JP6376518B2 - 蒸発燃料処理装置の異常判定装置 - Google Patents

蒸発燃料処理装置の異常判定装置 Download PDF

Info

Publication number
JP6376518B2
JP6376518B2 JP2016058511A JP2016058511A JP6376518B2 JP 6376518 B2 JP6376518 B2 JP 6376518B2 JP 2016058511 A JP2016058511 A JP 2016058511A JP 2016058511 A JP2016058511 A JP 2016058511A JP 6376518 B2 JP6376518 B2 JP 6376518B2
Authority
JP
Japan
Prior art keywords
purge
flow rate
pressure
passage
abnormality determination
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2016058511A
Other languages
English (en)
Other versions
JP2017172432A (ja
Inventor
橋本 英俊
英俊 橋本
田中 大介
大介 田中
雄介 樋口
雄介 樋口
菊池 孝之
孝之 菊池
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mazda Motor Corp
Original Assignee
Mazda Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mazda Motor Corp filed Critical Mazda Motor Corp
Priority to JP2016058511A priority Critical patent/JP6376518B2/ja
Priority to US16/086,274 priority patent/US10677199B2/en
Priority to CN201780017444.8A priority patent/CN108884788A/zh
Priority to EP17770360.0A priority patent/EP3418547B1/en
Priority to PCT/JP2017/011764 priority patent/WO2017164320A1/ja
Publication of JP2017172432A publication Critical patent/JP2017172432A/ja
Application granted granted Critical
Publication of JP6376518B2 publication Critical patent/JP6376518B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M25/00Engine-pertinent apparatus for adding non-fuel substances or small quantities of secondary fuel to combustion-air, main fuel or fuel-air mixture
    • F02M25/08Engine-pertinent apparatus for adding non-fuel substances or small quantities of secondary fuel to combustion-air, main fuel or fuel-air mixture adding fuel vapours drawn from engine fuel reservoir
    • F02M25/089Layout of the fuel vapour installation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M25/00Engine-pertinent apparatus for adding non-fuel substances or small quantities of secondary fuel to combustion-air, main fuel or fuel-air mixture
    • F02M25/08Engine-pertinent apparatus for adding non-fuel substances or small quantities of secondary fuel to combustion-air, main fuel or fuel-air mixture adding fuel vapours drawn from engine fuel reservoir
    • F02M25/0809Judging failure of purge control system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0025Controlling engines characterised by use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D41/003Adding fuel vapours, e.g. drawn from engine fuel reservoir
    • F02D41/0045Estimating, calculating or determining the purging rate, amount, flow or concentration
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/22Safety or indicating devices for abnormal conditions
    • F02D41/221Safety or indicating devices for abnormal conditions relating to the failure of actuators or electrically driven elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B33/00Engines characterised by provision of pumps for charging or scavenging
    • F02B33/32Engines with pumps other than of reciprocating-piston type
    • F02B33/34Engines with pumps other than of reciprocating-piston type with rotary pumps
    • F02B33/40Engines with pumps other than of reciprocating-piston type with rotary pumps of non-positive-displacement type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/22Safety or indicating devices for abnormal conditions
    • F02D2041/224Diagnosis of the fuel system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/04Engine intake system parameters
    • F02D2200/0406Intake manifold pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0025Controlling engines characterised by use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D41/003Adding fuel vapours, e.g. drawn from engine fuel reservoir
    • F02D41/0032Controlling the purging of the canister as a function of the engine operating conditions
    • F02D41/004Control of the valve or purge actuator, e.g. duty cycle, closed loop control of position
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M25/00Engine-pertinent apparatus for adding non-fuel substances or small quantities of secondary fuel to combustion-air, main fuel or fuel-air mixture
    • F02M25/08Engine-pertinent apparatus for adding non-fuel substances or small quantities of secondary fuel to combustion-air, main fuel or fuel-air mixture adding fuel vapours drawn from engine fuel reservoir
    • F02M25/0836Arrangement of valves controlling the admission of fuel vapour to an engine, e.g. valve being disposed between fuel tank or absorption canister and intake manifold
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M25/00Engine-pertinent apparatus for adding non-fuel substances or small quantities of secondary fuel to combustion-air, main fuel or fuel-air mixture
    • F02M25/08Engine-pertinent apparatus for adding non-fuel substances or small quantities of secondary fuel to combustion-air, main fuel or fuel-air mixture adding fuel vapours drawn from engine fuel reservoir
    • F02M25/0854Details of the absorption canister
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Description

