JP6369755B2 - 真空冷却装置 - Google Patents

真空冷却装置 Download PDF

Info

Publication number
JP6369755B2
JP6369755B2 JP2014229425A JP2014229425A JP6369755B2 JP 6369755 B2 JP6369755 B2 JP 6369755B2 JP 2014229425 A JP2014229425 A JP 2014229425A JP 2014229425 A JP2014229425 A JP 2014229425A JP 6369755 B2 JP6369755 B2 JP 6369755B2
Authority
JP
Japan
Prior art keywords
water
cold water
heat exchanger
tank
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014229425A
Other languages
English (en)
Other versions
JP2016095043A (ja
Inventor
脩平 石田
脩平 石田
久美 松矢
久美 松矢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Miura Co Ltd
Original Assignee
Miura Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Miura Co Ltd filed Critical Miura Co Ltd
Priority to JP2014229425A priority Critical patent/JP6369755B2/ja
Publication of JP2016095043A publication Critical patent/JP2016095043A/ja
Application granted granted Critical
Publication of JP6369755B2 publication Critical patent/JP6369755B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、食材を収容した処理槽内を減圧して、食材を真空冷却する真空冷却装置に関するものである。
従来、下記特許文献1に開示されるように、冷却槽(4)内を減圧する手段として、蒸気凝縮用の熱交換器(6)と水封式の真空ポンプ(7)とを備えた真空冷却装置が知られている。この装置では、熱交換器(6)への通水および真空ポンプ(7)への封水として、常温水と冷水とを切替可能とされている。具体的には、熱交換器(6)および真空ポンプ(7)には、常温水供給ライン(24)からの常温水と、チラー(25)で冷却された冷水タンク(38)からの冷水とを切り替えて供給可能とされ、また、熱交換器(6)を通過後の水を、排水ライン(31)へ排水するか、冷水タンク(38)へ戻すかを切替可能とされる。また、熱交換器(6)の冷却水出口側を排水ライン(31)に連通させた状態で、排水ライン(31)の排水制御弁(32)を閉じておくことで、熱交換器(6)内に水を滞留させることもできる。そして、真空冷却装置は、以下の各工程を順次に実行して、冷却槽(4)内の被冷却物(3)を真空冷却する。
まず、特許文献1の図3に示されるように、熱交換器(6)に常温水を滞留させた状態で、封水として常温水を供給しつつ真空ポンプ(7)を作動させて、冷却槽(4)内を減圧する(冷却初期工程)。
その後、特許文献1の図4に示されるように、熱交換器(6)の凝縮水出口温度(図6の温度センサ12の検出温度)が通水開始温度を超えると、排水制御弁(32)を開くことで、熱交換器(6)への通水を開始して、熱交換器(6)を通過後の水を排水しつつ、冷却槽(4)内をさらに減圧する(冷却中期工程)。
その後、特許文献1の図5に示されるように、冷却槽(4)内の被冷却物(3)の温度(品温センサ9の検出温度)がチラー切替温度以下になると、熱交換器(6)への通水および真空ポンプ(7)への封水を、常温水から冷水に切り替えて、冷却槽(4)内をさらに減圧する(冷却後期工程)。この際、熱交換器(6)を通過後の水は、冷水タンク(38)へ戻される。
特許第4288699号公報
従来技術では、上述した冷却初期工程、冷却中期工程および冷却後期工程が順次に実行される。つまり、品温がチラー切替温度以下になるまでに、凝縮水温度が通水開始温度を超えて、熱交換器への通水が開始され、熱交換器を通過後の水が排水される。その後、品温がチラー切替温度以下になると、熱交換器への通水が冷水に切り替えられる。
しかしながら、凝縮水温度が通水開始温度を超えることなく、品温がチラー切替温度以下になる場合も起こり得る。その場合、熱交換器は、通水停止状態から冷水にて通水を開始され、それまで熱交換器内に滞留していた比較的高温の滞留水は、排水されずに冷水タンクへ流入することになる。そのため、冷水タンクに流入した比較的高温の水をチラーで冷却する必要が生じ、チラーへの負荷を増すことになる。このような制御は、節水にはなるが、水道代と電気代との兼ね合いにより、却って運転コストを増すおそれもある。
そこで、本発明が解決しようとする課題は、蒸気凝縮用の熱交換器と水封式の真空ポンプとを備えた真空冷却装置において、真空ポンプを用いて処理槽内を減圧中、熱交換器への通水停止状態から冷水を用いて通水を開始する際、それまで熱交換器内に滞留していた水を、排水するか冷水タンクへ供給するかを切り替えることができる真空冷却装置を提供することにある。
本発明は、前記課題を解決するためになされたもので、請求項1に記載の発明は、食材が収容される処理槽と、この処理槽内の気体を外部へ吸引排出して、前記処理槽内を減圧する減圧手段と、減圧された前記処理槽内へ外気を導入して、前記処理槽内を復圧する復圧手段と、貯留水をチラーにより冷却可能な冷水タンクと、前記各手段を制御して前記処理槽内の食材を真空冷却する制御手段とを備え、前記減圧手段として、前記処理槽内からの排気路に、蒸気凝縮用熱交換器と水封式真空ポンプとを順に備え、前記熱交換器への通水として、常温水と冷水とを切替可能とされ、前記真空ポンプを用いて前記処理槽内を減圧中、前記熱交換器への通水停止状態から冷水を用いて通水を開始する際、前記熱交換器内の滞留水を前記冷水タンクへ供給することなく排水路へ排水してから、前記熱交換器と前記冷水タンクとの間での冷水の循環を開始するか、前記熱交換器内の滞留水を排水路へ排水することなく前記冷水タンクへ供給して、前記熱交換器と前記冷水タンクとの間での冷水の循環を開始するかを切替可能とされたことを特徴とする真空冷却装置である。
