JP6370862B2 - 水電解システム及びその制御方法 - Google Patents

水電解システム及びその制御方法 Download PDF

Info

Publication number
JP6370862B2
JP6370862B2 JP2016228883A JP2016228883A JP6370862B2 JP 6370862 B2 JP6370862 B2 JP 6370862B2 JP 2016228883 A JP2016228883 A JP 2016228883A JP 2016228883 A JP2016228883 A JP 2016228883A JP 6370862 B2 JP6370862 B2 JP 6370862B2
Authority
JP
Japan
Prior art keywords
pressure
water
line
hydrogen
electrolysis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016228883A
Other languages
English (en)
Other versions
JP2018083977A (ja
Inventor
大輔 倉品
大輔 倉品
淳 武内
淳 武内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2016228883A priority Critical patent/JP6370862B2/ja
Priority to US15/817,463 priority patent/US10648093B2/en
Priority to CN201711175057.5A priority patent/CN108103520B/zh
Publication of JP2018083977A publication Critical patent/JP2018083977A/ja
Application granted granted Critical
Publication of JP6370862B2 publication Critical patent/JP6370862B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B15/00Operating or servicing cells
    • C25B15/02Process control or regulation
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/02Hydrogen or oxygen
    • C25B1/04Hydrogen or oxygen by electrolysis of water
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B15/00Operating or servicing cells
    • C25B15/08Supplying or removing reactants or electrolytes; Regeneration of electrolytes
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • C25B9/05Pressure cells
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • C25B9/17Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof
    • C25B9/19Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof with diaphragms
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • C25B9/70Assemblies comprising two or more cells
    • C25B9/73Assemblies comprising two or more cells of the filter-press type
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Automation & Control Theory (AREA)
  • Inorganic Chemistry (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Description