本発明は、燃料タンク内の蒸発燃料をエンジンの吸気通路へ放出(パージ)するための蒸発燃料処理装置の異常判定装置に関する。
従来から、燃料タンク内に発生した蒸発燃料をキャニスタに一旦吸着させ、パージ要求に応じて、キャニスタに吸着された蒸発燃料を含むパージガスをエンジンの吸気通路へとパージする蒸発燃料処理装置(所謂エバポパージシステム)が知られている。また、そのような蒸発燃料処理装置の異常を判定する技術も知られている(例えば特許文献1参照)。この特許文献1には、パージガスを吸気通路へ供給しているとき(つまりパージ実行時)のキャニスタ内圧の変化が小さい場合に、パージバルブが異常であると判定する技術が開示されている。
特開2000−045885号公報
ところで、パージ実行時のキャニスタ内圧は、蒸発燃料処理装置から吸気通路にパージしたパージガスの流量であるパージ流量によって変化する。基本的には、パージ流量が大きいほど、キャニスタ内圧が大きく変化する。換言すると、パージ流量が小さい場合には、キャニスタ内圧はあまり変化しない。上記した特許文献1に記載の技術では、キャニスタ内圧の変化に基づき異常判定を行っているが、パージ流量が小さいためにキャニスタ内圧があまり変化しなかった場合に、パージバルブが異常であると誤判定してしまうおそれがある。
本発明は、上述した従来技術の問題点を解決するためになされたものであり、パージ流量に応じたキャニスタ内圧に基づいて蒸発燃料処理装置の異常判定を精度良く行うことを目的とする。
上記の目的を達成するために、本発明は、蒸発燃料処理装置の異常判定装置であって、燃料タンク内の蒸発燃料を吸着して蓄積するキャニスタと、このキャニスタに蓄積された蒸発燃料を含むパージガスを吸気通路に供給するためのパージ通路と、このパージ通路上に設けられ、吸気通路へのパージガスの供給を制御するパージバルブとを備える蒸発燃料処理装置と、パージ通路の下流側における吸気通路上の圧力であるパージ下流圧力を取得するパージ下流圧力取得手段と、パージ下流圧力取得手段によって取得されたパージ下流圧力と、パージバルブの開度とに基づいて、蒸発燃料処理装置によって吸気通路にパージされた単位時間当たりのパージガスの流量である第1パージ流量を算出する第1パージ流量算出手段と、パージ流量算出手段によって算出された第1パージ流量から、蒸発燃料処理装置によって吸気通路に連続的にパージされたパージガスの流量である第2パージ流量を算出する第2パージ流量算出手段と、キャニスタの内部圧力であるキャニスタ内圧を取得するキャニスタ内圧取得手段と、第2パージ流量算出手段によって算出された第2パージ流量と、キャニスタ内圧取得手段によって取得されたキャニスタ内圧とに基づいて、蒸発燃料処理装置の異常判定を行う異常判定手段と、を有し、第2パージ流量算出手段は、異常判定の開始後に蒸発燃料処理装置によって吸気通路に連続的にパージされたパージガスの流量を、第2パージ流量として算出し、異常判定手段は、第2パージ流量が所定流量以上になったときにキャニスタ内圧取得手段によって取得されたキャニスタ内圧に基づいて異常判定を行蒸発燃料処理装置の異常判定装置は、吸気通路上に設けられたコンプレッサ及び排気通路上に設けられたタービンを備えるターボ過給機付きのエンジンに適用され、蒸発燃料処理装置は、コンプレッサ下流側の吸気通路とコンプレッサ上流側の吸気通路とに接続され、コンプレッサ下流側の吸気通路からコンプレッサ上流側の吸気通路に還流される吸気の流れによって負圧を発生するエジェクタを備え、パージ通路は、下流端がエジェクタに接続され、当該エジェクタにより発生された負圧を利用してパージガスを吸気通路にパージする第1分岐通路と、エジェクタが接続されたコンプレッサ下流側の吸気通路上の位置よりも更に下流側に下流端が接続され、この接続部において発生した負圧を利用してパージガスを吸気通路にパージする第2分岐通路と、に分岐しており、異常判定手段は、第1分岐通路からエジェクタを介して吸気通路にパージガスをパージしているときに異常判定を行い、パージ下流圧力取得手段は、第1分岐通路の下流端の圧力である第1圧力と、第2分岐通路の下流端の圧力である第2圧力とを、パージ下流圧力として取得し、第1パージ流量算出手段は、第1圧力及び第2圧力に基づいて、パージ通路における第1分岐通路と第2分岐通路との分岐部の圧力である分岐部圧力を求め、この分岐部圧力とパージバルブの開度とキャニスタ内圧とに基づいて、第1パージ流量を算出する、ことを特徴とする。
このように構成された本発明では、単位時間当たりのパージガスの流量である第1パージ流量から、異常判定の開始後に連続的にパージされたパージガスの流量(総量に相当する)を第2パージ流量として算出し、この第2パージ流量が所定流量以上になったときのキャニスタ内圧に基づいて異常判定を行う。これにより、パージ流量に応じたキャニスタ内圧を考慮に入れて異常判定を行うので、蒸発燃料処理装置の異常判定を精度良く行うことができる。例えば、パージ流量が小さい場合であっても、このパージ流量に応じたキャニスタ内圧に基づき判定を行うので、蒸発燃料処理装置の異常の誤判定を適切に抑制することができる。
また、本発明によれば、第1分岐通路からのエジェクタを介したパージ、及び第2分岐通路からのパージを行うことができるように構成された蒸発燃料処理装置に関して、第1分岐通路からのエジェクタを介してパージを行っているときに、つまりターボ過給機による過給時に、蒸発燃料処理装置の異常判定を適切に行うことができる。更に、本発明によれば、第1分岐通路及び第2分岐通路からパージするように構成されたシステムに関して、第1パージ流量を精度良く算出することができる。
本発明において、好ましくは、異常判定手段は、異常判定の開始時にキャニスタ内圧取得手段によって取得されたキャニスタ内圧と、第2パージ流量が所定流量以上になったときにキャニスタ内圧取得手段によって取得されたキャニスタ内圧との偏差の大きさが所定圧力未満である場合に、蒸発燃料処理装置が異常であると判定する。
このように構成された本発明によれば、パージ流量に応じたキャニスタ内圧の変化量を考慮に入れて異常判定を行うので、蒸発燃料処理装置の異常判定をより精度良く行うことができる。
本発明において、好ましくは、異常判定手段は、第2パージ流量が所定流量に達していなくても、異常判定の開始時にキャニスタ内圧取得手段によって取得されたキャニスタ内圧と、異常判定の開始後にキャニスタ内圧取得手段によって取得されたキャニスタ内圧との偏差の大きさが所定圧力以上になったときに、蒸発燃料処理装置が正常であると判定する。
このように構成された本発明によれば、第2パージ流量が所定流量に達するのを待たずに、蒸発燃料処理装置の異常判定を速やかに終了することができる。
本発明において、好ましくは、所定圧力は、燃料タンク内の燃料の残量がほぼ0である状態において正常である蒸発燃料処理装置によって所定流量のパージガスを吸気通路にパージしたときのキャニスタ内圧の変化量に基づき事前に設定される。
このように構成された本発明によれば、パージ流量に応じたより適切なキャニスタ内圧の判定値(所定圧力)を用いて判定を行うことで、蒸発燃料処理装置の異常の誤判定を確実に抑制することができる。
本発明において、好ましくは、蒸発燃料処理装置は、キャニスタに連通され、当該キャニスタに空気を供給する大気開放通路と、この大気開放通路上に設けられ、キャニスタへの空気の供給を制御する大気開放弁とを更に備え、異常判定手段は、大気開放弁を閉弁してから異常判定を開始する。
このように構成された本発明によれば、異常判定時に大気開放通路からキャニスタへの空気の流入を遮断するので、蒸発燃料処理装置の異常判定の精度を効果的に向上させることができる。つまり、異常判定のロバスト性を向上させることができる。
本発明において、好ましくは、第2パージ流量算出手段は、第1パージ流量算出手段によって算出された第1パージ流量を積算することで第2パージ流量を算出するのがよい。
本発明の蒸発燃料処理装置の異常判定装置によれば、パージ流量に応じたキャニスタ内圧に基づいて蒸発燃料処理装置の異常判定を精度良く行うことができる。
本発明の実施形態による蒸発燃料処理装置の異常判定装置が適用されたエンジンシステムの概略構成図である。 本発明の実施形態による蒸発燃料処理装置の異常判定装置の電気的構成を示すブロック図である。 本発明の実施形態による蒸発燃料処理装置の異常判定処理を示すフローチャートである。 燃料タンク内における燃料の種々の残留度合いについて、積算パージ流量に対するキャニスタ内圧の変化を示している。 本発明の実施形態によるパージ流量の算出方法を示すブロック図である。 本実施形態による蒸発燃料処理装置の異常判定処理を実行した場合のタイムチャートである。
以下、添付図面を参照して、本発明の実施形態による蒸発燃料処理装置の異常判定装置について説明する。
<システム構成>
まず、図1及び図2を参照して、本発明の実施形態による蒸発燃料処理装置の異常判定装置が適用されたエンジンシステムについて説明する。図1は、本発明の実施形態による蒸発燃料処理装置の異常判定装置が適用されたエンジンシステムの概略構成図であり、図2は、本発明の実施形態による蒸発燃料処理装置の異常判定装置の電気的構成を示すブロック図である。
図1及び図2に示すように、エンジンシステム100は、主に、外部から導入された吸気(空気)が通過する吸気通路1と、この吸気通路1から供給された吸気と、後述する燃料噴射弁13から供給された燃料との混合気を気筒内で燃焼させて車両の動力を発生するエンジン10(具体的にはガソリンエンジン)と、このエンジン10内の燃焼により発生した排気ガスを排出する排気通路25と、エンジンシステム100に関する各種の状態を検出するセンサ40〜53と、エンジンシステム100全体を制御するPCM70と、を有する。なお、図1では、1つの気筒のみを示しているが、実際にはエンジン10は複数の気筒(2以上の気筒)を有する。
吸気通路1には、上流側から順に、外部から導入された吸気を浄化するエアクリーナ3と、通過する吸気を昇圧させる、ターボ過給機4のコンプレッサ4aと、外気や冷却水により吸気を冷却するインタークーラ5と、通過する吸気の量(吸入空気量)を調整するスロットルバルブ6と、エンジン10に供給する吸気を一時的に蓄えるサージタンク7と、が設けられている。