請求項1に記載の発明によれば、真空ポンプを用いて処理槽内を減圧中、熱交換器への通水停止状態から冷水を用いて通水を開始する際、それまで熱交換器内に滞留していた水を、排水するか冷水タンクへ供給するかを切り替えることができる。冷水タンクへ供給せずに排水する場合、水を無駄にするが、チラーの電気使用量を節約できる。一方、排水せずに冷水タンクへ供給する場合、チラーの電気使用量を増すが、水を節約できる。所望により、いずれでも運転することができる。
請求項2に記載の発明は、前記排気路には、前記熱交換器の出口側に凝縮水温度センサが設けられる一方、前記処理槽には、食材の温度を検出する品温センサが設けられ、前記制御手段は、前記熱交換器への通水を停止した状態で、前記真空ポンプへの封水として常温水を供給しつつ、前記真空ポンプにより前記処理槽内を減圧し、この減圧中、前記凝縮水温度センサの検出温度が通水開始温度を超えると、常温水を用いて前記熱交換器への通水を開始し、前記熱交換器を通過後の水を排水する第一冷却工程と、前記品温センサの検出温度がチラー切替温度以下になると開始され、前記熱交換器への通水および前記真空ポンプへの封水を、前記冷水タンクからの冷水に切り替えて、前記熱交換器と前記冷水タンクとの間で冷水を循環させつつ前記真空ポンプにより前記処理槽内を減圧する第二冷却工程とを順次に実行し、前記第一冷却工程において、前記凝縮水温度センサの検出温度が通水開始温度を超えることなく、前記第二冷却工程へ移行する場合、下記(a)と(b)とを切替可能とされたことを特徴とする請求項1に記載の真空冷却装置である。
(a)前記熱交換器へ冷水を供給して、前記熱交換器内の滞留水を前記冷水タンクへ供給することなく排水路へ排水してから、前記熱交換器と前記冷水タンクとの間での冷水の循環を開始して前記第二冷却工程へ移行する。
(b)前記熱交換器へ冷水を供給して、前記熱交換器内の滞留水を排水路へ排水することなく前記冷水タンクへ供給して、前記熱交換器と前記冷水タンクとの間での冷水の循環を開始して前記第二冷却工程へ移行する。
請求項2に記載の発明によれば、凝縮水温度センサと品温センサとを用いて制御するが、第一冷却工程において、凝縮水温度センサの検出温度が通水開始温度を超えることなく、第二冷却工程へ移行する場合、それまで熱交換器内に滞留していた水を、排水するか冷水タンクへ供給するかを切り替えることができる。
請求項3に記載の発明は、常温水給水弁を介した常温水給水路と、冷水給水弁を介した冷水給水路とが、合流後、前記熱交換器への熱交給水路と、前記真空ポンプへの封水給水路とに分岐され、前記封水給水路に封水給水弁が設けられ、前記熱交換器から前記冷水タンクへの熱交排水路に冷水戻し弁が設けられ、この冷水戻し弁より上流側の前記熱交排水路から分岐する排水路に排水弁が設けられ、前記第一冷却工程では、前記冷水給水弁、前記冷水戻し弁および前記排水弁を閉じる一方、前記常温水給水弁および前記封水給水弁を開けた状態で、前記真空ポンプを作動させて前記処理槽内を減圧し、この減圧中、前記凝縮水温度センサの検出温度が通水開始温度を超えると、前記排水弁を開けて前記熱交換器に通水し、前記第二冷却工程では、前記常温水給水弁および前記排水弁を閉じる一方、前記冷水給水弁および前記冷水戻し弁を開けて、前記熱交換器と前記冷水タンクとの間で冷水を循環させつつ前記真空ポンプにより前記処理槽内を減圧し、前記第一冷却工程において、前記凝縮水温度センサの検出温度が通水開始温度を超えることなく、前記第二冷却工程へ移行する場合、下記(a)と(b)とを切替可能とされたことを特徴とする請求項2に記載の真空冷却装置である。
(a)前記常温水給水弁を閉じる一方、前記冷水給水弁および前記排水弁を開けて、前記熱交換器に通水して前記熱交換器を通過後の水を排水し、設定時間経過後、前記排水弁を閉じる一方、前記冷水戻し弁を開けて前記第二冷却工程へ移行する。
(b)前記排水弁を閉じたまま、前記常温水給水弁を閉じる一方、前記冷水給水弁および前記冷水戻し弁を開けて前記第二冷却工程へ移行する。
請求項3に記載の発明によれば、常温水給水弁、冷水給水弁、封水給水弁、冷水戻し弁および排水弁により、第一冷却工程および第二冷却工程と、その移行を簡易に実施することができる。
さらに、請求項4に記載の発明は、少なくとも水道料金と電気料金の各単価を入力可能な設定器をさらに備え、前記第一冷却工程において、前記凝縮水温度センサの検出温度が通水開始温度を超えることなく、前記第二冷却工程へ移行する場合、前記熱交換器内の滞留水を排水路へ排水してから、前記熱交換器と前記冷水タンクとの間での冷水の循環を開始するか、前記熱交換器内の滞留水を排水路へ排水することなく、前記熱交換器と前記冷水タンクとの間での冷水の循環を開始するかの内、いずれで運転するのが安価であるかを、前記制御手段は、前記設定器により設定された情報に基づき判定して、安価な運転内容で運転することを特徴とする請求項2または請求項3に記載の真空冷却装置である。
請求項4に記載の発明によれば、第一冷却工程において、凝縮水温度センサの検出温度が通水開始温度を超えることなく、第二冷却工程へ移行する場合、それまで熱交換器内に滞留していた水を、排水するか冷水タンクへ供給するかの内、安価な方に自動で切り替えて運転することができる。
本発明によれば、蒸気凝縮用の熱交換器と水封式の真空ポンプとを備えた真空冷却装置において、真空ポンプを用いて処理槽内を減圧中、熱交換器への通水停止状態から冷水を用いて通水を開始する際、それまで熱交換器内に滞留していた水を、排水するか冷水タンクへ供給するかを切り替えることができる。
本発明の一実施例の真空冷却装置を示す概略図であり、一部を断面にして示している。 図1の真空冷却装置の運転方法の一例を示すフローチャートである。
以下、本発明の具体的実施例を図面に基づいて詳細に説明する。
図1は、本発明の一実施例の真空冷却装置1を示す概略図であり、一部を断面にして示している。
本実施例の真空冷却装置1は、冷却を図りたい食材(食品を含む)2が収容される処理槽3と、この処理槽3内の気体を外部へ吸引排出して処理槽3内を減圧する減圧手段4と、減圧された処理槽3内へ外気を導入して処理槽3内を復圧する復圧手段5と、貯留水をチラー6により冷却可能な冷水タンク7と、前記各手段4,5やチラー6などを制御して処理槽3内の食材2の真空冷却を図る制御手段(図示省略)とを備える。
