JP6361802B1 - ガス溶解水製造装置及びこれを用いたガス溶解水製造方法 - Google Patents

ガス溶解水製造装置及びこれを用いたガス溶解水製造方法 Download PDF

Info

Publication number
JP6361802B1
JP6361802B1 JP2017144411A JP2017144411A JP6361802B1 JP 6361802 B1 JP6361802 B1 JP 6361802B1 JP 2017144411 A JP2017144411 A JP 2017144411A JP 2017144411 A JP2017144411 A JP 2017144411A JP 6361802 B1 JP6361802 B1 JP 6361802B1
Authority
JP
Japan
Prior art keywords
gas
ozone
dissolved water
dissolution
dissolved
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
JP2017144411A
Other languages
English (en)
Other versions
JP2019025387A (ja
Inventor
新井 伸説
伸説 新井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=62976503&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP6361802(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to JP2017144411A priority Critical patent/JP6361802B1/ja
Priority to TW107109196A priority patent/TWI775824B/zh
Priority to PCT/JP2018/010931 priority patent/WO2019021525A1/ja
Application granted granted Critical
Publication of JP6361802B1 publication Critical patent/JP6361802B1/ja
Publication of JP2019025387A publication Critical patent/JP2019025387A/ja
Ceased legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F21/00Dissolving
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/40Static mixers
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Dispersion Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Organic Chemistry (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

【課題】複数のガス溶解膜モジュールを用いたガス溶解水製造装置において、液体供給側の圧力損失を抑制しつつ、複数の気体溶解膜モジュールを使用する上での最大限のガス溶解効率でガス溶解水を製造することができるガス溶解水製造装置及びガス溶解水製造方法を提供する。【解決手段】本発明は、ガス溶解膜により気相室と液相室とが区画形成されたガス溶解膜モジュールを複数有するガス溶解水製造装置であって、複数のガス溶解膜モジュールの気相室同士を直列に連結する気体供給流路と、複数のガス溶解膜モジュールの液相室同士を並列に連結する液体供給流路とを備える。【選択図】図1