また、吸気通路1には、コンプレッサ4aによって過給された吸気の一部を、コンプレッサ4aの上流側に還流するためのエアバイパス通路8が設けられている。具体的には、エアバイパス通路8の一端は、コンプレッサ4aの下流側で且つスロットルバルブ6の上流側の吸気通路1に接続され、エアバイパス通路8の他端は、エアクリーナ3の下流側で且つコンプレッサ4aの上流側の吸気通路1に接続されている。
このエアバイパス通路8には、エアバイパス通路8を流れる吸気の流量を開閉動作により調節するエアバイパスバルブ9が設けられている。エアバイパスバルブ9は、エアバイパス通路8を完全に閉じる閉状態と完全に開く開状態とに切り換え可能な、いわゆるオンオフバルブである。
エンジン10は、主に、吸気通路1から供給された吸気を燃焼室11内に導入する吸気バルブ12と、燃焼室11に向けて燃料を噴射する燃料噴射弁13と、燃焼室11内に供給された吸気と燃料との混合気に点火する点火プラグ14と、燃焼室11内での混合気の燃焼により往復運動するピストン15と、ピストン15の往復運動により回転されるクランクシャフト16と、燃焼室11内での混合気の燃焼により発生した排気ガスを排気通路25へ排出する排気バルブ17と、を有する。
また、エンジン10は、吸気バルブ12及び排気バルブ17のそれぞれの動作タイミング(つまり開閉時期)を、可変バルブタイミング機構(Variable Valve Timing Mechanism)としての可変吸気バルブ機構18及び可変排気バルブ機構19によって可変に構成されている。可変吸気バルブ機構18及び可変排気バルブ機構19としては、公知の種々の形式を適用可能であるが、例えば電磁式又は油圧式に構成された機構を用いて、吸気バルブ12及び排気バルブ17の動作タイミングを変化させることができる。
排気通路25には、上流側から順に、通過する排気ガスによって回転され、この回転によってコンプレッサ4aを駆動するターボ過給機4のタービン4bと、例えばNOx触媒や三元触媒や酸化触媒などの、排気ガスの浄化機能を有する触媒装置35a、35bが設けられている。以下では、これらの触媒装置35a、35bを区別しないで用いる場合には単に「触媒装置35」と表記する。
また、排気通路25上には、排気ガスの一部をEGRガスとして吸気通路1に還流させるEGR装置26が設けられている。EGR装置26は、一端がタービン4bの上流側の排気通路25に接続され、他端がコンプレッサ4aの下流側で且つスロットルバルブ11の下流側の吸気通路1に接続されたEGR通路27と、EGRガスを冷却するEGRクーラ28と、EGR通路27を流れるEGRガス量(流量)を制御するEGRバルブ29と、を有する。このEGR装置26は、いわゆる高圧EGR装置(HPL(High Pressure Loop)EGR装置)に相当する。
また、排気通路25には、排気ガスをターボ過給機4のタービン4bに通過させずに迂回させるタービンバイパス通路30が設けられている。このタービンバイパス通路30には、タービンバイパス通路30を流れる排気ガスの流量を制御するウェイストゲートバルブ(以下「WGバルブ」と称する)31が設けられている。
また、排気通路25においては、EGR通路27の上流側の接続部分とタービンバイパス通路30の上流側の接続部分との間の通路が、第1通路25aと第2通路25bとに分岐されている。第1通路25aは第2通路25bよりも径が大きく、換言すると第2通路25bは第1通路25aよりも径が小さく、第1通路25aには開閉バルブ25cが設けられている。開閉バルブ25cが開いている場合には、排気ガスは基本的には第1通路25aに流れ、開閉バルブ25cが閉じている場合には、排気ガスは第2通路25bにのみ流れる。そのため、開閉バルブ25cが閉じている場合には、開閉バルブ25cが開いている場合よりも、排気ガスの流速が大きくなる。開閉バルブ25cは低回転域において閉じられ、流速が上昇された排気ガスをターボ過給機4のタービン4bに供給して、低回転域でもターボ過給機4による過給が行えるようになっている。
更に、エンジンシステム100は、蒸発燃料処理装置60(エバポパージシステム)を有する。この蒸発燃料処理装置60は、燃料タンク59内で発生した蒸発燃料を吸着して貯蔵するキャニスタ61、キャニスタ61と吸気通路と1とを接続し、キャニスタ61から蒸発燃料を含むパージガスを吸気通路1に導くパージ通路62と、パージ通路62に設けられたパージバルブ66とを有している。
キャニスタ61には、燃料蒸気を脱離可能に吸着する活性炭が収容されている。キャニスタ61には、燃料タンク59内の燃料蒸気を導入する燃料蒸気導入通路61a、キャニスタ61を大気に開放する大気開放通路61b、及びパージ通路62が接続されている。大気開放管61b上には、大気開放通路61bを開閉する大気開放弁61c、及びキャニスタ61に流入する空気を濾過するエアフィルタ(図示せず)が設けられている。基本的には、大気開放弁61cは、蒸発燃料がパージされるときに開弁される。
パージ通路62の上流側の部分は、1本の通路(共通通路63)で形成され、キャニスタ61に接続されている。一方、パージ通路62の下流側の部分は、2本の通路(第1分岐通路64及び第2分岐通路65)に分岐し、吸気通路1の2箇所に接続されている。
詳しくは、パージ通路62は、上流側の共通通路63と、下流側の第1分岐通路64及び第2分岐通路65とを有する。共通通路63の上流端は、キャニスタ61に接続されている。共通通路63の下流端に、第1分岐通路64の上流端と第2分岐通路65の上流端が接続されている。第1分岐通路64の下流端は、後述するエジェクタ67を介して、吸気通路1のうちコンプレッサ4aの上流側の部分に接続されている。第2分岐通路65の下流端は、吸気通路1のサージタンク7に接続されている。
共通通路63には、パージバルブ66が設けられている。このパージバルブ66は、PCM70からの制御信号により開閉される電子制御式のバルブである。第1分岐通路64には、吸気通路1からの吸気の逆流を防止する逆止弁64aが設けられている。第2分岐通路65には、吸気通路1からの吸気の逆流を防止する逆止弁65aが設けられている。
エジェクタ67は、本体67aと、吸気通路1のうちコンプレッサ4aの下流側の部分と本体67aとを接続する導入ノズル67bと、吸気通路1のうちコンプレッサ4aの上流側の部分と本体67aとを接続する排出路67cとを有している。第1分岐通路64は、エジェクタ67の本体67aに接続されている。導入ノズル67bの先端は、先細状となっており、導入ノズル67bを介して還流される吸気は、その先端部で減圧され、導入ノズル67bの先端周辺に負圧が発生する。この負圧により、第1分岐通路64からパージガスが本体67a内に吸引される。吸引されたパージガスは、導入ノズル67bから還流される吸気と共に、排出路67cを介して吸気通路1のうちコンプレッサ4aの上流側に導入される。
ターボ過給機4が吸気を過給していないとき(非過給時)には、パージガスは、第2分岐通路65を介して吸気通路1へ導入される。詳しくは、非過給時は、吸気通路1のコンプレッサ4aの上流側の圧力の方がコンプレッサ4aの下流側の圧力よりも高いので、エジェクタ67を介した吸気の還流は生じない。そのため、第1分岐通路64の下流端の圧力は、吸気通路1のうちエジェクタ67が接続された部分の圧力となり、その圧力は、大気圧と略等しい。キャニスタ61は、大気圧に開放されているので、第1分岐通路64の上流端と下流端との差圧は、略零であり、パージガスは第1分岐通路64を流通しない。
一方、第2分岐通路65の下流端が接続されたサージタンク7は、負圧となっている。そのため、パージ通路62を流通するパージガスは、第2分岐通路65を介して、サージタンク7に導入される。
ターボ過給機4が吸気を過給しているとき(過給時)には、パージガスは、第1分岐通路64を介して吸気通路1へ導入される。詳しくは、過給時は、サージタンク7は、過給により正圧となっている。上述したように、キャニスタ61は、大気圧に開放されているので、第2分岐通路65の下流端の圧力は、第2分岐通路65の上流端の圧力よりも高くなっている。そのため、パージガスは、第2分岐通路65を流通しない。なお、第2分岐通路65には、逆止弁65aが設けられているので、吸気通路1の吸気が第2分岐通路65を逆入することもない。
一方、コンプレッサ4aによる過給により、吸気通路1のコンプレッサ4aの下流側の圧力の方がコンプレッサ4aの上流側の圧力よりも高いので、エジェクタ67を介した吸気の還流が生じる。これにより、第1分岐通路64からパージガスが吸引され、吸引されたパージガスが吸気通路1のコンプレッサ4aの上流側に導入される。こうして、パージ通路62を流通するパージガスは、第1分岐通路64を介して、吸気通路1に導入される。
また、過給開始直後又は過給停止直後等の過渡時には、エジェクタ67による第1分岐通路64からのパージガスの吸引が行われると共に、サージタンク7の負圧により第2分岐通路65からサージタンク7にパージガスが導入され得る。つまり、第1分岐通路64及び第2分岐通路65の両方を介して、パージガスが吸気通路1に供給され得る。
過給時、非過給時及び過渡時のいずれの場合であっても、パージ通路62を流通するパージガスの流量であるパージ流量は、パージバルブ66によって調整される。
なお、以下では、第1分岐通路64からエジェクタ67を介して吸気通路1にパージガスをパージすることを適宜「エジェクタパージ」と呼び、第2分岐通路65からインマニ付近の吸気通路1にパージガスをパージすることを適宜「インマニパージ」と呼ぶ。
図1及び図2に示すように、エンジンシステム100には、当該エンジンシステム100に関する各種の状態を検出するセンサ40〜53が設けられている。これらセンサ40〜53は、具体的には以下の通りである。大気圧センサ40は、大気圧を検出する。エアフローセンサ41は、エアクリーナ3とコンプレッサ4aとの間の吸気通路1を通過する吸気の流量に相当する吸入空気量を検出する。温度センサ42は、エアクリーナ3とコンプレッサ4aとの間の吸気通路1を通過する吸気の温度を検出する。第1圧力センサ43は、過給圧を検出する。スロットル開度センサ44は、スロットルバルブ6の開度であるスロットル開度を検出する。第2圧力センサ45は、エンジン10に供給される吸気の圧力に相当するインマニ圧(サージタンク7内の圧力)を検出する。クランク角センサ46は、クランクシャフト16におけるクランク角を検出する。吸気側カム角センサ47は、吸気カムシャフトのカム角を検出する。排気側カム角センサ48は、排気カムシャフトのカム角を検出する。温度センサ49は、エンジン10の冷却水の温度(水温)を検出する。WG開度センサ50は、WGバルブ31の開度を検出する。O2センサ51は、触媒装置35aの上流側の排気ガス中の酸素濃度を検出し、O2センサ52は、触媒装置35aと触媒装置35bとの間の排気ガス中の酸素濃度を検出する。第3圧力センサ53は、燃料蒸気導入通路61a上に設けられ、キャニスタ61の内部圧力(キャニスタ内圧)を検出する。この第3圧力センサ53によって検出されるキャニスタ内圧は、基本的には燃料タンク59の内圧に相当する。これら各種センサ40〜53は、それぞれ、検出したパラメータに対応する検出信号S140〜S153をPCM70に出力する。