処理槽3は、内部空間の減圧に耐える中空構造とされ、扉で開閉可能とされる。典型的には、処理槽3は、略矩形の中空ボックス状に形成され、扉で開閉可能とされる。扉を開けることで、処理槽3に食材2を出し入れすることができ、扉を閉じることで、処理槽3の開口部を気密に閉じることができる。
減圧手段4は、処理槽3内の気体(空気や蒸気)を外部へ吸引排出して、処理槽3内を減圧する手段である。本実施例では、減圧手段4は、処理槽3内からの排気路8に、蒸気エゼクタ9、蒸気凝縮用の熱交換器10、逆止弁11、および水封式の真空ポンプ12が順に設けられて構成される。
蒸気エゼクタ9は、吸引口9aが処理槽3に接続されて設けられ、入口9bから出口9cへ向けて、給蒸路13からの蒸気がノズルで噴出可能とされる。入口9bから出口9cへ向けて蒸気を噴出させることで、処理槽3内の気体も吸引口9aを介して出口9cへ吸引排出される。給蒸路13に設けた給蒸弁14の開閉を操作することで、蒸気エゼクタ9の作動の有無を切り替えることができる。
熱交換器10は、排気路8内の流体とその冷却水とを混ぜることなく熱交換する間接熱交換器である。熱交換器10により、排気路8内の蒸気を、冷却水により冷却し凝縮させることができる。詳細は後述するが、熱交換器10への冷却水として、本実施例では、常温水と冷水とを切り替えて供給することができる。
真空ポンプ12は、水封式であり、周知のとおり、封水と呼ばれる水が供給されつつ運転される。詳細は後述するが、真空ポンプ12への封水として、本実施例では、常温水と冷水とを切り替えて供給することができる。
復圧手段5は、減圧された処理槽3内へ外気を導入して、処理槽3内を復圧する手段である。復圧手段5は、処理槽3内への給気路15に、エアフィルタ16および真空解除弁17が順に設けられて構成される。処理槽3内が減圧された状態で、真空解除弁17を開くと、外気がエアフィルタ16を介して処理槽3内へ導入され、処理槽3内を復圧することができる。真空解除弁17は、好ましくは開度調整可能な電動弁から構成され、本実施例では比例制御弁から構成される。
チラー6は、冷凍機(図示省略)を備え、冷水タンク7からの通水を冷却する。冷凍機は、周知のとおり、圧縮機、凝縮器、膨張弁および蒸発器を備え、冷媒の圧縮、凝縮、膨張および蒸発の冷凍サイクルを実行する。そして、蒸発器において、冷媒と水とを混ぜることなく熱交換して、冷水タンク7からの通水を冷却する。
冷水タンク7は、貯留水をチラー6により冷却可能とされる。冷水タンク7内の貯留水は、チラー給水路18を介して、チラー6へ供給される。この供給は、チラー給水路18に設けた循環ポンプ19によりなされる。循環ポンプ19を作動させると、冷水タンク7からの水が、チラー6(より具体的には冷凍機の蒸発器)に通される。その際、冷水タンク7からの水は、チラー6において冷却され、冷水として導出される。そして、その冷水は、冷水給水路20を介して、熱交換器10および真空ポンプ12へ供給されるか、冷水給水路20から分岐する戻し路21を介して、冷水タンク7へ戻される。なお、熱交換器10で使用後の冷水は、熱交排水路22を介して、冷水タンク7へ戻して再利用可能とされる。
熱交換器10への通水および真空ポンプ12への封水として、本実施例では、常温水と冷水とを切り替えて供給可能とされる。そのために、常温水が通される常温水給水路23と、冷水が通される冷水給水路20とが、合流後、熱交換器10への熱交給水路24と、真空ポンプ12への封水給水路25とに分岐される。なお、冷水とは、チラー6により冷却された水をいい、常温水とは、そのような冷却がなされない水をいう。以下、熱交換器10や真空ポンプ12に対する給排水系統について、さらに具体的に説明する。
熱交換器10は、熱交給水路24を介して水が供給され、熱交排水路22を介して水が排出される。また、真空ポンプ12は、封水給水路25を介して水が供給され、この封水給水路25には、封水給水弁26が設けられている。封水給水弁26の開閉は、真空ポンプ12の発停と連動する。封水給水弁26を開けた状態で真空ポンプ12を作動させると、真空ポンプ12は、熱交換器10の側から流体を吸引して封水と共に吐出する。
熱交給水路24と封水給水路25の基端部(上流部)は、共通管路27とされており、この共通管路27には、常温水か冷水かを切り替えて供給可能とされる。具体的には、共通管路27の基端部には、常温水給水路23と冷水給水路20とが合流するように接続されている。
常温水給水路23は、たとえば水道水のような常温水を供給する。常温水給水路23には、常温水給水弁28と逆止弁29とが順に設けられており、常温水給水弁28の開閉により、熱交給水路24や封水給水路25への給水の有無を切り替えることができる。
冷水給水路20は、チラー6からの冷水(言い換えれば冷水タンク7からの冷水)を供給する。チラー6からの冷水給水路20の中途には、前述したように、冷水タンク7への戻し路21が分岐して設けられている。その分岐部には三方弁30が設けられており、チラー6からの冷水を前記共通管路27(熱交給水路24、封水給水路25)へ供給するか、冷水タンク7へ戻すかを切替可能とされている。なお、冷水給水路20の内、三方弁30よりも上流側を、上流側冷水給水路20aといい、三方弁30よりも下流側を、下流側冷水給水路20bということがある。
三方弁30により上流側冷水給水路20aと下流側冷水給水路20bとを連通させて、チラー6からの冷水を前記共通管路27へ供給すれば、熱交換器10への通水および真空ポンプ12への封水として、冷水を供給することができる。一方、三方弁30により上流側冷水給水路20aと戻し路21とを連通させて、チラー6からの冷水を戻し路21により冷水タンク7へ戻せば、冷水タンク7内の水をチラー6に循環させて、冷水タンク7内の貯留水の冷却を図ることができる。
このように、三方弁30は、チラー6からの冷水を熱交換器10や真空ポンプ12へ供給するか否かを切り替える冷水給水弁として機能する。上流側冷水給水路20aを下流側冷水給水路20bと連通させた状態が、冷水給水弁(30)の開放状態、上流側冷水給水路20aを戻し路21と連通させた状態が、冷水給水弁(30)の閉鎖状態となる。なお、三方弁30に代えて、下流側冷水給水路20bに第一電磁弁(冷水給水弁)を設ける一方、戻し路21に第二電磁弁を設けて、択一的にいずれか一方を開放するよう制御することで、三方弁30を設置した場合と同様に制御することもできる。
熱交換器10にて使用後の水は、熱交排水路22を介して冷水タンク7へ戻される。熱交排水路22には、冷水戻し弁31が設けられている。また、熱交排水路22には、冷水戻し弁31よりも上流側(熱交換器10側)に、外部への排水路32が分岐して設けられており、この排水路32には排水弁33が設けられている。
