JP6368707B2 - 電池用途のための組み込みチップ - Google Patents
電池用途のための組み込みチップ Download PDFInfo
- Publication number
- JP6368707B2 JP6368707B2 JP2015509180A JP2015509180A JP6368707B2 JP 6368707 B2 JP6368707 B2 JP 6368707B2 JP 2015509180 A JP2015509180 A JP 2015509180A JP 2015509180 A JP2015509180 A JP 2015509180A JP 6368707 B2 JP6368707 B2 JP 6368707B2
- Authority
- JP
- Japan
- Prior art keywords
- electrochemical cell
- circuit
- state
- temperature
- voltage
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000012544 monitoring process Methods 0.000 claims description 156
- 238000000034 method Methods 0.000 claims description 114
- 230000008859 change Effects 0.000 claims description 101
- 238000007600 charging Methods 0.000 claims description 91
- 238000007599 discharging Methods 0.000 claims description 87
- 238000005259 measurement Methods 0.000 claims description 78
- 230000015556 catabolic process Effects 0.000 claims description 58
- 238000006731 degradation reaction Methods 0.000 claims description 58
- 238000004891 communication Methods 0.000 claims description 42
- 238000012546 transfer Methods 0.000 claims description 19
- 238000004364 calculation method Methods 0.000 claims description 18
- 238000009529 body temperature measurement Methods 0.000 claims description 14
- 230000003213 activating effect Effects 0.000 claims description 3
- 238000004146 energy storage Methods 0.000 claims description 3
- 230000001133 acceleration Effects 0.000 claims description 2
- 210000004027 cell Anatomy 0.000 description 791
- 239000000203 mixture Substances 0.000 description 80
- 239000000463 material Substances 0.000 description 61
- 238000006243 chemical reaction Methods 0.000 description 46
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 42
- 230000006870 function Effects 0.000 description 42
- 229910052744 lithium Inorganic materials 0.000 description 42
- 238000009830 intercalation Methods 0.000 description 33
- 229910001416 lithium ion Inorganic materials 0.000 description 32
- 230000002687 intercalation Effects 0.000 description 31
- 239000003792 electrolyte Substances 0.000 description 28
- 239000007772 electrode material Substances 0.000 description 25
- 239000000126 substance Substances 0.000 description 22
- 238000001816 cooling Methods 0.000 description 20
- 150000002500 ions Chemical class 0.000 description 20
- 230000032683 aging Effects 0.000 description 18
- 238000010438 heat treatment Methods 0.000 description 16
- 239000007787 solid Substances 0.000 description 16
- 230000007423 decrease Effects 0.000 description 15
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical group [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 description 14
- 230000008569 process Effects 0.000 description 14
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 12
- 238000012512 characterization method Methods 0.000 description 12
- 238000012417 linear regression Methods 0.000 description 12
- 238000002474 experimental method Methods 0.000 description 11
- 230000014509 gene expression Effects 0.000 description 11
- 229910052596 spinel Inorganic materials 0.000 description 11
- 239000011029 spinel Substances 0.000 description 11
- 238000012360 testing method Methods 0.000 description 11
- 238000004458 analytical method Methods 0.000 description 10
- 239000003990 capacitor Substances 0.000 description 10
- 238000003411 electrode reaction Methods 0.000 description 10
- 238000003780 insertion Methods 0.000 description 10
- 230000037431 insertion Effects 0.000 description 10
- 230000007704 transition Effects 0.000 description 10
- 230000008901 benefit Effects 0.000 description 9
- 239000000446 fuel Substances 0.000 description 9
- 230000036961 partial effect Effects 0.000 description 9
- 230000009466 transformation Effects 0.000 description 9
- 239000010406 cathode material Substances 0.000 description 8
- 150000001875 compounds Chemical class 0.000 description 8
- 230000000694 effects Effects 0.000 description 8
- 229910032387 LiCoO2 Inorganic materials 0.000 description 7
- 230000009286 beneficial effect Effects 0.000 description 7
- 229910052799 carbon Inorganic materials 0.000 description 7
- 238000013461 design Methods 0.000 description 7
- 230000005518 electrochemistry Effects 0.000 description 7
- 229910002804 graphite Inorganic materials 0.000 description 7
- 239000010439 graphite Substances 0.000 description 7
- 239000002253 acid Substances 0.000 description 6
- 230000007547 defect Effects 0.000 description 6
- 238000010586 diagram Methods 0.000 description 6
- 238000005516 engineering process Methods 0.000 description 6
- 238000011835 investigation Methods 0.000 description 6
- 239000007788 liquid Substances 0.000 description 6
- 239000010405 anode material Substances 0.000 description 5
- 230000022131 cell cycle Effects 0.000 description 5
- 238000005260 corrosion Methods 0.000 description 5
- 230000007797 corrosion Effects 0.000 description 5
- 238000012983 electrochemical energy storage Methods 0.000 description 5
- 238000010348 incorporation Methods 0.000 description 5
- 239000010410 layer Substances 0.000 description 5
- 230000009467 reduction Effects 0.000 description 5
- 230000002441 reversible effect Effects 0.000 description 5
- 150000001450 anions Chemical class 0.000 description 4
- 238000013459 approach Methods 0.000 description 4
- 230000006399 behavior Effects 0.000 description 4
- 239000006182 cathode active material Substances 0.000 description 4
- 230000032677 cell aging Effects 0.000 description 4
- 230000001413 cellular effect Effects 0.000 description 4
- 210000003850 cellular structure Anatomy 0.000 description 4
- 239000004020 conductor Substances 0.000 description 4
- 238000003869 coulometry Methods 0.000 description 4
- 239000013078 crystal Substances 0.000 description 4
- 230000005611 electricity Effects 0.000 description 4
- 238000010325 electrochemical charging Methods 0.000 description 4
- 230000010354 integration Effects 0.000 description 4
- 229910002102 lithium manganese oxide Inorganic materials 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 4
- -1 morphology Substances 0.000 description 4
- 230000003647 oxidation Effects 0.000 description 4
- 238000007254 oxidation reaction Methods 0.000 description 4
- 238000010587 phase diagram Methods 0.000 description 4
- 230000036647 reaction Effects 0.000 description 4
- 238000011160 research Methods 0.000 description 4
- 150000003839 salts Chemical class 0.000 description 4
- 238000007086 side reaction Methods 0.000 description 4
- 241000894007 species Species 0.000 description 4
- 238000003860 storage Methods 0.000 description 4
- 238000012932 thermodynamic analysis Methods 0.000 description 4
- 238000000844 transformation Methods 0.000 description 4
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 3
- 229910001091 LixCoO2 Inorganic materials 0.000 description 3
- 239000011149 active material Substances 0.000 description 3
- 230000005540 biological transmission Effects 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- 238000007707 calorimetry Methods 0.000 description 3
- 238000010351 charge transfer process Methods 0.000 description 3
- 239000000470 constituent Substances 0.000 description 3
- 238000010276 construction Methods 0.000 description 3
- 238000011161 development Methods 0.000 description 3
- 230000018109 developmental process Effects 0.000 description 3
- 238000011156 evaluation Methods 0.000 description 3
- 229910052742 iron Inorganic materials 0.000 description 3
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 3
- 230000000670 limiting effect Effects 0.000 description 3
- 229910052748 manganese Inorganic materials 0.000 description 3
- 239000011572 manganese Substances 0.000 description 3
- 238000000691 measurement method Methods 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 238000012986 modification Methods 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- 230000007935 neutral effect Effects 0.000 description 3
- 230000004044 response Effects 0.000 description 3
- 238000012552 review Methods 0.000 description 3
- 241000282326 Felis catus Species 0.000 description 2
- KRHYYFGTRYWZRS-UHFFFAOYSA-M Fluoride anion Chemical compound [F-] KRHYYFGTRYWZRS-UHFFFAOYSA-M 0.000 description 2
- 229910014549 LiMn204 Inorganic materials 0.000 description 2
- 238000000342 Monte Carlo simulation Methods 0.000 description 2
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 2
- 238000002441 X-ray diffraction Methods 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- 238000013473 artificial intelligence Methods 0.000 description 2
- 150000001768 cations Chemical class 0.000 description 2
- 239000000919 ceramic Substances 0.000 description 2
- 229910052804 chromium Inorganic materials 0.000 description 2
- 230000003750 conditioning effect Effects 0.000 description 2
- 238000012790 confirmation Methods 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- 239000010949 copper Substances 0.000 description 2
- 238000002484 cyclic voltammetry Methods 0.000 description 2
- 230000001351 cycling effect Effects 0.000 description 2
- 238000001514 detection method Methods 0.000 description 2
- 230000006866 deterioration Effects 0.000 description 2
- 238000000113 differential scanning calorimetry Methods 0.000 description 2
- 230000004069 differentiation Effects 0.000 description 2
- 238000005430 electron energy loss spectroscopy Methods 0.000 description 2
- 238000013213 extrapolation Methods 0.000 description 2
- 230000020169 heat generation Effects 0.000 description 2
- QEXMICRJPVUPSN-UHFFFAOYSA-N lithium manganese(2+) oxygen(2-) Chemical class [O-2].[Mn+2].[Li+] QEXMICRJPVUPSN-UHFFFAOYSA-N 0.000 description 2
- VLXXBCXTUVRROQ-UHFFFAOYSA-N lithium;oxido-oxo-(oxomanganiooxy)manganese Chemical compound [Li+].[O-][Mn](=O)O[Mn]=O VLXXBCXTUVRROQ-UHFFFAOYSA-N 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- 229910044991 metal oxide Inorganic materials 0.000 description 2
- 150000004706 metal oxides Chemical class 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- 229910052759 nickel Inorganic materials 0.000 description 2
- PXHVJJICTQNCMI-UHFFFAOYSA-N nickel Substances [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- ZKATWMILCYLAPD-UHFFFAOYSA-N niobium pentoxide Chemical compound O=[Nb](=O)O[Nb](=O)=O ZKATWMILCYLAPD-UHFFFAOYSA-N 0.000 description 2
- 210000000056 organ Anatomy 0.000 description 2
- 230000010363 phase shift Effects 0.000 description 2
- 230000000704 physical effect Effects 0.000 description 2
- 229920000642 polymer Polymers 0.000 description 2
- 239000005518 polymer electrolyte Substances 0.000 description 2
- 238000010248 power generation Methods 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 238000003908 quality control method Methods 0.000 description 2
- 238000006479 redox reaction Methods 0.000 description 2
- 230000002829 reductive effect Effects 0.000 description 2
- 239000006104 solid solution Substances 0.000 description 2
- 239000000243 solution Substances 0.000 description 2
- 229910052566 spinel group Inorganic materials 0.000 description 2
- 230000000087 stabilizing effect Effects 0.000 description 2
- 239000007858 starting material Substances 0.000 description 2
- 125000001424 substituent group Chemical group 0.000 description 2
- 238000010189 synthetic method Methods 0.000 description 2
- 238000002076 thermal analysis method Methods 0.000 description 2
- ZNOKGRXACCSDPY-UHFFFAOYSA-N tungsten trioxide Chemical compound O=[W](=O)=O ZNOKGRXACCSDPY-UHFFFAOYSA-N 0.000 description 2
- 230000000007 visual effect Effects 0.000 description 2
- 229910001148 Al-Li alloy Inorganic materials 0.000 description 1
- 241000252073 Anguilliformes Species 0.000 description 1
- 229910018871 CoO 2 Inorganic materials 0.000 description 1
- 229910000733 Li alloy Inorganic materials 0.000 description 1
- 229910013191 LiMO2 Inorganic materials 0.000 description 1
- 229910002993 LiMnO2 Inorganic materials 0.000 description 1
- 229910013716 LiNi Inorganic materials 0.000 description 1
- 229910016104 LiNi1 Inorganic materials 0.000 description 1
- 229910014421 LiNi1/3Mn1/3CO1/3 Inorganic materials 0.000 description 1