本発明は、水を電気分解し、アノード側に酸素を発生させ且つカソード側に前記酸素よりも高圧な水素を発生させる水電解装置を備える水電解システム及びその制御方法に関する。
特許文献1では、デバイス類を削減することができ、簡単且つ経済的に、排水処理及び脱圧処理を遂行することが可能な高圧水電解システム及びその制御方法を提供することを目的としている([0009]、要約)。当該目的を達成するため、特許文献1(要約)の高圧水電解システム10を構成する制御装置62は、通常時水位制御部52と脱圧時水位制御部54とを有する。通常時水位制御部52は、通常電解時に通常時上限水位から通常時下限水位の範囲内に水位を制御する。脱圧時水位制御部54は、カソード側脱圧時に脱圧時上限水位から脱圧時下限水位の範囲内に水位を制御する。気液分離装置14は、通常時下限水位と脱圧時上限水位との間に設けられる第1排水配管32と、脱圧時下限水位よりも下方に設けられる第2排水配管34とを備える。
第1排水配管32(排水及び脱圧ライン)には、高圧水を減圧させる圧力損失部材、例えば、オリフィス36が配設される(図1、[0026])。第2排水配管34(高圧排水ライン)には、高圧水を減圧させる圧力損失部材、例えば、オリフィス38が配置され、オリフィス38の下流に位置して開閉弁、例えば、電磁弁40が配設される(図1、[0026])。第1排水配管32及び第2排水配管34の下流側は、水封器42に接続される。水封器42では、水とガス成分とが分離される(図1、[0026])。
特開2015−175037号公報
上記のように、特許文献1では、気液分離装置14からの第1排水配管32と水封器42の間にオリフィス36が配設される。また気液分離装置14からの第2排水配管34と水封器42の間にオリフィス38及び電磁弁40が配設される(図1、[0026])。特許文献1では、第1排水配管32(排水及び脱圧ライン)並びに水封器42を介しての水素の排出について改善の余地がある。
本発明は上記のような課題を考慮してなされたものであり、水素の排出を好適に制御することが可能な水電解システム及びその制御方法を提供することを目的とする。
本発明に係る水電解システムは、
水を電気分解し、アノード側に酸素を発生させ且つカソード側に前記酸素よりも高圧な水素を発生させる水電解装置と、
前記水電解装置から排出される水素に含まれる水分を分離する気液分離器と、
前記気液分離器から水素を導出する水素導出ラインと、
前記気液分離器に溜まった液状水を排出する第1排水ラインと、
前記気液分離器を脱圧する脱圧ラインと、
前記第1排水ライン及び前記脱圧ラインの下流に設けられた低圧用水封器と、
前記低圧用水封器内の気体を排気する排気ラインと、
前記低圧用水封器に溜まった前記液状水を排出する第2排水ラインと、
前記第1排水ラインに配置された高圧排水用電磁弁と、
前記脱圧ラインに配置された脱圧用電磁弁と、
前記排気ラインに配置されて前記排気ラインを閉塞する閉塞弁と、
前記第2排水ラインに配置された低圧排水用電磁弁と、
前記低圧用水封器内の圧力を取得する圧力取得部と、
前記圧力取得部が取得した前記圧力に応じて前記脱圧ラインにおける水素漏れを判定する制御装置と
を備えることを特徴とする。
本発明によれば、第1排水ライン及び脱圧ラインの下流に設けられた低圧用水封器内の圧力に応じて、脱圧ラインにおける水素漏れを判定する。これにより、低圧用水封器を備える構成において、脱圧ラインにおける水素漏れを簡易に判定することが可能となる。その結果、水素の排出を好適に制御することが可能となる。
本発明に係る水電解システムの制御方法は、
前記水電解システムが、
水を電気分解し、アノード側に酸素を発生させ且つカソード側に前記酸素よりも高圧な水素を発生させる水電解装置と、
前記水電解装置から排出される水素に含まれる水分を分離する気液分離器と、
前記気液分離器から水素を導出する水素導出ラインと、
前記気液分離器に溜まった液状水を排出する第1排水ラインと、
前記気液分離器を脱圧する脱圧ラインと、
前記第1排水ライン及び前記脱圧ラインの下流に設けられた低圧用水封器と、
前記低圧用水封器内の気体を排気する排気ラインと、
前記低圧用水封器に溜まった前記液状水を排出する第2排水ラインと、
前記第1排水ラインに配置された高圧排水用電磁弁と、
前記脱圧ラインに配置された脱圧用電磁弁と、
前記排気ラインに配置されて前記排気ラインを閉塞する閉塞弁と、
前記第2排水ラインに配置された低圧排水用電磁弁と、
前記低圧用水封器内の圧力を取得する圧力取得部と、
前記圧力取得部が取得した前記圧力に応じて前記脱圧ラインにおける水素漏れを判定する制御装置と
を備え、
前記制御方法は、
前記制御装置が、前記高圧排水用電磁弁、前記脱圧用電磁弁及び前記低圧排水用電磁弁を閉状態とし且つ前記水電解装置による水素生成を実行中であるときの前記低圧用水封器内の圧力である電解時圧力を前記圧力取得部により取得する電解時圧力取得工程と、
前記制御装置が、少なくとも前記電解時圧力に基づいて前記脱圧ラインの水素漏れの発生を判定する水素漏れ判定工程と
を備えることを特徴とする。
本発明によれば、少なくとも電解時圧力(高圧排水用電磁弁、脱圧用電磁弁及び低圧排水用電磁弁を閉状態とし且つ水電解装置による水素生成を実行中であるときの低圧用水封器内の圧力)に基づいて、脱圧ラインの水素漏れの発生を判定する。これにより、低圧用水封器を備える構成において、簡易な手法で水素漏れの判定が可能となる。その結果、水素の排出を好適に制御することが可能となる。
前記制御方法は、前記制御装置が、前記高圧排水用電磁弁を閉状態とし、前記脱圧用電磁弁を開状態とし、前記低圧排水用電磁弁を閉状態又は開状態とし且つ前記水電解装置による水素生成を停止中であるときの前記低圧用水封器内の圧力である基準圧力を前記圧力取得部により取得する基準圧力取得工程をさらに備えてもよい。前記水素漏れ判定工程において、前記制御装置は、前記電解時圧力と前記基準圧力との比較結果に基づいて前記水素漏れの発生を判定してもよい。
電解時圧力の時間的な変化を監視する場合と比較して、電解時圧力と基準圧力は、差が大きくなり易い。このため、電解時圧力と基準圧力との比較結果を用いて水素漏れの発生を判定することで、比較的高精度に水素漏れを判定することが可能となる。
前記基準圧力取得工程では、前記制御装置が、前記低圧排水用電磁弁を開状態として、前記低圧用水封器内を減圧した後、前記圧力取得部により前記基準圧力を取得してもよい。また、前記水素漏れ判定工程において、前記制御装置は、前記電解時圧力と、減圧後の前記基準圧力との比較結果に基づいて前記水素漏れの発生を判定してもよい。
これにより、減圧した基準圧力を用いることで、電解時圧力と基準圧力の相違を際立たせて、水素漏れの発生を高精度に判定することが可能となる。また、基準圧力を特定の固定値まで減圧した場合、水素漏れの判定を複数回行った際に、複数の電解時圧力の変化が分かり易くなる。従って、水素漏れの発生を比較的高精度に判定することが可能となる。
前記水素漏れ判定工程を、前記水電解装置による水素生成の開始時に行ってもよい。これにより、電解時圧力の変化が比較的大きい状態で水素漏れの発生を判定することで、水素漏れの発生を高精度に行うことが可能となる。また、水素生成の開始時に水素漏れの発生を判定することで、水素漏れの発生時には迅速に水素生成を停止することが可能となる。
本発明によれば、水素の排出を好適に制御することが可能となる。
本発明の一実施形態に係る水電解システムのブロック図である。 前記実施形態の通常電解制御のフローチャートである。 前記実施形態の前記通常電解制御(脱圧ライン監視制御を含む。)における電解電源及び各弁の状態を示す図である。 前記実施形態の前記脱圧ライン監視制御のフローチャートである。 図5Aは、前記実施形態における前記脱圧ライン監視制御を、正常なカソード系で行った場合の一例を示すタイムチャートである。図5Bは、前記実施形態における前記脱圧ライン監視制御を、異常が発生した前記カソード系で行った場合の一例を示すタイムチャートである。
A.一実施形態
<A−1.構成>
[A−1−1.全体構成]
図1は、本発明の一実施形態に係る水電解システム10のブロック図である。水電解システム10は、アノード系20と、水電解装置22と、カソード系24と、制御装置26とを有する。アノード系20は、水電解装置22に対して純水を供給する。水電解装置22は、アノード系20から供給された純水を電気分解(電解)して水素及び酸素を生成する。水電解装置22が生成した水素はカソード系24に送出され、水電解装置22が生成した酸素はアノード系20に送出される。制御装置26は、水電解システム10全体を制御する。
[A−1−2.アノード系20]
アノード系20の構成は、例えば、特開2012−219276号公報又は特開2014−080634号公報と同様の構成を用いることができる。アノード系20の一部の構成要素は図示していない。アノード系20では、純水製造装置において製造された純水が、第1純水供給ライン、酸素気液分離器及び第2純水供給ライン40を介して水電解装置22に供給される。また、水電解装置22から排出された純水及び酸素は、循環ライン42を介して前記酸素気液分離器に供給される。なお、カソード系24で生成された水素の一部は、水電解装置22を透過してアノード系20に入り込む。そのような水素も循環ライン42を介して前記酸素気液分離器に供給される。
前記酸素気液分離器では、純水(液体)と、酸素及び水素(気体)とが分離される。分離された気体は、前記酸素気液分離器から外部に放出される。また、分離されて前記酸素気液分離器に溜まった純水(液体)は、第2純水供給ライン40を介して再度水電解装置22に供給される。純水の循環は、例えば、第2純水供給ライン40に配置された循環ポンプ(図示せず)により行われる。
[A−1−3.水電解装置22]
水電解装置22は、水(純水)を電気分解することによって酸素及び高圧水素を製造する差圧式高圧水電解装置である。ここでの高圧水素は、常圧である酸素圧力よりも高圧(例えば、1MPa〜70MPa)の水素をいう。
水電解装置22は、積層した複数の水分解セル30(単位セル)を有する。水分解セル30の積層方向両端には、エンドプレート32a、32bが配設される。水電解装置22には、直流電源である電解電源34が接続される。
水分解セル30は、固体高分子電解質膜(イオン交換膜)と、電極触媒層と、給電体とを有する(いずれも図示せず)。固体高分子電解質膜は、水を分解して水素(及び酸素)を発生させる。電極触媒層は、固体高分子電解質膜の両側に配置されたアノード側電極触媒層とカソード側電極触媒層とを含む。固体高分子電解質膜及び電極触媒層により電解質膜・電極構造体が構成される。給電体は、電解質膜・電極構造体の両側に配置される。以下では、水分解セル30の集合体をセルユニットともいう。