PCM70は、上述した各種センサ40〜53から入力された検出信号S140〜S153に基づいて、エンジンシステム100内の構成要素に対する制御を行う。具体的には、図2に示すように、PCM70は、スロットルバルブ6に制御信号S106を供給して、スロットルバルブ6の開閉時期やスロットル開度を制御し、エアバイパスバルブ9に制御信号S109を供給して、エアバイパスバルブ9の開閉を制御し、WGバルブ31に制御信号S131を供給して、WGバルブ31の開度を制御し、燃料噴射弁13に制御信号S113を供給して、燃料噴射量や燃料噴射タイミングを制御し、点火プラグ14に制御信号S114を供給して、点火時期を制御し、可変吸気バルブ機構18及び可変排気バルブ機構19のそれぞれに制御信号S118、S119を供給して、吸気バルブ12及び排気バルブ17の動作タイミングを制御し、EGRバルブ29に制御信号S129を供給して、EGRバルブ29の開度を制御し、大気開放弁61cに制御信号S161を供給して、大気開放弁61cの開閉を制御し、パージバルブ66に制御信号S166を供給して、パージバルブ66の開度を制御する。
特に、本実施形態では、PCM70は、蒸発燃料処理装置60の異常(例えば蒸発燃料処理装置60内でのパージガス等の漏れや各種バルブ(弁)の故障など)を判定するための処理を行う。本実施形態では、PCM70は、基本的には過給中にパージを実行しているときに、つまり第1分岐通路64からエジェクタ67を介して吸気通路1にパージガスを供給しているときに(即ちエジェクタパージ中に)、蒸発燃料処理装置60の異常判定を行う。この場合、PCM70は、蒸発燃料処理装置60によるパージ流量を算出し、このパージ流量が所定流量以上になったときのキャニスタ内圧が、所定流量のパージガスをパージした場合に想定されるキャニスタ内圧になっているか否かに基づき異常判定を行う。詳細は後述するが、PCM70は、本発明における「パージ下流圧力取得手段」、「第1パージ流量算出手段」、「第2パージ流量算出手段」、「キャニスタ内圧取得手段」及び「異常判定手段」として機能する。
なお、PCM70の各構成要素は、CPU、当該CPU上で解釈実行される各種のプログラム(OSなどの基本制御プログラムや、OS上で起動され特定機能を実現するアプリケーションプログラムを含む)、及びプログラムや各種のデータを記憶するためのROMやRAMの如き内部メモリを備えるコンピュータにより構成される。
<蒸発燃料処理装置の異常判定処理>
次に、図3を参照して、本発明の実施形態による蒸発燃料処理装置の異常判定処理について説明する。図3は、本発明の実施形態による蒸発燃料処理装置の異常判定処理を示すフローチャートである。当該処理は、PCM70によって所定の周期で繰り返し実行される。
最初に、本実施形態による蒸発燃料処理装置の異常判定処理の概要について述べる。この異常判定処理においては、PCM70は、少なくともエジェクタパージ中に蒸発燃料処理装置60の異常判定を行うこととし、当該異常判定の開始時に第3圧力センサ53によって検出されたキャニスタ内圧を取得して、このキャニスタ内圧を初期値として保持する。そして、PCM70は、異常判定中に、第1圧力センサ43や第2圧力センサ45によって検出された圧力及びパージバルブ66の開度などに基づき単位時間当たりのパージ流量を繰り返し算出し、こうして算出された単位時間当たりのパージ流量を積算して積算パージ流量を算出する。そして、PCM70は、積算パージ流量が所定流量以上となったときに、このときに第3圧力センサ53によって検出されたキャニスタ内圧と、上記のキャニスタ内圧の初期値との圧力差(偏差)を求め、この圧力差の大きさ(絶対値)が所定圧力未満である場合に、蒸発燃料処理装置60が異常であると判定する。
具体的に図3の異常判定処理のフローについて説明する。まず、ステップS101では、PCM70は、車両における各種情報を取得する。特に、PCM70は、第1圧力センサ43によって検出された圧力(過給圧)や、第2圧力センサ45によって検出された圧力(インマニ圧)や、第3圧力センサ53によって検出されたキャニスタ内圧や、大気圧センサ40によって検出された大気圧などを取得する。
次いで、ステップS102では、PCM70は、蒸発燃料処理装置60の異常判定実行条件が成立したか否かを判定する。具体的には、PCM70は、現在の状態がターボ過給機4による過給が行われている過給状態であり、且つ、異常判定を適切に実行するのに十分な流量のパージガスがパージされている場合に、異常判定実行条件が成立したと判定する。この場合、PCM70は、例えば第1圧力センサ43によって取得された圧力の大きさに基づき、過給状態であるか否かを判定する。また、PCM70は、第1圧力センサ43や第2圧力センサ45によって検出された圧力及びパージバルブ66の開度などに基づき現在のパージ流量を求め、このパージ流量が異常判定を実行するのに必要な流量(予め設定しておく)以上であるか否かを判定する。
なお、ステップS102の異常判定実行条件に過給状態という条件が含まれている通り、本実施形態による蒸発燃料処理装置60の異常判定処理は基本的には過給時に実行されるものである、つまりエジェクタパージ中に実行されるものである。但し、エジェクタパージのみが行われているときに異常判定処理を実行することに限定はされず、エジェクタパージに加えてインマニパージが行われているときに異常判定処理を実行してもよい。上述したように過給開始直後や過給停止直後等のような過渡時にはエジェクタパージ及びインマニパージの両方が行われ、このような過給の過渡時に異常判定処理を実行してもよい。
上記した異常判定実行条件が成立したと判定された場合(ステップS102:Yes)、PCM70は、ステップS103に進み、異常判定実行条件が成立したと判定されなかった場合(ステップS102:No)、PCM70は、異常判定処理を終了する。
ステップS103では、PCM70は、大気開放弁61cを閉弁して、大気開放通路61bからキャニスタ61への空気の流入を遮断する。次いで、ステップS104では、PCM70は、第3圧力センサ53によって検出されたキャニスタ内圧を取得し、このキャニスタ内圧を初期値として設定する。
この後、ステップS105以降では、蒸発燃料処理装置60を異常判定するための具体的な処理が行われる。まず、ステップS105では、PCM70は、第3圧力センサ53によって検出されたキャニスタ内圧を取得し、このキャニスタ内圧と、ステップS104で設定したキャニスタ内圧の初期値とのの圧力差(絶対値)を算出する。次いで、ステップS106では、PCM70は、ステップS105で算出したキャニスタ内圧の圧力差が所定圧力未満であるか否かを判定する。
ステップS106の判定の結果、キャニスタ内圧の圧力差が所定圧力未満であると判定された場合には(ステップS106:Yes)、ステップS107に進む。これに対して、キャニスタ内圧の圧力差が所定圧力未満であると判定されなかった場合(ステップS106:No)、つまりキャニスタ内圧の圧力差が所定圧力以上である場合には、ステップS112に進む。この場合には、PCM70は、蒸発燃料処理装置60によるパージによってキャニスタ内圧が適切に変化していると言えるので、後述する積算パージ流量の大きさに関わらずに(特に積算パージ流量が所定流量に達していなくても)、蒸発燃料処理装置60が正常であると判定する(ステップS112)。例えば、PCM70は、蒸発燃料処理装置60内でのパージガス等の漏れや各種バルブの故障などが発生していないと判定する。
ここで、図4を参照して、上記したステップS106(後縦するステップS110も含む)においてキャニスタ内圧の圧力差を判定するために用いる所定圧力について説明する。図4は、燃料タンク59内における燃料の種々の残留度合いについて、パージガスをパージした流量に対するキャニスタ内圧の変化を示している。具体的には、図4では、横軸に積算パージ流量を示し、縦軸にキャニスタ内圧(負圧)を示している。また、符号G11は、燃料タンク59の残留度合いが0%である場合(つまり燃料タンク59が空の状態に相当する)のグラフを示し、符号G12は、燃料タンク59の残留度合いが20%である場合のグラフを示し、符号G13は、燃料タンク59の残留度合いが40%である場合のグラフを示し、符号G14は、燃料タンク59の残留度合いが60%である場合のグラフを示し、符号G15は、燃料タンク59の残留度合いが80%である場合のグラフを示し、符号G16は、燃料タンク59の残留度合いが100%である場合(つまり燃料タンク59が満タンの状態に相当する)のグラフを示している。
図4に示すように、積算パージ流量が大きくなるほど、キャニスタ内圧の変化量が大きくなることがわかる。また、燃料タンク59の残留度合いが大きくなるほど、積算パージ流量の変化に対するキャニスタ内圧の変化率(傾き)が大きくなることがわかる。本実施形態では、燃料タンク59の残留度合いが0%である場合の積算パージ流量とキャニスタ内圧との関係(グラフG11参照)、つまり積算パージ流量の変化に対するキャニスタ内圧の変化率が最も小さくなるような燃料タンク59の残留度合いにおけるこれらの関係を用いて、上記したキャニスタ内圧の圧力差を判定するための所定圧力を規定する。具体的には、燃料タンク59の残留度合いが0%である場合の積算パージ流量とキャニスタ内圧との関係に対してある程度のマージンを適用した、符号G17で示すような関係を用いて所定圧力を規定する。例えば、符号G17で示すグラフにおいて、積算パージ流量Q1を所定流量として設定し、この積算パージ流量Q1に対応するキャニスタ内圧P1を所定圧力として設定する。この場合、積算パージ流量の所定流量Q1には、例えば、異常判定を精度良く行うことができ且つ異常判定を比較的短い時間で終了できるような適度な流量を適用するのがよい。