- 229910003005 LiNiO2 Inorganic materials 0.000 description 1
- 229910002097 Lithium manganese(III,IV) oxide Inorganic materials 0.000 description 1
- 229910018686 LixCo1 Inorganic materials 0.000 description 1
- 229910014715 LixTiO2 Inorganic materials 0.000 description 1
- 244000241872 Lycium chinense Species 0.000 description 1
- 101100395443 Mus musculus Hormad1 gene Proteins 0.000 description 1
- 238000005481 NMR spectroscopy Methods 0.000 description 1
- 229910015177 Ni1/3Co1/3Mn1/3 Inorganic materials 0.000 description 1
- 229910005580 NiCd Inorganic materials 0.000 description 1
- 229920000265 Polyparaphenylene Polymers 0.000 description 1
- 206010037660 Pyrexia Diseases 0.000 description 1
- 238000001237 Raman spectrum Methods 0.000 description 1
- 238000012951 Remeasurement Methods 0.000 description 1
- 238000003991 Rietveld refinement Methods 0.000 description 1
- 229910003092 TiS2 Inorganic materials 0.000 description 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- SOZVEOGRIFZGRO-UHFFFAOYSA-N [Li].ClS(Cl)=O Chemical compound [Li].ClS(Cl)=O SOZVEOGRIFZGRO-UHFFFAOYSA-N 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 230000004308 accommodation Effects 0.000 description 1
- 238000009825 accumulation Methods 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 230000004075 alteration Effects 0.000 description 1
- 238000005280 amorphization Methods 0.000 description 1
- 238000003491 array Methods 0.000 description 1
- 229910052793 cadmium Inorganic materials 0.000 description 1
- BDOSMKKIYDKNTQ-UHFFFAOYSA-N cadmium atom Chemical compound [Cd] BDOSMKKIYDKNTQ-UHFFFAOYSA-N 0.000 description 1
- OJIJEKBXJYRIBZ-UHFFFAOYSA-N cadmium nickel Chemical compound [Ni].[Cd] OJIJEKBXJYRIBZ-UHFFFAOYSA-N 0.000 description 1
- NSAODVHAXBZWGW-UHFFFAOYSA-N cadmium silver Chemical compound [Ag].[Cd] NSAODVHAXBZWGW-UHFFFAOYSA-N 0.000 description 1
- 238000004422 calculation algorithm Methods 0.000 description 1
- 238000003763 carbonization Methods 0.000 description 1
- 230000003197 catalytic effect Effects 0.000 description 1
- 238000006555 catalytic reaction Methods 0.000 description 1
- 230000002925 chemical effect Effects 0.000 description 1
- 239000013626 chemical specie Substances 0.000 description 1
- 239000011651 chromium Substances 0.000 description 1
- 238000000970 chrono-amperometry Methods 0.000 description 1
- 238000004769 chrono-potentiometry Methods 0.000 description 1
- 229910017052 cobalt Inorganic materials 0.000 description 1
- 239000010941 cobalt Substances 0.000 description 1
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 1
- 239000000571 coke Substances 0.000 description 1
- 238000005094 computer simulation Methods 0.000 description 1
- 238000010277 constant-current charging Methods 0.000 description 1
- 239000012809 cooling fluid Substances 0.000 description 1
- 239000000498 cooling water Substances 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 125000004122 cyclic group Chemical group 0.000 description 1
- 101150047356 dec-1 gene Proteins 0.000 description 1
- 230000000593 degrading effect Effects 0.000 description 1
- 238000003745 diagnosis Methods 0.000 description 1
- 238000004455 differential thermal analysis Methods 0.000 description 1
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 1
- 208000035475 disorder Diseases 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 238000004870 electrical engineering Methods 0.000 description 1
- 238000000840 electrochemical analysis Methods 0.000 description 1
- 238000003487 electrochemical reaction Methods 0.000 description 1
- 238000000157 electrochemical-induced impedance spectroscopy Methods 0.000 description 1
- 238000004070 electrodeposition Methods 0.000 description 1
- 239000002001 electrolyte material Substances 0.000 description 1
- 239000004744 fabric Substances 0.000 description 1
- 238000005562 fading Methods 0.000 description 1
- 238000005290 field theory Methods 0.000 description 1
- ZZUFCTLCJUWOSV-UHFFFAOYSA-N furosemide Chemical compound C1=C(Cl)C(S(=O)(=O)N)=CC(C(O)=O)=C1NCC1=CC=CO1 ZZUFCTLCJUWOSV-UHFFFAOYSA-N 0.000 description 1
- 238000005087 graphitization Methods 0.000 description 1
- 238000011065 in-situ storage Methods 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- 238000006713 insertion reaction Methods 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 239000011229 interlayer Substances 0.000 description 1
- 239000010416 ion conductor Substances 0.000 description 1
- UQSXHKLRYXJYBZ-UHFFFAOYSA-N iron oxide Inorganic materials [Fe]=O UQSXHKLRYXJYBZ-UHFFFAOYSA-N 0.000 description 1
- OVMJVEMNBCGDGM-UHFFFAOYSA-N iron silver Chemical compound [Fe].[Ag] OVMJVEMNBCGDGM-UHFFFAOYSA-N 0.000 description 1
- 230000002427 irreversible effect Effects 0.000 description 1
- 238000002334 isothermal calorimetry Methods 0.000 description 1
- 238000010983 kinetics study Methods 0.000 description 1
- LWUVWAREOOAHDW-UHFFFAOYSA-N lead silver Chemical compound [Ag].[Pb] LWUVWAREOOAHDW-UHFFFAOYSA-N 0.000 description 1
- 238000004502 linear sweep voltammetry Methods 0.000 description 1
- 229910001338 liquidmetal Inorganic materials 0.000 description 1
- 239000001989 lithium alloy Substances 0.000 description 1
- 229910000625 lithium cobalt oxide Inorganic materials 0.000 description 1
- 229910021437 lithium-transition metal oxide Inorganic materials 0.000 description 1
- BFZPBUKRYWOWDV-UHFFFAOYSA-N lithium;oxido(oxo)cobalt Chemical compound [Li+].[O-][Co]=O BFZPBUKRYWOWDV-UHFFFAOYSA-N 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 238000000004 low energy electron diffraction Methods 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 239000011777 magnesium Substances 0.000 description 1
- 238000005297 material degradation process Methods 0.000 description 1
- 238000013178 mathematical model Methods 0.000 description 1
- 239000002931 mesocarbon microbead Substances 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 1
- 229910000476 molybdenum oxide Inorganic materials 0.000 description 1
- 229910052758 niobium Inorganic materials 0.000 description 1
- 239000010955 niobium Substances 0.000 description 1
- GUCVJGMIXFAOAE-UHFFFAOYSA-N niobium atom Chemical compound [Nb] GUCVJGMIXFAOAE-UHFFFAOYSA-N 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- NDLPOXTZKUMGOV-UHFFFAOYSA-N oxo(oxoferriooxy)iron hydrate Chemical compound O.O=[Fe]O[Fe]=O NDLPOXTZKUMGOV-UHFFFAOYSA-N 0.000 description 1
- PQQKPALAQIIWST-UHFFFAOYSA-N oxomolybdenum Chemical class [Mo]=O PQQKPALAQIIWST-UHFFFAOYSA-N 0.000 description 1
- 238000004806 packaging method and process Methods 0.000 description 1
- 239000012071 phase Substances 0.000 description 1
- 238000005191 phase separation Methods 0.000 description 1
- 239000007774 positive electrode material Substances 0.000 description 1
- 238000004313 potentiometry Methods 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- RUOJZAUFBMNUDX-UHFFFAOYSA-N propylene carbonate Chemical compound CC1COC(=O)O1 RUOJZAUFBMNUDX-UHFFFAOYSA-N 0.000 description 1
- 238000011946 reduction process Methods 0.000 description 1
- 230000027756 respiratory electron transport chain Effects 0.000 description 1
- 230000000630 rising effect Effects 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 238000004904 shortening Methods 0.000 description 1
- 229910021332 silicide Inorganic materials 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 238000004088 simulation Methods 0.000 description 1
- 239000000779 smoke Substances 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 238000012306 spectroscopic technique Methods 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 230000002269 spontaneous effect Effects 0.000 description 1
- 238000007619 statistical method Methods 0.000 description 1
- 230000007847 structural defect Effects 0.000 description 1
- 238000004381 surface treatment Methods 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 238000010998 test method Methods 0.000 description 1
- 238000003878 thermal aging Methods 0.000 description 1
- 239000002470 thermal conductor Substances 0.000 description 1
- 230000036962 time dependent Effects 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 229910000314 transition metal oxide Inorganic materials 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 239000010937 tungsten Substances 0.000 description 1
- 229910052720 vanadium Inorganic materials 0.000 description 1
- 230000002861 ventricular Effects 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
- 239000011701 zinc Substances 0.000 description 1
- 229910006297 γ-Fe2O3 Inorganic materials 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L58/00—Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
- B60L58/10—Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
- B60L58/12—Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
- B60L58/14—Preventing excessive discharging
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L1/00—Supplying electric power to auxiliary equipment of vehicles
- B60L1/003—Supplying electric power to auxiliary equipment of vehicles to auxiliary motors, e.g. for pumps, compressors
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L1/00—Supplying electric power to auxiliary equipment of vehicles
- B60L1/02—Supplying electric power to auxiliary equipment of vehicles to electric heating circuits
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L3/00—Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
- B60L3/0023—Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train
- B60L3/0046—Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train relating to electric energy storage systems, e.g. batteries or capacitors
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L3/00—Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
- B60L3/0023—Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train
- B60L3/0053—Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train relating to fuel cells
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L3/00—Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
- B60L3/12—Recording operating variables ; Monitoring of operating variables
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L50/00—Electric propulsion with power supplied within the vehicle
- B60L50/40—Electric propulsion with power supplied within the vehicle using propulsion power supplied by capacitors
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L58/00—Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
- B60L58/10—Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
- B60L58/12—Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
- B60L58/13—Maintaining the SoC within a determined range
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L58/00—Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
- B60L58/10—Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
- B60L58/12—Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
- B60L58/15—Preventing overcharging
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L58/00—Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
- B60L58/10—Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
- B60L58/16—Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to battery ageing, e.g. to the number of charging cycles or the state of health [SoH]
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L58/00—Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
- B60L58/10—Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
- B60L58/18—Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L58/00—Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
- B60L58/10—Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
- B60L58/24—Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries
- B60L58/25—Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries by controlling the electric load
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L58/00—Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
- B60L58/10—Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
- B60L58/24—Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries
- B60L58/26—Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries by cooling
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L58/00—Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