エンドプレート32aには、第2純水供給ライン40が接続される。エンドプレート32bには、循環ライン42及び水素供給ライン44が接続される。第2純水供給ライン40には、アノード系20から純水が供給される。循環ライン42からは、反応により生成した酸素(及び透過した水素)と未反応の水とが排出される。水素供給ライン44は、水電解装置22で生成された水素を、カソード系24(後述する第1タンク80)に供給する。
水電解装置22は、例えば、特開2012−219276号公報、特開2014−080634号公報又は特許文献1と同様の構成を用いることができる。
[A−1−4.カソード系24]
(A−1−4−1.カソード系24の概要)
カソード系24は、高圧気液分離器60と、水素導出ライン62と、第1排水ライン64と、脱圧ライン66と、低圧用水封器68と、排気ライン70と、第2排水ライン72とを有する。高圧気液分離器60は、第1タンク80と、第1水位センサ82と、第1圧力センサ84とを有する。水素導出ライン62には、冷却装置90と、吸着装置92と、第1背圧弁94とが設けられる。第1排水ライン64には、オリフィス100と、高圧排水用電磁弁102とが設けられる。脱圧ライン66には、減圧弁110と、メータリングバルブ112と、脱圧用電磁弁114とが設けられる。
低圧用水封器68は、第2タンク120と、第2水位センサ122と、第2圧力センサ124とを有する。排気ライン70には、第2背圧弁130が設けられる。第2排水ライン72には、低圧排水用電磁弁140が設けられる。
(A−1−4−2.高圧気液分離器60)
高圧気液分離器60(以下「気液分離器60」又は「分離器60」ともいう。)は、水素供給ライン44を介して水電解装置22から導出される高圧水素に含まれる水分を除去する。分離器60を構成する第1タンク80は、水素に含まれる水分(液状体)を貯留する。
第1タンク80の上部(例えば頂面)には、水素導出ライン62が接続される。このため、第1タンク80内に進入した水素は、水素導出ライン62から外部に放出される。また、第1タンク80の下部(例えば底面)には、第1排水ライン64が接続される。このため、第1タンク80に貯留した液状水は、第1排水ライン64を介して排出される。さらに、第1タンク80の側部(例えば上方側部)には、脱圧ライン66が接続される。このため、水素の生成を終える脱圧処理(後述)の際には、第1タンク80内の水素は、脱圧ライン66を介して放出される。
第1水位センサ82(以下「水位センサ82」ともいう。)は、第1タンク80内の水位L1[m]を検出する。水位センサ82は、超音波等により水面の高さを複数段階で検出するセンサとすることができる。或いは、水位センサ82は、水との接触を検出して水面が検出素子の高さに到達しているか否かのみを判定する(換言すると水面の高さを単一段階で検出する)1つ又は複数のセンサとしてもよい。第1圧力センサ84(以下「圧力センサ84」ともいう。)は、第1タンク80内の気体(すなわち水素)の圧力P1[Pa]を検出する。第1水位センサ82及び第1圧力センサ84の検出値(出力信号)は、制御装置26に出力される。
(A−1−4−3.水素導出ライン62)
水素導出ライン62は、気液分離器60で分離された(又は水分が除去された)高圧水素を気液分離器60から導出する。冷却装置90は、分離器60からの高圧水素を冷却する。吸着装置92は、冷却装置90で冷却された高圧水素に含まれる水蒸気(水分)を吸着する。第1背圧弁94は、吸着装置92で水分が吸着(又は除去)された高圧水素が規定圧力値以上になったら(換言すると、第1タンク80、水素導出ライン62等から構成される閉塞空間内の水素の量が規定量以上になったら)、自動的に(すなわち、制御装置26からの指令なしに)外部に排出する。従って、規定圧力値に昇圧された製品水素(ドライ水素)は、外部機器に供給される(例えば燃料電池車両(以下「FCV」ともいう。)に充填される。)。
(A−1−4−4.第1排水ライン64)
第1排水ライン64は、高圧状態の液状水を気液分離器60から排出する。第1排水ライン64には、高圧水を減圧させる圧力損失部材、例えば、オリフィス100が配設される。高圧排水用電磁弁102(以下「電磁弁102」ともいう。)は、第1排水ライン64における液状水の流れを、制御装置26からの指令に基づいてオンオフする。換言すると、電磁弁102は、第1排水ライン64の開放状態と閉塞状態を、制御装置26からの指令に基づいて切り替える。なお、オリフィス100に代えて、例えば、微細状チューブを用いてもよい。
図示しない漏水センサを第1排水ライン64に設けて、第1排水ライン64からの漏水を検出してもよい。或いは、気液分離器60の水位L1に基づいて第1排水ライン64の漏水を検出することも可能である。例えば、後述する電解処理によりカソード系24で水素を生成している際の水位L1の変化を予め記憶した参照データと、実際に電解処理を行っている際の水位L1の変化を比較して、第1排水ライン64の漏水の発生を判定することができる。
(A−1−4−5.脱圧ライン66)
脱圧ライン66は、気液分離器60を脱圧する。減圧弁110は、第1タンク80内の圧力P1を目標圧力まで減圧する。メータリングバルブ112は、脱圧ライン66を流れる水素の流量(換言すると、低圧用水封器68に供給する水素の流量)[m3/sec]を可変に制御する。なお、メータリングバルブ112に代えて、例えば、オリフィス、微細状チューブ等を用いてもよい。
脱圧用電磁弁114(以下「電磁弁114」ともいう。)は、脱圧ライン66における水素の流れを、制御装置26からの指令に基づいてオンオフする。換言すると、電磁弁114は、脱圧ライン66の開放状態と封止状態を、制御装置26からの指令に基づいて切り替える。メータリングバルブ112及び脱圧用電磁弁114は、制御装置26により制御される。本実施形態の脱圧ライン66は、高圧排水用電磁弁102よりも下流側において第1排水ライン64に合流する。或いは、脱圧ライン66は、第1排水ライン64と合流せずに低圧用水封器68に接続されてもよい。換言すると、脱圧ライン66は、低圧用水封器68において、第1排水ライン64と合流してもよい。
(A−1−4−6.低圧用水封器68)
低圧用水封器68(以下「水封器68」ともいう。)は、第1排水ライン64及び脱圧ライン66の下流に設けられる。水封器68を構成する第2タンク120は、第1排水ライン64及び脱圧ライン66を介して供給される液状水及び水素(気体)を貯留する。
第2タンク120の下部(例えば底面)には、第1排水ライン64が接続される。なお、第2タンク120のその他の部位(例えば上部)に第1排水ライン64を接続してもよい。また、第1排水ライン64に合流することなしに脱圧ライン66を第2タンク120に接続する場合、脱圧ライン66を第2タンク120の上部等に接続してもよい。
第2水位センサ122(以下「水位センサ122」ともいう。)は、第2タンク120内の水位L2[m]を検出する。第2水位センサ122は、超音波等により水面の高さを複数段階で検出するセンサとすることができる。或いは、第2水位センサ122は、水との接触を検出して水面が検出素子の高さに到達しているか否かのみを判定する(換言すると水面の高さを単一段階で検出する)1つ又は複数のセンサとしてもよい。第2圧力センサ124(以下「圧力センサ124」ともいう。)は、第2タンク120内の気体(水素)の圧力P2[Pa]を検出する。第2水位センサ122及び第2圧力センサ124の検出値(出力信号)は、制御装置26に出力される。
(A−1−4−7.排気ライン70)
排気ライン70は、第2タンク120内の水素を外部に排気する。液状水ではなく、気体としての水素を排出するため、排気ライン70は、第2タンク120の上部(例えば頂面)等に接続される。第2背圧弁130(以下「排気用背圧弁130」又は「背圧弁130」ともいう。)は、通常時に排気ライン70を閉塞する閉塞弁である。第2背圧弁130は、第2タンク120内の水素が規定圧力値以上になったら(換言すると、第2タンク120内の水素の量が規定量以上になったら)、自動的に(すなわち、制御装置26からの指令なしに)外部に排出する。これにより、第2タンク120内の圧力P2を所定範囲に保つことが可能となる。
(A−1−4−8.第2排水ライン72)
第2排水ライン72は、低圧用水封器68内に溜まった液状水を外部に排出する。液状水を排出するため、第2排水ライン72は、第2タンク120の下部(例えば底面)等に接続される。低圧排水用電磁弁140(以下「電磁弁140」ともいう。)は、第2排水ライン72における液状水の流れを、制御装置26からの指令に基づいてオンオフする。換言すると、電磁弁140は、第2排水ライン72の開放状態と封止状態を、制御装置26からの指令に基づいて切り替える。
[A−1−5.制御装置26]
(A−1−5−1.制御装置26の概要)
制御装置26は、水電解システム10全体を制御するコンピュータであり、例えば、中央処理装置(CPU)を含む。特に本実施形態の制御装置26は、脱圧ライン66の脱圧用電磁弁114のシートリーク(水素漏れ)を判定する(詳細は、図3〜図5を用いて後述する。)。図1に示すように、制御装置26は、入出力部150、演算部152及び記憶部154を有する。
(A−1−5−2.入出力部150)
入出力部150は、制御装置26以外の機器(アノード系20、水電解装置22、水位センサ82、122、圧力センサ84、124、メータリングバルブ112、電磁弁102、114、140等)との入出力を行う。入出力部150は、入力されたアナログ信号をデジタル信号に変換する図示しないA/D変換回路を備える。
(A−1−5−3.演算部152)
演算部152は、アノード系20、水電解装置22、水位センサ82、122、圧力センサ84、124等からの信号に基づいて演算を行う。そして、演算部152は、演算結果に基づき、アノード系20、水電解装置22及びカソード系24に対する信号を生成する。
図1に示すように、演算部152は、通常電解制御部160及び脱圧ライン監視制御部162を有する。これらの各部は、記憶部154に記憶されているプログラムを実行することにより実現される。前記プログラムは、図示しない通信装置を介して外部機器から供給されてもよい。前記プログラムの一部をハードウェア(回路部品)で構成することもできる。
通常電解制御部160は、水素導出ライン62を介して外部に供給する水素を電解処理により発生させる通常電解制御を実行する。通常電解制御については、図2及び図3を参照して後述する。脱圧ライン監視制御部162は、脱圧ライン66を監視する脱圧ライン監視制御を実行する。本実施形態において、脱圧ライン監視制御は、通常電解制御の一部をなす。脱圧ライン監視制御については、図3〜図5を参照して後述する。
(A−1−5−4.記憶部154)