Description

本発明は、ガス溶解水製造装置及びガス溶解水製造方法に関し、特に、高い溶解効率でオゾンガス等の気体を超純水等の液体に溶解させたガス溶解水を製造することができるガス溶解水製造装置及びこれを用いたガス溶解水製造方法に関する。
半導体、液晶、有機EL等の電子部品のウェット洗浄用のオゾン水は、通常、超純水に高純度のオゾンガスを溶解することにより製造する。オゾンガスの溶解方法としては、バブリングにより超純水に直接オゾンガスを吹き込むことで溶解させる方法や、疎水性のガス溶解膜を備えるガス溶解膜モジュールを用いて、液相室に超純水を通水するとともに気相室から液相室へオゾンガスを移動させることで溶解させる方法等が実用化されている。特に、ガス溶解膜モジュールを用いた溶解方法は、溶存オゾン濃度が比較的安定した、気泡を含まないオゾン水が得られるという利点があるため、ウェット洗浄用以外にも、被処理中の有機物分解や殺菌のために広く用いられている。
ガス溶解膜モジュールを用いた溶解方法によりオゾン水を製造するに当たっては、高い溶解率でオゾンガスを気相室から液相室へ移動させることが最大の課題である。また、特にウェット洗浄用のオゾン水としては、高濃度のオゾン水を製造することが重要であり、このためには、オゾンガスの溶解効率を向上させる必要がある。なお、溶解効率とは、供給したオゾンガス中に含まれるオゾン量に対する液体に溶解したオゾン量の割合を示す値である。
特開2001−031405号公報 特開平11−256193号公報
そこで、特許文献1には、並列に設置された複数のオゾン溶解モジュールのオゾンガス排出系のそれぞれに、抵抗としてオリフィス又は弁を設けることで、これら複数のオゾン溶解モジュールに対して液体(純水)及び気体(高濃度オゾンガスを含む混合ガス)を分流して供給した際に、オゾンガスの流量を均一化することにより、全体としてオゾンガスの溶解効率を向上させる方法が開示されている。特許文献1に開示の方法によれば、並設された複数のオゾン溶解モジュールに対するオゾンガス流量の偏りを是正し、オゾン溶解装置全体としてオゾン溶解効率を一定に保つことが可能である。しかしながら、特許文献1に開示の方法は、オゾン溶解装置を構成するオゾン溶解モジュールが1台の場合に得られる最大限の溶解効率が、複数の溶解モジュールで均等に得られるのみであって、複数の溶解モジュールそれぞれについて溶解効率を向上させる工夫がなされているわけではない。したがって、特許文献1に開示の方法では、複数のオゾン溶解モジュールを使用する上での最大限のオゾン溶解効率を得ることはできない。
一方、特許文献2には、直列に連結した複数の気体溶解膜モジュールに対して、液体(原水)及び気体(オゾン含有気体)をともに直列で供給し、オゾンガスの溶解効率を向上させる方法が開示されている。特許文献2に開示の方法によれば、複数の気体溶解膜モジュールにオゾン含有気体を直列供給することにより、オゾン含有気体中に含まれるオゾンを無駄なく使用することができ、オゾン溶解効率を最大限まで高めることが可能となる。しかしながら、特許文献2に開示の方法は、複数の気体溶解膜モジュールを直列に連結しているため、原水の供給元からこれら複数の気体溶解膜モジュールに向けて原水を供給すると、直近の気体溶解膜モジュールでは充分な供給圧力が確保されても、隣り合う気体溶解膜モジュール間で圧力損失が増加するため、遠方に行くに従って供給圧力が低減し原水の供給量も低下してしまうという問題がある。
本発明は上述のような事情に基づいてなされたものであり、複数のガス溶解膜モジュールを用いたガス溶解水製造装置において、液体供給側の圧力損失を抑制しつつ、複数のガス溶解膜モジュールを使用する上での最大限のガス溶解効率でガス溶解水を製造することができるガス溶解水製造装置及びガス溶解水製造方法の提供を目的とする。
上記課題を解決するために、第一に本発明は、ガス溶解膜により気相室と液相室とが区画形成されたガス溶解膜モジュールを複数有するガス溶解水製造装置であって、複数のガス溶解膜モジュールの気相室同士を直列に連結する気体供給流路と、複数のガス溶解膜モジュールの液相室同士を並列に連結する液体供給流路とを備えるガス溶解水製造装置を提供する(発明1)。
かかる発明(発明1)によれば、液体供給流路に供給された超純水等の液体は、単一か又は複数であっても少数のガス溶解膜モジュールを通過するのみであるため、直列に連結した複数のガス溶解膜モジュールを通過する際に生じるような大きな圧力損失を伴うことがなく、安定的にガス溶解水を回収することができる。また、単段のガス溶解膜モジュールを用いて、例えばオゾンガスと超純水とで溶解処理を行った場合、溶解処理後のガス溶解膜モジュールから排出される排気(ガス)には、かなりの量のオゾンガスが残存してしまう。かかる発明(発明1)によれば、気体供給流路に供給されたオゾンガス等の気体は、複数のガス溶解膜モジュールを直列に通過するため、最終段のガス溶解膜モジュールから排出される排気において、ガスの有効成分のほぼ全量が液体に溶解して残存しないような状況を作り出すことが可能となり、最大限のガス溶解効率を得ることができる。