なお、キャニスタ内圧の所定圧力を規定する積算パージ流量の所定流量を固定することに限定はされない。例えば、異常判定処理を所定時間実行することとし、異常判定処理を開始してから当該所定時間経過したときの積算パージ流量を所定流量と扱い、符号G17で示すグラフから、この所定流量に対応するキャニスタ内圧を求めて、このキャニスタ内圧を所定圧力として設定してもよい。
図3に戻って、ステップS107以降の処理について説明する。ステップS107では、PCM70は、蒸発燃料処理装置60による単位時間当たりのパージ流量(第1パージ流量に相当する)を算出する。この単位時間当たりのパージ流量の算出方法については、後のセクションで詳述する。基本的には、PCM70は、エジェクタパージのみを行っている場合には、第1分岐通路64の流路抵抗などの物性値と、第1分岐通路64の上流側の圧力及び下流側の圧力と、パージバルブ66の開度とに基づき、一般的なベルヌーイの定理に従って、第1分岐通路64を介した単位時間当たりのパージ流量を算出する。この場合、PCM70は、キャニスタ内圧を第1分岐通路64の上流側の圧力として用い、コンプレッサ4aの上流側の圧力(大気圧センサ40により検出される大気圧)とコンプレッサ4aの下流側の圧力(第1圧力センサ43により検出される過給圧)との圧力差に基づき、第1分岐通路64の下流側の圧力を推定する。
次いで、ステップS108では、PCM70は、ステップS107で算出した単位時間当たりのパージ流量から積算パージ流量(第2パージ流量に相当する)を算出する。具体的には、PCM70は、前回のステップS108で算出した積算パージ流量に対して、今回のステップS107で算出した単位時間当たりのパージ流量を加算することで、今回の積算パージ流量を算出する。
次いで、ステップS109では、PCM70は、ステップS108で算出した積算パージ流量が所定流量以上であるか否かを判定する。例えば、この所定流量には、図4に示した流量Q1が適用される。ステップS109の判定の結果、積算パージ流量が所定流量以上であると判定された場合(ステップS109:Yes)、ステップS110に進む。これに対して、積算パージ流量が所定流量以上であると判定されなかった場合(ステップS109:No)、つまり積算パージ流量が所定流量未満である場合、ステップS105に戻り、PCM70は、上記したステップS105以降の処理を再度行う。つまり、PCM70は、積算パージ流量が所定流量以上になるまで、ステップS105〜S109の処理を繰り返し行う。但し、このループ中にキャニスタ内圧の圧力差が所定圧力以上になった場合には(ステップS106:No)PCM70は、当該ループを抜けて、ステップS112に進み、蒸発燃料処理装置60が正常であると判定する。
次いで、ステップS110では、PCM70は、今回取得したキャニスタ内圧と、ステップS103で設定したキャニスタ内圧の初期値との圧力差(絶対値)を求め、この圧力差が所定圧力未満であるか否かを判定する。例えば、この所定圧力には、図4に示したキャニスタ内圧P1に応じた圧力が適用される。ステップS110の判定の結果、キャニスタ内圧の圧力差が所定圧力未満であると判定された場合には(ステップS110:Yes)、ステップS111に進む。この場合には、PCM70は、蒸発燃料処理装置60によるパージによってキャニスタ内圧が適切に変化していないので、蒸発燃料処理装置60が異常であると判定する(ステップS111)。例えば、PCM70は、蒸発燃料処理装置60内でのパージガス等の漏れや各種バルブの故障などが発生していると判定する。これに対して、キャニスタ内圧の圧力差が所定圧力未満であると判定されなかった場合(ステップS110:No)、つまりキャニスタ内圧の圧力差が所定圧力以上である場合には、ステップS112に進み、PCM70は、蒸発燃料処理装置60が正常であると判定する。
上記したステップS111又はS112の後、ステップS113に進み、PCM70は、大気開放弁61cを開弁して、キャニスタ61を大気に開放する。
<パージ流量算出方法>
次に、本発明の実施形態によるパージ流量の算出方法について具体的に説明する。この方法は、上記した図3のステップS107において適用される。
本実施形態では、PCM70は、パージ通路62における第1分岐通路64と第2分岐通路65との分岐部の圧力である分岐部圧力を求め、当該分岐部圧力に基づいて単位時間当たりのパージ流量を算出する。この分岐部圧力は、以下のようにして算出される。なお、以下の説明では、パージ通路62を流通する全パージ流量を「Qpg」とし、分岐部圧力を「Ppg」とし、第1分岐通路64のパージ流量であるエジェクタパージ流量を「Qej」とし、第1分岐通路64の下流端の圧力である第1圧力を「Pej」とし、第2分岐通路65のパージ流量であるインマニパージ流量を「Qim」とし、第2分岐通路65の下流端の圧力である第2圧力を「Pim」とする。
まず、エジェクタパージ流量Qejは、第1分岐通路64の上流端と下流端との圧力差に依存しており、以下の式(1)で表される。ここで、K1は、第1分岐通路64の流路抵抗等の物性値をまとめた定数である。
Qej=K1×√(Ppg−Pej) 式(1)
同様に、インマニパージ流量Qimは、第2分岐通路65の上流端と下流端との圧力差に依存しており、以下の式(2)で表される。ここで、K2は、第2分岐通路65の流路抵抗等の物性値をまとめた定数である。
Qim=K2×√(Ppg−Pim) 式(2)
また、全パージ流量をQpgは、エジェクタパージ流量Qejとインマニパージ流量Qimとの合計であり、以下の式(3)で表される。
Qpg=Qej+Qim 式(3)
式(1)、(2)は、変形すると、それぞれ、以下の式(4)、(5)のようになる。
Ppg=(Qej/K1)2+Pej 式(4)
Ppg=(Qim/K2)2+Pim 式(5)
さらに、式(4)、(5)をまとめると、以下の式(6)が導かれる。
(Qej/K1)2+Pej=(Qim/K2)2+Pim 式(6)
ここで、式(3)における全パージ流量Qpgを目標パージ流量であるqprgとし、エジェクタパージ流量Qejについて解くと、以下の式(7)となる。
Qej=qprg−Qim 式(7)
この式(7)を式(6)に代入すると、式(6)はインマニパージ流量Qimについての2次方程式となり、その2次方程式を解くと、インマニパージ流量Qimは、以下の式(8)となる。式(8)において、「A=1−K12/K22」であり、「B=−2×qprg」であり、「C=qprg2+K12×Pej−K12×Pim」である。
Qim={−B±√(B2−4AC)}/2A 式(8)
この式(8)により、インマニパージ流量Qimが求められる。なお、式(8)において、分子の平方根の前の符号が負の場合を、インマニパージ流量Qimの解とする。そして、求められたインマニパージ流量Qimを式(4)に代入することによって、エジェクタパージ流量Qejが求められる。
図5は、本発明の実施形態によるパージ流量の算出方法を具体的に示すブロック図である。PCM70は、図5に示す演算回路を有している。
PCM70は、Qim演算部91において、インマニパージ流量Qimを演算する。Qim演算部91は、上記の式(8)に基づいて、インマニパージ流量Qimを演算する。ここで、定数K1及び定数K2は、予め設定されて記憶されている。また、第1圧力Pejは、コンプレッサ4aの上流側の圧力とコンプレッサ4aの下流側の圧力との圧力差に基づいて推定される。この圧力差には、第1圧力センサ43により検出される過給圧と、大気圧センサ40により検出される大気圧との差が適用される。また、第2圧力Pimには、第2圧力センサ45により検出されるインマニ圧が適用される。
PCM70は、Qim演算部91により求められた値と「0」とを最大値取得部92で比較し、大きい方をインマニパージ流量Qimとする。つまり、式(8)に基づいて算出されるインマニパージ流量Qimは負の値となる場合があり得る。負のインマニパージ流量Qimは、第2分岐通路65の下流端の圧力の方が、第2分岐通路65の上流端の圧力よりも高く、吸気が第2分岐通路65を逆流することを意味する。しかし、実際の第2分岐通路65には逆止弁65aが設けられており、吸気が第2分岐通路65を逆流することはなく、インマニパージ流量Qimは0となる。そのため、Qim演算部91により求められたインマニパージ流量Qimが負の値の場合には、最大値取得部92において負の値が0に置き換えられる。
最大値取得部92から出力されるインマニパージ流量Qimは、乗・除算部93に入力される。乗・除算部93には、定数K2も入力される。乗・除算部93は、インマニパージ流量Qimを定数K2で除算する。乗・除算部93から出力された値(Qim/K2)は、乗算部94において2乗される。乗算部94から出力された値(Qim/K2)2は、加算部95に入力され、加算部95において第2圧力Pimが加算される。そして、加算部95から分岐部圧力Ppgが算出される。こうして算出される分岐部圧力Ppgは、式(5)に基づく分岐部圧力Ppgである。
一方、最大値取得部92から出力されるインマニパージ流量Qimは、加・減算部96にも入力される。加・減算部96には、目標パージ流量qprgも入力される。加・減算部96は、目標パージ流量qprgからインマニパージ流量Qimを減算して、エジェクタパージ流量Qejを算出する。つまり、加・減算部96は、式(3)に基づいて、インマニパージ流量Qim及び目標パージ流量qprg(=全パージ流量Qpg)からエジェクタパージ流量Qejを求める。
加・減算部96から出力されたエジェクタパージ流量Qejは、最大値取得部97に入力され、「0」と比較され、大きい方がエジェクタパージ流量Qejとされる。つまり、式(8)に基づいて算出されるインマニパージ流量Qimからエジェクタパージ流量Qejを算出した結果、エジェクタパージ流量Qejが負の値となり得る。負のエジェクタパージ流量Qejは、第1分岐通路64の下流端の圧力の方が、第1分岐通路64の上流端の圧力よりも高く、吸気が第1分岐通路64を逆流することを意味する。しかし、実際の第1分岐通路64には逆止弁64aが設けられており、吸気が第1分岐通路64を逆流することはなく、エジェクタパージ流量Qejは0となる。そのため、加・減算部96から出力されたエジェクタパージ流量Qejが負の値の場合には、最大値取得部97において負の値が0に置き換えられる。