記憶部154は、演算部152が利用するプログラム及びデータを記憶する。記憶部154は、例えば、ランダム・アクセス・メモリ(以下「RAM」という。)を備える。RAMとしては、レジスタ等の揮発性メモリと、フラッシュメモリ等の不揮発性メモリとを用いることができる。また、記憶部154は、RAMに加え、リード・オンリー・メモリ(以下「ROM」という。)を有してもよい。
<A−2.本実施形態の制御>
[A−2−1.通常電解制御]
(A−2−1−1.通常電解制御の概要)
図2は、本実施形態の通常電解制御のフローチャートである。通常電解制御では、水素の生成(電気分解)を行う。図2のステップS11において、制御装置26は、電解処理の開始条件が成立したか否かを判定する。当該開始条件としては、例えば、図示しない操作スイッチを介してユーザから電解処理の開始指令が入力されたことを用いることができる。電解処理の開始条件が成立した場合(S11:YES)、ステップS12に進む。電解処理の開始条件が成立しない場合(S11:NO)、今回の通常電解制御を終了し、所定時間後にステップS11に戻る。
ステップS12において、制御装置26は、脱圧ライン66を監視する脱圧ライン監視制御を実行する。脱圧ライン監視制御については、図3〜図5を参照して後述する。
脱圧ライン監視制御の結果、脱圧ライン66が正常である場合(S13:YES)、ステップS14において、制御装置26は、電解処理を実行する(詳細は、図3を参照して後述する)。ステップS15において、電解処理の終了条件が成立したか否かを判定する。当該終了条件としては、例えば、前記操作スイッチを介してユーザから電解処理の終了指令が入力されたことを用いることができる。或いは、図示しないFCVに対する製品水素の充填が完了したこと(例えば、FCVから充電完了信号を受信したこと)を用いることができる。
電解処理の終了条件が成立した場合(S15:YES)、ステップS16に進む。電解処理の終了条件が成立しない場合(S15:NO)、ステップS14に戻る。
ステップS16において、制御装置26は脱圧処理を実行する。なお、電解処理の終了条件(S15)が成立しない場合でも、カソード系24内の圧力(例えば圧力P1)が圧力閾値を超えた場合、脱圧処理を行ってもよい。脱圧処理の詳細は、図3を参照して後述する。
ステップS13において脱圧ライン66が正常でない場合(S13:NO)、ステップS17において、制御装置26は、脱圧ライン66で水素漏れが発生した旨の報知(異常の報知)を行う。ここでの報知は、例えば、図示しないスピーカ及び/又はディスプレイにより行う。ステップS18において、制御装置26は、水電解システム10を緊急停止する。この際、制御装置26は、水素漏れが発生したことを示すデータ(故障コード)を記憶部154に記憶する。
脱圧ライン監視制御(S12)及びこれに伴うステップS17、S18を除き、通常電解制御の流れは、基本的に従来技術(例えば特許文献1又は特開2012−219276号公報)と同様とすることができる。
以下では、電解処理(図2のS14)及び脱圧処理(S16)を説明した後、脱圧ライン監視制御(S12)について説明する。
(A−2−1−2.電解処理(図2のS14))
(A−2−1−2−1.電解処理の概要)
図3は、本実施形態の通常電解制御(脱圧ライン監視制御を含む。)における電解電源34及び各弁の状態を示す図である。図3において、電解処理は、右から2列目の「電解処理時(通常)」が対応する。
電解処理において、制御装置26は、アノード系20の前記純水製造装置から水電解装置22に対して純水を供給させる。水電解装置22は、純水を電気分解して水素及び酸素を発生させる。発生した水素は、水素供給ライン44を介してカソード系24に供給される。発生した酸素は、循環ライン42を介してアノード系20に供給される。また、電気分解されなかった純水は、循環ライン42、アノード系20及び第2純水供給ライン40を介して再度水電解装置22に供給される。
(A−2−1−2−2.電気分解)
水電解装置22において、純水の電気分解は下記のように行われる。すなわち、水電解装置22の前記セルユニットに純水が供給された状態で電解電源34をオンにする。ここでの電解電源34の電圧は、前記セルユニットの積層方向両端に付与する。これにより、電解質膜・電極構造体のアノード側では、水が分解されて水素イオン(プロトン)及び酸素が生成される。水素イオンは、固体高分子電解質膜を透過してカソード側に移動し、電子と結合して水素が生成される。また、アノード側では、酸素が生成される。
(A−2−1−2−3.水素の排出(又は供給))
カソード側で生成された水素は、水素供給ライン44を介して高圧気液分離器60に供給される。気液分離器60では、水素に含まれる水分が、この水素から分離される。
気液分離器60内の高圧水素は、水素導出ライン62に導出され、冷却装置90により冷却された後、吸着装置92に供給される。吸着装置92では、高圧水素に含まれる水蒸気(水分)が吸着され、乾燥状態の製品水素(ドライ水素)が得られる。
第1背圧弁94の手前側の製品水素の圧力が第1背圧弁94の規定圧力値(例えば、数十MPa)未満である場合、第1背圧弁94は閉状態を維持する(図3)。このため、水素の生成が進行してカソード系24内の圧力が上昇すると、これに伴って製品水素の圧力が増加する。第1背圧弁94の手前側の製品水素の圧力が第1背圧弁94の規定圧力値以上になると、第1背圧弁94が一時的に開状態となる(図3)。これにより、昇圧された製品水素が外部に排出(又は供給)される。製品水素は、例えば、図示しないFCVに充填される。製品水素の排出に伴って製品水素の圧力が低下すると、第1背圧弁94は閉状態に戻る(図3)。
(A−2−1−2−4.第1排水ライン64の制御)
電解処理に際し、制御装置26は、第1タンク80に貯留された液状水の水位L1に応じて、第1排水ライン64からの液状水の排出を制御する。上記のように、水位L1は、第1水位センサ82により検出される。電解処理に際し、制御装置26は、水位L1の上限値THl1emax(以下「電解時上限値THl1emax」ともいう。)と、下限値THl1emin(以下「電解時下限値THl1emin」ともいう。)とを設定する。
電解処理に伴って水位L1が電解時上限値THl1emax以上になると、制御装置26は、高圧排水用電磁弁102を開状態にする(図3)。これにより、第1タンク80内の液状水は、オリフィス100により減圧された後、低圧用水封器68に供給される。また、水位L1が電解時下限値THl1emin以下になると、制御装置26は、高圧排水用電磁弁102を閉状態にする(図3)。これにより、第1タンク80から低圧用水封器68への水の供給が停止される。
(A−2−1−2−5.脱圧ライン66の制御)
電解処理時において、制御装置26は、脱圧用電磁弁114を閉状態とする。これにより、脱圧ライン66は閉塞状態となり、水素は流れない。この際、制御装置26は、減圧弁110及びメータリングバルブ112をオフにする。
(A−2−1−2−6.排気ライン70の動作)
電解処理時において、第2タンク120内の液状水が増加すると、第2タンク120内の圧力P2が増加する。第2背圧弁130は、第2タンク120内の水素が規定圧力値以上になったら、自動的に(すなわち、制御装置26からの指令なしに)外部に排出する。
(A−2−1−2−7.第2排水ライン72の制御)
電解処理に際し、制御装置26は、第2タンク120に貯留された液状水の水位L2に応じて、第2排水ライン72からの液状水の排出を制御する。上記のように、水位L2は、第2水位センサ122により検出される。電解処理に際し、制御装置26は、水位L2の上限値THl2emax(以下「電解時上限値THl2emax」ともいう。)と、下限値THl2emin(以下「電解時下限値THl2emin」ともいう。)とを設定する。
電解処理に伴って水位L2が電解時上限値THl2emax以上になると、制御装置26は、低圧排水用電磁弁140を開状態にする(図3)。これにより、第2タンク120内の液状水は、第2排水ライン72から外部に排出される。また、水位L2が電解時下限値THl2emin以下になると、制御装置26は、低圧排水用電磁弁140を閉状態にする(図3)。これにより、第2タンク120から外部への水の供給が停止される。
(A−2−1−2−8.酸素の排出)
アノード側で生成された酸素は、アノード系20を介して外部に排出される。酸素の排出方法については、例えば、特開2012−219276号公報、特開2014−080634号公報又は特許文献1と同様の方法を用いることができる。
(A−2−1−3.脱圧処理(図2のS16))
脱圧処理は、カソード系24内の圧力(特に高圧気液分離器60内の圧力P1)を減少させる処理である。図3において、脱圧処理は、一番右側の「脱圧処理時」が対応する。脱圧処理の目的は、カソード系24からアノード系20への水素の浸入防止である。これに加えて又はこれに代えて、固体高分子電解質膜の保護を脱圧処理の目的としてもよい。
カソード系24からアノード系20への水素の浸入防止に焦点を当てた場合、脱圧処理は、カソード系24側の圧力(例えば第1タンク80内の圧力P1)が、アノード系20側の圧力と等しくなるまで行う。或いは、アノード系20側の圧力と等しくなくても、カソード系24からアノード系20への水素の浸入を実質的に防止することができる値までカソード系24側の圧力を減少させてもよい。或いは、カソード系24からアノード系20への水素の浸入が実質的に無視できるほど微量に過ぎない圧力差となるように、カソード系24側の圧力を減少させることも可能である。また、固体高分子電解質膜の保護に焦点を当てた場合、脱圧処理は、カソード系24側の圧力が、固体高分子電解質膜の保護に適した値以下に低下するまで行う。
本実施形態の脱圧処理では、液状水を排出した後に水素を排出する。或いは、水素を排出した後に液状水を排出してもよい。或いは、水素と液状水を交互に又は同時に排出することも可能である。
脱圧処理において、制御装置26は、電解電源34をオンに維持した状態で、図3に示すように各弁を制御する。具体的には、脱圧処理を開始するに際し、制御装置26は、電解電源34をオンに維持した状態で、高圧排水用電磁弁102、脱圧用電磁弁114及び低圧排水用電磁弁140を開にすると共に、脱圧用減圧弁110及びメータリングバルブ112をオンにする。この際、制御装置26は、脱圧ライン66における液状水の流量を流量閾値以下に維持するため、第1タンク80内の圧力P1に応じてメータリングバルブ112の開状態を調整する。これにより、第1タンク80内の液状水が第1排水ライン64及び脱圧ライン66を介して第2タンク120に放出される。また、第2タンク120内の液状水が第2排水ライン72を介して外部に排出される。
脱圧処理時の高圧排水用電磁弁102の制御に関し、制御装置26は、第1タンク80内の水位L1の下限値THl1dmin(以下「脱圧時下限値THl1dmin」ともいう。)を設定する。本実施形態の下限値THl1dminは固定値である。