上記発明(発明1)においては、前記ガス溶解膜モジュールのガス溶解膜が束状に保持される複数本の多孔質中空糸膜であることが好ましい(発明2)。
かかる発明(発明2)によれば、複数本の中空糸膜によって複数の気相室と液相室とが区画形成されるため、少ないスペースで気液の接触面積を大きくすることができる。これによって、より容易かつ確実にオゾンガス等の気体を超純水等の液体に溶解することができるので、効率的にガス溶解水を製造することができる。
上記発明(発明1,2)においては、前記気体供給流路が一端側の気体供給口と他端側の気体排出口とを有し、前記気体排出口に前記気体供給流路を開閉可能なバルブが設けられていることが好ましい(発明3)。
かかる発明(発明3)によれば、気体供給流路内を流通するオゾン等の気体の圧力を調整することができるので、好適な圧力でガス溶解処理を行うことができる。例えば、バルブによって気体供給流路内を流通するオゾンガス等の気体の圧力を高めると、オゾンガス濃度は上昇することになるので、ガス溶解水の濃度を高めることができ、ガス溶解効率の向上にもつながる。
第二に本発明は、上記発明1から3のいずれか一つに記載のガス溶解水製造装置を用いたガス溶解水製造方法を提供する(発明4)。
本発明のガス溶解水製造装置及びガス溶解水製造方法によれば、液体供給流路に供給された超純水等の液体は、単一か又は複数であっても少数のガス溶解膜モジュールを通過するのみであるため、直列に連結した複数のガス溶解膜モジュールを通過する際に生じるような大きな圧力損失を伴うことがなく、安定的にガス溶解水を回収することができる。また、単段のガス溶解膜モジュールを用いて、例えばオゾンガスと超純水とで溶解処理を行った場合、溶解処理後のガス溶解膜モジュールから排出される排気(ガス)には、かなりの量のオゾンガスが残存してしまう。よって、本発明のガス溶解水製造装置及びガス溶解水製造方法によれば、気体供給流路に供給されたオゾンガス等の気体は、複数のガス溶解膜モジュールを直列に通過するため、最終段のガス溶解膜モジュールから排出される排気において、ガスの有効成分のほぼ全量が液体に溶解して残存しないような状況を作り出すことが可能となり、最大限のガス溶解効率を得ることができる。
本発明の一実施形態に係るガス溶解水製造装置を示す模式的説明図である。 図1のガス溶解水製造装置に用いられるガス溶解膜モジュールの一形態を示す模式的説明図である。 比較例1のガス溶解水製造装置を示す模式的説明図である。
以下、本発明のガス溶解水製造装置及びこれを用いたガス溶解水製造方法の実施の形態について、適宜図面を参照して説明する。以下に説明する実施形態は、本発明の理解を容易にするためのものであって、何ら本発明を限定するものではない。
〔ガス溶解水製造装置〕
図1は、本発明の一実施形態に係るガス溶解水製造装置1を示す模式的説明図である。図1に示すガス溶解水製造装置1は、4段のガス溶解膜モジュール21−24を備え、ガス溶解膜モジュール21−24はそれぞれが、対応する気相室21a−24a及び液相室21b−24bを有する。気相室21a−24aは気体供給流路3により直列に連結され、液相室21b−24bは液体供給流路4により並列に連結されている。
(気体)
本実施形態においては、ガス溶解水製造装置1に供給する気体(ガス)としてオゾン含有気体Gを使用しているがこれに限られない。なお、オゾン含有気体としては、例えば水の電気分解や、空気又は酸素ガス中での無声放電等を利用したオゾン発生器によって発生させた混合ガスを用いることができる。このようなオゾン含有気体は、多くの場合、10−20重量%のオゾンと、80−90重量%の酸素ガスを含有する。本発明に係るガス溶解水製造装置は、このような混合ガスからある種のガス成分を溶解させることによるガス溶解水の製造において、好適に用いることができる。
(液体)
本実施形態においては、ガス溶解水製造装置1に供給する液体(原水)として超純水Wを使用しているがこれに限られず、例えば超純水に炭酸ガスを溶解した炭酸水等を使用してもよい。
[ガス溶解膜モジュール]
ガス溶解膜モジュール21−24はいずれも同様の構成を有しているので、図1の1段目のガス溶解膜モジュール21を例に説明する。ガス溶解膜モジュール21は、ガス溶解膜により気相室21aと液相室21bとが区画形成されている。気相室21aに供給されたオゾン含有気体Gと、液相室21bに供給された超純水Wとが気液接触することによってガス溶解水W1が製造される。なお、ガス溶解処理後の低濃度のオゾン含有気体G1は、気体供給流路3を経て2段目のガス溶解膜モジュール22へ供給される。