- B60L58/10—Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
- B60L58/24—Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries
- B60L58/27—Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries by heating
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L58/00—Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
- B60L58/30—Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling fuel cells
- B60L58/32—Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling fuel cells for controlling the temperature of fuel cells, e.g. by controlling the electric load
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L58/00—Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
- B60L58/30—Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling fuel cells
- B60L58/32—Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling fuel cells for controlling the temperature of fuel cells, e.g. by controlling the electric load
- B60L58/34—Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling fuel cells for controlling the temperature of fuel cells, e.g. by controlling the electric load by heating
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N27/00—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
- G01N27/26—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
- G01N27/27—Association of two or more measuring systems or cells, each measuring a different parameter, where the measurement results may be either used independently, the systems or cells being physically associated, or combined to produce a value for a further parameter
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R31/00—Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
- G01R31/36—Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
- G01R31/382—Arrangements for monitoring battery or accumulator variables, e.g. SoC
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/42—Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
- H01M10/48—Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/42—Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
- H01M10/48—Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
- H01M10/486—Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte for measuring temperature
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L2240/00—Control parameters of input or output; Target parameters
- B60L2240/10—Vehicle control parameters
- B60L2240/12—Speed
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L2240/00—Control parameters of input or output; Target parameters
- B60L2240/40—Drive Train control parameters
- B60L2240/54—Drive Train control parameters related to batteries
- B60L2240/545—Temperature
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L2240/00—Control parameters of input or output; Target parameters
- B60L2240/40—Drive Train control parameters
- B60L2240/54—Drive Train control parameters related to batteries
- B60L2240/547—Voltage
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L2240/00—Control parameters of input or output; Target parameters
- B60L2240/40—Drive Train control parameters
- B60L2240/54—Drive Train control parameters related to batteries
- B60L2240/549—Current
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L2240/00—Control parameters of input or output; Target parameters
- B60L2240/80—Time limits
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L2260/00—Operating Modes
- B60L2260/20—Drive modes; Transition between modes
- B60L2260/22—Standstill, e.g. zero speed
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L58/00—Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
- B60L58/30—Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling fuel cells
- B60L58/32—Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling fuel cells for controlling the temperature of fuel cells, e.g. by controlling the electric load
- B60L58/33—Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling fuel cells for controlling the temperature of fuel cells, e.g. by controlling the electric load by cooling
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R31/00—Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
- G01R31/36—Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
- G01R31/382—Arrangements for monitoring battery or accumulator variables, e.g. SoC
- G01R31/3835—Arrangements for monitoring battery or accumulator variables, e.g. SoC involving only voltage measurements
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/42—Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
- H01M10/44—Methods for charging or discharging
- H01M10/448—End of discharge regulating measures
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/42—Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
- H01M10/425—Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
- H01M2010/4271—Battery management systems including electronic circuits, e.g. control of current or voltage to keep battery in healthy state, cell balancing
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/70—Energy storage systems for electromobility, e.g. batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T90/00—Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02T90/40—Application of hydrogen technology to transportation, e.g. using fuel cells
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Transportation (AREA)
- Mechanical Engineering (AREA)
- Life Sciences & Earth Sciences (AREA)
- Sustainable Energy (AREA)
- Sustainable Development (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- Manufacturing & Machinery (AREA)
- General Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Molecular Biology (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Secondary Cells (AREA)
- Electric Propulsion And Braking For Vehicles (AREA)
- Charge And Discharge Circuits For Batteries Or The Like (AREA)
- Battery Electrode And Active Subsutance (AREA)
Description
ング(Ng)ら著、「応用エネルギー(Applied Energy)」、第86巻、2009年、p.1506〜1511
レムリンガー(Remmlinger)ら著、「ジャーナル・オブ・パワー・ソース(J.Power Sources)」、第196巻、2011年、p.5357〜5363
アンドレ(Andre)ら著、「人工知能の光学応用(Engineering Applications of Artificial Intelligence)」、第26巻、2013年、p.951〜961
リン(Lin)ら著、「産業情報に関する電気電子技術者協会紀要(IEEE Transactions on Industrial Informatics)」、9:2、2013年、p.679〜685
エダヘック(Eddahech)ら著、「電力システムおよびエネルギーシステム(Electrical Power and Energy Systems)」、第42巻、2012年、p.487〜494。
集積回路を設けるステップであって、この集積回路は:電気化学セルの複数の開回路電圧、電気化学セルを充電もしくは放電した後または電気化学セルの充電もしくは放電を停止したときに発生する複数の開回路電圧を測定する電圧監視回路、電気化学セルの複数の温度、電気化学セルを充電もしくは放電した後または電気化学セルの充電もしくは放電を停止したときに発生する複数の温度を測定する温度監視回路、および電気化学セルの熱力学パラメータを決定する回路であって、この熱力学パラメータは、電気化学セルのエントロピーの変化、電気化学セルのエンタルピーの変化および電気化学セルの自由エネルギーの変化の1つ以上であり、この熱力学パラメータを決定する回路は、温度監視回路から温度測定値を受け取るために温度監視回路と電気伝導またはデータ通信状態に置かれ、かつ、電圧監視回路から開回路電圧測定値を受け取るために電圧監視回路と電気伝導またはデータ通信状態に置かれる回路を含むステップ、
電気化学セルの複数の開回路電圧、電気化学セルの複数の温度または複数の開回路電圧と電気化学セルの複数の温度の両方を生成するステップ、および
集積回路を使用することにより電気化学セルの第1熱力学パラメータを決定するステップ。
陽極:一般的に酸化が起きる電極である。酸化は電子の喪失であり、かつ、次のように図式化することができる:Ra→Oa+nae、ここで、Raは還元型であり、かつ、Oaは陽極材料のために使用される化学種の酸化型である。陽極は、中性またはプラスに帯電している(陽イオン)またはマイナスに帯電している(陰イオン)を含んでいる。naは、Raによる陽極反応において交換された電子モルの個数である。陽極は、放電中のセルの負極である。
電解液:イオン的に伝導性の材料であり、その役割は、達成されるべき電極反応のために必要な陰イオンおよび陽イオンを供給することである。電解液は、通常、溶媒媒体および塩、酸または塩基などの溶質物質を含む。場合によっては、電解液は、セルの充電および放電の結果として組成を変える(たとえば、放電中に硫酸が消費される鉛酸電池の場合:Pb+PbO2+2H2SO4→2PbSO4+2H2O)。
放電電流(i)の密度:ゼロ電流の下で、Ui=0は開回路電圧である。これは、時間とともにSOCおよび温度により決まる平衡電圧U∞に向かう;温度;システム構成要素の劣化状態(SOH):陽極、陰極および電解液の場合、SOHは、大部分、充電/放電サイクル、過充電および過放電、および熱劣化などのシステム「履歴」により変化する。電池、燃料電池およびEDLCは直列モードで動作するので、活性構成要素(陽極、陰極および電解液)の1つのいずれかの劣化は、セルのSOHに影響を及ぼす。
負極:
SOC(全電池)=inf(SOC(an),SOC(cat),SOC(elec)) (3)
(‘inf’関数は、パラメータ群中の最低値を指す)。i(t)を得る電気化学セル技術は、以下を含むが、それらには限られない。
通常、電極またはセルの電圧を時間対比でプロットする、クロノポテンシオメトリ(chronopotentiometry)と呼ばれる技術。
電気化学セルの組成、設計、および/または実験的状態の適切な選択により、本発明の測定システムは、選択された電極(陰極または陽極)または電解液などの電気化学セルの単一の構成要素の材料の特性、SOH、熱力学的および/または材料的特性、および電気化学セルの単一の構成要素の上でまたはその中で発生する化学反応を調べることができる。かかる電気化学セルおよび測定システムの構成の選択は、本測定システムを使用して電気化学セルの単一の活性構成要素およびその化学反応に関する有益な情報(熱力学的、組成的、物理的特性等)を発生させるのに役立つ。たとえば、電気化学セルの充電状態から独立している化学ポテンシャルを有する第1電極(たとえば、対電極)を備える電気化学セルの選択により、本発明のシステムは、第2電極(たとえば、作用電極)の種々の組成および/または充電状態に関して熱力学的に安定した状態の開回路電圧の測定値を発生させることができる。たとえば、1つの実施形態では、純粋な電極材料(たとえば、リチウム、カドミウムまたは亜鉛の純粋金属電極を含む)の第1電極(たとえば、対電極)の使用が、主として第2電極(たとえば、作用電極)の充電状態、組成および/または化学反応を反映する開回路電圧測定値の取得のために有益である。しかし、より一般的には、第1および第2電極に加えて基準電極(すなわち、第3電極)を使用する本発明のシステムは、たとえば、選択された電極(たとえば、陰極または陽極)の組成および/または充電状態(SOC)の関数として、開回路電圧または熱力学パラメータの測定値を得るために使用することができる。したがって、これらの実施形態では、基準電極(すなわち、第3電極)の組み込みにより、電気化学セルの選択された電極の種々の組成、温度および化学反応に対応する熱力学的に安定した状態の開回路電圧の正確な測定を可能にする。かかるシステム構成の使用は、主として、単一の電気化学セル構成要素の化学現象、物理的特性、熱力学的現象および構造を反映する熱力学的情報およびその他の有用な情報を得るために大いに役立つ。たとえば、基準電極の使用または電気化学セルの充電状態から独立している化学ポテンシャルを有する電極の選択は、単一の電極反応に対応する熱力学状態関数(ΔH、ΔSおよびΔG)の測定を可能にする。かかる情報は、電気化学セル構成要素の構造的、熱力学的および化学的特徴付けに有用であり、かつ、電気化学セルの構成要素を評価するための試験方法および品質管理方法の基礎として役立ち得る。
表現「充電状態」または“SOC”は、電池などの電気化学セルまたはその構成要素(たとえば、電極−陰極および/または陽極)の1つの特性であり、その定格または理論的容量のパーセンテージで表されるその利用可能な容量を指す。表現「充電状態」は、任意選択的に充電の真の状態または充電の電量状態を指すことがある。電気化学セルの充電状態は、本明細書において記述される方法を含む種々の方法で測定することができる。参照により本明細書に組み込まれている以下の参考文献は、電気化学セルの充電状態を推定、計算または測定する方法を開示している:
ング(Ng)ら著、「アプライド・エナジー(Applied Energy)」、第86巻、2009年、p.1506〜1511
ピラー(Piller)ら著、「ジャーナル・オブ・パワー・ソース(J..Power Sources)」、第96巻、2001年、p.113〜120
コールマン(Coleman)ら著、「電気電子技術者協会紀要(IEEE Trans.Ind.Electron)」、第54巻、2007年、p.2250〜2257
ング(Ng)ら著、「鉛酸電池の充電状態および劣化状態を推定する改良電量計数法(An enhanced coulomb counting method for estimating state−of−charge and state−of−health of lead−acid batteries)」INTELEC第31号、韓国、仁川、2009年
スニヒル(Snihir)ら著、「ジャーナル・オブ・パワー・ソース(J.Power Sources)」、159:2、2006年、p.1484〜1487。
「電流監視回路」は、電流を受け取り、かつ、電流監視回路を流れる電流の大きさまたは方向の指示を供給する回路を指す。実施形態では、電流監視回路により供給される指示は、データ指示、可視指示または電圧指示または電流指示などの電気的指示である。実施形態では、電流監視回路は、電気化学セルからの電流、たとえば、充電電流または放電電流を監視する。実施形態では、電流監視回路は、電流を連続的または周期的に監視する。
ΔG=−nFU
ここで、Uは電極の平衡電位であり、Fはファラデー数である。Li+/Li電気機械結合の場合、1個の電子が交換されるので、n=1である。
dE=σW+σQ
=−PdV+μdn+TdS
dH=dE+PdV+VdP
=μdn+TdS+VdP
ここで、μは、金属リチウム陽極対比の陰極の化学ポテンシャルであり、かつ、nは、交換されるリチウム原子の個数である。項μdnは、交換される電荷の電気的仕事量である。この検討においては、圧力Pは一定である。したがって、第3項、VdPは無視される。したがって、(6)を利用してギブス自由エネルギーは、次のように表すことができる。
dG=dH−TdS−SdT
=μdn−SdT
モル値を得るために、x=n/Nを使用する。ここでNはアボガドロ数である。化学ポテンシャルは、μ=−eUにより開回路電圧Uに関連する。ここでeは電子の電荷である。
dG=−NeUdx−SdT
=−FUdx−SdT
F=Neであるから、混合二次導関数のマクスウェルの関係を使用することにより、開回路電圧の関数としてリチウムインターカレーションの部分モルエントロピー(partial molar entropy)を得る:
[実施例]
実施例1:組み込みチップ
この例において記述される装置は、電気化学セルに埋め込まれるように設計される。任意選択的に、チップは、2〜20個の電気化学セルを含むモジュールなどの電池モジュール中、および1〜100個のモジュールを含むものなどの電池パック中に埋め込むことができる。組み込みチップは、電池の劣化状態および充電状態を評価するために、個々のセル中の電流、電圧および温度のデータを収集し、かつ、それらを有益な熱力学データに変換するように構成される。
実施形態では、本発明の装置は、電気化学セルおよび電気化学セルから電力を引き出すシステム中に組み込まれる。電気化学セルの充電または放電が停止された後に、電気化学セルが平衡または熱力学的に安定した状態に到達するまで時間がかかるであろう。一定の実施形態では、電気化学セルが平衡状態にあるときに装置が電気化学セルの開回路電圧を測定する機会を有することは、ほとんどないであろう。これらの実施形態では、電気化学セルが平衡状態に達するまで待つことなく、開回路電圧を推定する必要がある。実施形態では、電気化学セルの充電または放電が停止された後の電気化学セルの開回路電圧の変化は、指数関数減衰形状に従う。開回路電圧の指数関数減衰の1周期を監視することにより指数減衰の時定数を決定し、かつ、指数関数減衰の近づいて行く漸近値(すなわち、平衡値)を推定することができる。
4個の18650リチウムイオンセルについて2つの別々の試験を行った。第1の試験においては、制御される温度を使用して熱力学パラメータを測定した。セルの充電状態を5%増分ずつ変化させ、各充電状態において温度制御装備セルホルダ(cell holder equipped with temperature control)中において25℃から10℃に冷却する間にセルの開回路電圧を測定し、それにより各充電状態におけるセルのΔSおよびΔHの測定を可能にした。
この例は、電気化学セルの安全状態(SOS)および劣化状態(SOH)の決定の評価方法の原理について記述する。規定された充電状態(SOC)または開回路電圧(OCV)における微分エントロピーおよび微分エンタルピーを使用して電気化学セルのSOHおよびSOSを評価することができる。SOHは、セルの構成要素の経時(age)に伴う材料の劣化によるセルのエネルギー蓄積性能減衰に関係する。容量の喪失および放電電圧の低下も、電気化学セルのSOHの測定基準である。
dS(SOC)=ΔS(SOC)エージング後−ΔS(SOC)エージング前および
dH(SOC)=ΔH(SOC)エージング後−ΔH(SOC)エージング前
特にセルのSOHに関して、リチウムイオン電池(LIB)セルに対する加速エージングの効果を調べるために3つの実験を行った。第1の実験では、熱エージングによるリチウムイオンセルのエージングについて調査した。ここで、リチウムイオンセルは、2.75Vと4.2Vの間で10mA(約C/4率)により4サイクルにわたり循環させ、次にセルを4.2Vに充電してから8週までの期間にわたり60℃および70℃のオーブンに保管した。各週の終わりに、4つのセルを取り出して定電流充電および放電により試験し、かつ、熱力学測定を行った。
Al Hallaj, S; Venkatachalapathy, R; Prakash, J; Selman, JR. Entropy changes due to structural transformation in the graphite anode and phase change of the LiCo02 cathode. JOURNAL OF THE ELECTROCHEMICAL SOCIETY 147 (7): 2432-2436, 2000.
Al Hallaj, S; Prakash, J; Selman, JR, Characterization of commercial Li-ion batteries using electrochemical-calorimetric measurements. JOURNAL OF POWER SOURCES 87 (1 -2), 186-194, 2000
Amatucci GG, Tarascon JM, Klein LC, Co02, the end member of the LixCo02 solid solution, JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 143( 3): 1 1 14-1 1 23, 1996.