制御装置26は、水位L1が下限値THl1dmin以下になるまで電磁弁102の開状態を維持して第1タンク80内の液状水の排出を継続する。水位L1が下限値THl1dmin以下になると、制御装置26は、高圧排水用電磁弁102を閉にする。これにより、第1タンク80から第2タンク120への液状水の放出を停止する。水位L1が下限値THl1dmin以上になると、制御装置26は、高圧排水用電磁弁102を開にする。これにより、第1タンク80から第2タンク120への液状水の放出を再開する。
上記のように、水位L1に応じて電磁弁102の開と閉の切替えを繰り返すことで、第1タンク80内の液状水を第2タンク120に放出する。
脱圧処理時の低圧排水用電磁弁140の制御に関し、制御装置26は、第2タンク120内の水位L2の下限値THl2dmin(以下「脱圧時下限値THl2dmin」ともいう。)を設定する。本実施形態の下限値THl2dminは固定値である。
制御装置26は、第2タンク120内の水位L2が下限値THl2dmin以下になるまで電磁弁140の開状態を維持して液状水の排出を継続する。第2タンク120内の水位L2が下限値THl2dmin以下になると、制御装置26は、低圧排水用電磁弁140を閉にする。これにより、第2タンク120から外部への液状水の放出を停止する。水位L2が下限値THl2dmin以上になると、制御装置26は、低圧排水用電磁弁140を開にする。これにより、第2タンク120から外部への液状水の放出を再開する。
上記のように、水位L2に応じて電磁弁140の開と閉の切替えを繰り返すことで、第2タンク120内の液状水を外部に放出する。
なお、第1タンク80から第2タンク120への液状水の供給に伴って水位L2が上昇した場合、第2タンク120内の圧力P2が増加する。第2背圧弁130は、第2タンク120内の水素が規定圧力値以上になったら、自動的に(すなわち、制御装置26からの指令なしに)外部に排出する。
高圧気液分離器60内の水素の排出は、液状水の排出と同様である。なお、上記のように、水素を排出した後に液状水を排出することも可能である。或いは、水素と液状水を交互に又は同時に排出することも可能である。
[A−2−2.脱圧ライン監視制御]
(A−2−2−1.脱圧ライン監視制御の全体的な流れ)
上記のように、本実施形態では、図2のステップS12において、脱圧ライン66を監視する脱圧ライン監視制御を実行する。脱圧ライン監視制御では、脱圧ライン66の水素漏れ(具体的には、脱圧用電磁弁114におけるシートリーク)の発生を監視する。図3において、脱圧ライン監視制御は、左側の「電解開始時(脱圧ライン監視制御時)」が対応する。
図4は、本実施形態の脱圧ライン監視制御のフローチャートである。図4のステップS21において、制御装置26は、脱圧ライン66の監視開始条件が成立したか否かを判定する。本実施形態の監視開始条件は、通常電解制御が開始されたことである。このため、図2のステップS11と組み合わせることで、ステップS21を省略することができる。後述するようにその他のタイミングを、監視開始条件としてもよい。
監視開始条件が成立しない場合(S21:NO)、換言すると、待機時の間、制御装置26は、各弁(電磁弁102、114、140等)を、図3の「待機時」に対応する状態とする。例えば、制御装置26は、電解電源34をオフにし、電磁弁102、140を閉にし、電磁弁114を開にし、減圧弁110及びメータリングバルブ112をオフにする。
監視開始条件が成立した場合(S21:YES)、ステップS22において、制御装置26は、低圧排水用電磁弁140を、閉状態から開状態に切り替えて、低圧用水封器68内(第2タンク120内)の脱圧を開始する。閉状態から開状態への切替えは、例えば、所定時間Tdp[sec]の間(例えば、数秒の間)行う。これにより、第2タンク120内の圧力P2を大気圧又はその近似値にすることができる。
或いは、制御装置26は、低圧用水封器68の水位L2が水位閾値THl2aに低下するまで電磁弁140を開状態としてもよい。或いは、制御装置26は、低圧用水封器68内の圧力P2が圧力閾値THp2aに低下するまで電磁弁140を開状態とすることも可能である。
開状態にしてから所定時間Tdpの後、ステップS23において、制御装置26は、低圧排水用電磁弁140を開状態から閉状態に戻す。これにより、低圧用水封器68内の脱圧を終了する。従って、第2タンク120内の圧力P2は、所望の値まで低下したこととなる。
ステップS24において、制御装置26は、低圧用水封器68内の圧力P2(以下「基準値P2ref」という。)を取得する。ここでの基準値P2refは、複数の圧力P2に基づく平均値等であってもよい。なお、ステップS23の脱圧の終了を圧力P2が圧力閾値THp2aに低下したことにより判定した場合、制御装置26は、第2圧力センサ124から圧力P2を取得する代わりに、圧力閾値THp2aを基準値P2refとして用いることもできる。
ステップS25において、制御装置26は、電気分解を行うための初期動作を行う。具体的には、図3に示すように、制御装置26は、電解処理(図2のS14、図3の「電解処理時(通常)」)と同様に、電解電源34及び各弁を制御する。
ステップS26において、制御装置26は、電解電源34をオンにして純水の電気分解により水素及び酸素を生成する(換言すると、電解処理を行う。)。ステップS27において、制御装置26は、低圧用水封器68内の圧力P2(以下「現在値P2cur」という。)を取得する。ここでの現在値P2curは、複数の圧力P2に基づく平均値等であってもよい。
ステップS28において、制御装置26は、現在値P2curと基準値P2refの差P2cur−P2refが圧力差閾値THΔP2以下であるか否かを判定する。圧力差閾値THΔP2は、脱圧ライン66の水素漏れ(脱圧用電磁弁114のシートリーク)を判定する閾値である。差P2cur−P2refが圧力差閾値THΔP2以下である場合(S28:YES)、脱圧用電磁弁114のシートリークは発生していないと判定することができる。
その場合、ステップS29において、制御装置26は、脱圧ライン66の監視終了条件が成立したか否かを判定する。監視終了条件は、例えば、監視開始条件の成立から所定時間が経過したことを用いることができる。監視終了条件が成立しない場合(S29:NO)、ステップS26に戻る。監視終了条件が成立した場合(S29:YES)、ステップS30に進む。
ステップS30において、制御装置26は、脱圧ライン66の水素漏れが発生していないことを示すフラグ(正常フラグ)を記憶部154に記憶する。図2のステップS13では正常フラグに基づいて脱圧ライン66が正常であると判定する。
続くステップS31において、制御装置26は、脱圧ライン66の監視を終了する。上記のように、通常電解制御の開始に伴って脱圧ライン監視制御を行う場合、制御装置26は、脱圧ライン監視制御を終了した後、通常電解制御を継続する。脱圧ライン監視制御後に通常電解制御を継続しない場合、制御装置26は、上記脱圧処理(図2のS16、図3)を実行した後、待機時(図3)の状態に戻る。
ステップS28に戻り、差P2cur−P2refが圧力差閾値THΔP2以下でない場合(S28:NO)、高圧排水用電磁弁102及び脱圧用電磁弁114が閉状態であるにもかかわらず、第2タンク120内の圧力P2が増加していること(図5B)を意味する。換言すると、脱圧ライン66で水素漏れが発生していること(電磁弁114でシートリークが発生していること)を意味する。
そこで、ステップS32において、制御装置26は、脱圧ライン66の水素漏れが発生していることを示すフラグ(異常フラグ)を記憶部154に記憶する。図2のステップS13では異常フラグに基づいて脱圧ライン66が正常でないと判定する。
(A−2−2−2.正常時と異常時の比較)
図5Aは、本実施形態における脱圧ライン監視制御を、正常なカソード系24で行った場合の一例を示すタイムチャートである。図5Bは、本実施形態における脱圧ライン監視制御を、異常が発生したカソード系24で行った場合の一例を示すタイムチャートである。ここにいう異常とは、脱圧ライン66での水素漏れ(脱圧用電磁弁114でのシートリーク)が発生した状態を意味する。
図5A(正常時)及び図5B(シートリーク発生時)のいずれにおいても、時点t11〜t12において、制御装置26は、待機状態(図4のS21:NO)である。時点t12〜t13において、制御装置26は、低圧排水用電磁弁140を開にする(図4のS22〜S23)。これにより、低圧用水封器68内の圧力P2が低下する。時点t13〜t14において、制御装置26は、電解処理を行うための初期動作を行う(図4のS25)。時点t14〜t15において、制御装置26は、電解処理を行う(図4のS26)。
図5Aの場合、脱圧用電磁弁114にシートリークは発生していない。このため、電解処理を開始しても水封器68内の圧力P2は、ほとんど変化しない(図5Aの時点t14〜t15)。
これに対し、図5Bの場合、脱圧用電磁弁114にシートリークが発生している。このため、気液分離器60(第1タンク80)内の圧力P1が脱圧ライン66を介して水封器68(第2タンク120)に伝達する。従って、電解処理を開始すると、圧力P1の増加に伴って圧力P2が増加する(図5Bの時点t14〜t15)。その結果、現在値P2curと基準値P2refの差ΔP2(=P2cur−P2ref)が、圧力差閾値THΔP2を上回る(図4のS28:NO)。従って、制御装置26は、脱圧用電磁弁114でのシートリークの発生を判定することが可能となる。
<A−3.本実施形態の効果>
以上のように、本実施形態によれば、第1排水ライン64及び脱圧ライン66の下流に設けられた低圧用水封器68内の圧力P2に応じて、脱圧ライン66における水素漏れ(脱圧用電磁弁114のシートリーク)を判定する(図4、図5A及び図5B)。これにより、低圧用水封器68を備える構成において、脱圧ライン66における水素漏れを簡易に判定することが可能となる。その結果、水素の排出を好適に制御することが可能となる。
また、水素の漏れが比較的多ければ、高圧気液分離器60内の圧力P1の低下で脱圧ライン66等の水素漏れが検出できたとしても、水素の漏れが比較的少ない場合には、圧力P1の低下が目立たないことがあり得る。その場合、脱圧ライン66を介して水素が漏れ続けることで、水素導出ライン62から供給される水素の量(例えば、FCVに供給される水素の量)が減少してしまう。本実施形態では、低圧用水封器68内の圧力P2を用いるため、比較的少ない量の水素が漏れている場合でも、水素漏れを判定し易くなる。この点からも、水素の排出を好適に制御することが可能となる。
本実施形態に係る水電解システム10の制御方法は、