ガス溶解膜モジュール21を構成するガス溶解膜の材質としては、耐オゾン性が要求されることから、疎水性で耐オゾン性に優れたポリテトラフルオロエチレン等のフッ素樹脂膜を好適に使用することができる。ガス溶解膜モジュール21を構成するガス溶解膜の形状には特に制限はなく、図1に示すような平膜状の他に、例えば中空糸膜状やスパイラル巻状等を使用することができるが、図2に示すような多孔質中空糸膜状のガス溶解膜を有するガス溶解膜モジュールが好ましい。なお、図2のガス溶解膜モジュール21’は、説明を容易にするために、複数のガス溶解膜モジュールのうち1段目のガス溶解膜モジュールを例として符号を付してある。
図2のガス溶解膜モジュール21’は、ガス溶解膜が束状に保持される複数本の多孔質中空糸膜であり、これら複数本の多孔質中空糸膜によって複数の気相室21’aと液相室21’bとが区画形成されている。気相室21’aには、オゾン含有気体Gが気体供給流路3を通して供給され、液相室21’bには、超純水Wが液体供給流路4を通して供給される。このようなガス溶解膜モジュール21’は、複数本の中空糸膜によって複数の気相室と液相室とが区画形成されていることから、少ないスペースで気液の接触面積を大きくすることができる。これにより、より容易かつ確実にオゾン含有気体を超純水に溶解することができるので、効率的にガス溶解水W1を製造することができる。
なお、上記ガス溶解膜モジュールの材質としては、供給する気体としてオゾンガスやオゾンと酸素の混合ガス等を用いる場合には、耐オゾン性を有するポリテトラフルオロエチレン等のフッ素樹脂素材を使用することが好ましい。
[気体供給流路]
気体供給流路3は、ガス溶解膜モジュール21−24の気相室21a−24aを直列に連結するものである。気体供給流路3の一端側であって1段目のガス溶解膜モジュール21の上流側には、オゾンガス等の気体を供給するための気体供給口が設けられており、気体供給流路3の他端側であって4段(最終段)目のガス溶解膜モジュール24の下流側には、ガス溶解膜モジュール24の気相室24aから排出される排気G4を排出するための気体排出口が設けられている。
単段のガス溶解膜モジュールを用いて、例えばオゾンガスと超純水とで溶解処理を行った場合、溶解処理後のガス溶解膜モジュールから排出される排気には、かなりの量のオゾンガスが残存してしまう。気体供給流路3が、このように複数のガス溶解膜モジュールの気相室同士を直列に連結する構成であることにより、気体供給口から気体供給流路3に供給されたオゾンガスは、気相室21a−24aを直列に通過するため、徐々にオゾンガス濃度が低下し、最終的には気体排出口において、オゾンガスの有効成分のほぼ全量が液体に溶解して残存しないような状況を作り出すことが可能となり、最大限のガス溶解効率を得ることができる。
なお、気体供給流路3の材質としては、接触する酸やオゾンガス等の気体に対して耐性を有する材質であれば特に制限はなく、例えば、テトラフルオロエチレン・パーフルオロアルキルビニルエーテル共重合体(PFA)、ポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニリデン(PVDF)等のフッ素樹脂系の配管材料が好適であるが、低濃度域であれば塩化ビニル(PVC)等も使用することができる。
[液体供給流路]
液体供給流路4は、ガス溶解膜モジュール21−24の液相室21b−24bを直列に連結するものである。液体供給流路4の一端側であって1段目のガス溶解膜モジュール21の上流側には、超純水等の液体を供給するための液体供給口が設けられており、液体供給流路4の他端側であって4段(最終段)目のガス溶解膜モジュール24の下流側には、ガス溶解膜モジュール24の液相室24bから排出されるガス溶解水を排出するための液体排出口が設けられている。
液体供給流路4が、このように複数のガス溶解膜モジュールの液相室同士を並列に連結する構成であることにより、液体供給口から液体供給流路4に供給された超純水は、複数の液相室21b−24bのうち、単一か又は複数であっても少数の液相室を通過するのみであるため、直列に連結した複数のガス溶解膜モジュールを通過する際に生じるような大きな圧力損失を伴うことがなく、安定的にガス溶解水を回収することができる。
なお、液体供給流路4の材質としては、接触する液体によって腐食されない材質であれば特に制限はなく、例えば、ポリフッ化ビニリデン(PVDF)等のフッ素樹脂系の配管材料が好適であるが、低濃度域であれば塩化ビニル(PVC)等も使用することができる。
[バルブ]
バルブ5は、気体供給流路3の気体排出口に設けられており、気体供給流路3を開閉することにより、気体供給流路3内を流通する気体の圧力を調整するものである。バルブ5を適宣絞り又は閉じて調整することにより、気体供給流路3内を流通する気体の圧力を高めることで、オゾンガス等の気体の超純水等の液体への溶解を促進することができる。バルブ5の開度の調整は、図示しない制御機構により行ってもよいし、手動により行ってもよい。バルブ5を有することにより、気体供給流路3内を流通するオゾンガス等の気体の圧力を調整することができるので、好適な圧力によるガス溶解処理を行うことができる。