Amatucci GG, Blyr A, Sigala C, Alfonse P, Tarascon JM, Surface treatments of Li1 +xMn2-x04 spinels for improved elevated temperature performance SOLID STATE IONICS Volume: 104 Issue: 1 -2 Pages: 13-25 Published: DEC 1 997.
Amatucci G, Du Pasquier A, Blyr A, Zheng T, Tarascon JM, The elevated temperature performance of the LiMn204/C system: failure and solutions ELECTROCH IMICA ACTA 45 (1 -2): 255-271 , 1999.
Andre et al., Engineering Applications of Artificial Intelligence 26 (2013) 951 -961 .
Attidekou, PS; Garcia-Alvarado, F; Connor, PA; Irvine, JTS.
Thermodynamic aspects of the reaction of lithium with SnP207 based positive electrodes. JOURNAL OF THE ELECTROCHEMICAL SOCIETY 1 54 (3): A217- A220, 2007.
Aurbach D, Levi MD, Gamulski K, Markovsky B, Salitra G, Levi E, Heider U, Heider L, Oesten R, Capacity fading of LixMn204 spinel electrodes studied by XRD and electroanalytical techniques, JOURNAL OF POWER SOURCES, 81 : 472-479, 1999.
Aydinol, MK; Kohan, AF; Ceder, G; Cho, K; Joannopoulos, J. Ab initio study of lithium intercalation in metal oxides and metal dichalcogenides. PHYSICAL REVIEW B 56 (3): 1354-1 365, 1997.
Baddour, R; Pereiraramos, JP; Messina, R; Perichon, J.. A
Thermodynamic, Structural and Kinetic-Study of the Electrochemical Lithium Intercalation Into the Xerogel V205.1 .6 H20 In A Propylene Carbonate Solution. Journal of Electroanalytical Chemistry 314 (1 -2): 81 -101 , 1991
Barbato, S; Gautier, JL. Hollandite cathodes for lithium ion batteries. 2. Thermodynamic and kinetics studies of lithium insertion into BaMmn7016 (M = Mg, Mn, Fe, Ni). ELECTROCHIMICA ACTA 46 (18): 2767-2776, 2001 .
Barker, J; West, K; Saidi, Y; Pynenburg, R; Zachauchristiansen, B; Koksbang, R. Kinetics and Thermodynamics of the Lithium Insertion Reaction in Spinel Phase LixMn204. Journal of Power Sources 54 (2): 475-478, 1995.
G. Bathia, R. K. Aggarwal, N. Punjabi and O. P. Bahl, J. Mater.
Science 32, 1 35 (1997).
Benco, L; Barras, JL; Atanasov, M; Daul, C; Deiss, E. First principles calculation of electrode material for lithium intercalation batteries: TiS2 and LiTi2S4 cubic spinel structures. JOURNAL OF SOLID STATE CHEMISTRY 145 (2): 503- 51 0, 1 999.
D.M. Bernard! et al., J. Power Sources 196 (201 1 ) 412-427.
Billaud D, Henry FX, Lelaurain M, Willmann P Revisited structures of dense and dilute stage II lithium-graphite intercalation compounds. JOURNAL OF PHYSICS AND CHEMISTRY OF SOLIDS 57 ( 6-8): 775-781 , 1996.
Botte, GG; Subramanian, VR; White, RE. Mathematical modeling of secondary lithium batteries. ELECTROCH IMICA ACTA 45 (15-16): 2595-2609, 2000. [00231] Carlier, D; Van der Ven, A; Delmas, C; Ceder, G. 2003. First-principles investigation of phase stability in the O-2-LiCoO2 system. CHEMISTRY OF MATERIALS 1 5 (13): 2651 -2660.
Ceder, G; Kohan, AF; Aydinol, MK; Tepesch, PD; Van der Ven, A. Thermodynamics of oxides with substitutional disorder: A microscopic model and evaluation of important energy contributions. JOURNAL OF THE AMERICAN CERAMIC SOCIETY 81 (3): 517-525, 1998.
Ceder, G; Van der Ven, A. Phase diagrams of lithium transition metal oxides: investigations from first principles. ELECTROCHIMICA ACTA 45 (1 -2): 131 - 150, 1 999.
Chen ZH, Lu ZH, Dahn JR, Staging phase transitions in LixCoO2, JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 149( 1 2) : A1 604-A1609, 2002.
Chen, ZW; Xuan, C; Ying, Z; Yong, Y. First principle investigation of positive electrode material for lithium ion batteries. RARE METAL MATERIALS AND ENGINEERING 32 (9): 693-698, 2003.
M. Coleman, C. K. Lee, C. Zhu and W. G. Hurley, "State-of-charge determination from EMF voltage estimation: using impedance, terminal voltage and current for lead-acid and lithium-ion batteries," IEEE Trans. Ind. Electron., Vol.54, pp.2250-2257, 2007.
Deiss, E; Wokaun, A; Barras, JL; Daul, C; Dufek, P. Average voltage, energy density, and specific energy of lithium-ion batteries - Calculation based on first principles. JOURNAL OF THE ELECTROCHEMICAL SOCIETY 144 (1 1 ): 3877- 3881 , 1997.
Doi, T; Fukudome, H; Okada, S; Yamaki, Jl. Computer simulation of a porous positive electrode for lithium batteries. JOURNAL OF POWER SOURCES 174 (2): 779-783, 2007.
Eddahech et al., Electrical Power and Energy Systems 42 (2012) 487- 494.
Filhol, J. -S., Combelles, C, Yazami, R., Doublet, M. -L, Phase diagrams for systems with low free energy variation: A coupled theory/experiments method applied to Li-graphite, JOURNAL OF PHYSICAL CHEMISTRY C, 1 12 (10): 3982-3988, 2008.
Rosalind E. Franklin, Crystallite Growth in Graphitizing and Non- Graphitizing Carbons, Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences, Vol. 209, No. 1 097 (Oct. 23, 1951 ), pp. 1 96- 21 8.
Fujiwara, H; Ueda, Y; Awasthi, A; Krishnamurthy, N; Garg, SP.
Determination of standard free energy of formation for niobium silicides by EMF measurements. JOURNAL OF THE ELECTROCHEMICAL SOCIETY 1 50 (8): J43- J48, 2003.
Funahashi, A; Kida, Y; Yanagida, K; Nohma, T; Yonezu, I. Thermal simulation of large-scale lithium secondary batteries using a graphite-coke hybrid carbon negative electrode and NniO.7CoO.3O2 positive electrode. JOURNAL OF POWER SOURCES 1 04 (2): 248-252, 2002.
Gabrisch H, Yazami R, Fultz B, Hexagonal to cubic spinel
transformation in lithiated cobalt oxide - TEM investigation, JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 151 (6 ): A891 -A897, 2004.
Gabrisch, H.; Yi, T.; Yazami, R., Transmission electron microscope studies of LiNi1 /3Mn1 /3Co1 /3/O2 before and after long-term aging at 70 degrees C, Electrochemical and Solid-State Letters Volume: 1 1 (7): 1 19-24, 2008.
Garcia-Belmonte, G; Garcia-Canadas, J ; Bisquert, J. Correlation between volume change and cell voltage variation with composition for lithium intercalated amorphous films. JOURNAL OF PHYSICAL CHEMISTRY B 1 10 (1 0): 4514-4518, 2006.
Gautier JL, Meza E, Silva E, Lamas C, Silva C, Effect of the ZnNiyMn2- yO4 (0 <= y <= 1 ) spinel composition on electrochemical lithium insertion, Journal of Solid State Electrochemistry, 1 (2) : 126-133, 1 997.
Gong, JB; Wu, HQ. Electrochemical intercalation of lithium species into disordered carbon prepared by the heat-treatment of poly (p-phenylene) at 650 degrees C for anode in lithium-ion battery. ELECTROCH IMICA ACTA 45 (1 1 ): 1753- 1762, 2000.
Graetz J, Hightower A, Ahn CC, Yazami R, Rez P, Fultz B, Electronic structure of chemically-delithiated LiCoO2 studied by electron energy-loss spectrometry JOURNAL OF PHYSICAL CHEMISTRY B Volume: 1 06 (6): 1286- 1289, 2002.
Guzman, G; Yebka, B; Livage, J; Julien, C. Lithium intercalation studies in hydrated molybdenum oxides. SOLID STATE ION ICS 86-8: 407-413, Part 1 . 1996.
Hallstedt, B; Kim, O. Thermodynamic assessment of the Al-Li system. INTERNATIONAL JOURNAL OF MATERIALS RESEARCH 98 (10): 961 -969, 2007.
Hill IR, Sibbald AM, Donepudi VS, Adams WA, Donaldson GJ,
Microcalorimetric studies on lithium thionyl chloride cells - temperature effects between 25-degrees-C and -40-degrees-C, Journal of Power Sources, 39 (1 ): 83-94, 1992.
Hong, JS; Maleki, H; Al Hallaj, S; Redey, L; Selman, JR.
Electrochemical-calorimetric studies of lithium-ion cells. JOURNAL OF THE
ELECTROCHEMICAL SOCIETY 145 (5): 1489-1501 , 1 998.
Hong, JS; Selman, J R. Relationship between calorimetric and structural characteristics of lithium-ion cells - I. Thermal analysis and phase diagram. JOURNAL OF THE ELECTROCHEMICAL SOCIETY 147 (9): 3183-3189, 2000.
Huang H, Vincent CA, Bruce PG, Correlating capacity loss of stoichiometric and nonstoichiometric lithium manganese oxide spinel electrodes with their structural integrity JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 146 (10): 3649-3654, 1999.
Huang, Q; Yan, MM; Jiang, ZY. Thermal study on single electrodes in lithium-ion battery. JOURNAL OF POWER SOURCES 156 (2): 541 -546, 2006.
Huggins, RA. Lithium alloy negative electrodes. JOURNAL OF
POWER SOURCES 82: 1 3-19, 1999.
Idemoto, Y; Ogawa, S; Uemura, Y; Koura, N. Thermodynamic stability and cathode performance of Li1 +xmn2-xo4 as a cathode active material for lithium secondary battery. JOURNAL OF THE CERAMIC SOCIETY OF JAPAN 108 (9): 848-853, 2000.
Idemoto, Y; Ogawa, S; Koura, N; Udagawa, K. Thermodynamic stability and cathode performance of limn2-xmgxo4 as cathode active material for the lithium secondary battery. ELECTROCHEMISTRY 68 (6): 469-473, 2000.
Idemoto, Y; Sakaya, T; Koura, N., Dependence of properties, crystal structure and electrode characteristics on Li content for LixCo1 /3Ni1 /3Mn1 /302+delta as a cathode active material for Li secondary battery. ELECTROCHEMISTRY 74 (9): 752-757, 2006.
Joo, JH; Bae, YC; Sun, YK. Phase behaviors of solid polymer electrolytes/salt system in lithium secondary battery by group-contribution method: The pressure effect. POLYMER 47 (1 ): 21 1 -217, 2006.
Joo, JH; Bae, YC. Molecular thermodynamics approach for phase behaviors of solid polymer electrolytes/salt system in lithium secondary battery on the nonrandom mixing effect: Applicability of the group-contribution method.
POLYMER 47 (20): 7153-7159, 2006.
Kalikmanov, VI; de Leeuw, SW. Role of elasticity forces in
thermodynamics of intercalation compounds: Self-consistent mean-field theory and Monte Carlo simulations. JOURNAL OF CHEMICAL PHYSICS 1 1 6 (7): 3083-3089, 2002.
H. Kataoka, Y. Saito, O. Omae, J. Suzuki, K. Sekine, T. Kawamura and T. Takamurae, Electrochem. and Solid-State Lett., 5, A10 (2002).
Kim, SW; Pyun, SI. Thermodynamic and kinetic approaches to lithium intercalation into a Li 1 -delta Mn204 electrode using Monte Carlo simulation.
ELECTROCH IMICA ACTA 46 (7): 987-997, 2001 .
Kobayashi, H; Arachi, Y; Kageyama, H; Tatsumi, K. Structural determination of Li1 -yNiO.5MnO.5O2 (y=0.5) using a combination of Rietveld analysis and the maximum entropy method. JOURNAL OF MATERIALS CHEMISTRY 14 (1 ): 40-42, 2004.
Korovin, NV. Electrochemical intercalation into cathodic materials: Electrode potentials. RUSSIAN JOURNAL OF ELECTROCHEMISTRY 34 (7): 669- 675, 1 998.
Koudriachova, MV; Harrison, NM; de Leeuw, SW. First principles predictions for intercalation behaviour. SOLID STATE ION ICS 175 (1 -4): 829-834, 2004.