最大値取得部97から出力されるエジェクタパージ流量Qejは、乗・除算部98に入力される。乗・除算部98には、定数K1も入力される。乗・除算部98は、エジェクタパージ流量Qejを定数K1で除算する。乗・除算部98から出力された値(Qej/K1)は、乗算部99において2乗される。乗算部99から出力された値(Qej/K1)2は、加算部910に入力され、加算部910において第1圧力Pejが加算される。そして、加算部910から分岐部圧力Ppgが算出される。こうして算出される分岐部圧力Ppgは、式(4)に基づく分岐部圧力Ppgである。
最終的に、最小値取得部911において、加算部95から出力される分岐部圧力Ppgと、加算部910から出力される分岐部圧力Ppgと、キャニスタ内圧(典型的には大気圧)とが比較され、最も小さい値が分岐部圧力Ppgとされる。つまり、加算部95又は加算部910から出力される分岐部圧力Ppgの算出の途中で、エジェクタパージ流量Qej又はインマニパージ流量Qimが負となる場合があり、その場合には、流量が0に置き換えられている。つまり、エジェクタパージ流量Qej又はインマニパージ流量Qimが増量されている。エジェクタパージ流量Qej又はインマニパージ流量Qimが増量されると、結果として、算出される分岐部圧力Ppgも大きくなる側にずれる。そのため、加算部95から出力される分岐部圧力Ppg、及び、加算部910から出力される分岐部圧力Ppgのうち小さい方がより正確な分岐部圧力とみなすことができる。また、分岐部圧力Ppgは、キャニスタ内圧(典型的には大気圧)以上とはならない。そのため、加算部95から出力される分岐部圧力Ppg、及び、加算部910から出力される分岐部圧力Ppgがキャニスタ内圧よりも大きい場合には、キャニスタ内圧を分岐部圧力Ppgとする。
そして、PCM70は、このようにして求められた分岐部圧力Ppgとキャニスタ内圧とパージバルブ66の開度とに基づいてパージ流量Qpgを推定する。
<タイムチャート>
次に、図6を参照して、本実施形態による蒸発燃料処理装置の異常判定処理を実行した場合のタイムチャートの一例について説明する。図6は、上から順に、大気開放弁61cの開閉、キャニスタ内圧(負圧)、キャニスタ内圧の圧力差、単位時間当たりのパージ流量、積算パージ流量、正常判定フラグのオン/オフ、異常判定フラグのオン/オフを示している。また、図6では、実線は蒸発燃料処理装置60が正常である場合のグラフを示し、破線は蒸発燃料処理装置60が異常である場合のグラフを示している。
まず、時刻t11において、蒸発燃料処理装置60の異常判定実行条件が成立し、この直後の時刻t12において、大気開放弁61cが閉弁される。また、このときに検出されたキャニスタ内圧が初期値に設定されて、この初期値を用いてキャニスタ内圧の圧力差の算出が開始されると共に、単位時間当たりのパージ流量から積算パージ流量の算出が開始される。この後、蒸発燃料処理装置60が正常である場合には、時刻t13においてキャニスタ内圧の圧力差が所定圧力P1以上になるため、積算パージ流量が所定流量Q1に達していなくても、蒸発燃料処理装置60が正常であることを示す正常判定フラグがオンに設定される。そして、大気開放弁61cが開弁される。他方で、蒸発燃料処理装置60が異常である場合には、時刻t14において積算パージ流量が所定流量Q1以上になり、このときのキャニスタ内圧の圧力差が所定圧力P1未満であるため、蒸発燃料処理装置60が異常であることを示す異常判定フラグがオンに設定される。そして、大気開放弁61cが開弁される。
<作用効果>
次に、本発明の実施形態による蒸発燃料処理装置の異常判定装置の作用効果について説明する。
本実施形態では、異常判定開始時のキャニスタ内圧(初期値)と積算パージ流量が所定流量以上になったときのキャニスタ内圧との圧力差(偏差)に基づき蒸発燃料処理装置60の異常判定を行う、具体的にはこのキャニスタ内圧の圧力差が所定圧力未満である場合に蒸発燃料処理装置60が異常であると判定する。このような本実施形態によれば、パージ流量に応じたキャニスタ内圧の変化量を考慮に入れて異常判定を行うので、つまりパージ流量に応じた適切なキャニスタ内圧の判定値(所定圧力)を用いて異常判定を行うので、蒸発燃料処理装置60の異常判定を精度良く行うことができる。例えば、パージ流量が小さい場合であっても、このパージ流量に応じた、キャニスタ内圧を判定するための所定圧力を用いることで、蒸発燃料処理装置60の異常の誤判定を適切に抑制することができる。
また、本実施形態によれば、積算パージ流量が所定流量に達していなくてもキャニスタ内圧の圧力差が所定圧力以上になったときに蒸発燃料処理装置60が正常であると判定するので、積算パージ流量が所定流量に達するのを待たずに、蒸発燃料処理装置60の異常判定を速やかに終了することができる。
また、本実施形態によれば、キャニスタ内圧の圧力差を判定するための所定圧力を、燃料タンク59内の燃料の残量度合いが0%である状態において所定流量のパージガスをパージしたときのキャニスタ内圧の変化量に基づき事前に設定するので、パージ流量に応じたより適切なキャニスタ内圧の判定値(所定圧力)を用いて判定を行うことができ、蒸発燃料処理装置60の異常の誤判定を確実に抑制することができる。
また、本実施形態によれば、蒸発燃料処理装置60の異常判定時に大気開放弁61cを閉弁して大気開放通路61bからキャニスタ61への空気の流入を遮断するので、蒸発燃料処理装置60の異常判定の精度を効果的に向上させることができる。つまり、異常判定のロバスト性を向上させることができる。
また、本実施形態では、ターボ過給機4による過給時に行われるエジェクタパージについての異常判定を実行する、つまりエジェクタパージ中に異常判定を実行する。原則、エジェクタパージは過給時に行われるので、エジェクタパージの異常判定は過給時に実行されることとなる。通常、ターボ過給機4による一連の過給期間が短いため(つまりターボ過給機4による過給/非過給が比較的頻繁に切り替わる傾向にある)、エジェクタパージについての異常判定を行おうとした場合、短時間で異常判定を完了する必要がある。ここで、一般的な自然吸気型のシステムではインマニパージを行うが、このインマニパージについての異常判定は、例えば、インマニパージを行ったときにキャニスタ内圧が所定圧力に達するか否かを判定することでなされる。しかしながら、このような方法をエジェクタパージに適用すると、キャニスタ内圧が所定圧力に達するまで時間がかかり、短い過給期間において異常判定を適切に完了させることができない傾向にある。これに対して、本実施形態によれば、上記したように、積算パージ流量を順次算出すると共に、適当な所定流量を規定して、積算パージ流量が所定流量以上になったときのキャニスタ内圧に基づき異常判定を行うので、比較的短い過給期間において異常判定を適切に完了させることができる。よって、本実施形態によれば、エジェクタパージについての異常判定を適切に行うことができる。
また、本実施形態では、第1分岐通路64の下流端の圧力である第1圧力及び第2分岐通路65の下流端の圧力である第2圧力などに基づき、パージ通路62における第1分岐通路64と第2分岐通路65との分岐部の圧力である分岐部圧力を求め、この分岐部圧力とパージバルブ66の開度とキャニスタ内圧とに基づき単位時間当たりのパージ流量を算出するので、パージ流量を精度良く算出することができる。
<変形例>
上記した実施形態では、異常判定開始時のキャニスタ内圧を初期値とし、この初期値と、積算パージ流量が所定流量以上になったときのキャニスタ内圧との圧力差(偏差)の大きさに基づき、蒸発燃料処理装置60の異常判定を行っていたが、他の例では、このようなキャニスタ内圧の圧力差を用いる代わりに、積算パージ流量が所定流量以上になったときのキャニスタ内圧の大きさのみに基づいて、蒸発燃料処理装置60の異常判定を行ってもよい。その場合、積算パージ流量が所定流量以上になったときのキャニスタ内圧(負圧、つまり負値)が所定値以上である場合に、蒸発燃料処理装置60が異常であると判定すればよい。これによっても、パージ流量に応じたキャニスタ内圧の変化量を適切に考慮に入れるので、蒸発燃料処理装置60の異常判定を精度良く行うことができる。
上記した実施形態では、本発明をエジェクタパージに適用していた、つまりエジェクタパージ中(特に過給時)に蒸発燃料処理装置60の異常判定を行っていた。他の例では、本発明をインマニパージに適用してもよい、つまりインマニパージ中(特に非過給時)に蒸発燃料処理装置60の異常判定を行ってもよい。その場合には、インマニパージによる単位時間当たりのパージ流量から積算パージ流量を求めて、この積算パージ流量が所定流量以上になったときのキャニスタ内圧に基づき蒸発燃料処理装置60の異常判定を行えばよい。
上記した実施形態では、パージ通路62の下流側における吸気通路1上の圧力であるパージ下流圧力(過給圧やインマニ圧など)やキャニスタ内圧などをセンサによって検出していたが、これらをセンサで検出することに限定はされず、所定のモデルなどを用いて推定してもよい。
上記した実施形態では、エジェクタパージ及びインマニパージの両方を行えるように構成された蒸発燃料処理装置60に本発明を適用する例を示したが、本発明は、エジェクタパージのみを行うように構成された蒸発燃料処理装置(つまりパージ通路として第2分岐通路65を具備せずに第1分岐通路64のみを具備する蒸発燃料処理装置)に適用してもよい。
上記した実施形態では、本発明をガソリンエンジンに適用した例を示したが、本発明はディーゼルエンジンに適用してもよい。
1 吸気通路
4 ターボ過給機
7 サージタンク
10 エンジン
25 排気通路
40 大気圧センサ
43 第1圧力センサ
45 第2圧力センサ
53 第3圧力センサ
59 燃料タンク
60 蒸発燃料処理装置
61 キャニスタ
61b 大気開放通路
61c 大気開放弁
62 パージ通路
64 第1分岐通路
65 第2分岐通路
66 パージバルブ
67 エジェクタ
70 PCM
100 エンジンシステム