なお、液体供給流路4の液体排出口には、ガス溶解水製造装置1により製造されたガス溶解水W5の系外への排出及び装置内圧を制御するためのバルブ6が設けられている。
〔ガス溶解水製造方法〕
次に、上述したような本実施形態のガス溶解水製造装置1を用いたガス溶解水製造方法について図1を参照しつつ詳説する。
ガス溶解水製造装置1を用いたガス溶解水製造方法は、複数のガス溶解膜モジュールの気相室に気体を直列で供給する気体供給工程、複数のガス溶解膜モジュールの液相室に液体を並列で供給する液体供給工程、複数のガス溶解膜モジュールのそれぞれにおいてガス溶解膜を介して気体を液体に溶解させるガス溶解工程を主に備える。
[気体供給工程]
気体供給工程においては、気体としてのオゾン含有気体Gが、ガス溶解膜モジュール21−24の気相室21a−24aに直列で供給される。具体的には、まず、気体供給口より供給されたオゾン含有気体Gは、気体供給流路3を経て1段目のガス溶解膜モジュール21の気相室21aに供給される。ガス溶解膜モジュール21において後述するガス溶解工程が行われ、ガス溶解工程後の低濃度になったオゾン含有気体G1が、気相室21aから排出される。低濃度のオゾン含有気体G1は、気体供給流路3を経て2段目のガス溶解膜モジュール22の気相室22aに供給される。次に、ガス溶解膜モジュール22においてガス溶解工程が行われ、ガス溶解工程後のより低濃度のオゾン含有気体G2が、気相室22aから排出される。同様に、3段目以降のガス溶解膜モジュール23、24についても順にガスの供給及び排出が行われ、最終的にはガスの有効成分がほぼ残存しない排気G4が、気体排出口から排出される。
このように、気体供給工程においては、オゾン含有気体Gがガス溶解膜モジュール21−24の気相室21a−24aに直列で供給されるので、気体排出口において、ガスの有効成分のほぼ全量が液体に溶解して残存しないような状況を作り出すことが可能となり、最大限のガス溶解効率を得ることができる。
[液体供給工程]
液体供給工程においては、液体としての超純水Wが、ガス溶解膜モジュール21−24の液相室21b−24bに並列で供給される。具体的には、まず、液体供給口から供給された超純水Wは、液体供給流路4を経て1段目から4段目のガス溶解膜モジュール21−24の液相室21b−24bに供給される。そして、超純水Wが供給されたガス溶解膜モジュール21−24のそれぞれにおいて後述するガス溶解工程が行われ、ガス溶解工程後のガス溶解水W1−W4が、液相室21b−24bからそれぞれ排出される。ガス溶解水W1−W4は、4段目のガス溶解膜モジュール24の下流側の液体供給流路4において集約され、最大限のガス溶解効率を有するガス溶解水W5として、液体排出口から排出される。
このように、液体供給工程においては、超純水Wがガス溶解膜モジュール21−24の液相室21b−24bに並列で供給されるので、直列に連結した複数のガス溶解膜モジュールを通過する際に生じるような大きな圧力損失を伴うことがなく、液体排出口において、最大限のガス溶解効率を有するガス溶解水を安定的に回収することができる。
[ガス溶解工程]
ガス溶解工程は、ガス溶解膜モジュール21−24のそれぞれにおいて同様に行われる工程であるので、図1の1段目のガス溶解膜モジュール21を例に説明する。ガス溶解工程とは、ガス溶解膜モジュールを用いることにより、超純水等の液体中にオゾンガス等の不活性ガスを溶解させる工程であって、本実施形態においては、ガス溶解膜を介して超純水Wにオゾン含有気体Gを溶解させる工程である。具体的には、ガス溶解膜モジュール21の気相室21aに供給されたオゾン含有気体Gと、液相室21bに供給された超純水Wとが気液接触することによってガス溶解水W1が製造される。
なお、気体供給口から気体供給流路3に供給されたオゾン含有気体Gは、ガス溶解膜モジュール21−24の気相室21a−24aを直列に通過するため、図1におけるG1、G2、G3の順に徐々にオゾンガス濃度が低下し、最終的にはガスの有効成分がほぼ残存しない排気G4が、気体排出口から排出される。
当該ガス溶解水製造方法はさらに、気体供給流路3内を流通するオゾン等の気体の圧力を調整するガス圧調整工程を備えていてもよい。ガス圧調整工程においては、気体供給流路3の気体排出口に設けられているバルブ5によって、気体供給流路3を開閉することにより、気体供給流路3内を流通する気体の圧力が調整される。ガス圧調整工程を備えることにより、気体供給流路3内を流通するオゾンガス等の気体の圧力を調整することができるので、好適な圧力でもって上記ガス溶解工程を行うことが可能となる。