Kuhn, A; Diaz-Carrasco, P; de Dompablo, MEAY; Garcia-Alvarado, F. On the synthesis of ramsdellite LiTiMO4 (M = Ti, V, Cr, Mn, Fe): An experimental and computational study of the spinel-ramsdellite transformation. EUROPEAN JOURNAL OF INORGANIC CHEMISTRY (21 ): 3375-3384, 2007.
Kuko T and Hibino M., Theoretical dependence of the free energy and chemical potential upon composition in intercalation systems with repulsive interaction between guest ions, Electrochem. Acta 43(7)781 -789, 1998
Kumagai, N; Fujiwara, T; Tanno, K; Horiba, T. Thermodynamic And Kinetic-Studies of Electrochemical Lithium Insertion Into Quaternary Li-Mn-V-O Spinel As Positive Materials For Rechargeable Lithium Batteries. Journal of The Electrochemical Society 140 (1 1 ): 3194-3199, 1 993.
Kumagai, N; Yu, AS; Kumagai, N; Yashiro, H. Electrochemical intercalation of lithium into hexagonal tungsten trioxide. THERMOCHIMICA ACTA 299 (1 -2): 19-25, 1997.
Kumagai, N; Yu, AS; Yashiro, H. Thermodynamics and kinetics of electrochemical intercalation of lithium into LiO.50WO3.25 with a hexagonal tungsten bronze structure. SOLID STATE ION ICS 98 (3-4): 159-166, 1 997.
Kumagai, N; Koishikawa, Y; Komaba, S; Koshiba, N., Thermodynamics and kinetics of lithium intercalation into Nb2O5 electrodes for a 2 V rechargeable lithium battery. JOURNAL OF THE ELECTROCHEMICAL SOCIETY 146 (9): 3203- 3210, 1999
K. Kumaresan, G. Sikha; R. E. White, JOURNAL OF THE
ELECTROCHEMICAL SOCIETY 155 (2008) A1 64-A171 .
Lee, HH; Wan, CC; Wang, YY. Identity and thermodynamics of lithium intercalated in graphite. JOURNAL OF POWER SOURCES 1 14 (2): 285-291 , 2003.
M. Letellier, F. Chevallier, F. Beguin, E. Frackowiak, J-N. Rouzau, J. Phys. and Chem. of Solids 65, 245 (2004).
Limthongkul, P; Jang, Yl; Dudney, NJ; Chiang, YM. Electrochemically- driven solid-state amorphization in lithium-metal anodes. JOURNAL OF POWER SOURCES 1 19: 604-609, 2003.
Lin et al., IEEE Transactions on Industrial Informatics, 9:2 (201 3) 679- 685.
Lu, WQ; Yang, H; Prakash, J. Determination of the reversible and irreversible heats of LiNi(0.8)Co(0.2)O(2)/mesocarbon microbead Li-ion cell reactions using isothermal microcalorimetery. ELECTROCH IMICA ACTA 51 (7): 1322-1329, 2006.
Lu, W; Belharouak, I; Vissers, D; Amine, K. In situ thermal study of Li1 +x[Ni1 /3Co1 /3Mn1 /3](1 -x)O-2 using isothermal micro-calorimetric techniques. JOURNAL OF THE ELECTROCHEMICAL SOCIETY 153 (1 1 ): A2147-A2151 , 2006.
W. Lu; I. Belharouak; J. Liu; K. Amine, JOURNAL OF POWER SOURCES 1 74 (2007): 673-677.
Lu, W; Belharouak, I; Park, SH; Sun, YK; Amine, K. Isothermal calorimetry investigation of Li1 +xMn2-yAlzO4 spinel. ELECTROCH IMICA ACTA 52 (19): 5837-5842, 2007.
A. Mabuchi, K. Tokumitsu, H. Fujimoto, T. Kasuh, J. Electrochem. Soc. 142, 1 041 (1995). [00285] Maier J., JOURNAL OF POWER SOURCES 174 (2007): 569-574.
J. Mering and J. Maire, J. Chim. Phys. Fr. 57, 803 (1960).
Y. Mori, T. Iriyama, T. Hashimoto, S. Yamazaki, F. Kawakami, H. Shiroki and T. Yamabe, J. Power Sources 56, 205 (1995).
Nikiel L, W, Raman-Spectroscopic Characterization of Graphites - A Reevaluation Of Spectra/Structure Correlation, Carbon, 31 ( 8): 1313-1317, 1993.
Ng et al., Applied Energy 86 (2009) 1506-151 1 .
Ng, Kong-Soon Soon, Huang, Yao-Feng, Moo, Chin-Sien Sien, Hsieh, Yao-Ching C, "An enhanced coulomb counting method for estimating state-of-charge and state-of-health of lead-acid batteries," INTELEC 31st, Incheon, South KR R.O, 2009.
A. Oberlin and G. Terriere, Carbon, 1 3, 367 (1975).
Oberlin A, Carbonization and Graphitization, Carbon 22 (6): 521 -541 , 1984.
Ohshima, T; Nakayama, M; Fukuda, K; Araki, T; Onda, K. Thermal behavior of small lithium-ion secondary battery during rapid charge and discharge cycles. ELECTRICAL ENGINEERING IN JAPAN 157 (3): 1 7-25, 2006.
Ohzuku T, Ueda A, Solid-state redox reactions of LiCoO2 (R(3)over- bar-m) for 4 volt secondary lithium cells, JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 141 (1 1 ): 2972-2977, 1 994.
Okamoto, E; Nakamura, M; Akasaka, Y; Inoue, Y; Abe, Y; Chinzei, T; Saito, I; Isoyama, T; Mochizuki, S; Imachi, K; Mitamura, Y. Analysis of heat generation of lithium ion rechargeable batteries used in implantable battery systems for driving undulation pump ventricular assist device. ARTIFICIAL ORGANS 31 (7): 538-541 , 2007. [00296] Ol'shanskaya, LN; Astaf'eva, EN. Thermodynamics of lithium intercalates in carbonized fabric. RUSSIAN JOURNAL OF APPLIED CHEMISTRY 75 (5): 740-744, 2002.
Paddon, CA; Jones, SEW; Bhatti, FL; Donohoe, TJ; Compton, RG. Kinetics and thermodynamics of the Li/Li+ couple in tetrahydrofuran at low
temperatures (1 95-295 K). JOURNAL OF PHYSICAL ORGAN IC CHEMISTRY 20 (9): 677-684, 2007.
P. Papanek, M. Radosavljevic and J.E. Fischer, Chem. Mater. 8, 151 9 (1996).
P. Papanek, W.A. Kamitakahara, P. Zhou and J.E. Fischer, J. Phys. Condens. Matter 13, 8287 (2001 ).
S. Piller, M. Perrin, A. Jossen, "Methods for state-of-charge
determination and their applications" J.Power Sources, vol.96, pp.1 13-120, 2001 .
Quintin, M; Devos, O; Delville, MH; Campet, G. Study of the lithium insertion-deinsertion mechanism in nanocrystalline gamma-Fe2O3 electrodes by means of electrochemical impedance spectroscopy. ELECTROCH IMICA ACTA 51 (28): 6426-6434, 2006.
Rao, L; Newman, J. Heat-generation rate and general energy balance for insertion battery systems. JOURNAL OF THE ELECTROCHEMICAL SOCIETY 144 (8): 2697-2704, 1997.
Remmlinger et al., J. Power Sources 1 96 (201 1 ) 5357-5363.
Reynier, Y; Yazami, R; Fultz, B. The entropy and enthalpy of lithium intercalation into graphite. JOURNAL OF POWER SOURCES 1 1 9: 850-855, 2003.
Reynier, YF; Yazami, R; Fultz, B. Thermodynamics of lithium intercalation into graphites and disordered carbons. J. Electrochem. Soc. 151 (3): A422-A426, 2004.
Saito, Y; Kanari, K; Takano, K. Thermal studies of a lithium-ion battery. JOURNAL OF POWER SOURCES 68 (2): 451 -454, 1 997. [00307] Sandhu, SS; Fellner, JP. Thermodynamic equations for a model lithium-ion cell. ELECTROCH IMICA ACTA 45 (6): 969-976, 1999.
Schoonman, J. Nanoionics. SOLID STATE IONICS 1 57 (1 -4): 319-326, 2003.
Selman, J R; Al Hallaj, S; Uchida, I; Hirano, Y. Cooperative research on safety fundamentals of lithium batteries. JOURNAL OF POWER SOURCES 97-8: 726-732, 2001 .
Shi, SQ; Wang, DS; Meng, S; Chen, LQ; Huang, XJ. First-principles studies of cation-doped spine LiMn204 for lithium ion batteries. PHYSICAL REVIEW B 67 (1 1 ) 2003.
Shi, S; Ouyang, C; Lei, M; Tang, W. Effect of Mg-doping on the structural and electronic properties of LiCo02: A first-principles investigation.
JOURNAL OF POWER SOURCES 1 71 (2): 908-91 2, 2007.
Shiraishi Y, Nakai I, Kimoto K, Matsui Y, EELS analysis of
electrochemically deintercalated Li1 -xMn204 and substituted spinels
LiMnl .6M0.4O4 (M = Co, Cr, Ni), JOURNAL OF POWER SOURCES 97-8 : 461 - 464, 2001 .
Shin YJ, Manthiram A, Factors influencing the capacity fade of spinel lithium manganese oxides, JOURNAL OF THE ELECTROCHEMICAL SOCIETY 151 (2): A204-A208, 2004.
I. Snihir, W. Rey, E. Verbitsky, A. B. Ayeb and P. H. L. Notten, "Battery open-circuit voltage estimation by a method of statistical analysis," J.Power Sources, Vol.159, No.2, pp.1484-1487, 2006.
D. A. Stevens and J. R. Dahn, J. Electrochem. Soc. 148, A803 (2001 ).
Takahashi, Y; Kijima, N; Dokko, K; Nishizawa, M; Uchida, I; Akimoto, J. Structure and electron density analysis of electrochemically and chemically delithiated LiCo02 single crystals. JOURNAL OF SOLID STATE CHEMISTRY 1 80 (1 ): 313-321 , 2007.
Takano, K; Saito, Y; Kanari, K; Nozaki, K; Kato, K; Negishi, A; Kato, T. Entropy change in lithium ion cells on charge and discharge. JOURNAL OF APPLIED ELECTROCHEMISTRY 32 (3): 251 -258, 2002.
TARASCON JM, GUYOMARD D, Li metal-free rechargeable batteries based on Li1 +xMn2O4 cathodes (0 less-than-or-equal-to x less-than-or-equal-to 1 ) and carbon anodes, JOURNAL OF THE ELECTROCHEMICAL SOCIETY , 138 (10): 2864-2868, 1991 .
Thomas, KE; Bogatu, C; Newman, J. Measurement of the entropy of reaction as a function of state of charge in doped and undoped lithium manganese oxide. JOURNAL OF THE ELECTROCHEMICAL SOCIETY 148 (6): A570-A575, 2001 .
Thomas, KE; Newman, J. Thermal modeling of porous insertion electrodes. JOURNAL OF THE ELECTROCHEMICAL SOCIETY 1 50 (2): A176- A192, 2003.
Thomas, KE; Newman, J. Heats of mixing and of entropy in porous insertion electrodes. JOURNAL OF POWER SOURCES 1 19: 844-849, 2003.
Tuinstra F, Koenig JL, Raman Spectrum Of Graphite, J. Chem. Phys. 53, 1 1 26 (1 970). Van der Ven A, Aydinol MK, Ceder G, First-principles evidence for stage ordering in LixCoO2, JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 145 (6): 2149-2155, 1998.
Vicente, CP; Lloris, JM; Tirado, JL. Understanding the voltage profile of Li insertion into LiNi0.5-yFeyMn1 .504 in Li cells. ELECTROCHIMICA ACTA 49 (1 2): 1963-1967, 2004.
Vitins, G; West, K. Lithium intercalation into layered LiMnO2.
JOURNAL OF THE ELECTROCHEMICAL SOCIETY 144 (8): 2587-2592, 1997.
N. Wada, P.J. Gaczi and S.A. Solin, J. Non-Cryst. Solids 35, 543 (1980). Wagemaker, M; Van Der Ven, A; Morgan, D; Ceder, G; Mulder, FM; Kearley, GJ. Thermodynamics of spinel LixTiO2 from first principles. CHEMICAL PHYSICS 31 7 (2-3): 130-136, 2005.
Wakihara M, Lithium manganese oxides with spinel structure and their cathode properties for lithium ion battery, ELECTROCHEMISTRY, 73 (5): 328-335, 2005.
Wang, MJ; Navrotsky, A. Enthalpy of formation of LiNiO2, LiCoO2 and their solid solutions LiNi1 -xCoxO2. SOLID STATE ION ICS 166 (1 -2): 167-173, 2004.