Claims (6)

  1. 蒸発燃料処理装置の異常判定装置であって、
    燃料タンク内の蒸発燃料を吸着して蓄積するキャニスタと、このキャニスタに蓄積された蒸発燃料を含むパージガスを吸気通路に供給するためのパージ通路と、このパージ通路上に設けられ、吸気通路へのパージガスの供給を制御するパージバルブとを備える蒸発燃料処理装置と、
    上記パージ通路の下流側における吸気通路上の圧力であるパージ下流圧力を取得するパージ下流圧力取得手段と、
    上記パージ下流圧力取得手段によって取得されたパージ下流圧力と、上記パージバルブの開度とに基づいて、上記蒸発燃料処理装置によって吸気通路にパージされた単位時間当たりのパージガスの流量である第1パージ流量を算出する第1パージ流量算出手段と、
    上記パージ流量算出手段によって算出された第1パージ流量から、上記蒸発燃料処理装置によって吸気通路に連続的にパージされたパージガスの流量である第2パージ流量を算出する第2パージ流量算出手段と、
    上記キャニスタの内部圧力であるキャニスタ内圧を取得するキャニスタ内圧取得手段と、
    上記第2パージ流量算出手段によって算出された第2パージ流量と、上記キャニスタ内圧取得手段によって取得されたキャニスタ内圧とに基づいて、上記蒸発燃料処理装置の異常判定を行う異常判定手段と、
    を有し、
    上記第2パージ流量算出手段は、上記異常判定の開始後に上記蒸発燃料処理装置によって吸気通路に連続的にパージされたパージガスの流量を、上記第2パージ流量として算出し、
    上記異常判定手段は、上記第2パージ流量が所定流量以上になったときに上記キャニスタ内圧取得手段によって取得されたキャニスタ内圧に基づいて上記異常判定を行
    上記蒸発燃料処理装置の異常判定装置は、吸気通路上に設けられたコンプレッサ及び排気通路上に設けられたタービンを備えるターボ過給機付きのエンジンに適用され、
    上記蒸発燃料処理装置は、コンプレッサ下流側の吸気通路とコンプレッサ上流側の吸気通路とに接続され、コンプレッサ下流側の吸気通路からコンプレッサ上流側の吸気通路に還流される吸気の流れによって負圧を発生するエジェクタを備え、上記パージ通路は、下流端が上記エジェクタに接続され、当該エジェクタにより発生された負圧を利用してパージガスを吸気通路にパージする第1分岐通路と、上記エジェクタが接続されたコンプレッサ下流側の吸気通路上の位置よりも更に下流側に下流端が接続され、この接続部において発生した負圧を利用してパージガスを吸気通路にパージする第2分岐通路と、に分岐しており、
    上記異常判定手段は、上記第1分岐通路から上記エジェクタを介して吸気通路にパージガスをパージしているときに上記異常判定を行い、
    上記パージ下流圧力取得手段は、上記第1分岐通路の下流端の圧力である第1圧力と、上記第2分岐通路の下流端の圧力である第2圧力とを、上記パージ下流圧力として取得し、上記第1パージ流量算出手段は、上記第1圧力及び上記第2圧力に基づいて、上記パージ通路における上記第1分岐通路と上記第2分岐通路との分岐部の圧力である分岐部圧力を求め、この分岐部圧力と上記パージバルブの開度と上記キャニスタ内圧とに基づいて、上記第1パージ流量を算出する、
    ことを特徴とする蒸発燃料処理装置の異常判定装置。
  2. 上記異常判定手段は、上記異常判定の開始時に上記キャニスタ内圧取得手段によって取得されたキャニスタ内圧と、上記第2パージ流量が上記所定流量以上になったときに上記キャニスタ内圧取得手段によって取得されたキャニスタ内圧との偏差の大きさが所定圧力未満である場合に、上記蒸発燃料処理装置が異常であると判定する、請求項1に記載の蒸発燃料処理装置の異常判定装置。
  3. 上記異常判定手段は、上記第2パージ流量が上記所定流量に達していなくても、上記異常判定の開始時に上記キャニスタ内圧取得手段によって取得されたキャニスタ内圧と、上記異常判定の開始後に上記キャニスタ内圧取得手段によって取得されたキャニスタ内圧との偏差の大きさが上記所定圧力以上になったときに、上記蒸発燃料処理装置が正常であると判定する、請求項2に記載の蒸発燃料処理装置の異常判定装置。
  4. 上記所定圧力は、上記燃料タンク内の燃料の残量がほぼ0である状態において正常である上記蒸発燃料処理装置によって上記所定流量のパージガスを吸気通路にパージしたときのキャニスタ内圧の変化量に基づき事前に設定される、請求項2又は3に記載の蒸発燃料処理装置の異常判定装置。
  5. 上記蒸発燃料処理装置は、上記キャニスタに連通され、当該キャニスタに空気を供給する大気開放通路と、この大気開放通路上に設けられ、上記キャニスタへの空気の供給を制御する大気開放弁とを更に備え、
    上記異常判定手段は、上記大気開放弁を閉弁してから上記異常判定を開始する、請求項1乃至4のいずれか一項に記載の蒸発燃料処理装置の異常判定装置。
  6. 上記第2パージ流量算出手段は、上記第1パージ流量算出手段によって算出された第1パージ流量を積算することで上記第2パージ流量を算出する、請求項1乃至のいずれか一項に記載の蒸発燃料処理装置の異常判定装置。
JP2016058511A 2016-03-23 2016-03-23 蒸発燃料処理装置の異常判定装置 Expired - Fee Related JP6376518B2 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2016058511A JP6376518B2 (ja) 2016-03-23 2016-03-23 蒸発燃料処理装置の異常判定装置
US16/086,274 US10677199B2 (en) 2016-03-23 2017-03-23 Anomaly determination device for evaporated fuel processing device
CN201780017444.8A CN108884788A (zh) 2016-03-23 2017-03-23 蒸发燃料处理装置的异常判定装置
EP17770360.0A EP3418547B1 (en) 2016-03-23 2017-03-23 Engine system comprising an anomaly determination device for evaporated fuel processing device
PCT/JP2017/011764 WO2017164320A1 (ja) 2016-03-23 2017-03-23 蒸発燃料処理装置の異常判定装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016058511A JP6376518B2 (ja) 2016-03-23 2016-03-23 蒸発燃料処理装置の異常判定装置