制御装置26が高圧排水用電磁弁102、脱圧用電磁弁114及び低圧排水用電磁弁140を閉状態とし且つ水電解装置22による水素生成(電解処理)を実行中であるときの低圧用水封器68内の圧力P2である現在値P2cur(電解時圧力)を第2圧力センサ124(圧力取得部)により取得する電解時圧力取得工程(図4のS27)と、
制御装置26が、少なくとも現在値P2curに基づいて脱圧ライン66の水素漏れの発生を判定する水素漏れ判定工程(図4のS28)と
を備える。
本実施形態によれば、少なくとも現在値P2cur(電解時圧力)に基づいて、脱圧ライン66の水素漏れの発生を判定する(図3〜図5B)。これにより、低圧用水封器68を備える構成において、簡易な手法で水素漏れの判定が可能となる。その結果、水素の排出を好適に制御することが可能となる。
本実施形態に係る水電解システム10の制御方法では、制御装置26が、高圧排水用電磁弁102及び低圧排水用電磁弁140を閉状態とし、脱圧用電磁弁114を開状態とし且つ水電解装置22による水素生成(電解処理)を停止中であるときの低圧用水封器68内の圧力P2である基準値P2ref(基準圧力)を第2圧力センサ124(圧力取得部)により取得する基準圧力取得工程を備える(図4のS24)。水素漏れ判定工程(S28)において、制御装置26は、現在値P2cur(電解時圧力)と基準値P2refとの比較結果に基づいて水素漏れの発生を判定する。現在値P2curの時間的な変化を監視する場合と比較して、現在値P2curと基準値P2refは、差が大きくなり易い。このため、現在値P2curと基準値P2refとの比較結果を用いて水素漏れの発生を判定することで、比較的高精度に水素漏れを判定することが可能となる。
本実施形態において、基準圧力取得工程(図4のS24)では、制御装置26は、低圧排水用電磁弁140を開状態として、低圧用水封器68内を減圧した後、第2圧力センサ124(圧力取得部)により基準値P2ref(基準圧力)を取得する。また、水素漏れ判定工程(S28)において、制御装置26は、現在値P2cur(電解時圧力)と、減圧後の基準値P2refとの比較結果に基づいて水素漏れの発生を判定する(図4のS28、図5A、図5B)。これにより、減圧した基準値P2refを用いることで、現在値P2curと基準値P2refの相違を際立たせて、水素漏れの発生を高精度に判定することが可能となる。また、基準値P2refを特定の固定値まで減圧した場合、水素漏れの判定を複数回行った際に、複数の現在値P2curの変化が分かり易くなる。従って、水素漏れの発生を比較的高精度に判定することが可能となる。
本実施形態において、水素漏れ判定工程(図4のS28)を、水電解装置22による水素生成(電解処理)の開始時(図2のS11:YES、図4のS21:YES)に行う。これにより、現在値P2cur(電解時圧力)の変化が比較的大きい状態で水素漏れの発生を判定することで、水素漏れの発生を高精度に行うことが可能となる。また、水素生成の開始時に水素漏れの発生を判定することで、水素漏れの発生時には迅速に水素生成を停止することが可能となる。
B.変形例
なお、本発明は、上記実施形態に限らず、本明細書の記載内容に基づき、種々の構成を採り得ることはもちろんである。例えば、以下の構成を採用することができる。
<B−1.適用対象>
上記実施形態では、水電解システム10が生成した水素を、燃料電池車両(FCV)に供給することを想定していた。しかしながら、例えば、低圧用水封器68内(第2タンク120内)の圧力P2を用いて脱圧ライン66における水素漏れを判定する観点からすれば、これに限らない。例えば、水電解システム10が生成した水素は、住宅に配置する家庭用燃料電池に供給してもよい。
<B−2.カソード系24の構成>
[B−2−1.水素導出ライン62]
上記実施形態では、水素導出ライン62に、第1背圧弁94を設けた(図1)。しかしながら、例えば、低圧用水封器68内(第2タンク120内)の圧力P2を用いて脱圧ライン66における水素漏れを判定する観点からすれば、これに限らない。例えば、第1背圧弁94を、電磁弁(水素導出用電磁弁)に置き換えてもよい。その場合、制御装置26は、第1タンク80内の圧力P1が所定値以上になったとき、水素導出用電磁弁を一時的に開状態とすることができる。
[B−2−2.第1排水ライン64]
上記実施形態では、第1排水ライン64に、オリフィス100及び高圧排水用電磁弁102を設けた(図1)。しかしながら、例えば、低圧用水封器68内(第2タンク120内)の圧力P2を用いて脱圧ライン66における水素漏れを判定する観点からすれば、これに限らない。例えば、オリフィス100を省略することが可能となる。
[B−2−3.脱圧ライン66]
上記実施形態では、脱圧ライン66に、減圧弁110、メータリングバルブ112及び脱圧用電磁弁114を設けた(図1)。しかしながら、例えば、低圧用水封器68内(第2タンク120内)の圧力P2を用いて脱圧ライン66における水素漏れを判定する観点からすれば、これに限らない。例えば、減圧弁110及びメータリングバルブ112の一方又は他方を省略することが可能となる。
上記実施形態では、脱圧ライン66を第1排水ライン64に合流させた(図1)。しかしながら、例えば、低圧用水封器68内(第2タンク120内)の圧力P2を用いて脱圧ライン66における水素漏れを判定する観点からすれば、これに限らない。例えば、第1排水ライン64と合流させることなしに脱圧ライン66を低圧用水封器68に接続してもよい。換言すると、低圧用水封器68において、脱圧ライン66を第1排水ライン64に合流させてもよい。
[B−2−4.低圧用水封器68]
上記実施形態では、低圧用水封器68(第2タンク120)内に溜まる気体は、水素のみであることを想定していた(図1参照)。しかしながら、例えば、高圧気液分離器60側への外気の浸入防止が確保されていれば、第2タンク120内に水素以外の気体(外気)が浸入することを許容することも可能である。例えば、図1の構成において、第2タンク120内の液状水により第1排水ライン64が閉塞されて、外気が第1排水ライン64に浸入することがないことを確保することで、第2タンク120内への外気の浸入を許容してもよい。
[B−2−5.排気ライン70]
上記実施形態では、排気ライン70に、第2背圧弁130を設けた(図1)。しかしながら、例えば、低圧用水封器68内(第2タンク120内)の圧力P2を用いて脱圧ライン66における水素漏れを判定する観点からすれば、これに限らない。例えば、第2背圧弁130を、電磁弁(排気用電磁弁)に置き換えることが可能である。その場合、制御装置26は、第2タンク120内の圧力P2が所定値以上になったとき、排気用電磁弁を一時的に開状態とすることができる。
<B−3.制御装置26の制御>
[B−3−1.通常電解制御]
上記実施形態では、図3に示す方法で、各弁(電磁弁102、114、140等)を制御した。しかしながら、例えば、低圧用水封器68内(第2タンク120内)の圧力P2を用いて脱圧ライン66における水素漏れを判定する観点からすれば、これに限らない。例えば、図3に示す方法以外の方法で、各弁を制御してもよい。
[B−3−2.脱圧ライン監視制御]
(B−3−2−1.実行タイミング)
上記実施形態では、脱圧ライン監視制御における監視開始条件を、通常電解制御が開始されたこととした(図4のS21)。しかしながら、例えば、低圧用水封器68内(第2タンク120内)の圧力P2を用いて脱圧ライン66における水素漏れを判定する観点からすれば、これに限らない。例えば、通常電解制御の実行中において、前回の脱圧ライン監視制御から所定時間(例えば、10秒〜1時間のいずれかの値)が経過したことを監視開始条件とすることができる。或いは、所定の時刻(毎日午前3時)となったことを監視開始条件としてもよい。
(B−3−2−2.水素漏れ発生の判定方法)
上記実施形態では、現在値P2curと基準値P2refの差ΔP2に基づいて脱圧ライン66の水素漏れを判定した(図4のS28)。しかしながら、例えば、少なくとも現在値P2cur(電解時圧力)を用いて脱圧ライン66における水素漏れを判定する観点からすれば、これに限らない。
例えば、上記のように、脱圧ライン66に水素漏れ(脱圧用電磁弁114のシートリーク)が発生している場合、第2タンク120内を減圧した後に電解電源34をオンすると、圧力P2が増加する(図5B)。この点に着目し、電解処理の開始後に、単位時間当たりの圧力P2の変化量(以下「圧力変化速度P2’」という。)[Pa/sec]を算出し、この圧力変化速度P2’に基づいて脱圧ライン66の水素漏れを判定してもよい。
或いは、電解電源34をオンにした後において、単位時間当たりの圧力P1の変化量(又は圧力P1の増加傾向)と、圧力変化速度P2’(又は圧力P2の増加傾向)とに基づいて、脱圧ライン66の水素漏れを判定することも可能である。或いは、第2タンク120内の減圧に伴って第2タンク120内の圧力P2の大まかな値が推定可能である場合、電解電源34をオン後の単一の圧力P2としての現在値P2curを用いて、脱圧ライン66の水素漏れを判定することも可能である。すなわち、電解電源34オン後の特定タイミングにおける単一の現在値P2curが、所定の圧力閾値以上である場合、脱圧ライン66で水素漏れが発生していると判定してもよい。
(B−3−2−3.その他)
上記実施形態では、第2タンク120内の圧力P2を用いて脱圧ライン66における水素の漏れ(シートリーク)の発生を判定した。しかしながら、例えば、低圧用水封器68内(第2タンク120内)の圧力P2を用いて特定のライン(配管)の漏れを判定する観点からすれば、これに限らない。例えば、第1排水ライン64における液状水の漏れ(高圧排水用電磁弁102のシートリーク等)を判定することも可能である。
<B−4.その他>
上記実施形態では、数値の比較において等号を含む場合と含まない場合とが存在した(図4のS28等)。しかしながら、例えば、等号を含む又は等号を外す特別な意味がなければ(換言すると、本発明の効果を得られる場合)、数値の比較において等号を含ませるか或いは含ませないかは任意に設定可能である。
その意味において、例えば、図4のステップS28における現在値P2curと基準値P2refの差が圧力差閾値THΔP2以下であるか否かの判定(P2cur−P2ref≦THΔP2)を、差が圧力差閾値THΔP2未満であるか否かの判定(P2cur−P2ref<THΔP2)に置き換えることができる。
10…水電解システム 20…アノード系
22…水電解装置 24…カソード系
26…制御装置 60…気液分離器
62…水素導出ライン 64…第1排水ライン
66…脱圧ライン 68…低圧用水封器
70…排気ライン 72…第2排水ライン
102…高圧排水用電磁弁 114…脱圧用電磁弁
124…第2圧力センサ(圧力取得部)
130…第2背圧弁(閉塞弁) 140…低圧排水用電磁弁
P2…低圧用水封器内の圧力 P2cur…現在値(電解時圧力)
P2ref…基準値(基準圧力)