Wang, MJ; Navrotsky, A. LiMO2 (M = Mn, Fe, and Co): Energetics, polymorphism and phase transformation. JOURNAL OF SOLID STATE CHEMISTRY 178 (4): 1 230-1240, 2005.
Wang, L; Maxisch, T; Ceder, G. A first-principles approach to studying the thermal stability of oxide cathode materials. CHEMISTRY OF MATERIALS 1 9 (3): 543-552, 2007.
Xu, JJ ; Jain, G. Nanocrystalline ferric oxide cathode for rechargeable lithium batteries. ELECTROCHEMICAL AND SOLID STATE LETTERS 6 (9): A190- A193, 2003.
Yamaki, J ; Egashira, M; Okada, S. Potential and thermodynamics of graphite anodes in Li-ion cells. JOURNAL OF THE ELECTROCHEMICAL SOCIETY 147 (2): 460-465, 2000.
Yamaki, J ; Egashira, M; Okada, S. Voltage prediction from Coulomb potential created by atoms of spinel LiMn2O4 cathode active material for Li ion cells. JOURNAL OF POWER SOURCES 97-8: 349-353, 2001 .
Yamaki, J ; Egashira, M; Okada, S. Thermodynamics and phase separation of lithium intercalation materials used in lithium ion cells.
ELECTROCHEMISTRY 69 (9): 664-669, 2001 .
R. Yazami and Y. Reynier, J. Power Sources 1 53 (2006) 31 2-31 8.
Zhou, F; Maxisch, T; Ceder, G. Configurational electronic entropy and the phase diagram of mixed-valence oxides: The case of lixfepo4. PHYSICAL REVIEW LETTERS 97 (15) 2006.
US Patent Application Publications US 2007/0182418, US 2010/0090650, US 2006/0100833, US 2001 /0001533, US 2006/0208704, US 2004/0220758, US 2004/0128089, US 2004/0046564, US 201 1 /0121786.
US Patents 7,595,61 1 ; 7,132,832; 7,109,685; 4,295,097; 6,667, 131 ; 4,725,784; 7,227,336; 6,392,385; 6,016,047.
PCT International Application Publications WO 2007/1 17263, WO 2010/1 05062.
参照による組み込みおよび変化に関する申告
以下の参考文献は、一般的に電気化学セルの組成および機能ならび電気化学データの熱力学的分析に関係しており、かつ、参照により本明細書に全面的に含まれている:
「電池ハンドブック(Handbook of Batteries)」、デービッド・リンデン(David Linden)およびトーマス・B.レディ(Thomas B.Reddy)編集、第3版、マグローヒル(McGraw−Hill)、2002年、および
「電池技術ハンドブック(Battery Technology Handbook)」、H.A.キーン(Kiehne)編集、マーセル・デッカー社(Marcel Dekker,Inc.)、2003年。
米国特許出願第11/462,290号明細書、同第12/537,712号明細書、同第13/215,506号明細書、米国仮出願第60/705,535号明細書、同第61/159,727号明細書、同第61/639,712号明細書、同第61/260,751号明細書、同第61/376,208号明細書、同第61/556,037号明細書、同第61/726,459号明細書、同第61/536,239号明細書、米国特許第7,595,611号明細書、米国特許出願公開第2007/0182418号明細書、同第2010/0090650号明細書、同第2012/0043929号明細書。
Claims (28)
- 電気化学セルの状態を監視する装置であって、
集積回路を備え、
前記集積回路は、
前記電気化学セルの複数の開回路電圧を測定する電圧監視回路であって、前記複数の開回路電圧は、前記電気化学セルの充電もしくは放電の後にまたは前記電気化学セルの充電もしくは放電の停止の後に発生する、前記電圧監視回路と、
前記電気化学セルの複数の温度を測定する温度監視回路であって、前記複数の温度は、前記電気化学セルの充電もしくは放電の後にまたは前記電気化学セルの充電もしくは放電の停止の後に発生する、前記温度監視回路と、
前記電気化学セルの充電電流または前記電気化学セルの放電電流を測定する電流監視回路と、
前記電気化学セルの熱力学パラメータを決定する回路であって、前記熱力学パラメータは、前記電気化学セルのエントロピーの変化、前記電気化学セルのエンタルピーの変化および前記電気化学セルの自由エネルギーの変化の1つ以上であり、熱力学パラメータを決定する前記回路は、前記温度監視回路と電気伝導状態もしくはデータ通信状態に置かれて前記温度監視回路から温度測定値を受け取り、前記電圧監視回路と電気伝導状態もしくはデータ通信状態に置かれて前記電圧監視回路から開回路電圧測定値を受け取り、かつ、前記電流監視回路と電気伝導状態もしくはデータ通信状態に置かれて前記電流監視回路から電流測定値を受け取るか、または前記電流監視回路に熱力学パラメータを供給する、前記回路とを含み、
前記装置は、前記電気化学セルの充電もしくは放電の後にまたは前記電気化学セルの充電もしくは放電の停止の後に発生する前記複数の温度を制御するかまたは設定する温度コントローラまたは手段を含まず、
前記電気化学セルの開回路電圧を測定することにより自由エネルギーの前記変化が決定される、装置。 - 前記装置が前記電気化学セルに埋め込まれるか、または前記電気化学セルの筐体に取り付けられるかもしくは筐体の中に含まれる、請求項1に記載の装置。
- 前記電気化学セルと熱伝達状態に置かれる温度センサをさらに含む装置であって、前記温度センサは、前記温度監視回路と電気伝導状態またはデータ通信状態にさらに置かれる、請求項1に記載の装置。
- 前記温度監視回路が前記電気化学セルの充電中または放電中の前記電気化学セルの温度を決定または監視する、請求項1に記載の装置。
- 前記温度監視回路が、前記電気化学セルが充電していないとき、または前記電気化学セルが放電していないときの前記電気化学セルの温度を決定または監視する、請求項1に記載の装置。
- 前記集積回路が前記電気化学セルの開回路電圧を決定する回路を含む、請求項1に記載の装置。
- 前記集積回路が電力切り換え回路を含む、請求項6に記載の装置。
- 前記装置が自動車の構成要素であり、前記自動車のアイドリング中、停車時、駐車中、電源遮断中、電源遮断時、電源投入中、電源投入時、加速中、もしくは減速中に前記電圧監視回路が前記電気化学セルの前記複数の開回路電圧を測定するか、前記自動車のアイドリング中、停車時、駐車中、電源遮断中、電源遮断時、電源投入中、電源投入時、加速中、もしくは減速中に前記温度監視回路が前記電気化学セルの前記複数の温度を測定するか、または前記自動車のアイドリング中、停車時、駐車中、電源遮断中、電源遮断時、電源投入中、電源投入時、加速中、もしくは減速中に前記電圧監視回路が前記電気化学セルの前記複数の開回路電圧を測定し、かつ、前記温度監視回路が前記電気化学セルの前記複数の温度を測定する、請求項1に記載の装置。
- 前記自動車のアイドリング中、停車時、駐車中、電源遮断中、電源遮断時、電源投入中、電源投入時、加速中、または減速中に前記電気化学セルの前記開回路電圧の変化が発生する、請求項8に記載の装置。
- 前記装置が携帯電子装置の構成要素であり、前記携帯電子装置のアイドリング中、電源遮断中、電源遮断時、電源投入中、もしくは電源投入時に前記電圧監視回路が前記電気化学セルの前記複数の開回路電圧を測定するか、前記携帯電子装置のアイドリング中、電源遮断中、電源遮断時、電源投入中、もしくは電源投入時に前記温度監視回路が前記電気化学セルの前記複数の温度を測定するか、または前記携帯電子装置のアイドリング中、電源遮断中、電源遮断時、電源投入中、もしくは電源投入時に前記電圧監視回路が前記電気化学セルの前記複数の開回路電圧を測定し、かつ、前記温度監視回路が前記電気化学セルの前記複数の温度を測定する、請求項1に記載の装置。
- 前記携帯電子装置のアイドリング中、電源遮断中、電源遮断時、電源投入中、または電源投入時に前記電気化学セルの前記開回路電圧の変化が発生する、請求項10に記載の装置。
- 前記電気化学セルの前記複数の開回路電圧および前記電気化学セルの前記複数の温度の1つ以上を使用して前記電気化学セルの前記熱力学パラメータが決定される、請求項1に記載の装置。
- 前記電気化学セルの第1温度および前記電気化学セルの前記第1温度と異なる前記電気化学セルの第2温度を使用して前記電気化学セルの前記熱力学パラメータが決定される、請求項1に記載の装置。
- 前記集積回路が前記電気化学セルの充電状態を決定する充電状態計算回路を含む装置であって、前記充電状態計算回路は、前記電流監視回路から電流測定値を受け取り、かつ、熱力学パラメータを決定する前記回路から前記電気化学セルの熱力学パラメータを受け取る、請求項1に記載の装置。
- 前記充電状態計算回路が前記電流監視回路を含む、請求項14に記載の装置。
- 前記電圧監視回路が、前記電気化学セルが充電中でないときまたは前記電気化学セルが放電中でないときに、前記電気化学セルの前記開回路電圧を決定する、請求項1に記載の装置。
- 前記電気化学セルの熱力学パラメータを決定する前記回路が、前記電気化学セルの劣化状態、前記電気化学セルの安全状態および前記電気化学セルのサイクル数の1つ以上をさらに決定する、請求項1に記載の装置。
- 前記装置が、前記電気化学セルのエントロピー、エントロピーの変化、温度または微分エントロピーを決定し、かつ、前記電気化学セルの前記エントロピー、エントロピーの変化、温度または微分エントロピーを基準エントロピー、エントロピーの基準変化、基準温度または基準微分エントロピーと比較し、かつ、決定されたエントロピー、エントロピーの変化、温度または微分エントロピーが前記基準エントロピー、エントロピーの基準変化、基準温度または基準微分エントロピーと異なる場合に前記電気化学セルの充電または放電を停止する、請求項1に記載の装置。
- 前記装置が、エネルギー貯蔵システム、バッテリーバックアップシステム、負荷平準化システム、およびピークシェービングシステムのうちの1つの要素である、請求項1に記載の装置。
- 電気化学セルの状態を決定する方法であって
集積回路を備える装置を設けることであって、前記集積回路が、
前記電気化学セルの複数の開回路電圧を測定する電圧監視回路であって、前記複数の開回路電圧は、前記電気化学セルの充電もしくは放電の後にまたは前記電気化学セルの充電もしくは放電の停止の後に発生する、前記電圧監視回路、
前記電気化学セルの複数の温度を測定する温度監視回路であって、前記複数の温度は、前記電気化学セルの充電もしくは放電の後にまたは前記電気化学セルの充電もしくは放電の停止の後に発生する、前記温度監視回路、
前記電気化学セルの充電電流または前記電気化学セルの放電電流を測定する電流監視回路、および
前記電気化学セルの熱力学パラメータを決定する回路であって、熱力学パラメータは、前記電気化学セルのエントロピーの変化、前記電気化学セルのエンタルピーの変化および前記電気化学セルの自由エネルギーの変化の1つ以上であり、熱力学パラメータを決定する前記回路は、前記温度監視回路と電気伝導状態もしくはデータ通信状態に置かれて前記温度監視回路から温度測定値を受け取り、前記電圧監視回路と電気伝導状態もしくはデータ通信状態に置かれて前記電圧監視回路から開回路電圧測定値を受け取り、かつ、前記電流監視回路と電気伝導状態もしくはデータ通信状態に置かれて前記電流監視回路から電流測定値を受け取るか、または前記電流監視回路に熱力学パラメータを供給する、前記回路を含み、
前記装置は、前記電気化学セルの充電もしくは放電の後にまたは前記電気化学セルの充電もしくは放電の停止の後に発生する前記複数の温度を制御するかまたは設定する温度コントローラまたは手段を含まない、前記集積回路を備える装置を設けること、
前記電気化学セルの前記複数の開回路電圧、前記電気化学セルの前記複数の温度、または前記電気化学セルの前記複数の開回路電圧と前記電気化学セルの前記複数の温度の両方を発生させること、
前記集積回路を使用して前記電気化学セルの第1熱力学パラメータを決定すること、
基準電気化学セルの熱力学パラメータ値および前記基準電気化学セルのセル状態値を含む基準値配列を作成すること、
前記電気化学セルの熱力学パラメータを決定すること、
前記基準値配列を使用して前記電気化学セルの前記状態を決定すること、を備え、
前記電気化学セルの前記状態は、前記電気化学セルの決定された熱力学パラメータに等しい基準熱力学パラメータ値の前記基準電気化学セルのセル状態に対応する、方法。 - 前記装置が、前記装置および1つ以上の電気化学セルを含むパッケージの構成要素である、請求項1に記載の装置。
- 前記装置が、1つ以上の電気化学セルとの切り換え可能な選択的データ通信状態または切り換え可能な電気伝導状態に置かれる、請求項1に記載の装置。
- 前記集積回路が、前記電気化学セルが制御された状態の下で充電されているときに前記電気化学セルを監視し、かつ、前記電気化学セルが制御された状態の下で充電されているときに参照テーブルの入力を更新し、
前記参照テーブルは、前記電気化学セルの充電状態、前記電気化学セルの開回路電圧および前記電気化学セルの熱力学パラメータの入力を含む、請求項14に記載の装置。 - 前記集積回路が、前記電気化学セルの劣化状態、前記電気化学セルの安全状態および前記電気化学セルのサイクル数の1つ以上を決定する回路をさらに含む、請求項1に記載の装置。
- 前記集積回路を使用して前記電気化学セルの第1熱力学パラメータを決定することは、
前記電気化学セルのエントロピーを決定することを含む、請求項20に記載の方法。 - 前記電気化学セルの決定されたエントロピーを基準エントロピーと比較することをさらに備える請求項25に記載の方法。
- 前記電気化学セルの決定されたエントロピーが前記基準エントロピーと異なる場合に前記電気化学セルの充電または放電を停止することをさらに備える請求項26に記載の方法。
- 前記停止することは、
前記電気化学セルの電極との電気接続中のスイッチ、継電器またはトランジスタを起動し、これにより前記電気化学セルの充電または放電を停止することを含む、請求項26に記載の方法。
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201261639712P | 2012-04-27 | 2012-04-27 | |
US61/639,712 | 2012-04-27 | ||
PCT/US2013/038407 WO2014021957A2 (en) | 2012-04-27 | 2013-04-26 | An imbedded chip for battery applications |
Publications (3)
Publication Number | Publication Date |
---|---|
JP2015522899A JP2015522899A (ja) | 2015-08-06 |
JP2015522899A5 JP2015522899A5 (ja) | 2016-12-22 |
JP6368707B2 true JP6368707B2 (ja) | 2018-08-01 |
Family
ID=49670212
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2015509180A Active JP6368707B2 (ja) | 2012-04-27 | 2013-04-26 | 電池用途のための組み込みチップ |
Country Status (6)
Country | Link |
---|---|
US (1) | US9599584B2 (ja) |
EP (1) | EP2841956B1 (ja) |
JP (1) | JP6368707B2 (ja) |
CN (1) | CN104471415B (ja) |
SG (1) | SG11201406940YA (ja) |
WO (1) | WO2014021957A2 (ja) |
Families Citing this family (71)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8446127B2 (en) | 2005-08-03 | 2013-05-21 | California Institute Of Technology | Methods for thermodynamic evaluation of battery state of health |
US9065292B2 (en) | 2010-08-23 | 2015-06-23 | California Institute Of Technology | Methods and systems for charging electrochemical cells |
SG11201406940YA (en) | 2012-04-27 | 2014-11-27 | California Inst Of Techn | An imbedded chip for battery applications |
US10556510B2 (en) | 2012-04-27 | 2020-02-11 | California Institute Of Technology | Accurate assessment of the state of charge of electrochemical cells |
TWI491858B (zh) * | 2013-03-15 | 2015-07-11 | Richtek Technology Corp | 溫度偵測電路及其方法 |
US9285278B2 (en) * | 2013-05-09 | 2016-03-15 | Apple Inc. | System and methods for thermal control using sensors on die |
DE102014208865A1 (de) * | 2014-05-12 | 2015-11-12 | Robert Bosch Gmbh | Verfahren zum Ermitteln der Temperatur einer Batterie |
KR102247052B1 (ko) * | 2014-07-21 | 2021-04-30 | 삼성전자주식회사 | 배터리의 이상 상태를 감지하는 장치 및 방법 |