以上のような構成であるから、三方弁30により上流側冷水給水路20aと下流側冷水給水路20bとの連通を遮断した状態で、常温水給水弁28および封水給水弁26を開けることで、熱交換器10および真空ポンプ12に常温水を供給することができる。この際、冷水戻し弁31を閉じる一方、排水弁33を開けることで、熱交換器10で使用後の水を、排水路32を介して排水することができる。また、この間、所望により、チラー6および循環ポンプ19を作動させれば、冷水タンク7内の貯留水をチラー6に循環させて、冷水タンク7内の貯留水の冷却を図ることができる。
一方、三方弁30により上流側冷水給水路20aと下流側冷水給水路20bとを連通させた状態で、常温水給水弁28を閉じる一方、封水給水弁26を開けて、チラー6および循環ポンプ19を作動させれば、冷水タンク7からの水をチラー6で冷却した後、熱交換器10および真空ポンプ12に供給することができる。この際、冷水戻し弁31を開ける一方、排水弁33を閉じることで、熱交換器10で使用後の水を、熱交排水路22を介して冷水タンク7へ戻すことができる。
ところで、熱交換器10へ供給された冷水は、冷水タンク7へ戻すことができるが、真空ポンプ12へ供給された冷水は、使い捨てられる。そこで、本実施例では、常温水給水路23には、常温水給水弁28より上流側において、冷水タンク7への補給水路34が分岐して設けられており、この補給水路34を介して冷水タンク7に適宜給水される。具体的には、冷水タンク7に設けたボールタップ35などにより、冷水タンク7には補給水路34を介して適宜給水され、冷水タンク7内は所望水位に維持される。
処理槽3には、処理槽3内の圧力を検出する圧力センサ36と、処理槽3内に収容された食材2の温度を検出する品温センサ37とが設けられる。また、処理槽3内からの排気路8には、熱交換器10の出口側に、凝縮水の温度を検出する凝縮水温度センサ38が設けられる。さらに、チラー6の入口側または出口側において、冷水の温度を検出する冷水温度センサ39が設けられる。その他、所望により、常温水給水路23の常温水の温度を検出する給水温度センサ40や、外気温を検出する外気温センサ(図示省略)などが設けられる。
制御手段は、前記各センサ36〜40の検出信号や経過時間などに基づき、前記各手段4,5やチラー6などを制御する制御器(図示省略)である。具体的には、チラー6、真空ポンプ12、循環ポンプ19、給蒸弁14、封水給水弁26、常温水給水弁28、三方弁30、冷水戻し弁31、排水弁33、真空解除弁17の他、圧力センサ36、品温センサ37、凝縮水温度センサ38、冷水温度センサ39および給水温度センサ40などは、制御器に接続されている。そして、制御器は、所定の手順(プログラム)に従い、処理槽3内の食材2の真空冷却などを図る。以下、真空冷却装置1の運転方法の一例について説明する。
図2は、本実施例の真空冷却装置1の運転方法の一例を示すフローチャートである。
本実施例の真空冷却装置1は、準備工程、第一冷却工程、第二冷却工程、第三冷却工程および真空解除工程を順に含んで実行する。以下、図2に基づき、各工程について順に説明する。
運転開始前、真空解除弁17は開かれ、三方弁30は上流側冷水給水路20aと戻し路21とを連通させ、その他の弁14,26,28,31,33は閉じられた状態にあり、チラー6および各ポンプ12,19は停止している。真空冷却装置1の運転に先立って、処理槽3内に食材2を収容して、処理槽3の扉を気密に閉じる。
真空冷却装置1は、電源が投入されると準備工程を開始し、その後、スタートボタンが押されて運転開始が指示されると、第一冷却工程、第二冷却工程、第三冷却工程および真空解除工程を順に実行する。なお、処理槽3への食材2の収容は、典型的には準備工程後(冷却待機中)に行われるが、第一冷却工程前であれば、場合により準備工程前または準備工程中に行われてもよい。
≪準備工程≫
準備工程では、冷水タンク7内の貯留水を、チラー6との間で循環させて設定温度(たとえば10℃)まで冷却を図る(S1)。具体的には、三方弁30により上流側冷水給水路20aと戻し路21とを連通させた状態で、チラー6および循環ポンプ19を作動させる。これにより、冷水タンク7内の貯留水は、チラー給水路18を介してチラー6へ送られて冷却され、上流側冷水給水路20aおよび戻し路21を介して冷水タンク7へ戻される。以後、チラー6および循環ポンプ19は、基本的には作動を継続する。また、冷水タンク7内の貯留水をチラー6に循環させての冷却は、第一冷却工程の終了まで継続され、冷水タンク7内の貯留水は設定温度に維持される。
≪第一冷却工程≫
第一冷却工程では、真空解除弁17を閉じると共に、熱交換器10への通水を停止した状態で、真空ポンプ12への封水として常温水を供給しつつ、真空ポンプ12により処理槽3内を減圧する(S2)。具体的には、真空解除弁17を閉じて、処理槽3内を密閉する。また、冷水戻し弁31および排水弁33を閉じることで、熱交換器10への通水を不能とする。そして、常温水給水弁28および封水給水弁26を開いて、真空ポンプ12への封水として常温水を供給しつつ、真空ポンプ12を作動させて処理槽3内を減圧する。
なお、三方弁30は、前述したとおり、上流側冷水給水路20aと戻し路21とを連通する状態にある。また、蒸気エゼクタ9への給蒸弁14は閉じられており、蒸気エゼクタ9は停止している。熱交換器10には、通水は不能であるが、常温水給水弁28が開かれていることから、常温水が供給される上、前回の真空冷却運転の残留水もあり得るので、熱交換器10の冷却水の通水側には、水が満たされた状態にある。
真空ポンプ12により処理槽3内を減圧中、凝縮水温度センサ38の検出温度が通水開始温度(たとえば50℃)を超えると、常温水を用いて熱交換器10への通水を開始し、熱交換器10を通過後の水を排水する(S3,S4)。具体的には、凝縮水温度センサ38の検出温度が通水開始温度を超えると、排水弁33を開く。これにより、常温水を用いて熱交換器10への通水が開始され、熱交換器10を通過後の水は排水路32へ排水される。なお、その後、品温センサ37の検出温度と凝縮水温度センサ38の検出温度との差が所定温度(たとえば30℃)以上で、排水弁33を閉じる制御を行ってもよい。
このようにして、処理槽3内が減圧され、処理槽3内の食材2の冷却が図られる。品温センサ37の検出温度がチラー切替温度(たとえば60℃)以下になると、次工程へ移行する(S5)。
≪第二冷却工程≫
第二冷却工程では、熱交換器10への通水および真空ポンプ12への封水を、常温水から冷水に切り替えて、処理槽3内をさらに冷却する(S6)。第一冷却工程において、凝縮水温度センサ38の検出温度が通水開始温度を超えることなく、第二冷却工程へ移行する場合、第二冷却工程において熱交換器10への通水が開始される。いずれにしても、熱交換器10を通過後の水は、後述する例外(第一冷却工程から第二冷却工程への移行時における所定の場合)を除き、冷水タンク7へ戻される。
具体的には、常温水給水弁28を閉じる一方、三方弁30を切り替えて上流側冷水給水路20aと下流側冷水給水路20bとを連通させる。これにより、冷水タンク7からチラー6を介した冷水を、熱交換器10および真空ポンプ12に供給できる。一方、排水弁33を閉じる一方、冷水戻し弁31を開いて、熱交換器10を通過後の冷水を、冷水タンク7へ戻す。これにより、熱交換器10と冷水タンク7との間で冷水を循環させつつ、真空ポンプ12により処理槽3内を減圧する。
品温センサ37の検出温度がエゼクタ作動温度(たとえば30℃)以下になるか、および/または、圧力センサ36の検出圧力がエゼクタ作動圧力(たとえば45hPa)以下になると、次工程へ移行する(S7)。
ところで、第一冷却工程において、凝縮水温度センサ38の検出温度が通水開始温度を超えることなく、第二冷却工程へ移行する場合、下記(a)と(b)とを切替可能とされている(S6)。つまり、第一冷却工程において、真空ポンプ12を用いて処理槽3内を減圧中、第二冷却工程への移行に伴い、熱交換器10への通水停止状態から冷水を用いて通水を開始する際、下記(a)または(b)の内、設定されたいずれかが実行される。いずれを実行するかは、予め制御器に設定する(より具体的には制御器に接続された設定器で切り替える)か、各種条件(たとえば後述するように運転コスト)に応じて制御器が自動で切り替える。
(a)熱交換器10へ冷水を供給して、熱交換器10内の滞留水(第一冷却工程での滞留水)を冷水タンク7へ供給することなく排水路32へ排水してから、熱交換器10と冷水タンク7との間での冷水の循環を開始して第二冷却工程へ移行する。具体的には、常温水給水弁28を閉じる一方、三方弁30により上流側冷水給水路20aと下流側冷水給水路20bとを連通させ、さらに排水弁33を開けて、熱交換器10に通水して熱交換器10を通過後の水を排水し、設定時間(好ましくは後述する「熱交換器10および配管内の保有水量」分だけ排水可能な時間)経過後、排水弁33を閉じる一方、冷水戻し弁31を開けて第二冷却工程へ移行する。このように、熱交換器10内の滞留水を冷水タンク7へ供給せずに排水する場合、水を無駄にするが、チラー6の電気使用量を節約できる。熱交換器10内の滞留水の排水に伴って新たに冷水タンク7へ供給される補給水の温度(給水温度)は、熱交換器10内の滞留水の水温よりも低く、滞留水を冷水タンク7へ戻して冷却するよりも、新たな補給水を冷却する方が、チラー6の冷却負荷が小さい。
(b)熱交換器10へ冷水を供給して、熱交換器10内の滞留水を排水路32へ排水することなく冷水タンク7へ供給して、熱交換器10と冷水タンク7との間での冷水の循環を開始して第二冷却工程へ移行する。具体的には、排水弁33を閉じたまま、常温水給水弁28を閉じる一方、三方弁30により上流側冷水給水路20aと下流側冷水給水路20bとを連通させ、さらに冷水戻し弁31を開けて、第二冷却工程へ移行する。このように、熱交換器10内の滞留水を排水せずに冷水タンク7へ供給する場合、チラー6の電気使用量を増すが、水を節約できる。
≪第三冷却工程≫
第三冷却工程では、蒸気エゼクタ9も作動させて、処理槽3内をさらに減圧する(S8)。具体的には、給蒸弁14を開いて、蒸気エゼクタ9を作動させる。これにより、処理槽3内をさらに減圧することが可能となる。
その後、品温センサ37の検出温度が冷却目標温度(たとえば8℃)になるなど、所定の終了条件を満たせば、各弁を閉じると共に、真空ポンプ12を停止して、次工程へ移行する(S9,S10)。但し、三方弁30により上流側冷水給水路20aと戻し路21とを連通させると共に、チラー6および循環ポンプ19の作動を継続して、次回の真空冷却運転に備えて、冷水タンク7内の貯留水を設定温度まで冷却することを継続してもよい。
なお、各冷却工程では、真空解除弁17の開度を調整してもよく、その場合、処理槽3内の圧力を所望に低下させ、処理槽3内の食材2を徐冷することができる。
≪真空解除工程≫
真空解除工程では、復圧手段5を用いて、処理槽3内を大気圧まで復圧する(S11)。具体的には、真空解除弁17を開いて、処理槽3内を大気圧まで復圧する。この際、真空解除弁17の開度を調整することで、処理槽3内を徐々に復圧することができる。このようにして、処理槽3内を大気圧まで復圧した後、処理槽3の扉を開けて、処理槽3から冷却後の食材2を取り出すことができる。
以上の一連の真空冷却運転の終了後、所望により、他の食材2を処理槽3内に収容して、上述したのと同様の真空冷却運転を実行することができる。食材2を入れ替えて真空冷却運転を繰り返す場合、第三冷却工程の終了後、次回の真空冷却運転に備えて、冷水タンク7内の貯留水をチラー6に循環させて、準備工程を開始することができる。
本実施例の真空冷却装置1によれば、前述したとおり、第一冷却工程において、凝縮水温度センサ38の検出温度が通水開始温度を超えることなく、第二冷却工程へ移行する場合(つまり、真空ポンプ12を用いて処理槽3内を減圧中、熱交換器10への通水停止状態から常温水ではなく冷水を用いて通水を開始する際)、(a)熱交換器10内の滞留水を冷水タンク7へ供給することなく排水路32へ排水してから、熱交換器10と冷水タンク7との間での冷水の循環を開始するか、(b)熱交換器10内の滞留水を排水路32へ排水することなく冷水タンク7へ供給して、熱交換器10と冷水タンク7との間での冷水の循環を開始するか、を切替可能とされる。
この切替えは、好ましくは運転コストに基づき行われる。すなわち、少なくとも水道料金と電気料金の各単価が設定器(図示省略)により入力可能とされ、制御器は、この入力された数値を用いて、前記(a)と(b)との内、いずれで運転するのが安価であるかを判定して、安価な運転内容で運転する。
たとえば、次の条件にあるとする。
・水道料金(水道単価):500円/m
・電気料金(電気単価):15円/kWh
・熱交換器10および配管内の保有水量(封水給水路25との分岐部よりも下流の熱交給水路24、熱交換器10内における冷却水路、冷水戻し弁31よりも上流の熱交排水路22、および排水弁33よりも上流の排水路32の保有水量):30L
・給水温度(給水温度センサ40の検出温度):25℃
・冷水温度(熱交換器10や真空ポンプ12への冷水温度(前記設定温度)):10℃
・チラー冷却能力:56kW(25HP、外気温35℃、50Hzにて)
・チラー消費電力:20.1kW(25HP、外気温35℃、50Hzにて)
この場合において、前記(a)と(b)の各運転コストは、以下のとおりである。
≪(a)熱交換器10内の滞留水を冷水タンク7へ戻さずに排水する場合≫
<水道代について>
30Lを捨てると共に冷水タンク7へ30Lを補給するので、次のとおりである。
水道代=補給水量×10−3×水道単価=30×10−3×500=15円
<電気代について>
30Lの補給水(水温25℃)を10℃まで冷却する必要があるので、次のとおりである。なお、1kWh=860kcalである。
冷却熱量=補給水量×冷却温度差=30×(25−10)=450kcal
チラーでの消費電力=冷却熱量×(1/860)×(チラー消費電力/チラー冷却能力)=450×(1/860)×(20.1/56)=0.188kWh
電気代=チラーでの消費電力×電気単価=0.188×15=2.8円
<トータルコスト>
トータルコスト=水道代+電気代=15+2.8=17.8円
≪(b)熱交換器10内の滞留水を排水せずに冷水タンク7へ戻す場合≫
<水道代について>
変動なし(0円)
<電気代について>
熱交換器10内の滞留水は最大50℃(通水開始温度)であり、これを10℃まで冷却する必要があるので、次のとおりである。
冷却熱量=保有水量×冷却温度差=30×(50−10)=1200kcal
チラーでの消費電力=冷却熱量×(1/860)×(チラー消費電力/チラー冷却能力)=1200×(1/860)×(20.1/56)=0.5kWh
電気代=チラーでの消費電力×電気単価=0.5×15=7.5円
<トータルコスト>
トータルコスト=水道代+電気代=0+7.5=7.5円
このように、水道単価が500円/m、電気単価が15円/kWhの条件では、「(a)熱交換器10内の滞留水を冷水タンク7へ戻さずに排水する場合」は17.8円である一方、「(b)熱交換器10内の滞留水を排水せずに冷水タンク7へ戻す場合」は7.5円であるから、(b)の方が低コストとなる。そのため、真空冷却装置1を運転する際、(b)を選択して運転するのが望ましい。
一方、仮に、水道単価が75円/m、電気単価が15円/kWhの条件では、「(a)熱交換器10内の滞留水を冷水タンク7へ戻さずに排水する場合」は5.1円である一方、「(b)熱交換器10内の滞留水を排水せずに冷水タンク7へ戻す場合」は7.5円であるから、(a)の方が低コストとなる。そのため、真空冷却装置1を運転する際、(a)を選択して運転するのが望ましい。
以上のような判定処理を制御器が自動で行うのが好ましい。具体的には、前記各条件の内、熱交換器10等の保有水量(たとえば30L)、冷水温度(たとえば10℃)、チラー冷却能力(たとえば56kW)、およびチラー消費電力(たとえば20.1kW)は、真空冷却装置1に応じて定まる固定値であるから、予め制御器に設定されている。一方、水道単価(たとえば500円/m)や電気単価(たとえば15円/kWh)は、ユーザに応じて異なる可能性があるため、設定器により変更可能に設定される。但し、通常、一度設定すれば足り、料金改定がない限り、運転の度に設定し直す必要はない。また、常温水給水温度(たとえば25℃)は、所定タイミングにおける給水温度センサ40の検出温度として制御器に取り込まれるが、場合により固定値としておいてもよく、その場合は給水温度センサ40の設置を省略することができる。
そして、制御器は、これら情報に基づき前述したような演算を行って、凝縮水温度センサ38の検出温度が通水開始温度を超えることなく第二冷却工程へ移行する場合、(a)熱交換器10内の滞留水を冷水タンク7へ供給することなく排水路32へ排水してから、熱交換器10と冷水タンク7との間での冷水の循環を開始するか、(b)熱交換器10内の滞留水を排水路32へ排水することなく冷水タンク7へ供給して、熱交換器10と冷水タンク7との間での冷水の循環を開始するかの内、低コストで運転できる方で運転するのがよい。
なお、ここでは、チラー冷却能力およびチラー消費電力は、固定値としたが、厳密には外気温および電源周波数(50Hzか60Hzか)に多少左右されるので、場合により、変更可能としてもよい。その場合、外気温は、外気温センサにより入力され、電源周波数は設定器により設定される。そして、制御器が、これらに基づき、チラー冷却能力およびチラー消費電力を算出する。
本発明の真空冷却装置1は、前記実施例の構成に限らず、適宜変更可能である。特に、処理槽3内の減圧手段4として、蒸気凝縮用の熱交換器10と水封式の真空ポンプ12とを備え、熱交換器10への通水として常温水と冷水とを切替可能とされた真空冷却装置1であって、真空ポンプ12を用いて処理槽3内を減圧中、熱交換器10への通水停止状態から冷水を用いて通水を開始する際、下記(a)と(b)とを切替可能とされるのであれば、その他の構成は適宜に変更可能である。
(a)熱交換器10内の滞留水を冷水タンク7へ供給することなく排水路32へ排水してから、熱交換器10と冷水タンク7との間での冷水の循環を開始する。
(b)熱交換器10内の滞留水を排水路32へ排水することなく冷水タンク7へ供給して、熱交換器10と冷水タンク7との間での冷水の循環を開始する。
また、前記実施例では、熱交換器10を通過後の水を排水するか冷水タンク7へ戻すかは、冷水戻し弁31と排水弁33とにより切り替えたが、これら弁の設置に代えて、熱交排水路22と排水路32との分岐部に三方弁を設けてこれを制御してもよい。
また、前記実施例では、減圧手段4は、蒸気エゼクタ9を備えたが、場合により蒸気エゼクタ9の設置を省略してもよい。その場合、第三冷却工程の実施は省略される。
また、前記実施例では、第一冷却工程において、凝縮水温度センサ38の検出温度が通水開始温度を超えるまで、排水弁33を閉じているが、場合により、第一冷却工程の開始直後に、所定時間だけ排水弁33を開けて、熱交換器10内の滞留水を入れ替えた後に、第一冷却工程を実施してもよい。
さらに、真空冷却装置1は、少なくとも真空冷却機能を有すれば足り、場合により処理槽3内の食材2の加熱機能を備えていてもよい。
1 真空冷却装置
2 食材
3 処理槽
4 減圧手段
5 復圧手段
6 チラー
7 冷水タンク
8 排気路
9 蒸気エゼクタ
10 熱交換器
12 真空ポンプ
19 循環ポンプ
20 冷水給水路
21 戻し路
22 熱交排水路
23 常温水給水路
24 熱交給水路
25 封水給水路
26 封水給水弁
27 共通管路
28 常温水給水弁
30 三方弁(冷水給水弁)
31 冷水戻し弁
32 排水路
33 排水弁
36 圧力センサ
37 品温センサ
38 凝縮水温度センサ

Claims (4)

  1. 食材が収容される処理槽と、
    この処理槽内の気体を外部へ吸引排出して、前記処理槽内を減圧する減圧手段と、
    減圧された前記処理槽内へ外気を導入して、前記処理槽内を復圧する復圧手段と、
    貯留水をチラーにより冷却可能な冷水タンクと、
    前記各手段を制御して前記処理槽内の食材を真空冷却する制御手段とを備え、
    前記減圧手段として、前記処理槽内からの排気路に、蒸気凝縮用熱交換器と水封式真空ポンプとを順に備え、
    前記熱交換器への通水として、常温水と冷水とを切替可能とされ、
    前記真空ポンプを用いて前記処理槽内を減圧中、前記熱交換器への通水停止状態から冷水を用いて通水を開始する際、前記熱交換器内の滞留水を前記冷水タンクへ供給することなく排水路へ排水してから、前記熱交換器と前記冷水タンクとの間での冷水の循環を開始するか、前記熱交換器内の滞留水を排水路へ排水することなく前記冷水タンクへ供給して、前記熱交換器と前記冷水タンクとの間での冷水の循環を開始するかを切替可能とされた
    ことを特徴とする真空冷却装置。
  2. 前記排気路には、前記熱交換器の出口側に凝縮水温度センサが設けられる一方、前記処理槽には、食材の温度を検出する品温センサが設けられ、
    前記制御手段は、前記熱交換器への通水を停止した状態で、前記真空ポンプへの封水として常温水を供給しつつ、前記真空ポンプにより前記処理槽内を減圧し、この減圧中、前記凝縮水温度センサの検出温度が通水開始温度を超えると、常温水を用いて前記熱交換器への通水を開始し、前記熱交換器を通過後の水を排水する第一冷却工程と、
    前記品温センサの検出温度がチラー切替温度以下になると開始され、前記熱交換器への通水および前記真空ポンプへの封水を、前記冷水タンクからの冷水に切り替えて、前記熱交換器と前記冷水タンクとの間で冷水を循環させつつ前記真空ポンプにより前記処理槽内を減圧する第二冷却工程とを順次に実行し、
    前記第一冷却工程において、前記凝縮水温度センサの検出温度が通水開始温度を超えることなく、前記第二冷却工程へ移行する場合、下記(a)と(b)とを切替可能とされた
    ことを特徴とする請求項1に記載の真空冷却装置。
    (a)前記熱交換器へ冷水を供給して、前記熱交換器内の滞留水を前記冷水タンクへ供給することなく排水路へ排水してから、前記熱交換器と前記冷水タンクとの間での冷水の循環を開始して前記第二冷却工程へ移行する。
    (b)前記熱交換器へ冷水を供給して、前記熱交換器内の滞留水を排水路へ排水することなく前記冷水タンクへ供給して、前記熱交換器と前記冷水タンクとの間での冷水の循環を開始して前記第二冷却工程へ移行する。
  3. 常温水給水弁を介した常温水給水路と、冷水給水弁を介した冷水給水路とが、合流後、前記熱交換器への熱交給水路と、前記真空ポンプへの封水給水路とに分岐され、
    前記封水給水路に封水給水弁が設けられ、前記熱交換器から前記冷水タンクへの熱交排水路に冷水戻し弁が設けられ、この冷水戻し弁より上流側の前記熱交排水路から分岐する排水路に排水弁が設けられ、
    前記第一冷却工程では、前記冷水給水弁、前記冷水戻し弁および前記排水弁を閉じる一方、前記常温水給水弁および前記封水給水弁を開けた状態で、前記真空ポンプを作動させて前記処理槽内を減圧し、この減圧中、前記凝縮水温度センサの検出温度が通水開始温度を超えると、前記排水弁を開けて前記熱交換器に通水し、
    前記第二冷却工程では、前記常温水給水弁および前記排水弁を閉じる一方、前記冷水給水弁および前記冷水戻し弁を開けて、前記熱交換器と前記冷水タンクとの間で冷水を循環させつつ前記真空ポンプにより前記処理槽内を減圧し、
    前記第一冷却工程において、前記凝縮水温度センサの検出温度が通水開始温度を超えることなく、前記第二冷却工程へ移行する場合、下記(a)と(b)とを切替可能とされた
    ことを特徴とする請求項2に記載の真空冷却装置。
    (a)前記常温水給水弁を閉じる一方、前記冷水給水弁および前記排水弁を開けて、前記熱交換器に通水して前記熱交換器を通過後の水を排水し、設定時間経過後、前記排水弁を閉じる一方、前記冷水戻し弁を開けて前記第二冷却工程へ移行する。
    (b)前記排水弁を閉じたまま、前記常温水給水弁を閉じる一方、前記冷水給水弁および前記冷水戻し弁を開けて前記第二冷却工程へ移行する。
  4. 少なくとも水道料金と電気料金の各単価を入力可能な設定器をさらに備え、
    前記第一冷却工程において、前記凝縮水温度センサの検出温度が通水開始温度を超えることなく、前記第二冷却工程へ移行する場合、前記熱交換器内の滞留水を排水路へ排水してから、前記熱交換器と前記冷水タンクとの間での冷水の循環を開始するか、前記熱交換器内の滞留水を排水路へ排水することなく、前記熱交換器と前記冷水タンクとの間での冷水の循環を開始するかの内、いずれで運転するのが安価であるかを、前記制御手段は、前記設定器により設定された情報に基づき判定して、安価な運転内容で運転する
    ことを特徴とする請求項2または請求項3に記載の真空冷却装置。
JP2014229425A 2014-11-12 2014-11-12 真空冷却装置 Active JP6369755B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014229425A JP6369755B2 (ja) 2014-11-12 2014-11-12 真空冷却装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014229425A JP6369755B2 (ja) 2014-11-12 2014-11-12 真空冷却装置