Claims (5)

  1. 水を電気分解し、アノード側に酸素を発生させ且つカソード側に前記酸素よりも高圧な水素を発生させる水電解装置と、
    前記水電解装置から排出される水素に含まれる水分を分離する気液分離器と、
    前記気液分離器から水素を導出する水素導出ラインと、
    前記気液分離器に溜まった液状水を排出する第1排水ラインと、
    前記気液分離器を脱圧する脱圧ラインと、
    前記第1排水ライン及び前記脱圧ラインの下流に設けられた低圧用水封器と、
    前記低圧用水封器内の気体を排気する排気ラインと、
    前記低圧用水封器に溜まった前記液状水を排出する第2排水ラインと、
    前記第1排水ラインに配置された高圧排水用電磁弁と、
    前記脱圧ラインに配置された脱圧用電磁弁と、
    前記排気ラインに配置されて前記排気ラインを閉塞する閉塞弁と、
    前記第2排水ラインに配置された低圧排水用電磁弁と、
    前記低圧用水封器内の圧力を取得する圧力取得部と、
    前記圧力取得部が取得した前記圧力に応じて前記脱圧ラインにおける水素漏れを判定する制御装置と
    を備えることを特徴とする水電解システム。
  2. 水を電気分解し、アノード側に酸素を発生させ且つカソード側に前記酸素よりも高圧な水素を発生させる水電解装置と、
    前記水電解装置から排出される水素に含まれる水分を分離する気液分離器と、
    前記気液分離器から水素を導出する水素導出ラインと、
    前記気液分離器に溜まった液状水を排出する第1排水ラインと、
    前記気液分離器を脱圧する脱圧ラインと、
    前記第1排水ライン及び前記脱圧ラインの下流に設けられた低圧用水封器と、
    前記低圧用水封器内の気体を排気する排気ラインと、
    前記低圧用水封器に溜まった前記液状水を排出する第2排水ラインと、
    前記第1排水ラインに配置された高圧排水用電磁弁と、
    前記脱圧ラインに配置された脱圧用電磁弁と、
    前記排気ラインに配置されて前記排気ラインを閉塞する閉塞弁と、
    前記第2排水ラインに配置された低圧排水用電磁弁と、
    前記低圧用水封器内の圧力を取得する圧力取得部と、
    前記圧力取得部が取得した前記圧力に応じて前記脱圧ラインにおける水素漏れを判定する制御装置と
    を備える水電解システムの制御方法であって、
    前記制御装置が、前記高圧排水用電磁弁、前記脱圧用電磁弁及び前記低圧排水用電磁弁を閉状態とし且つ前記水電解装置による水素生成を実行中であるときの前記低圧用水封器内の圧力である電解時圧力を前記圧力取得部により取得する電解時圧力取得工程と、
    前記制御装置が、少なくとも前記電解時圧力に基づいて前記脱圧ラインの水素漏れの発生を判定する水素漏れ判定工程と
    を備えることを特徴とする水電解システムの制御方法。
  3. 請求項2に記載の水電解システムの制御方法において、
    前記制御装置が、前記高圧排水用電磁弁を閉状態とし、前記脱圧用電磁弁を開状態とし、前記低圧排水用電磁弁を閉状態又は開状態とし且つ前記水電解装置による水素生成を停止中であるときの前記低圧用水封器内の圧力である基準圧力を前記圧力取得部により取得する基準圧力取得工程をさらに備え、
    前記水素漏れ判定工程において、前記制御装置は、前記電解時圧力と前記基準圧力との比較結果に基づいて前記水素漏れの発生を判定する
    ことを特徴とする水電解システムの制御方法。
  4. 請求項3に記載の水電解システムの制御方法において、
    前記基準圧力取得工程では、前記制御装置が、前記低圧排水用電磁弁を開状態として、前記低圧用水封器内を減圧した後、前記圧力取得部により前記基準圧力を取得し、
    前記水素漏れ判定工程において、前記制御装置は、前記電解時圧力と、減圧後の前記基準圧力との比較結果に基づいて前記水素漏れの発生を判定する
    ことを特徴とする水電解システムの制御方法。
  5. 請求項2〜4のいずれか1項に記載の水電解システムの制御方法において、
    前記水素漏れ判定工程を、前記水電解装置による水素生成の開始時に行う
    ことを特徴とする水電解システムの制御方法。
JP2016228883A 2016-11-25 2016-11-25 水電解システム及びその制御方法 Active JP6370862B2 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2016228883A JP6370862B2 (ja) 2016-11-25 2016-11-25 水電解システム及びその制御方法
US15/817,463 US10648093B2 (en) 2016-11-25 2017-11-20 Water electrolysis system and method of controlling the same
CN201711175057.5A CN108103520B (zh) 2016-11-25 2017-11-22 水电解系统及其控制方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016228883A JP6370862B2 (ja) 2016-11-25 2016-11-25 水電解システム及びその制御方法