以上のように、本発明のガス溶解水製造装置及びガス溶解水製造方法によれば、液体供給流路に供給された超純水等の液体は、単一か又は複数であっても少数のガス溶解膜モジュールを通過するのみであるため、直列に連結した複数のガス溶解膜モジュールを通過する際に生じるような大きな圧力損失を伴うことがなく、安定的にガス溶解水を回収することができる。また、単段のガス溶解膜モジュールを用いて、例えばオゾンガスと超純水とで溶解処理を行った場合、溶解処理後のガス溶解膜モジュールから排出される排気(ガス)には、かなりの量のオゾンガスが残存してしまう。よって、本発明のガス溶解水製造装置及びガス溶解水製造方法によれば、気体供給流路に供給されたオゾンガス等の気体は、複数のガス溶解膜モジュールを直列に通過するため、最終段のガス溶解膜モジュールから排出される排気において、ガスの有効成分のほぼ全量が液体に溶解して残存しないような状況を作り出すことが可能となり、最大限のガス溶解効率を得ることができる。
以上、本発明について図面を参照にして説明してきたが、本発明は上記実施形態に限定されず、種々の変更実施が可能である。本実施形態においては、ガス溶解膜モジュール21−24の気相室21a−24aを直列に連結する気体供給流路3内の気体の流通方向と、ガス溶解膜モジュール21−24の液相室21b−24bを並列に連結する液体供給流路4内の液体の流通方向とが同一方向であるが、複数のガス溶解膜モジュールに対して、気体を直列で、液体を並列で供給してさえすれば、気体の流通方向と液体の流通方向とが逆方向であってもよい。また、必要に応じて、複数個のガス溶解膜モジュール21−24の間の気体供給流路3にポンプ等の通気圧を高める機構を設けてもよい。
以下、実施例に基づき本発明をさらに詳説するが、本発明は以下の実施例に限定されるものではない。
〔実施例1〕
図1に示すガス溶解水製造装置1を用いて、オゾン溶解水の製造を行った。複数のガス溶解膜モジュールとして、ガス溶解膜モジュール(GNH−01K,PTFE,日本ゴア社製)を4本構成で用いた。
供給する原水としては、超純水に炭酸ガスを10mg/L(as CO)相当吹き込み溶解した炭酸水を用いた。炭酸水はポンプで昇圧し、ポンプから微量発生(発塵)する微粒子を除去することを目的としてUF膜に通した後、ガス溶解水製造装置に供給した。原水(炭酸水)の供給流量が80L/min(ガス溶解膜モジュール1本あたり20L/min)となるよう、また、液体体排出口のバルブによって液体の出口圧力が0.2MPaとなるよう、それぞれ調整した。
供給する気体としては、原料ガスとして酸素ガスを用い、無声放電式のオゾン発生器(GRDシリーズ,住友精密工業社製)にてオゾンと酸素との混合ガスを生成し、このオゾン含有ガスをガス溶解水製造装置に供給した。気体(オゾン含有ガス)の供給ガス流量は、4NL/minとし、4本のガス溶解膜モジュールに直列供給する形式にて供給した。気体排出口のバルブによって気体の出口圧力が0.15MPaとなるよう調整した。
本実施例に用いたオゾン含有ガス中のオゾンガス濃度及びオゾン溶解水中のオゾンガス濃度は、それぞれ紫外線吸光方式のオゾンガス濃度計(PG620,荏原実業社製)、溶存オゾン濃度計(PL620,荏原実業社製)を用いて測定した。測定結果は以下の通りである。
オゾンガス濃度は、気体供給口において240g/Nm、気体排出口において90g/Nmであった。また、製造されたオゾン溶解水のオゾンガス濃度は7mg/Lであった。この結果より、オゾンガスの溶解効率(オゾン溶解水中に含まれるオゾン量)/(オゾンガスとして供給したオゾン量)として、約0.58(7mg/L×80L/min)/(240g/Nm×4NL/min)が得られた。
〔比較例1〕
図3に示すガス溶解水製造装置10は、気体供給流路30が複数のガス溶解膜モジュールの気相室同士を並列に連結している以外は、図1のガス溶解水製造装置1と同一の構成を有するガス溶解水製造装置であって、気体、液体ともに並列で供給する構成である。図2において、図1と同一の要素については同一の符号を付して、重複説明を省略する。このガス溶解水製造装置10を用いて、オゾン溶解水の製造を行った。
オゾン含有気体を、4段のガス溶解膜モジュール21−24に対して並列で供給し、ガス供給流量8NL/minとしたこと以外は、実施例1と同様にオゾン溶解水を製造し、測定を行った。測定結果は以下の通りである。
オゾンガス濃度は、気体供給口で210g/Nm、気体排出口で140g/Nmであった。また、製造されたオゾン溶解水のオゾン濃度は7mg/Lであった。本実施例により、本発明のガス溶解水製造装置1を用いることで、オゾン溶解効率を1.5倍に高められることが確認できた。
以上説明したように、本発明のガス溶解水製造装置及びこれを用いたガス溶解水製造方法によれば、液体供給側の圧力損失を抑制しつつ、複数のガス溶解膜モジュールを使用する上での最大限のガス溶解効率でガス溶解水を製造することができる。
本発明は、半導体等の電子部品の製造工程において、電子部品のウェット洗浄用のオゾン溶解水の製造装置及び製造方法として有用である。
1 ガス溶解水製造装置
21−24,21’ ガス溶解膜モジュール
21a−24a,21’a 気相室
21b−24b,21’b 液相室
3 気体供給流路
4 液体供給流路
5,6 バルブ
G オゾン含有気体
G4 排気
W 超純水
W5 ガス溶解水