Publications (2)

Publication Number Publication Date
JP2017172432A JP2017172432A (ja) 2017-09-28
JP6376518B2 true JP6376518B2 (ja) 2018-08-22

Family

ID=59900336

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016058511A Expired - Fee Related JP6376518B2 (ja) 2016-03-23 2016-03-23 蒸発燃料処理装置の異常判定装置

Country Status (5)

Country Link
US (1) US10677199B2 (ja)
EP (1) EP3418547B1 (ja)
JP (1) JP6376518B2 (ja)
CN (1) CN108884788A (ja)
WO (1) WO2017164320A1 (ja)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6660410B2 (ja) 2018-02-14 2020-03-11 株式会社Subaru パージシステムの故障診断装置
JP7040108B2 (ja) * 2018-02-22 2022-03-23 トヨタ自動車株式会社 蒸発燃料処理装置
JP6725603B2 (ja) 2018-08-24 2020-07-22 株式会社Subaru 蒸発燃料処理システムの診断装置
JP7067411B2 (ja) * 2018-10-16 2022-05-16 トヨタ自動車株式会社 蒸発燃料処理装置
JP6813608B2 (ja) * 2019-02-08 2021-01-13 本田技研工業株式会社 内燃機関の異常判定装置
JP6810175B2 (ja) * 2019-02-08 2021-01-06 本田技研工業株式会社 内燃機関の異常判定装置
JP7124811B2 (ja) * 2019-09-04 2022-08-24 トヨタ自動車株式会社 エンジン装置
JP7207241B2 (ja) * 2019-09-04 2023-01-18 トヨタ自動車株式会社 エンジン装置
JP7338541B2 (ja) * 2020-04-14 2023-09-05 トヨタ自動車株式会社 エンジン装置
JP7371570B2 (ja) * 2020-04-29 2023-10-31 トヨタ自動車株式会社 エンジン装置
JP7272325B2 (ja) * 2020-06-15 2023-05-12 トヨタ自動車株式会社 エンジン装置

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3512998B2 (ja) * 1997-12-16 2004-03-31 株式会社日立ユニシアオートモティブ 過給機付内燃機関の蒸発燃料処理装置
JP2000045885A (ja) * 1998-07-28 2000-02-15 Toyota Motor Corp 制御弁の異常検出装置
JP3428506B2 (ja) * 1999-06-28 2003-07-22 トヨタ自動車株式会社 エバポパージシステムの故障診断装置
JP3503584B2 (ja) * 2000-02-14 2004-03-08 トヨタ自動車株式会社 燃料蒸気パージシステムの故障診断装置
JP4350660B2 (ja) 2005-02-15 2009-10-21 本田技研工業株式会社 蒸発燃料処理装置の故障診断装置
FR2958690B1 (fr) * 2010-04-08 2014-01-17 Continental Automotive France Procede et dispositif de detection de blocage de vanne de purge de filtre a vapeurs d'essence
DE102011084859B4 (de) * 2011-10-20 2024-04-25 Robert Bosch Gmbh Verfahren zur Diagnose eines Tankentlüftungsventils
JP5776572B2 (ja) * 2012-02-03 2015-09-09 株式会社デンソー 蒸発燃料処理システム
US9188087B2 (en) * 2013-03-07 2015-11-17 Ford Global Technologies, Llc Ejector flow rate computation for gas constituent sensor compensation
US9316558B2 (en) * 2013-06-04 2016-04-19 GM Global Technology Operations LLC System and method to diagnose fuel system pressure sensor
JP6549011B2 (ja) * 2015-10-01 2019-07-24 愛三工業株式会社 蒸発燃料処理装置

Also Published As

Publication number Publication date
CN108884788A (zh) 2018-11-23
US10677199B2 (en) 2020-06-09
EP3418547A1 (en) 2018-12-26
EP3418547A4 (en) 2019-02-27
EP3418547B1 (en) 2021-06-16
US20200095957A1 (en) 2020-03-26
WO2017164320A1 (ja) 2017-09-28
JP2017172432A (ja) 2017-09-28

Similar Documents

Publication Publication Date Title
JP6376518B2 (ja) 蒸発燃料処理装置の異常判定装置
US10260436B2 (en) System and methods for operating an exhaust gas recirculation valve based on a temperature difference of the valve
US9845749B2 (en) System and methods for diagnosing soot accumulation on an exhaust gas recirculation valve
CN107110037B (zh) 内燃发动机的低压废气再循环回路的故障检测系统
JP6653534B2 (ja) エンジンの制御装置
US10941720B2 (en) Control device for internal-combustion engine
US10161337B2 (en) Control device for internal combustion engine
JP2006348901A (ja) 蒸発燃料処理装置及び過給機付エンジンの蒸発燃料処理装置
CN107109989A (zh) 排气净化系统和NOx净化能力恢复方法
JP2017203431A (ja) 内燃機関の吸気系異常診断装置
JP6330751B2 (ja) エンジンの制御装置
US20200217262A1 (en) Engine system
JP2019027296A (ja) エンジンシステム
JP6515903B2 (ja) 内燃機関の制御装置
JP6354714B2 (ja) 過給機付き内燃機関の異常診断装置
JP7314865B2 (ja) エンジン装置
JP7067263B2 (ja) 蒸発燃料処理装置の異常検出装置
US20190345899A1 (en) Vaporized-fuel treating apparatus
JP2012017709A (ja) 内燃機関の吸入空気量検出方法
JP6550943B2 (ja) 可変容量型ターボチャージャの制御装置
JP2021183836A (ja) エンジン装置
JP2019049219A (ja) エンジンシステム
JP5146367B2 (ja) 内燃機関の操作対象パラメータの適合装置、及び適合方法
JP2012219772A (ja) 内燃機関の回転速度制御装置
JP2022182730A (ja) 内燃機関の制御装置

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180205

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180403

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180702

R150 Certificate of patent or registration of utility model

Ref document number: 6376518

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180715

LAPS Cancellation because of no payment of annual fees