Publications (2)

Publication Number Publication Date
JP2018083977A JP2018083977A (ja) 2018-05-31
JP6370862B2 true JP6370862B2 (ja) 2018-08-08

Family

ID=62192752

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016228883A Active JP6370862B2 (ja) 2016-11-25 2016-11-25 水電解システム及びその制御方法

Country Status (3)

Country Link
US (1) US10648093B2 (ja)
JP (1) JP6370862B2 (ja)
CN (1) CN108103520B (ja)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3824117A4 (en) * 2018-07-20 2022-04-27 Alliance for Sustainable Energy, LLC RENEWABLE POWER FOR RENEWABLE NATURAL GAS USING BIOLOGICAL METHANE PRODUCTION
CN111286747A (zh) * 2018-12-10 2020-06-16 彭志军 一种内置超声波的电解制氢氧装置
JP7090050B2 (ja) * 2019-04-18 2022-06-23 本田技研工業株式会社 水電解システム及びその制御方法
JP7363419B2 (ja) * 2019-11-29 2023-10-18 株式会社豊田中央研究所 水電解システム
CN118547294A (zh) * 2020-07-23 2024-08-27 林信涌 具有氢气泄漏自检功能的氢气产生器
CN112553648B (zh) * 2020-11-12 2021-09-24 珠海格力电器股份有限公司 一种消毒液制造机及其防爆控制方法
CN113862728B (zh) * 2021-09-30 2024-01-09 佛山仙湖实验室 Pem纯水电解制氢的压力控制方法、系统、设备及介质
CN114016056A (zh) * 2021-11-25 2022-02-08 珠海格力电器股份有限公司 臭氧水消毒液制造机及其防高压控制方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3220607B2 (ja) * 1995-01-18 2001-10-22 三菱商事株式会社 水素・酸素ガス発生装置
US7581431B2 (en) * 2004-03-17 2009-09-01 Toyota Jidosha Kabushiki Kaisha Gas leak detection device and method for same
JP5437968B2 (ja) * 2010-10-14 2014-03-12 本田技研工業株式会社 水電解システム
JP2012219276A (ja) 2011-04-04 2012-11-12 Honda Motor Co Ltd 水電解システム及びその制御方法
CN102732905A (zh) * 2011-04-05 2012-10-17 本田技研工业株式会社 水电解系统及其运转方法
CN102965686A (zh) * 2011-08-31 2013-03-13 本田技研工业株式会社 水电解系统及其运行方法
JP2013241639A (ja) * 2012-05-18 2013-12-05 Honda Motor Co Ltd 水電解システム及びその運転方法
JP2014080634A (ja) 2012-10-12 2014-05-08 Honda Motor Co Ltd 高圧水電解システム及びその運転方法
JP6059116B2 (ja) * 2013-08-30 2017-01-11 本田技研工業株式会社 差圧式水電解システムの制御方法
JP5798166B2 (ja) * 2013-10-23 2015-10-21 本田技研工業株式会社 差圧式高圧水電解システム及びその起動方法
DE202013011386U1 (de) * 2013-12-19 2015-03-20 GM Global Technology Operations, LLC (n.d. Ges. d. Staates Delaware) Rücksitzanordnung eines Personenkraftwagens
JP6090798B2 (ja) * 2014-03-17 2017-03-08 本田技研工業株式会社 高圧水電解システム及びその制御方法

Also Published As

Publication number Publication date
JP2018083977A (ja) 2018-05-31
US20180148849A1 (en) 2018-05-31
US10648093B2 (en) 2020-05-12
CN108103520A (zh) 2018-06-01
CN108103520B (zh) 2020-04-28

Similar Documents

Publication Publication Date Title
JP6370862B2 (ja) 水電解システム及びその制御方法
US8329020B2 (en) Method of shutting down water electrolysis system
US10767272B2 (en) Water electrolysis system and method of stopping operation thereof
US11383691B2 (en) Fuel cell system, control method of fuel cell system, and computer program
US8815075B2 (en) Water electrolysis system and method of operating same
US11214880B2 (en) Water electrolysis system and control method therefor
US20120090989A1 (en) Water electrolysis system
JP6059116B2 (ja) 差圧式水電解システムの制御方法
US8663434B2 (en) Water electrolysis system and method for operating water electrolysis system
JP2006156180A (ja) 燃料電池システム及び該システムにおける燃料ガス経路の故障検知方法
US20130062215A1 (en) Water electrolysis system and method of stopping operation of water electrolysis system
JP6090798B2 (ja) 高圧水電解システム及びその制御方法
US20200332425A1 (en) Water electrolysis system and control method therefor
US20220356586A1 (en) Water electrolysis system and method of activating water electrolysis device
JP2012167331A (ja) 差圧式水電解装置の運転方法
JP5715997B2 (ja) 高圧水電解システム及びその起動方法
US9540739B2 (en) High differential pressure water electrolysis system and method for starting the same
JP2012219276A (ja) 水電解システム及びその制御方法
JP2008298103A (ja) 制御装置、燃料ガス供給システム、及び燃料ガス容器
JP2010153246A (ja) 燃料電池システム
JP2014040637A (ja) 水電解システム及びその制御方法
JP2021022458A (ja) 燃料電池システムにおけるカソード不純物除去方法
JP5421860B2 (ja) 水電解装置の運転停止方法
JP2012036453A (ja) 水電解システム及びその運転方法
JP5613084B2 (ja) 水電解システム

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180703

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180711

R150 Certificate of patent or registration of utility model

Ref document number: 6370862

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150