Claims (4)

  1. ガス溶解膜により気相室と液相室とが区画形成されたガス溶解膜モジュールを複数有するガス溶解水製造装置であって、
    複数のガス溶解膜モジュールの気相室同士を直列に連結する気体供給流路と、
    複数のガス溶解膜モジュールの液相室同士を並列に連結する液体供給流路とを備える
    ガス溶解水製造装置。
  2. 前記ガス溶解膜モジュールのガス溶解膜が束状に保持される複数本の多孔質中空糸膜である請求項1に記載のガス溶解水製造装置。
  3. 前記気体供給流路が一端側の気体供給口と他端側の気体排出口とを有し、
    前記気体排出口に前記気体供給流路を開閉可能なバルブが設けられている請求項1又は請求項2に記載のガス溶解水製造装置。
  4. 請求項1から請求項3のいずれか一項に記載のガス溶解水製造装置を用いたガス溶解水製造方法。
JP2017144411A 2017-07-26 2017-07-26 ガス溶解水製造装置及びこれを用いたガス溶解水製造方法 Ceased JP6361802B1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2017144411A JP6361802B1 (ja) 2017-07-26 2017-07-26 ガス溶解水製造装置及びこれを用いたガス溶解水製造方法
TW107109196A TWI775824B (zh) 2017-07-26 2018-03-19 氣溶水製造裝置及使用其的氣溶水製造方法
PCT/JP2018/010931 WO2019021525A1 (ja) 2017-07-26 2018-03-20 ガス溶解水製造装置及びこれを用いたガス溶解水製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017144411A JP6361802B1 (ja) 2017-07-26 2017-07-26 ガス溶解水製造装置及びこれを用いたガス溶解水製造方法

Publications (2)

Publication Number Publication Date
JP6361802B1 true JP6361802B1 (ja) 2018-07-25
JP2019025387A JP2019025387A (ja) 2019-02-21

Family

ID=62976503

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017144411A Ceased JP6361802B1 (ja) 2017-07-26 2017-07-26 ガス溶解水製造装置及びこれを用いたガス溶解水製造方法

Country Status (3)

Country Link
JP (1) JP6361802B1 (ja)
TW (1) TWI775824B (ja)
WO (1) WO2019021525A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111320249A (zh) * 2020-03-04 2020-06-23 辽宁莱特莱德环境工程有限公司 一种海水淡化矿化汽水混合装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11256193A (ja) * 1998-03-13 1999-09-21 Kurita Water Ind Ltd オゾン溶解装置
JP2000354857A (ja) * 1999-06-16 2000-12-26 Japan Organo Co Ltd 機能水製造方法及び装置
JP2002075422A (ja) * 2000-09-01 2002-03-15 Honda Motor Co Ltd 燃料電池用加湿装置
JP2013049002A (ja) * 2011-08-30 2013-03-14 Mitsubishi Rayon Co Ltd 廃水の処理方法、および廃水の処理装置

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102994363A (zh) * 2011-09-17 2013-03-27 中国科学院兰州化学物理研究所 一种串联通气培养异养-光合自养型微生物的装置
CN117065592A (zh) * 2015-11-17 2023-11-17 上海纳诺巴伯纳米科技有限公司 超饱和氢气溶液的制备装置及其制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11256193A (ja) * 1998-03-13 1999-09-21 Kurita Water Ind Ltd オゾン溶解装置
JP2000354857A (ja) * 1999-06-16 2000-12-26 Japan Organo Co Ltd 機能水製造方法及び装置
JP2002075422A (ja) * 2000-09-01 2002-03-15 Honda Motor Co Ltd 燃料電池用加湿装置
JP2013049002A (ja) * 2011-08-30 2013-03-14 Mitsubishi Rayon Co Ltd 廃水の処理方法、および廃水の処理装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111320249A (zh) * 2020-03-04 2020-06-23 辽宁莱特莱德环境工程有限公司 一种海水淡化矿化汽水混合装置

Also Published As

Publication number Publication date
TW201910274A (zh) 2019-03-16
WO2019021525A1 (ja) 2019-01-31
TWI775824B (zh) 2022-09-01
JP2019025387A (ja) 2019-02-21

Similar Documents

Publication Publication Date Title
US11817309B2 (en) Method of producing heated ozone water, heated ozone water, and semiconductor wafer-cleaning liquid
US10322788B2 (en) Ballast water treatment system
JP6361802B1 (ja) ガス溶解水製造装置及びこれを用いたガス溶解水製造方法
JP2004188246A (ja) オゾン水製造システム
US6884359B2 (en) Apparatus and method for controlling resistivity of ultra pure water
WO2017191829A1 (ja) 超純水製造装置の立ち上げ方法
JP2009297588A (ja) 加熱オゾン水の製造方法
JP2009112979A (ja) オゾン水の製造装置及び製造方法
JP4843339B2 (ja) オゾン水供給装置
JP2007185559A (ja) ガス溶解方法および装置
TWI721213B (zh) 基板洗淨裝置及基板洗淨方法
JP6400918B2 (ja) 水素溶解水製造装置及び純水製造システム
WO2018127986A1 (ja) リアルタイム大容量水素水生成器
WO2017110288A1 (ja) 水処理方法及び水処理システム
JP4119040B2 (ja) 機能水製造方法及び装置
JP2005324118A (ja) 水処理方法及び水処理装置
JP4826864B2 (ja) 超純水製造装置
KR20190040112A (ko) 필터의 처리 방법 및 반도체 장치의 제조 방법
JP2017202474A (ja) オゾン溶解水製造装置
JP2011213498A (ja) オゾンガス発生システム及びオゾンガス発生方法
SA111320563B1 (ar) جهاز تهوية، وجهاز لإزالة الكبريت يشتمل على جهاز التهوية
JP2016137423A (ja) 気体溶解器及び気体溶解流体製造装置
JP2001330969A (ja) フォトレジスト除去装置
JP7307567B2 (ja) 脱気方法および脱気装置
JP2011083754A (ja) ガス溶解水製造装置及び製造方法

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180529

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180611

R150 Certificate of patent or registration of utility model

Ref document number: 6361802

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

RVOP Cancellation by post-grant opposition