DE102014225364A1 (de) * | 2014-12-10 | 2016-06-16 | Robert Bosch Gmbh | Verfahren zum Bestimmen des Alterungszustandes eines Batteriemoduls |
CN104596665B (zh) * | 2014-12-30 | 2017-07-28 | 西安易朴通讯技术有限公司 | 一种充电时检测电池温度的方法 |
KR102357351B1 (ko) * | 2015-01-07 | 2022-01-28 | 삼성전자주식회사 | 복수의 배터리 셀들을 포함하는 배터리 팩의 상태를 추정하는 장치 및 방법 |
WO2016145519A1 (en) * | 2015-03-18 | 2016-09-22 | Day Ryan | Thermal feature analysis of electrochemical devices |
US10290911B2 (en) * | 2015-05-18 | 2019-05-14 | Toyota Motor Engineering & Manufacturing North America, Inc. | Cooling loops and vehicles incorporating the same |
US10598703B2 (en) * | 2015-07-20 | 2020-03-24 | Eaton Intelligent Power Limited | Electric fuse current sensing systems and monitoring methods |
US10147984B2 (en) * | 2015-07-31 | 2018-12-04 | SynCells, Inc. | Portable and modular energy storage for multiple applications |
US20170092994A1 (en) * | 2015-09-25 | 2017-03-30 | Intel Corporation | Smart battery with integrated sensing and electronics |
CN106599333B (zh) * | 2015-10-20 | 2019-12-13 | 郑州宇通客车股份有限公司 | 一种电源soh的估算方法 |
US10324138B2 (en) | 2015-11-16 | 2019-06-18 | Massachusettes Institute Of Technology | Computing system for identification of solid-solid interphase products |
KR101805514B1 (ko) * | 2015-11-20 | 2017-12-07 | 한국과학기술원 | 배터리의 동적 엔트로피 추정 방법 |
US10224579B2 (en) | 2015-12-31 | 2019-03-05 | Robert Bosch Gmbh | Evaluating capacity fade in dual insertion batteries using potential and temperature measurements |
US10686321B2 (en) | 2016-01-29 | 2020-06-16 | Robert Bosch Gmbh | Secondary battery management |
US10263447B2 (en) | 2016-01-29 | 2019-04-16 | Robert Bosch Gmbh | Secondary battery management system |
US10243385B2 (en) | 2016-01-29 | 2019-03-26 | Robert Bosch Gmbh | Secondary battery management system |
EP3412074A4 (en) | 2016-02-03 | 2019-08-21 | Twosense, Inc. | SYSTEM AND METHOD FOR MAXIMIZING THE PERFORMANCE OF A MOBILE DEVICE USING INTELLIGENT GEOLOCALIZATION SELECTION |
KR101880195B1 (ko) | 2016-02-05 | 2018-07-20 | 한국과학기술원 | 배터리의 열역학적 정보에 기반한 배터리의 최적 충전 방법 |
DE102016202883A1 (de) * | 2016-02-24 | 2017-09-21 | Bayerische Motoren Werke Aktiengesellschaft | System und Verfahren zum Ermitteln einer Thermodynamikgröße für zumindest eine in einem Fahrzeug angeordnete Energiespeichereinheit |
US11062588B2 (en) | 2016-03-23 | 2021-07-13 | Solaredge Technologies Ltd. | Conductor temperature detector |
CN115979461A (zh) * | 2016-03-23 | 2023-04-18 | 太阳能安吉科技有限公司 | 导体温度检测器 |
US10658833B2 (en) | 2016-03-23 | 2020-05-19 | Solaredge Technologies Ltd. | Conductor temperature detector |
GB201605060D0 (en) * | 2016-03-24 | 2016-05-11 | Imp Innovations Ltd | A battery monitoring technique |
CN105904985B (zh) * | 2016-04-25 | 2018-09-04 | 李东航 | 一种电动汽车充电控制装置 |
CN107437827A (zh) * | 2016-05-25 | 2017-12-05 | 天津迪艾信息科技有限公司 | 一种基于stm的钒电池管理装置 |
US10436651B2 (en) | 2016-09-21 | 2019-10-08 | International Business Machines Corporation | Low cost container condition monitor |
US10447046B2 (en) | 2016-09-22 | 2019-10-15 | Robert Bosch Gmbh | Secondary battery management system with remote parameter estimation |
US10184987B2 (en) * | 2016-11-18 | 2019-01-22 | Semiconductor Components Industries, Llc | Methods and apparatus for reporting a relative state of charge of a battery |
KR20180085165A (ko) * | 2017-01-18 | 2018-07-26 | 삼성전자주식회사 | 배터리 관리 방법 및 장치 |
US10977345B2 (en) | 2017-02-17 | 2021-04-13 | TwoSesnse, Inc. | Authentication session extension using ephemeral behavior detection |
JP6567583B2 (ja) * | 2017-03-15 | 2019-08-28 | 株式会社東芝 | 電池安全性評価装置、電池制御装置、電池安全性評価方法、プログラム、制御回路及び蓄電システム |
FR3068533B1 (fr) * | 2017-06-30 | 2019-07-26 | Continental Automotive France | Systeme et methode de gestion de la batterie de secours pour un dispositif d'appel d'urgence |
US10921381B2 (en) | 2017-07-28 | 2021-02-16 | Northstar Battery Company, Llc | Systems and methods for monitoring and presenting battery information |
CN107444176B (zh) * | 2017-08-31 | 2021-12-07 | 西安特锐德智能充电科技有限公司 | 充换电一体的动力电池系统及工作方法及其应用 |
CN107539151B (zh) * | 2017-08-31 | 2021-01-29 | 西安特锐德智能充电科技有限公司 | 充换电一体的动力电池系统和工作方法和应用 |
US10992156B2 (en) * | 2017-10-17 | 2021-04-27 | The Board Of Trustees Of The Leland Stanford Junior University | Autonomous screening and optimization of battery formation and cycling procedures |
AT520558B1 (de) * | 2017-11-27 | 2019-05-15 | Avl List Gmbh | Rekursives, zeitreihenbasiertes Verfahren zur Zustandsermittlung eines elektrochemischen Reaktors |
CN111656643A (zh) | 2017-12-07 | 2020-09-11 | 雅扎米Ip私人有限公司 | 用于对电池快速充电的自适应充电协议和实现该协议的快速充电系统 |
WO2019111226A1 (en) * | 2017-12-07 | 2019-06-13 | Yazami Ip Pte. Ltd. | Non-linear voltammetry-based method for charging a battery and fast charging system implementing this method |
US11598816B2 (en) | 2017-12-07 | 2023-03-07 | Yazami Ip Pte. Ltd. | Method and system for online assessing state of health of a battery |
US10677849B2 (en) * | 2017-12-19 | 2020-06-09 | GM Global Technology Operations LLC | Methods for determining and characterizing soft shorts in electrochemical cells |
US10811735B2 (en) * | 2017-12-22 | 2020-10-20 | Flow-Rite Controls, Ltd. | Battery electrolyte level monitor, system, and method |
KR102255485B1 (ko) * | 2018-01-26 | 2021-05-24 | 주식회사 엘지에너지솔루션 | Soh 분석 장치 및 방법 |
CN110673886B (zh) * | 2018-07-03 | 2023-10-03 | 百度在线网络技术(北京)有限公司 | 用于生成热力图的方法和装置 |
CN108760083A (zh) * | 2018-07-03 | 2018-11-06 | 汉能移动能源控股集团有限公司 | 一种太阳能组件的工作温度检测方法及系统和异常预警及系统 |
US11251449B2 (en) * | 2018-07-30 | 2022-02-15 | Sumitomo Electric Industries, Ltd. | Redox flow battery system |
FR3086802B1 (fr) | 2018-09-27 | 2021-12-24 | Inst Polytechnique Grenoble | Procede et dispositif de mesure en temps reel et in situ des donnees thermodynamiques d'une batterie (enthalpie et entropie) |
US11251637B2 (en) | 2018-12-04 | 2022-02-15 | Mobile Escapes, Llc | Mobile power system with multiple converters and related platforms and methods |
JP7044044B2 (ja) * | 2018-12-07 | 2022-03-30 | トヨタ自動車株式会社 | 二次電池の劣化度推定装置および二次電池の劣化度推定方法 |
CN110687455B (zh) * | 2019-10-12 | 2021-10-26 | 深圳市比克动力电池有限公司 | 一种评估锂离子电池放热量的方法 |
JP7305574B2 (ja) * | 2020-02-03 | 2023-07-10 | 株式会社日立製作所 | 電池制御装置、エネルギーマネジメントシステム |
DE102020206014A1 (de) * | 2020-05-13 | 2021-11-18 | Robert Bosch Gesellschaft mit beschränkter Haftung | Verfahren zur Ermittlung der Kapazität einer elektrischen Energiespeichereinheit |
DE102020207968A1 (de) * | 2020-05-28 | 2021-12-02 | Siemens Aktiengesellschaft | Verfahren zum Betreiben eines Speichersystems zum Speichern elektrischer Energie und Speichersystem |
CN111942234B (zh) * | 2020-08-20 | 2022-03-04 | 中车大同电力机车有限公司 | 机车动力装置的控制方法、机车动力装置和机车 |
CN112467236B (zh) * | 2020-09-17 | 2021-11-05 | 北京理工大学 | 一种锂离子电池全寿命周期下的分级安全预警方法 |
CN112406626A (zh) * | 2020-11-09 | 2021-02-26 | 广州小鹏汽车科技有限公司 | 一种低温环境下电芯充电的方法、装置和车辆 |
DE102020131161A1 (de) | 2020-11-25 | 2022-05-25 | Marquardt Gmbh | Überwachungsvorrichtung zur Temperatur- und Spannungsüberwachung eines Brennstoffzellen-Stacks, Energieumwandlungssystem mit einer solchen Überwachungsvorrichtung und Verfahren hierfür |
CN112924051B (zh) * | 2021-01-20 | 2024-04-26 | 北华大学 | 一种铜电解槽立体温度测量装置及方法 |
CN118284816A (zh) * | 2021-11-23 | 2024-07-02 | 三星电子株式会社 | 用于管理电池的方法和电子设备 |
WO2023096045A1 (en) * | 2021-11-23 | 2023-06-01 | Samsung Electronics Co., Ltd. | Method and electronic device for managing battery |
JP7522147B2 (ja) | 2022-02-18 | 2024-07-24 | 本田技研工業株式会社 | バッテリユニット |
CN115320385B (zh) * | 2022-07-28 | 2024-04-30 | 重庆金康赛力斯新能源汽车设计院有限公司 | 车辆电池的热失控预警方法、装置、设备和存储介质 |
CN115273998B (zh) * | 2022-08-17 | 2023-07-28 | 沈阳化工研究院有限公司 | 一种化工反应风险分析方法 |
CN116381512B (zh) * | 2023-06-06 | 2023-10-27 | 宁德时代新能源科技股份有限公司 | 电池电压计算方法、装置、电子设备及可读存储介质 |
Family Cites Families (46)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4295097A (en) * | 1979-05-07 | 1981-10-13 | Arthur H. Thompson | Battery capacity measuring method and apparatus |
JPS6041603B2 (ja) | 1981-09-02 | 1985-09-18 | セントラル硝子株式会社 | フツ化黒鉛の製造法および装置 |
US4520083A (en) | 1983-03-02 | 1985-05-28 | Standard Oil Company (Indiana) | Non-aqueous electrochemical cell and electrolyte |
US4725784A (en) * | 1983-09-16 | 1988-02-16 | Ramot University Authority For Applied Research & Industrial Development Ltd. | Method and apparatus for determining the state-of-charge of batteries particularly lithium batteries |
US5477125A (en) * | 1992-09-11 | 1995-12-19 | Inco Limited | Battery charger |
US5712062A (en) | 1992-11-06 | 1998-01-27 | Daikin Industries, Ltd. | Carbon fluoride particles, preparation process and uses of the same |
JPH0765833A (ja) | 1993-08-24 | 1995-03-10 | Matsushita Electric Ind Co Ltd | 水素吸蔵合金電極 |
JP3499989B2 (ja) | 1995-10-19 | 2004-02-23 | エムケー精工株式会社 | バッテリー検査機 |
JP2000504477A (ja) * | 1996-11-21 | 2000-04-11 | コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ | バッテリー管理システム及びバッテリー・シミュレータ |