Publications (2)

Publication Number Publication Date
JP2016095043A JP2016095043A (ja) 2016-05-26
JP6369755B2 true JP6369755B2 (ja) 2018-08-08

Family

ID=56071612

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014229425A Active JP6369755B2 (ja) 2014-11-12 2014-11-12 真空冷却装置

Country Status (1)

Country Link
JP (1) JP6369755B2 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102342487B1 (ko) * 2017-05-26 2021-12-24 엘지전자 주식회사 공기조화기 및 그 제어방법

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4271791B2 (ja) * 1999-09-27 2009-06-03 株式会社サムソン 蒸気凝縮用熱交換器を持った真空冷却装置
JP4288699B2 (ja) * 2002-11-07 2009-07-01 三浦工業株式会社 真空冷却装置の制御方法および真空冷却装置
JP5370859B2 (ja) * 2010-03-26 2013-12-18 三浦工業株式会社 食品機械
JP2014126292A (ja) * 2012-12-26 2014-07-07 Miura Co Ltd 冷却封水からの冷熱回収システム

Also Published As

Publication number Publication date
JP2016095043A (ja) 2016-05-26

Similar Documents

Publication Publication Date Title
JP2003028515A (ja) 恒温液循環装置
CN108474594B (zh) 制冷装置
EP3404339B1 (en) Heat pump water heater
CN106796062A (zh) 热泵式制热装置
JP6417872B2 (ja) 真空冷却装置
JP2010084975A (ja) 暖房装置
JP6369755B2 (ja) 真空冷却装置
JP2006097930A (ja) ヒートポンプ式加熱装置
JP2012180945A (ja) 給湯システム
KR100563180B1 (ko) 히트 펌프 급탕 장치
KR101254367B1 (ko) 히트펌프 연동 온수 순환 시스템 및 제어 방법
EP3805663A1 (en) Supercritical steam compression-type refrigeration cycle and liquid heating device
JP2008039335A (ja) ヒートポンプ用デフロスト回路およびヒートポンプ式給湯機並びにヒートポンプ式給湯機におけるデフロスト方法
JP6302725B2 (ja) ヒートポンプ式給湯機、および、ヒートポンプユニット
JP5862446B2 (ja) 真空冷却機能を有する食品機械
JP4288699B2 (ja) 真空冷却装置の制御方法および真空冷却装置
JP7376846B2 (ja) 真空冷却装置
JP2004360970A (ja) ヒートポンプ給湯装置
JP5247335B2 (ja) 暖房装置
JP7124677B2 (ja) 真空冷却装置
JP7223319B2 (ja) 真空冷却装置
JP7232400B2 (ja) 真空冷却装置
JP2020034199A (ja) 真空冷却装置
JP7432103B2 (ja) 真空冷却装置
JP4004049B2 (ja) ヒートポンプ給湯装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170908

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180613

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180615

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180628

R150 Certificate of patent or registration of utility model

Ref document number: 6369755

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250