持ガラスの上にガラス基板を重ねた積層体の状態で収容しているため、徐冷時のガラス基板の自重による撓みを抑えることができる。その結果、ガラス基板同士の接触による傷の発生や、徐冷後のガラス基板の反りを可及的に低減できる。また、支持ガラスでガラス基板の全面を支持するため、ガラス基板の面内温度分布も均一化させやすい。
上記の構成において、前記支持体の上面に、無機薄膜が形成されていることが好ましい。
このようにすれば、支持ガラスには、無機薄膜を介してガラス基板が重ねられるため、徐冷完了後も、支持体とガラス基板が接着することがなく、支持体からガラス基板を容易に剥離して取り出すことができる。
上記の構成において、前記ガラスチャンバーが、石英ガラスで形成されていることが好ましい。
すなわち、石英ガラスは赤外線の透過率が高いため、ガラス基板を効率よく加熱処理できる。また、石英ガラスは加工性も高いため、ガラスチャンバーの製造コストの低廉化も期待できる。
上記の構成において、前記収容部が、分散配置された複数の突起で、前記支持ガラスを下方から支持することが好ましい。
このようにすれば、ガラス基板が大型化した場合であっても、支持ガラスの略全面を突起により安定的に支持することができる。そのため、徐冷時のガラス基板の撓みを確実に防止することができる。
上記の構成において、前記ガラス基板を歪点よりも低い温度で加熱することが好ましい。
ガラス基板を歪点よりも高い温度で加熱して徐冷すると、徐冷工程でガラス基板に大きな形状変化が生じ、熱収縮率を低下させる以上に問題が大きくなるおそれがある。そのため、ガラス基板の徐冷では、上記のように、ガラス基板を歪点よりも低い温度で加熱することが好ましい。
上記の構成において、前記収容部の前記支持ガラスとの接触部と、前記支持ガラスとの30〜380℃における線熱膨張係数の差が、40×10-7/℃以下であることが好ましい。
このようにすれば、徐冷時に、収容部と支持ガラスとの間で、熱膨張差による擦れが生じ難くなるため、ガラス粉の発生を低減することができる。
以上のように本発明によれば、ガラス基板の熱収縮と、表面欠陥を可及的に小さくできることから、高精細ディスプレイ用途にも問題なく対応できるガラス基板を提供することが可能となる。
本発明の実施形態に係るガラス基板を示す斜視図である。 本実施形態のガラス基板の製造に用いる徐冷装置を示す断面図である。 図2に示す徐冷装置におけるガラス基板の支持形態を説明するための斜視図である。 図2に示す徐冷装置におけるガラス基板の支持形態を説明するための断面図である。 ガラス基板の熱収縮率の測定手順を説明するための平面図である。 ガラス基板の熱収縮率の測定手順を説明するための平面図である。 ガラス基板の熱収縮率の測定手順を説明するための平面図である。
本発明を添付図面を参照しながら説明する。
図1に示すように、本発明の実施形態に係るガラス基板1は、1辺が300mm以上(例えば、730mm×920mm)の矩形状をなし、高精細映像を実現するFPDの基板として用いられる。すなわち、ガラス基板1の表面には、薄膜電気回路が形成される。
ガラス基板1の厚みは、500μm以下、好ましくは300μm以下、より好ましくは200μm以下、最も好ましくは100μm以下である。なお、ガラス基板1の強度を考慮した場合は、ガラス基板1の厚みは、5μm以上であることが好ましい。
ガラス基板1の熱収縮率の絶対値は、10ppm以下、好ましくは8ppm以下、より好ましくは6ppm以下である。これにより、FPDの製造関連処理、特に、ガラス基板1上に薄膜電気回路を形成する工程において、ガラス基板1が熱収縮により大きく変形することがない。
図1にガラス基板1の表面の一部を拡大(図中のX領域)して示すように、ガラス基板1の表面欠陥2の個数は、200個/m2以下、好ましくは150個/m2以下、より好ましくは100個/m2以下である。更に、この実施形態では、表面欠陥2に含まれる金属異物の個数が、10個/m2以下に規制されている。つまり、このように金属異物の個数が抑制されているため、結果として、全体的な表面欠陥2の個数も少なくなっている。これにより、ガラス基板1をFPD用の基板に用いた場合であっても、ガラス基板1の表面欠陥2を原因として、薄膜電気回路が断線したり、ショートするなどのトラブルが生じ難くなる。そのため、上記のような熱収縮率の管理との相乗効果により、ガラス基板1に適正に薄膜電気回路の回路パターンを形成でき、FPDの電気特性を良好に維持することができる。
ここで、表面欠陥2の大きさは1μm以下であることが好ましい。表面欠陥の大きさが1μmを超えると、その個数に関わらず、FPD用ガラス基板としての要求特性を満たすことが困難となるおそれがあるためである。
ガラス基板1の歪点は、600℃以上、好ましくは650℃以上である。ガラス基板1の歪点が上記数値範囲であれば、ガラス基板1の熱収縮率を小さくすることができる。
ガラス基板1の平均表面粗さRaは、2.0nm以下であることが好ましく、1.0nm以下であることがより好ましく、0.5nm以下であることが更に好ましく、0.2nm以下であることが好ましい。ここで、平均表面粗さRaは、SEMI D7−94「FPDガラス基板の表面粗さの測定方法」に準拠した方法により測定した値とする(以下、同様)。
ガラス基板1は、ケイ酸塩ガラス、シリカガラス、ホウ珪酸ガラスなどの各種ガラスが使用可能であるが、本実施形態では、無アルカリガラスが使用される。無アルカリガラスを使用した場合、ガラス基板1の経年劣化を可及的に低減できる。ここで、無アルカリガラスとは、アルカリ成分(アルカリ金属酸化物)が実質的に含まれていないガラスを意味する。具体的には、アルカリ成分の含有量が、1000ppm以下のガラスを意味する。アルカリ成分の含有量は、500ppm以下であることが好ましく、300ppm以下であることがより好ましい。
ガラス基板1は、ガラス組成として、質量%で、SiO2 40〜80%、Al23 10〜30%、B23 0〜20%、MgO 0〜20%、CaO 0〜20%、SrO 0〜20%、BaO 0〜20%を含有することが好ましい。これにより、ガラス基板1の歪点が高くなり、また成形時に最適な液相粘度を確保しやすくなる。更に、FPD用のガラス基板に要求される諸特性(例えば、耐薬品性・比ヤング率・溶融性など)を良好に満足することができる。
次に、以上のように構成されたガラス基板1の製造方法を説明する。
ガラス基板1の製造方法は、オーバーフローダウンドロー法を用いて、溶融ガラスからガラス基板1を成形する成形工程と、成形されたガラス基板1を再度徐冷する徐冷工程とに大別される。成形工程は公知の手法が採用できるため、以下では、徐冷工程を中心に説明する。なお、成形工程と徐冷工程の間、又は徐冷工程の後に、ガラス基板1の洗浄工程を設けてもよい。
図2に示すように、徐冷工程に用いる徐冷装置3は、ガラスチャンバー4と、ガラスチャンバー4の内部に配置されたガラス棚5と、ガラス棚5が載置された昇降台6と、ガラスチャンバー4の周囲を囲繞する炉壁7と、ガラスチャンバー4を外部から加熱するヒーター8とを備えている。なお、この徐冷装置3は、クリーンルーム内に配設される。
ガラスチャンバー4は、石英ガラスを一体成形して形成された有蓋筒状をなし、その内部に徐冷空間Sを有する。すなわち、ガラスチャンバー4は、継ぎ目のない連続した面によって、徐冷空間Sを区画形成している。
ガラス棚5は、石英ガラスからなり、上下方向に多段状に設けられた複数の収容部9を有する。各収容部9には、取り外し可能な棚板10が設けられており、この棚板10の上に、支持ガラス11とガラス基板1を重ねてなる積層体が収容される。なお、この実施形態では、棚板10も石英ガラスで形成されている。
昇降台6の載置部12は、石英ガラスからなり、上昇位置でガラスチャンバー4の下方開口部を閉鎖する。一方、この昇降台6を図外の下降位置まで下降させることで、載置部12上のガラス棚5に対して、積層体の積み込みや積み降ろしが行われる。
炉壁7は、耐火物で構成されており、この炉壁7の側部内壁面と上部内壁面には、複数のヒーター8が取り付けられている。ヒーター8は、特に限定されるものではないが、この実施形態では、金属系の発熱体(例えば、ニクロム系発熱体など)が使用される。
なお、ガラスチャンバー4を外部から冷却する冷却手段(送風機など)を別途設けてもよい。これにより、ヒーター8で一旦加熱した徐冷空間Sの雰囲気を効率よく冷却することができる。
図3に示すように、支持ガラス11の上面には無機薄膜13が形成されており、この無機薄膜13を介して、ガラス基板1が支持ガラス11に重ねられる。これにより、ガラス基板1の表面と、支持ガラス11の表面が直接接触しない。そのため、徐冷時の加熱によって、ガラス基板1が支持ガラス11に接着せず、徐冷後にガラス基板1を支持ガラス11から容易に剥離できる。なお、無機薄膜13は省略してもよい。
支持ガラス11は、ガラス基板1と同様、ケイ酸塩ガラス、シリカガラス、ホウ珪酸ガラス、無アルカリガラス等が用いられる。ただし、支持ガラス11としては、ガラス基板1との30〜380℃における線熱膨張係数の差が、5×10-7/℃以内となるガラスを使用することが好ましい。これにより、徐冷時の加熱処理によって、ガラス基板1と支持ガラス11との間に、熱膨張差に伴う擦れが生じ難くなる。そのため、ガラス基板1に傷が形成され難く、表面欠陥2の低減に寄与し得る。このような観点からは、支持ガラス11とガラス基板1とは、同一の組成を有するガラスを使用することが最も好ましい。
支持ガラス11の厚みは、ガラス基板1の厚みと同一か、もしくはガラス基板1の厚みよりも大きいことが好ましい。具体的には、支持ガラス11の厚みは、0.2mm以上であることが好ましく、0.3mm以上であることがより好ましく、0.5mm以上であることがさらに好ましい。支持ガラス11とガラス基板1の積層体を後述するように複数の突起等によって支持する場合は、ガラス基板1等にたわみが生じるのを防止する観点から、支持ガラス11の厚みは1.0mm以上であることが好ましい。なお、厚みの増加によって、重量の増加や加熱に必要な熱容量の増加を招き、また熱容量の増加に伴ってガラス基板1の加熱効率も低下するため、支持ガラス11の厚みは、2.0mm以下であることが好ましい。
支持ガラス11のサイズは、ガラス基板1のサイズと同一か、もしくはガラス基板1のサイズよりも大きいことが好ましい。これにより、ガラス基板1の端面が、支持ガラス11の外側に食み出さないため、ガラス基板1の端面が他部材と衝突して破損する事態を低減できる。
支持ガラス11の上に形成される無機薄膜13の表面粗さRaは、5.0nm以下であることが好ましく、4.0nm以下であることがより好ましく、3.0nm以下であることが更に好ましく、2.5nm以下であることが最も好ましい。すなわち、ガラス基板1の表面粗さRaと無機薄膜13の表面粗さRaが、それぞれ5.0nm以下であれば、両者の間に接着剤等を介在させなくても表面状態に起因する密着力が作用する。これにより、ガラス基板1が支持ガラス11から容易に脱落しなくなるため、取り扱いが容易になる。この場合、ガラス基板1と無機薄膜13は、接着剤によって完全固定されたものではなく、両者の表面状態に起因して密着しているにすぎないため、徐冷後には、ガラス基板1を支持ガラス11から容易に剥離することができる。無機薄膜13の表面粗さRaは、0.5nm以上であることが好ましく、1.0nm以上であることがより好ましい。500℃以上の高温で熱処理した場合であっても、支持ガラス11からガラス基板1を剥離しやすくするためである。なお、ガラス基板1と無機薄膜13との間に、両者の表面状態に起因する密着力を作用させなくてもよい。
無機薄膜13は、ITO、Ti、Si、Au、Ag、Al、Cr、Cu、Mg、Ti、SiO、SiO2、Al23、MgO、Y23、L23、Pr611、Sc23、WO3、HfO2、In23、ZrO2、Nd23、Ta25、CeO、Nb25、TiO、TiO2、Ti35、NiO、ZnOから選択される1種又は2種以上で形成されることが好ましい。特に、無機薄膜13は、ITOなどの酸化物で形成されることが好ましい。酸化物薄膜の場合、熱的に安定であるため、徐冷工程に同一の支持ガラス11を繰り返し使用することができる。
無機薄膜13の厚みは、5nm以上500nm以下であることが好ましく、5nm以上400nm以下であることがより好ましく、5nm以上300nm以下であることが最も好ましい。無機薄膜13の厚みが5nm未満であると、ガラス基板1が剥離し難くなるおそれがある。
ガラス棚5の棚板10は、この実施形態では、格子状の枠体で構成されており、その上面に複数のピン状の突起14が設けられている。図4に示すように、この複数の突起14は、支持ガラス11、すなわち、支持ガラス11とガラス基板1の積層体を下方から支持する。この実施形態では、突起14の先端部は、中央部が平面部15とされ、その周囲が角部を切除した面取り部16とされている。すなわち、積層体は、複数の突起14の平面部15と狭い範囲で面接触した状態で支持されている。なお、突起14の先端部を湾曲面で構成し、積層体を点接触で支持するようにしてもよい。
ここで、支持ガラス11と、棚板10との30〜380℃における線熱膨張係数の差は、40×10-7/℃以下であることが好ましい。これにより、徐冷工程の熱処理時に、支持ガラス11と突起14との間で擦れが生じ難くなるため、ガラス基板1の表面欠陥の原因となるガラス粉の発生を可及的に低減できる。
次に、以上のように構成された徐冷装置を用いた徐冷工程を説明する。
まず、図2に示すように、ガラスチャンバー4の内部に設けられた徐冷空間に、ガラス棚5を配置すると共に、ガラス棚5の収容部9に設けられた棚板10のそれぞれに、支持ガラス11にガラス基板1を重ねてなる積層体を収容する。そして、然る後に、ガラスチャンバー4の外部からヒーター8によって徐冷空間Sを加熱し、それぞれの収容部9に収容された各ガラス基板1を徐冷する。
このようによれば、ガラスチャンバー4が、継ぎ目のない連続した面によって徐冷空間Sを区画形成するため、ガラスチャンバー4の外部から徐冷空間S内に、外部から金属異物を含む微小異物が侵入するのを防止できる。
また、徐冷空間Sには、ガラス棚5の棚板10に、支持ガラス11によって支持されたガラス基板1が配置されるが、これらの部材は全てガラスであるため、徐冷空間Sにおいて金属異物が発生することがない。
したがって、この状態で、ヒーター8でガラスチャンバー4の外部から徐冷空間Sを加熱し、徐冷空間S内のガラス基板1を徐冷すれば、熱収縮が小さく且つ表面欠陥が少ないガラス基板1、すなわち、既に説明した熱収縮率の絶対値が10ppm以下であって且つ表面欠陥の個数が200個/m2以下のガラス基板1を製造することができる。
ここで、ガラス棚5の収容部9には、支持ガラス11の上にガラス基板1を重ねた積層体の状態で収容しているため、徐冷時のガラス基板1の自重による撓みを抑えることができる。その結果、ガラス基板1同士の接触による傷の発生や、徐冷後のガラス基板1の反りを可及的に低減できる。また、支持ガラス11でガラス基板1の全面を支持するため、ガラス基板1の面内温度分布も均一化させやすい。
なお、本発明は、上記実施形態に限定されるものではなく、種々の形態で実施することができる。例えば、上記実施形態では、ガラスチャンバー4やガラス棚5などを石英ガラスで形成する場合を説明したが、これらの部材を結晶化ガラス(例えば、日本電気硝子株式会社製のネオセラムなど)で形成してもよい。この場合でも、ガラスチャンバー4は、結晶化ガラスを隙間なく一体成形して形成することが肝要である。
また、上記実施形態では、ガラス基板1と支持ガラス11の積層体を、棚板10の突起14によって支持する場合を説明したが、ガラス基板1のサイズが小さい場合などには、棚板10を省略し、ガラス棚5で支持ガラス11の両端部のみを支持するようにしてもよい。
また、上記実施形態では、ガラスチャンバー4内の徐冷空間Sにガラス基板1を収容する方法として、ガラス棚5が載置された昇降台6の載置台12を昇降させる場合を説明したが、ガラス棚5の載置部に対してガラスチャンバー4を昇降させるようにしてもよい。
上記実施形態のように、ガラスチャンバー4を石英ガラスで形成する場合については、一体成形には、溶接によって接合部分を継ぎ目なく一体化する場合も含む。
本発明の実施例1〜6を表1に示し、比較例1〜4を表2に示す。実施例1〜6では、表1に示すガラス組成を有する各ガラス基板を、既に説明した石英チャンバーを備えた徐冷装置を用いて、熱処理(徐冷)した後、熱収縮率と表面品位を評価した。一方、比較例1〜3では、表2に示す対応するガラス組成を有するガラス基板について、熱処理(成形後の徐冷)を実施せずに、熱収縮率と表面品位を評価した。また、比較例4では、表2に示す対応するガラス組成を有するガラス基板について、金属製のチャンバーを備えた徐冷装置を用いて、実施例と同様の温度プロファイルで熱処理(徐冷)した後、熱収縮率と表面品位を評価した。
ここで、ガラス基板の徐冷は、ガラス基板を、室温から550℃まで10℃/分で昇温した後に550℃で1時間保持し、550℃から室温まで3℃/分で降温するという温度プロファイルで行った。また、熱収縮率は、前記条件で徐冷されたガラス基板又は徐冷されていないガラス基板を、常温から500℃まで5℃/分で昇温した後に500℃で1時間保持し、500℃から室温まで5℃/分で降温するという温度プロファイルで行った。すなわち、実施例1〜6及び比較例4では、成形後の徐冷を実施したガラス基板を再度加熱することで、熱収縮率を測定した。
更に、表面品位の評価(表面欠陥と金属異物の数)は、各実施例及び各比較例について、それぞれ20個のガラス基板の試料を用意し、この20個の試料の測定結果の下限と上限を用いた範囲として規定した。
Figure 0006380101
Figure 0006380101
表2によれば、成形後に熱処理をしていない比較例1〜3は、熱収縮率が10ppmを大幅に超える大きな値となっている。また、金属チャンバーを用いて熱処理をした比較例4は、熱収縮率は10ppmに抑えられているものの、表面欠陥が400個/m2以上と非常に多く、しかもFPD用のガラス基板としては致命的な欠陥となり得る金属異物が30〜100個/m2と非常に多い。したがって、比較例1〜4のガラス基板は、高精細なFPD用のガラス基板として不適合であることが分かる。
これに対し、表1によれば、実施例1〜6の全てにおいて、熱収縮率が10ppm以下で、且つ、表面欠陥が70個/m2未満(金属異物は2個/m2未満)に抑えられていることが確認でき、高精彩なFPD用のガラス基板としても好適であることが分かる。
1 ガラス基板
2 表面欠陥
3 徐冷装置
4 ガラスチャンバー
5 ガラス棚
6 昇降台
7 炉壁
8 ヒーター
9 収容部
10 棚板
11 支持ガラス
12 載置部
13 無機薄膜
14 突起

Claims (6)

  1. 一体化されたガラスからなるガラスチャンバーの内部に設けられた徐冷空間に、上下方向に多段状に設けられた収容部を有するガラス棚を配置すると共に、
    前記収容部のそれぞれに、支持ガラスの上にガラス基板を重ねてなる積層体を収容し、
    然る後に、前記ガラスチャンバーの外部から前記徐冷空間を加熱して、前記ガラス基板を徐冷することを特徴とするガラス基板の徐冷方法。
  2. 前記支持ガラスの上面に、無機薄膜が形成されていることを特徴とする請求項に記載のガラス基板の徐冷方法。
  3. 前記ガラスチャンバーが、石英ガラスで形成されていることを特徴とする請求項1又は2に記載のガラス基板の徐冷方法。
  4. 前記収容部が、分散配置された複数の突起で、前記支持ガラスを下方から支持することを特徴とする請求項1〜3のいずれか1項に記載のガラス基板の徐冷方法。
  5. 前記ガラス基板を歪点よりも低い温度で加熱することを特徴とする請求項1〜4のいずれか1項に記載のガラス基板の徐冷方法。
  6. 前記収容部の前記支持ガラスとの接触部と、前記支持ガラスとの30〜380℃における線熱膨張係数の差が、40×10−7/℃以下であることを特徴とする請求項1〜5のいずれか1項に記載のガラス基板の徐冷方法。
JP2014515728A 2013-04-05 2014-04-03 ガラス基板及びその徐冷方法 Active JP6380101B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2013079491 2013-04-05
JP2013079491 2013-04-05
PCT/JP2014/059808 WO2014163130A1 (ja) 2013-04-05 2014-04-03 ガラス基板及びその徐冷方法

Publications (2)

Publication Number Publication Date
JPWO2014163130A1 JPWO2014163130A1 (ja) 2017-02-16
JP6380101B2 true JP6380101B2 (ja) 2018-08-29

Family

ID=51658421

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014515728A Active JP6380101B2 (ja) 2013-04-05 2014-04-03 ガラス基板及びその徐冷方法

Country Status (3)

Country Link
JP (1) JP6380101B2 (ja)
TW (1) TW201446667A (ja)
WO (1) WO2014163130A1 (ja)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016002778A1 (ja) * 2014-06-30 2016-01-07 AvanStrate株式会社 シートガラスの製造方法及びシートガラス製造装置
KR20170093922A (ko) * 2014-12-08 2017-08-16 코닝 인코포레이티드 낮은 압축을 갖는 적층 유리 제품 및 이를 형성하는 방법
JP6742593B2 (ja) * 2015-01-05 2020-08-19 日本電気硝子株式会社 支持ガラス基板の製造方法及び積層体の製造方法
JP6548993B2 (ja) * 2015-08-31 2019-07-24 日本電気硝子株式会社 ガラス基板の熱処理方法およびガラス基板の製造方法
JP6598071B2 (ja) * 2016-03-28 2019-10-30 日本電気硝子株式会社 ガラス基板の熱処理方法
CN112384485B (zh) * 2018-07-31 2024-01-02 日本电气硝子株式会社 显示器用基板及其制造方法
JP7139886B2 (ja) 2018-10-30 2022-09-21 Agc株式会社 孔を有するガラス基板の製造方法、およびアニール用ガラス積層体

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3118789B2 (ja) * 1992-06-04 2000-12-18 日本電気硝子株式会社 ガラス板の徐冷方法
JP5013039B2 (ja) * 2005-09-21 2012-08-29 日本電気硝子株式会社 板ガラスの熱処理方法及び熱処理装置並びに熱処理用治具
JP2009155179A (ja) * 2007-12-27 2009-07-16 Nippon Electric Glass Co Ltd フラットパネルディスプレイ用ガラス基板
JP5375385B2 (ja) * 2009-07-13 2013-12-25 日本電気硝子株式会社 ガラス基板の製造方法
CN103080031B (zh) * 2011-07-01 2015-12-09 安瀚视特控股株式会社 平面显示器用玻璃基板及其制造方法
CN103261106B (zh) * 2011-09-21 2016-05-18 安瀚视特控股株式会社 玻璃板的制造方法及玻璃板制造装置

Also Published As

Publication number Publication date
TW201446667A (zh) 2014-12-16
WO2014163130A1 (ja) 2014-10-09
JPWO2014163130A1 (ja) 2017-02-16

Similar Documents

Publication Publication Date Title
JP6380101B2 (ja) ガラス基板及びその徐冷方法
JP4753067B2 (ja) 板ガラスの成形方法
JP4826722B2 (ja) 板ガラスの成形方法
JP2000044278A (ja) ディスプレイ用ガラス基板
JP2016155736A (ja) 支持ガラス基板及びこれを用いた積層体
JP5353963B2 (ja) 板ガラス及びその成形方法
JP2001122637A (ja) ディスプレイ用ガラス基板
JP5729653B2 (ja) 板ガラス
JP6379678B2 (ja) ガラス基板の製造方法
JP6454188B2 (ja) ガラス基板の製造方法
JP6608308B2 (ja) ガラス基板の熱処理方法
WO2016068069A1 (ja) ガラス基板の熱処理方法およびガラス基板の製造方法
KR101769670B1 (ko) 유리 기판의 제조 방법 및 유리 기판
WO2019138787A1 (ja) ガラス基板の製造方法
TWI679174B (zh) 玻璃基板的熱處理方法以及玻璃基板的製造方法
JP6598071B2 (ja) ガラス基板の熱処理方法
JP2018095544A (ja) 支持ガラス基板及びこれを用いた積層体
JP6403458B2 (ja) ガラス基板の製造方法
JP2016011237A (ja) ガラス基板の製造方法
JP2016011232A (ja) ガラス基板の製造方法
JP2016011235A (ja) ガラス基板の製造方法
KR20230159690A (ko) 화학 강화용의 유리판, 강화 유리판의 제조 방법, 및 유리판
JP2016011233A (ja) ガラス基板の製造方法
JP2016124747A (ja) ガラス基板の製造方法、及び、ガラス基板の製造装置
JP2019524618A (ja) 操作された応力分布を有するガラス系物品及びその作製方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20161122

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180105

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180205

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180703

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180716

R150 Certificate of patent or registration of utility model

Ref document number: 6380101

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150