CA2231665A1 (en) | 1997-03-25 | 1998-09-25 | Dow Corning Corporation | Method for forming an electrode material for a lithium ion battery |
JPH10302765A (ja) | 1997-04-30 | 1998-11-13 | Matsushita Denchi Kogyo Kk | リチウム二次電池 |
JPH1140189A (ja) | 1997-07-22 | 1999-02-12 | Sanyo Electric Co Ltd | ニッケル−水素蓄電池 |
US20010001533A1 (en) | 1998-03-24 | 2001-05-24 | Chartec Laboratories A/S | Method and apparatus for charging a rechargeable battery with monitoring of battery temperature rate of change |
US6172505B1 (en) | 1998-04-27 | 2001-01-09 | Midtronics, Inc. | Electronic battery tester |
GB9809964D0 (en) | 1998-05-08 | 1998-07-08 | Danionics As | Electrochemical cell |
AU753215B2 (en) | 1998-07-21 | 2002-10-10 | Metrixx Limited | Signalling system |
US6392385B1 (en) | 1999-12-01 | 2002-05-21 | Jeremy Barker | Battery operation for extended cycle life |
WO2001059443A1 (en) | 2000-02-11 | 2001-08-16 | Midtronics, Inc. | Storage battery with integral battery tester |
JP2002151166A (ja) * | 2000-11-10 | 2002-05-24 | Japan Storage Battery Co Ltd | 二次電池の温度調整方法及び温度調整装置 |
CA2348586A1 (en) | 2001-05-25 | 2002-11-25 | Corporation Avestor Inc. | Power management system |
JP2003307556A (ja) | 2002-02-15 | 2003-10-31 | Yazaki Corp | バッテリの開回路電圧推定方法及び装置 |
US7227336B1 (en) | 2002-04-02 | 2007-06-05 | Van Schalkwijk Walter A | Lithium ion rapid charging system and method |
US7081755B2 (en) | 2002-09-05 | 2006-07-25 | Midtronics, Inc. | Battery tester capable of predicting a discharge voltage/discharge current of a battery |
US6832171B2 (en) | 2002-12-29 | 2004-12-14 | Texas Instruments Incorporated | Circuit and method for determining battery impedance increase with aging |
US6892148B2 (en) | 2002-12-29 | 2005-05-10 | Texas Instruments Incorporated | Circuit and method for measurement of battery capacity fade |
JP3714333B2 (ja) | 2003-02-28 | 2005-11-09 | 日産自動車株式会社 | 二次電池の入出力可能電力推定装置 |
JP4015128B2 (ja) | 2003-07-09 | 2007-11-28 | 古河電気工業株式会社 | 充電率推定方法、充電率推定装置、電池システム及び車両用電池システム |
US7109685B2 (en) | 2003-09-17 | 2006-09-19 | General Motors Corporation | Method for estimating states and parameters of an electrochemical cell |
JP4597501B2 (ja) | 2003-10-01 | 2010-12-15 | プライムアースEvエナジー株式会社 | 二次電池の残存容量推定方法および装置 |
US20050074640A1 (en) | 2003-10-01 | 2005-04-07 | Matsushita Electric Industrial Co., Ltd. | Fuel cell system and operation method thereof |
US7429849B2 (en) | 2003-11-26 | 2008-09-30 | Toyo System Co., Ltd. | Method and apparatus for confirming the charge amount and degradation state of a battery, a storage medium, an information processing apparatus, and an electronic apparatus |
US8103485B2 (en) | 2004-11-11 | 2012-01-24 | Lg Chem, Ltd. | State and parameter estimation for an electrochemical cell |
JP5368091B2 (ja) * | 2005-08-03 | 2013-12-18 | カリフォルニア インスティテュート オブ テクノロジー | 電気化学的熱力学的測定システム |
US8446127B2 (en) | 2005-08-03 | 2013-05-21 | California Institute Of Technology | Methods for thermodynamic evaluation of battery state of health |
US7563542B2 (en) | 2005-10-05 | 2009-07-21 | California Institute Of Technology | Subfluorinated graphite fluorides as electrode materials |
KR100804698B1 (ko) | 2006-06-26 | 2008-02-18 | 삼성에스디아이 주식회사 | 배터리 soc 추정 방법 및 이를 이용하는 배터리 관리시스템 및 구동 방법 |
KR101134894B1 (ko) | 2006-06-28 | 2012-04-13 | 엘지전자 주식회사 | 배터리 잔량 검출과 표시를 위한 장치 및 방법 |
JP5354846B2 (ja) * | 2006-08-11 | 2013-11-27 | 株式会社東芝 | 組電池および組電池の充放電方法 |
WO2008095313A1 (en) * | 2007-02-09 | 2008-08-14 | Advanced Lithium Power Inc. | Battery thermal management system |
KR101424973B1 (ko) | 2008-01-02 | 2014-08-04 | 삼성전자주식회사 | 폐지 목록 업데이트 방법, 암호화된 컨텐츠 재생 방법, 그기록매체 및 그 장치 |
US8441230B2 (en) | 2008-09-08 | 2013-05-14 | Techtronic Power Tools Technology Limited | Battery charger |
FR2949565B1 (fr) * | 2009-09-02 | 2012-12-21 | Inst Francais Du Petrole | Methode amelioree pour estimer les caracteristiques non mesurables d'un systeme electrochimique |
JP2011076730A (ja) * | 2009-09-29 | 2011-04-14 | Sanyo Electric Co Ltd | 二次電池の評価方法 |
JP2011113688A (ja) * | 2009-11-25 | 2011-06-09 | Sanyo Electric Co Ltd | 二次電池の状態検知方法 |
US9065292B2 (en) | 2010-08-23 | 2015-06-23 | California Institute Of Technology | Methods and systems for charging electrochemical cells |
SG11201406940YA (en) | 2012-04-27 | 2014-11-27 | California Inst Of Techn | An imbedded chip for battery applications |
-
2013
- 2013-04-26 SG SG11201406940YA patent/SG11201406940YA/en unknown
- 2013-04-26 JP JP2015509180A patent/JP6368707B2/ja active Active
- 2013-04-26 WO PCT/US2013/038407 patent/WO2014021957A2/en active Application Filing
- 2013-04-26 US US13/871,454 patent/US9599584B2/en active Active
- 2013-04-26 CN CN201380033945.7A patent/CN104471415B/zh active Active
- 2013-04-26 EP EP13825023.8A patent/EP2841956B1/en active Active
Also Published As
Publication number | Publication date |
---|---|
EP2841956A2 (en) | 2015-03-04 |
WO2014021957A3 (en) | 2014-04-24 |
JP2015522899A (ja) | 2015-08-06 |
CN104471415B (zh) | 2017-09-01 |
US20130322488A1 (en) | 2013-12-05 |
SG11201406940YA (en) | 2014-11-27 |
CN104471415A (zh) | 2015-03-25 |
EP2841956B1 (en) | 2019-02-13 |
EP2841956A4 (en) | 2015-12-23 |
WO2014021957A2 (en) | 2014-02-06 |
US9599584B2 (en) | 2017-03-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6368707B2 (ja) | 電池用途のための組み込みチップ | |
US10556510B2 (en) | Accurate assessment of the state of charge of electrochemical cells | |
US8446127B2 (en) | Methods for thermodynamic evaluation of battery state of health | |
US7595611B2 (en) | Electrochemical thermodynamic measurement system | |
Merla et al. | Novel application of differential thermal voltammetry as an in-depth state-of-health diagnosis method for lithium-ion batteries | |
US20170146608A1 (en) | Method of dynamically extracting entropy of battery | |
Rad et al. | Adaptive thermal modeling of Li-ion batteries | |
US9995794B2 (en) | Methods for testing a battery and devices configured to test a battery | |
Stroe et al. | Electrochemical impedance spectroscopy-based electric circuit modeling of lithium–sulfur batteries during a discharging state | |
He et al. | Prognostics of lithium-ion batteries using extended Kalman filtering | |
Stroe et al. | Performance model for high-power lithium titanate oxide batteries based on extended characterization tests | |
Liu et al. | Experimental study on lithium-ion cell characteristics at different discharge rates | |
Marcis et al. | Analysis of CT-CV charging technique for lithium-ion and NCM 18650 cells over temperature range | |
Yazami et al. | Thermodynamics of lithium-ion batteries | |
Lall et al. | PHM of state-of-charge for flexible power sources in wearable electronics with EKF | |
Banaei et al. | Online detection of terminal voltage in Li-ion batteries via battery impulse response | |
Kang et al. | Estimated temperature distribution-based state-of-health prediction via recursive least squares in electro-thermal circuit model | |
Lall et al. | Effect of Charging Cycle Elevated Temperature Storage and Thermal Cycling on Thin Flexible Batteries in Wearable Applications | |
CN118472491A (zh) | 电池加热控制方法、装置、计算机设备和可读存储介质 | |
Yazami et al. | Methods for thermodynamic evaluation of battery state of health | |
Ovejas Benedicto | Thermal analysis of the state of charge of batteries | |
Ganeshram | State of health determination of batteries at various operating conditions |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20160422 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20160422 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20161104 |
|
A871 | Explanation of circumstances concerning accelerated examination |
Free format text: JAPANESE INTERMEDIATE CODE: A871 Effective date: 20161104 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20161208 |
|
A975 | Report on accelerated examination |
Free format text: JAPANESE INTERMEDIATE CODE: A971005 Effective date: 20161209 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20161220 |
|
A601 | Written request for extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A601 Effective date: 20170317 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20170606 |
|
A601 | Written request for extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A601 Effective date: 20170830 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20171212 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20180406 |
|
A911 | Transfer to examiner for re-examination before appeal (zenchi) |
Free format text: JAPANESE INTERMEDIATE CODE: A911 Effective date: 20180522 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20180612 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20180709 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6368707 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |