WO2019021525A1 - ガス溶解水製造装置及びこれを用いたガス溶解水製造方法 - Google Patents
ガス溶解水製造装置及びこれを用いたガス溶解水製造方法 Download PDFInfo
- Publication number
- WO2019021525A1 WO2019021525A1 PCT/JP2018/010931 JP2018010931W WO2019021525A1 WO 2019021525 A1 WO2019021525 A1 WO 2019021525A1 JP 2018010931 W JP2018010931 W JP 2018010931W WO 2019021525 A1 WO2019021525 A1 WO 2019021525A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- gas
- ozone
- dissolving
- dissolved
- liquid
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01F—MIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
- B01F21/00—Dissolving
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01F—MIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
- B01F25/00—Flow mixers; Mixers for falling materials, e.g. solid particles
- B01F25/40—Static mixers
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/44—Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
Definitions
- the present invention relates to a gas dissolving water producing apparatus and a gas dissolving water producing method, and in particular, gas dissolving water capable of producing gas dissolving water in which a gas such as ozone gas is dissolved in a liquid such as ultrapure water with high dissolving efficiency.
- the present invention relates to a manufacturing apparatus and a method of manufacturing gas-dissolved water using the same.
- ozone water for wet cleaning of electronic components such as semiconductors, liquid crystals, organic ELs, etc. is manufactured by dissolving ozone gas of high purity in ultra pure water.
- a method of dissolving ozone gas ultra pure water is allowed to pass through the liquid phase chamber using a method of dissolving ozone gas by blowing directly into ultra pure water by bubbling, or using a gas dissolving membrane module provided with a hydrophobic gas dissolving membrane.
- methods such as dissolving by moving ozone gas from a gas phase chamber to a liquid phase chamber are put to practical use.
- the dissolution method using the gas dissolution membrane module has the advantage that ozone water having relatively stable dissolved ozone concentration and containing no bubbles can be obtained. And widely used for sterilization.
- the dissolution efficiency is a value indicating the ratio of the amount of ozone dissolved in the liquid to the amount of ozone contained in the supplied ozone gas.
- Patent Document 1 by providing an orifice or a valve as a resistance in each of the ozone gas discharge systems of a plurality of ozone dissolution modules installed in parallel, liquid (pure water) for the plurality of ozone dissolution modules There is disclosed a method of improving the dissolution efficiency of ozone gas as a whole by equalizing the flow rate of ozone gas when the gas (mixed gas containing high concentration ozone gas) is divided and supplied. According to the method disclosed in Patent Document 1, it is possible to correct the deviation of the flow rate of the ozone gas with respect to a plurality of ozone dissolving modules arranged in parallel, and to keep the ozone dissolving efficiency constant as the entire ozone dissolving apparatus.
- Patent Document 2 discloses a method in which liquid (raw water) and gas (ozone-containing gas) are both supplied in series to a plurality of gas dissolution membrane modules connected in series to improve the dissolution efficiency of ozone gas. It is done. According to the method disclosed in Patent Document 2, ozone contained in the ozone-containing gas can be used without waste by supplying ozone-containing gas in series to a plurality of gas dissolution membrane modules, and ozone dissolution efficiency is maximized. It is possible to increase to the limit. However, since the method disclosed in Patent Document 2 connects a plurality of gas dissolution membrane modules in series, when raw water is supplied from a supply source of raw water toward the plurality of gas dissolution membrane modules, the most recent gas dissolution is performed. In the membrane module, even if a sufficient supply pressure is secured, the pressure loss increases between the adjacent gas-dissolved membrane modules, so the supply pressure decreases and the supply amount of raw water decreases as going farther. .
- the present invention has been made based on the above circumstances, and in a gas dissolved water production apparatus using a plurality of gas dissolving membrane modules, a plurality of gas dissolving membrane modules while suppressing pressure loss on the liquid supply side. It is an object of the present invention to provide a gas-dissolved water producing apparatus and a gas-dissolved water producing method capable of producing gas-dissolved water with the maximum gas-dissolving efficiency in use.
- the present invention is a gas dissolving water manufacturing apparatus having a plurality of gas dissolving membrane modules in which a gas phase chamber and a liquid phase chamber are formed by gas dissolving membranes
- a gas dissolved water production apparatus comprising: a gas supply flow path connecting gas phase chambers of a gas dissolution membrane module in series; and a liquid supply flow path linking liquid phase chambers of a plurality of gas dissolution membrane modules in parallel.
- the liquid such as ultrapure water supplied to the liquid supply flow path only passes through a small number of gas dissolution membrane modules, even if it is single or plural, so Gas dissolved water can be stably recovered without the large pressure loss that occurs when passing through a plurality of gas dissolved membrane modules connected to each other.
- dissolution processing is performed using, for example, ozone gas and ultrapure water using a single-stage gas dissolution membrane module, a considerable amount of exhaust (gas) is discharged from the gas dissolution membrane module after dissolution treatment Ozone gas will remain.
- the gas such as ozone gas supplied to the gas supply flow path passes through the plurality of gas dissolving membrane modules in series, so the exhaust gas exhausted from the gas dissolving membrane module of the final stage It is possible to create a situation in which almost all of the active ingredients of the gas do not dissolve and remain in the liquid, and the maximum gas dissolution efficiency can be obtained.
- invention 1 it is preferable that it is several porous hollow fiber membrane by which the gas dissolution membrane of the said gas dissolution membrane module is hold
- invention 2 since a plurality of hollow fiber membranes separate and form a plurality of gas phase chambers and liquid phase chambers, the contact area of gas and liquid can be increased in a small space.
- gas such as ozone gas can be more easily and reliably dissolved in liquid such as ultra pure water, so that gas dissolved water can be efficiently produced.
- the gas supply flow channel has a gas supply port at one end and a gas discharge port at the other end, and the gas supply flow channel can be opened and closed at the gas discharge port.
- a valve is provided (invention 3).
- the gas dissolution process can be performed at a suitable pressure.
- the pressure of ozone gas or the like flowing in the gas supply flow path is increased by a valve, the ozone gas concentration is increased, so the concentration of dissolved water can be increased, and the gas dissolution efficiency can also be improved.
- the present invention provides a method for producing gas-dissolved water using the gas-dissolved water production apparatus according to any one of the above-mentioned inventions 1 to 3 (invention 4).
- the gas-dissolved water producing apparatus and gas-dissolved water producing method of the present invention even if the liquid such as ultrapure water supplied to the liquid supply flow path is single or plural, only a small number of gas dissolving membrane modules Since it only passes, it is possible to stably recover the gas-dissolved water without causing a large pressure loss as occurs when passing through a plurality of gas-dissolving membrane modules connected in series.
- dissolution processing is performed using, for example, ozone gas and ultrapure water using a single-stage gas dissolution membrane module, a considerable amount of exhaust (gas) is discharged from the gas dissolution membrane module after dissolution treatment Ozone gas will remain.
- gases such as ozone gas supplied to the gas supply flow path pass through the plurality of gas-dissolving membrane modules in series.
- the exhaust gas discharged from the gas dissolving membrane module it is possible to create a situation where almost all of the active ingredients of the gas do not dissolve and remain in the liquid, and the maximum gas dissolving efficiency can be obtained.
- FIG. 6 is a schematic explanatory view showing a gas-dissolved water producing apparatus of Comparative Example 1;
- FIG. 1 is a schematic explanatory view showing a gas-dissolved water producing apparatus 1 according to an embodiment of the present invention.
- the gas dissolving water production apparatus 1 shown in FIG. 1 includes four stages of gas dissolving membrane modules 21-24.
- the gas dissolving membrane modules 21-24 respectively correspond to the corresponding gas phase chambers 21a-24a and liquid phase chambers 21b-. It has 24b.
- the gas phase chambers 21a-24a are connected in series by the gas supply flow channel 3, and the liquid phase chambers 21b-24b are connected in parallel by the liquid supply flow channel 4.
- ozone containing gas G is used as gas (gas) supplied to gas dissolution water production device 1, it is not restricted to this.
- the ozone-containing gas for example, a mixed gas generated by an ozone generator utilizing electrolysis of water, silent discharge in air or oxygen gas, or the like can be used.
- Such ozone-containing gases often contain 10-20% by weight ozone and 80-90% by weight oxygen gas.
- the apparatus for producing gas-dissolved water according to the present invention can be suitably used in production of gas-dissolved water by dissolving certain gas components from such a mixed gas.
- ultrapure water W is used as the liquid (raw water) supplied to the gas-dissolved water producing apparatus 1, but the present invention is not limited to this.
- carbonated water in which carbon dioxide gas is dissolved You may
- Gas dissolving membrane module Since all of the gas dissolving membrane modules 21-24 have the same configuration, the first stage gas dissolving membrane module 21 of FIG. 1 will be described as an example.
- a gas phase membrane 21 a and a liquid phase chamber 21 b are defined by the gas dissolving membrane.
- Gas-dissolved water W1 is produced by bringing the ozone-containing gas G supplied to the gas phase chamber 21a and the ultrapure water W supplied to the liquid phase chamber 21b into gas-liquid contact.
- the low concentration ozone-containing gas G1 after the gas dissolution processing is supplied to the second stage gas dissolution membrane module 22 through the gas supply flow path 3.
- gas dissolving film constituting the gas dissolving film module 21 since ozone resistance is required, it is preferable to use a fluorine resin film such as polytetrafluoroethylene excellent in hydrophobicity and excellent in ozone resistance. Can.
- the shape of the gas dissolving membrane constituting the gas dissolving membrane module 21 is not particularly limited, and in addition to the flat membrane as shown in FIG. 1, for example, a hollow fiber membrane or a spiral wound can be used.
- a gas dissolving membrane module having a porous hollow fiber membrane-like gas dissolving membrane as shown in FIG. 2 is preferable.
- gas melt film module 21 'of FIG. 2 has attached
- the gas dissolving membrane module 21 'of FIG. 2 is a plurality of porous hollow fiber membranes in which the gas dissolving membranes are held in a bundle, and a plurality of gas phase chambers 21'a are formed by the plurality of porous hollow fiber membranes. And a liquid phase chamber 21'b.
- the ozone-containing gas G is supplied to the gas phase chamber 21'a through the gas supply flow path 3, and the ultrapure water W is supplied to the liquid phase chamber 21'b through the liquid supply flow path 4.
- a plurality of hollow fiber membranes separate and form a plurality of gas phase chambers and liquid phase chambers, it is possible to increase the contact area of gas and liquid in a small space. it can.
- the ozone-containing gas can be more easily and reliably dissolved in the ultrapure water, so that the gas-dissolved water W1 can be efficiently produced.
- a fluorine resin material such as polytetrafluoroethylene having ozone resistance may be used. preferable.
- the gas supply flow path 3 connects the gas phase chambers 21a-24a of the gas dissolution membrane modules 21-24 in series.
- a gas supply port for supplying a gas such as ozone gas is provided on one end side of the gas supply flow path 3 and on the upstream side of the first stage gas dissolution membrane module 21.
- the gas supply flow path 3 is configured to connect the gas phase chambers of a plurality of gas dissolution membrane modules in series in this manner, the ozone gas supplied from the gas supply port to the gas supply flow path 3 is a gas phase Because the ozone gas concentration gradually decreases because the chambers 21a to 24a are serially passed, it is possible to finally create a situation in which almost all the active components of the ozone gas are not dissolved and remain in the liquid at the gas outlet. It is possible to obtain the maximum gas dissolution efficiency.
- the material of the gas supply channel 3 is not particularly limited as long as the material is resistant to a gas such as an acid or ozone gas in contact with the gas supply channel 3.
- a gas such as an acid or ozone gas in contact with the gas supply channel 3.
- fluorocarbon resin such as polytetrafluoroethylene (PTFE) and polyvinylidene fluoride (PVDF), but vinyl chloride (PVC) and the like can be used in the low concentration region.
- the liquid supply flow path 4 connects the liquid phase chambers 21b-24b of the gas dissolving membrane module 21-24 in series.
- a liquid supply port for supplying liquid such as ultrapure water is provided on one end side of the liquid supply flow path 4 and on the upstream side of the first stage gas dissolving membrane module 21, and the liquid supply flow path is provided.
- the ultrapure water supplied from the liquid supply port to the liquid supply flow path 4 is: Among a plurality of liquid phase chambers 21b-24b, only one or a plurality of liquid phase chambers only pass through a small number of liquid phase chambers, so that they occur when passing through a plurality of gas dissolution membrane modules connected in series Gas dissolved water can be stably recovered without large pressure loss.
- the material of the liquid supply channel 4 is not particularly limited as long as the material is not corroded by the liquid in contact with the material.
- a fluorine resin-based piping material such as polyvinylidene fluoride (PVDF) is suitable.
- PVDF polyvinylidene fluoride
- PVC vinyl chloride
- valve 5 is provided at the gas outlet of the gas supply flow path 3, and adjusts the pressure of the gas flowing in the gas supply flow path 3 by opening and closing the gas supply flow path 3.
- the pressure of the gas flowing in the gas supply flow path 3 is increased by adjusting the valve 5 appropriately or by closing it to promote the dissolution of the gas such as ozone gas in the liquid such as ultrapure water. it can.
- the adjustment of the opening degree of the valve 5 may be performed by a control mechanism (not shown) or manually. By having the valve 5, the pressure of gas such as ozone gas flowing in the gas supply flow path 3 can be adjusted, so that gas dissolution processing can be performed with a suitable pressure.
- a valve 6 is provided at the liquid outlet of the liquid supply flow path 4 for discharging the gas-dissolved water W5 manufactured by the gas-dissolved water manufacturing apparatus 1 out of the system and controlling the internal pressure of the apparatus.
- the gas supply step of supplying the gas in series to the gas phase chambers of the plurality of gas dissolved membrane modules, and the liquid phase chamber of the plurality of gas dissolved membrane modules The method mainly includes a liquid supplying step of supplying in parallel, and a gas dissolving step of dissolving a gas in a liquid through the gas dissolving membrane in each of the plurality of gas dissolving membrane modules.
- the ozone-containing gas G as a gas is supplied in series to the gas phase chambers 21a-24a of the gas dissolution membrane modules 21-24. Specifically, first, the ozone-containing gas G supplied from the gas supply port is supplied to the gas phase chamber 21 a of the first-stage gas dissolution membrane module 21 through the gas supply flow path 3. The gas dissolving process described later is performed in the gas dissolving film module 21 and the ozone-containing gas G1 which has become low concentration after the gas dissolving process is discharged from the gas phase chamber 21a. The low concentration ozone-containing gas G1 is supplied to the gas phase chamber 22a of the second stage gas dissolution membrane module 22 through the gas supply flow path 3.
- a gas dissolving process is performed in the gas dissolving membrane module 22, and a lower concentration ozone-containing gas G2 after the gas dissolving process is discharged from the gas phase chamber 22a.
- the supply and discharge of gas are sequentially performed to the third and subsequent gas dissolving film modules 23 and 24, and finally, the exhaust gas G4 in which the effective component of the gas substantially does not remain is discharged from the gas discharge port .
- the ozone-containing gas G is supplied in series to the gas phase chambers 21a-24a of the gas dissolution membrane module 21-24, almost all the active components of the gas are contained in the gas outlet. It is possible to create a situation where it does not dissolve and remain in the liquid, and the maximum gas dissolution efficiency can be obtained.
- liquid supply process In the liquid supply step, ultrapure water W as a liquid is supplied in parallel to liquid phase chambers 21b-24b of the gas dissolving membrane module 21-24. Specifically, first, the ultrapure water W supplied from the liquid supply port passes through the liquid supply flow path 4 to the liquid phase chamber 21b-24b of the first to fourth gas dissolving membrane modules 21-24. Supplied. Then, a gas dissolving process described later is performed in each of the gas dissolving membrane modules 21-24 supplied with the ultra pure water W, and the gas dissolving water W1-W4 after the gas dissolving process is respectively supplied from the liquid phase chambers 21b-24b. Exhausted. The gas dissolving water W1-W4 is collected in the liquid supply flow path 4 on the downstream side of the fourth stage gas dissolving membrane module 24, and is discharged from the liquid outlet as gas dissolving water W5 having the maximum gas dissolving efficiency. Ru.
- the ultrapure water W is supplied in parallel to the liquid phase chambers 21b-24b of the gas dissolving membrane module 21-24, so that it passes through the plurality of gas dissolving membrane modules connected in series.
- gas-dissolved water having maximum gas-dissolution efficiency can be stably recovered without the large pressure loss that may occur.
- the gas dissolving step is a step of dissolving an inert gas such as ozone gas in a liquid such as ultrapure water by using a gas dissolving membrane module, and in the present embodiment, the gas dissolving step is performed through a gas dissolving membrane. This is a step of dissolving the ozone-containing gas G in the pure water W.
- the ozone gas G supplied to the gas phase chamber 21 a of the gas dissolving membrane module 21 and the ultrapure water W supplied to the liquid phase chamber 21 b come in contact with each other to form the gas dissolved water W 1. Manufactured.
- the ozone containing gas G supplied to the gas supply flow path 3 from the gas supply port passes in series the gas phase chambers 21a-24a of the gas dissolving membrane modules 21-24, G1, G2, G3 in FIG.
- the concentration of ozone gas gradually decreases in the order of, and finally the exhaust gas G4 in which the active component of the gas hardly remains is discharged from the gas discharge port.
- the gas-dissolved water producing method may further include a gas pressure adjusting step of adjusting the pressure of a gas such as ozone flowing in the gas supply flow path 3.
- a gas pressure adjusting step of adjusting the pressure of a gas such as ozone flowing in the gas supply flow path 3.
- the pressure of the gas flowing in the gas supply flow path 3 is adjusted by opening and closing the gas supply flow path 3 by the valve 5 provided at the gas discharge port of the gas supply flow path 3 Be done.
- the pressure of gas such as ozone gas flowing in the gas supply flow path 3 can be adjusted, so that the gas dissolving step can be performed with a suitable pressure.
- the number of liquids such as ultrapure water supplied to the liquid supply flow path may be single or plural. Since it only passes through the gas dissolution membrane module, it is possible to stably recover the gas dissolution water without causing a large pressure loss as occurs when passing through a plurality of gas dissolution membrane modules connected in series. it can. In addition, when dissolution processing is performed using, for example, ozone gas and ultrapure water using a single-stage gas dissolution membrane module, a considerable amount of exhaust (gas) is discharged from the gas dissolution membrane module after dissolution treatment Ozone gas will remain.
- gases such as ozone gas supplied to the gas supply flow path pass through the plurality of gas-dissolving membrane modules in series.
- the exhaust gas discharged from the gas dissolving membrane module it is possible to create a situation where almost all of the active ingredients of the gas do not dissolve and remain in the liquid, and the maximum gas dissolving efficiency can be obtained.
- the flow direction of the liquid in the liquid supply flow path 4 connecting in parallel the -24b is the same direction, but the gas may be connected in series and the liquid may be supplied in parallel to a plurality of gas dissolving membrane modules.
- the flow direction of the gas may be opposite to the flow direction of the liquid.
- a mechanism for increasing the ventilation pressure of a pump or the like may be provided in the gas supply flow path 3 between the plurality of gas dissolving membrane modules 21-24.
- Example 1 The ozone dissolved water was manufactured using the gas dissolved water manufacturing apparatus 1 shown in FIG. Four gas dissolving membrane modules (GNH-01K, PTFE, manufactured by Nippon Gore Co., Ltd.) were used as a plurality of gas dissolving membrane modules.
- gas dissolving membrane modules (GNH-01K, PTFE, manufactured by Nippon Gore Co., Ltd.) were used as a plurality of gas dissolving membrane modules.
- carbonated water in which carbon dioxide gas was blown into ultrapure water at a concentration of 10 mg / L (as CO 2 ) was used.
- the carbonated water was pressurized with a pump, passed through a UF membrane for the purpose of removing fine particles generated in a minute amount (dusting) from the pump, and then supplied to a gas-dissolved water producing apparatus.
- the feed flow rate of raw water (carbonated water) was 80 L / min (20 L / min per gas dissolved membrane module) and for the liquid outlet pressure to be 0.2 MPa by the valve of the liquid outlet It was adjusted.
- oxygen gas is used as a raw material gas, and a mixed gas of ozone and oxygen is generated by a silent discharge type ozone generator (GRD series, manufactured by Sumitomo Precision Industries Co., Ltd.)
- GMD series silent discharge type ozone generator
- the solution was supplied to a dissolving water production apparatus.
- the supply gas flow rate of the gas (ozone-containing gas) was 4 NL / min, and was supplied in the form of being serially supplied to the four gas dissolution membrane modules.
- the outlet pressure of the gas was adjusted to 0.15 MPa by the valve of the gas outlet.
- the ozone gas concentration in the ozone-containing gas and the ozone gas concentration in the ozone-dissolved water used in this example are an ultraviolet light absorption type ozone gas densitometer (PG 620, manufactured by Kashihara Business Co., Ltd.) and a dissolved ozone densitometer (PL 620, manufactured by Kushihara Business Co., Ltd.) ) Was used.
- the measurement results are as follows.
- the ozone gas concentration was 240 g / Nm 3 at the gas supply port and 90 g / Nm 3 at the gas outlet. Further, the ozone gas concentration of the produced ozone-dissolved water was 7 mg / L. From this result, as dissolution efficiency of ozone gas (amount of ozone contained in ozone dissolved water) / (amount of ozone supplied as ozone gas), approximately 0.58 (7 mg / L ⁇ 80 L / min) / (240 g / Nm 3 ⁇ 4 NL) / Min) was obtained.
- the gas-dissolved water producing device 10 shown in FIG. 3 is the same as the gas-dissolved water producing device 1 of FIG.
- the apparatus for producing gas-dissolved water having the configuration of (1), wherein both gas and liquid are supplied in parallel.
- FIG. 2 the same elements as in FIG. 1 will be assigned the same reference numerals and redundant description will be omitted. Production of ozone dissolved water was performed using this gas dissolved water production apparatus 10.
- the ozone-containing gas was supplied in parallel to the four-stage gas dissolving membrane module 21-24, and ozone dissolving water was manufactured and measured in the same manner as in Example 1 except that the gas supply flow rate was 8 NL / min. went.
- the measurement results are as follows.
- the ozone gas concentration was 210 g / Nm 3 at the gas supply port and 140 g / Nm 3 at the gas discharge port. Further, the ozone concentration of the produced ozone-dissolved water was 7 mg / L. According to this example, it has been confirmed that the ozone dissolution efficiency can be increased by 1.5 times by using the gas-dissolved water producing apparatus 1 of the present invention.
- gas dissolved water producing apparatus of the present invention As described above, according to the gas dissolved water producing apparatus of the present invention and the gas dissolved water producing method using the same, pressure loss on the liquid supply side can be suppressed while using a plurality of gas dissolved membrane modules. Gas-dissolved water can be produced with maximum gas-dissolution efficiency.
- the present invention is useful as an apparatus and a method for producing ozone-dissolved water for wet cleaning of electronic components in the process of manufacturing electronic components such as semiconductors.
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Dispersion Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Hydrology & Water Resources (AREA)
- Engineering & Computer Science (AREA)
- Environmental & Geological Engineering (AREA)
- Water Supply & Treatment (AREA)
- Organic Chemistry (AREA)
- Separation Using Semi-Permeable Membranes (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
Abstract
ガス溶解膜により気相室と液相室とが区画形成されたガス溶解膜モジュールを複数有するガス溶解水製造装置であって、複数のガス溶解膜モジュールの気相室同士を直列に連結する気体供給流路と、複数のガス溶解膜モジュールの液相室同士を並列に連結する液体供給流路とを備える。かかるガス溶解水製造装置によれば、複数のガス溶解膜モジュールを用いたガス溶解水製造装置に、液体供給側の圧力損失を抑制しつつ、複数の気体溶解膜モジュールを使用する上での最大限のガス溶解効率でガス溶解水を製造することができる。
Description
本発明は、ガス溶解水製造装置及びガス溶解水製造方法に関し、特に、高い溶解効率でオゾンガス等の気体を超純水等の液体に溶解させたガス溶解水を製造することができるガス溶解水製造装置及びこれを用いたガス溶解水製造方法に関する。
半導体、液晶、有機EL等の電子部品のウェット洗浄用のオゾン水は、通常、超純水に高純度のオゾンガスを溶解することにより製造する。オゾンガスの溶解方法としては、バブリングにより超純水に直接オゾンガスを吹き込むことで溶解させる方法や、疎水性のガス溶解膜を備えるガス溶解膜モジュールを用いて、液相室に超純水を通水するとともに気相室から液相室へオゾンガスを移動させることで溶解させる方法等が実用化されている。特に、ガス溶解膜モジュールを用いた溶解方法は、溶存オゾン濃度が比較的安定した、気泡を含まないオゾン水が得られるという利点があるため、ウェット洗浄用以外にも、被処理中の有機物分解や殺菌のために広く用いられている。
ガス溶解膜モジュールを用いた溶解方法によりオゾン水を製造するに当たっては、高い溶解率でオゾンガスを気相室から液相室へ移動させることが最大の課題である。また、特にウェット洗浄用のオゾン水としては、高濃度のオゾン水を製造することが重要であり、このためには、オゾンガスの溶解効率を向上させる必要がある。なお、溶解効率とは、供給したオゾンガス中に含まれるオゾン量に対する液体に溶解したオゾン量の割合を示す値である。
そこで、特許文献1には、並列に設置された複数のオゾン溶解モジュールのオゾンガス排出系のそれぞれに、抵抗としてオリフィス又は弁を設けることで、これら複数のオゾン溶解モジュールに対して液体(純水)及び気体(高濃度オゾンガスを含む混合ガス)を分流して供給した際に、オゾンガスの流量を均一化することにより、全体としてオゾンガスの溶解効率を向上させる方法が開示されている。特許文献1に開示の方法によれば、並設された複数のオゾン溶解モジュールに対するオゾンガス流量の偏りを是正し、オゾン溶解装置全体としてオゾン溶解効率を一定に保つことが可能である。しかしながら、特許文献1に開示の方法は、オゾン溶解装置を構成するオゾン溶解モジュールが1台の場合に得られる最大限の溶解効率が、複数の溶解モジュールで均等に得られるのみであって、複数の溶解モジュールそれぞれについて溶解効率を向上させる工夫がなされているわけではない。したがって、特許文献1に開示の方法では、複数のオゾン溶解モジュールを使用する上での最大限のオゾン溶解効率を得ることはできない。
一方、特許文献2には、直列に連結した複数の気体溶解膜モジュールに対して、液体(原水)及び気体(オゾン含有気体)をともに直列で供給し、オゾンガスの溶解効率を向上させる方法が開示されている。特許文献2に開示の方法によれば、複数の気体溶解膜モジュールにオゾン含有気体を直列供給することにより、オゾン含有気体中に含まれるオゾンを無駄なく使用することができ、オゾン溶解効率を最大限まで高めることが可能となる。しかしながら、特許文献2に開示の方法は、複数の気体溶解膜モジュールを直列に連結しているため、原水の供給元からこれら複数の気体溶解膜モジュールに向けて原水を供給すると、直近の気体溶解膜モジュールでは充分な供給圧力が確保されても、隣り合う気体溶解膜モジュール間で圧力損失が増加するため、遠方に行くに従って供給圧力が低減し原水の供給量も低下してしまうという問題がある。
本発明は上述のような事情に基づいてなされたものであり、複数のガス溶解膜モジュールを用いたガス溶解水製造装置において、液体供給側の圧力損失を抑制しつつ、複数のガス溶解膜モジュールを使用する上での最大限のガス溶解効率でガス溶解水を製造することができるガス溶解水製造装置及びガス溶解水製造方法の提供を目的とする。
上記課題を解決するために、第一に本発明は、ガス溶解膜により気相室と液相室とが区画形成されたガス溶解膜モジュールを複数有するガス溶解水製造装置であって、複数のガス溶解膜モジュールの気相室同士を直列に連結する気体供給流路と、複数のガス溶解膜モジュールの液相室同士を並列に連結する液体供給流路とを備えるガス溶解水製造装置を提供する(発明1)。
かかる発明(発明1)によれば、液体供給流路に供給された超純水等の液体は、単一か又は複数であっても少数のガス溶解膜モジュールを通過するのみであるため、直列に連結した複数のガス溶解膜モジュールを通過する際に生じるような大きな圧力損失を伴うことがなく、安定的にガス溶解水を回収することができる。また、単段のガス溶解膜モジュールを用いて、例えばオゾンガスと超純水とで溶解処理を行った場合、溶解処理後のガス溶解膜モジュールから排出される排気(ガス)には、かなりの量のオゾンガスが残存してしまう。かかる発明(発明1)によれば、気体供給流路に供給されたオゾンガス等の気体は、複数のガス溶解膜モジュールを直列に通過するため、最終段のガス溶解膜モジュールから排出される排気において、ガスの有効成分のほぼ全量が液体に溶解して残存しないような状況を作り出すことが可能となり、最大限のガス溶解効率を得ることができる。
上記発明(発明1)においては、前記ガス溶解膜モジュールのガス溶解膜が束状に保持される複数本の多孔質中空糸膜であることが好ましい(発明2)。
かかる発明(発明2)によれば、複数本の中空糸膜によって複数の気相室と液相室とが区画形成されるため、少ないスペースで気液の接触面積を大きくすることができる。これによって、より容易かつ確実にオゾンガス等の気体を超純水等の液体に溶解することができるので、効率的にガス溶解水を製造することができる。
上記発明(発明1,2)においては、前記気体供給流路が一端側の気体供給口と他端側の気体排出口とを有し、前記気体排出口に前記気体供給流路を開閉可能なバルブが設けられていることが好ましい(発明3)。
かかる発明(発明3)によれば、気体供給流路内を流通するオゾン等の気体の圧力を調整することができるので、好適な圧力でガス溶解処理を行うことができる。例えば、バルブによって気体供給流路内を流通するオゾンガス等の気体の圧力を高めると、オゾンガス濃度は上昇することになるので、ガス溶解水の濃度を高めることができ、ガス溶解効率の向上にもつながる。
第二に本発明は、上記発明1から3のいずれか一つに記載のガス溶解水製造装置を用いたガス溶解水製造方法を提供する(発明4)。
本発明のガス溶解水製造装置及びガス溶解水製造方法によれば、液体供給流路に供給された超純水等の液体は、単一か又は複数であっても少数のガス溶解膜モジュールを通過するのみであるため、直列に連結した複数のガス溶解膜モジュールを通過する際に生じるような大きな圧力損失を伴うことがなく、安定的にガス溶解水を回収することができる。また、単段のガス溶解膜モジュールを用いて、例えばオゾンガスと超純水とで溶解処理を行った場合、溶解処理後のガス溶解膜モジュールから排出される排気(ガス)には、かなりの量のオゾンガスが残存してしまう。よって、本発明のガス溶解水製造装置及びガス溶解水製造方法によれば、気体供給流路に供給されたオゾンガス等の気体は、複数のガス溶解膜モジュールを直列に通過するため、最終段のガス溶解膜モジュールから排出される排気において、ガスの有効成分のほぼ全量が液体に溶解して残存しないような状況を作り出すことが可能となり、最大限のガス溶解効率を得ることができる。
以下、本発明のガス溶解水製造装置及びこれを用いたガス溶解水製造方法の実施の形態について、適宜図面を参照して説明する。以下に説明する実施形態は、本発明の理解を容易にするためのものであって、何ら本発明を限定するものではない。
〔ガス溶解水製造装置〕
図1は、本発明の一実施形態に係るガス溶解水製造装置1を示す模式的説明図である。図1に示すガス溶解水製造装置1は、4段のガス溶解膜モジュール21-24を備え、ガス溶解膜モジュール21-24はそれぞれが、対応する気相室21a-24a及び液相室21b-24bを有する。気相室21a-24aは気体供給流路3により直列に連結され、液相室21b-24bは液体供給流路4により並列に連結されている。
図1は、本発明の一実施形態に係るガス溶解水製造装置1を示す模式的説明図である。図1に示すガス溶解水製造装置1は、4段のガス溶解膜モジュール21-24を備え、ガス溶解膜モジュール21-24はそれぞれが、対応する気相室21a-24a及び液相室21b-24bを有する。気相室21a-24aは気体供給流路3により直列に連結され、液相室21b-24bは液体供給流路4により並列に連結されている。
(気体)
本実施形態においては、ガス溶解水製造装置1に供給する気体(ガス)としてオゾン含有気体Gを使用しているがこれに限られない。なお、オゾン含有気体としては、例えば水の電気分解や、空気又は酸素ガス中での無声放電等を利用したオゾン発生器によって発生させた混合ガスを用いることができる。このようなオゾン含有気体は、多くの場合、10-20重量%のオゾンと、80-90重量%の酸素ガスを含有する。本発明に係るガス溶解水製造装置は、このような混合ガスからある種のガス成分を溶解させることによるガス溶解水の製造において、好適に用いることができる。
本実施形態においては、ガス溶解水製造装置1に供給する気体(ガス)としてオゾン含有気体Gを使用しているがこれに限られない。なお、オゾン含有気体としては、例えば水の電気分解や、空気又は酸素ガス中での無声放電等を利用したオゾン発生器によって発生させた混合ガスを用いることができる。このようなオゾン含有気体は、多くの場合、10-20重量%のオゾンと、80-90重量%の酸素ガスを含有する。本発明に係るガス溶解水製造装置は、このような混合ガスからある種のガス成分を溶解させることによるガス溶解水の製造において、好適に用いることができる。
(液体)
本実施形態においては、ガス溶解水製造装置1に供給する液体(原水)として超純水Wを使用しているがこれに限られず、例えば超純水に炭酸ガスを溶解した炭酸水等を使用してもよい。
本実施形態においては、ガス溶解水製造装置1に供給する液体(原水)として超純水Wを使用しているがこれに限られず、例えば超純水に炭酸ガスを溶解した炭酸水等を使用してもよい。
[ガス溶解膜モジュール]
ガス溶解膜モジュール21-24はいずれも同様の構成を有しているので、図1の1段目のガス溶解膜モジュール21を例に説明する。ガス溶解膜モジュール21は、ガス溶解膜により気相室21aと液相室21bとが区画形成されている。気相室21aに供給されたオゾン含有気体Gと、液相室21bに供給された超純水Wとが気液接触することによってガス溶解水W1が製造される。なお、ガス溶解処理後の低濃度のオゾン含有気体G1は、気体供給流路3を経て2段目のガス溶解膜モジュール22へ供給される。
ガス溶解膜モジュール21-24はいずれも同様の構成を有しているので、図1の1段目のガス溶解膜モジュール21を例に説明する。ガス溶解膜モジュール21は、ガス溶解膜により気相室21aと液相室21bとが区画形成されている。気相室21aに供給されたオゾン含有気体Gと、液相室21bに供給された超純水Wとが気液接触することによってガス溶解水W1が製造される。なお、ガス溶解処理後の低濃度のオゾン含有気体G1は、気体供給流路3を経て2段目のガス溶解膜モジュール22へ供給される。
ガス溶解膜モジュール21を構成するガス溶解膜の材質としては、耐オゾン性が要求されることから、疎水性で耐オゾン性に優れたポリテトラフルオロエチレン等のフッ素樹脂膜を好適に使用することができる。ガス溶解膜モジュール21を構成するガス溶解膜の形状には特に制限はなく、図1に示すような平膜状の他に、例えば中空糸膜状やスパイラル巻状等を使用することができるが、図2に示すような多孔質中空糸膜状のガス溶解膜を有するガス溶解膜モジュールが好ましい。なお、図2のガス溶解膜モジュール21’は、説明を容易にするために、複数のガス溶解膜モジュールのうち1段目のガス溶解膜モジュールを例として符号を付してある。
図2のガス溶解膜モジュール21’は、ガス溶解膜が束状に保持される複数本の多孔質中空糸膜であり、これら複数本の多孔質中空糸膜によって複数の気相室21’aと液相室21’bとが区画形成されている。気相室21’aには、オゾン含有気体Gが気体供給流路3を通して供給され、液相室21’bには、超純水Wが液体供給流路4を通して供給される。このようなガス溶解膜モジュール21’は、複数本の中空糸膜によって複数の気相室と液相室とが区画形成されていることから、少ないスペースで気液の接触面積を大きくすることができる。これにより、より容易かつ確実にオゾン含有気体を超純水に溶解することができるので、効率的にガス溶解水W1を製造することができる。
なお、上記ガス溶解膜モジュールの材質としては、供給する気体としてオゾンガスやオゾンと酸素の混合ガス等を用いる場合には、耐オゾン性を有するポリテトラフルオロエチレン等のフッ素樹脂素材を使用することが好ましい。
[気体供給流路]
気体供給流路3は、ガス溶解膜モジュール21-24の気相室21a-24aを直列に連結するものである。気体供給流路3の一端側であって1段目のガス溶解膜モジュール21の上流側には、オゾンガス等の気体を供給するための気体供給口が設けられており、気体供給流路3の他端側であって4段(最終段)目のガス溶解膜モジュール24の下流側には、ガス溶解膜モジュール24の気相室24aから排出される排気G4を排出するための気体排出口が設けられている。
気体供給流路3は、ガス溶解膜モジュール21-24の気相室21a-24aを直列に連結するものである。気体供給流路3の一端側であって1段目のガス溶解膜モジュール21の上流側には、オゾンガス等の気体を供給するための気体供給口が設けられており、気体供給流路3の他端側であって4段(最終段)目のガス溶解膜モジュール24の下流側には、ガス溶解膜モジュール24の気相室24aから排出される排気G4を排出するための気体排出口が設けられている。
単段のガス溶解膜モジュールを用いて、例えばオゾンガスと超純水とで溶解処理を行った場合、溶解処理後のガス溶解膜モジュールから排出される排気には、かなりの量のオゾンガスが残存してしまう。気体供給流路3が、このように複数のガス溶解膜モジュールの気相室同士を直列に連結する構成であることにより、気体供給口から気体供給流路3に供給されたオゾンガスは、気相室21a-24aを直列に通過するため、徐々にオゾンガス濃度が低下し、最終的には気体排出口において、オゾンガスの有効成分のほぼ全量が液体に溶解して残存しないような状況を作り出すことが可能となり、最大限のガス溶解効率を得ることができる。
なお、気体供給流路3の材質としては、接触する酸やオゾンガス等の気体に対して耐性を有する材質であれば特に制限はなく、例えば、テトラフルオロエチレン・パーフルオロアルキルビニルエーテル共重合体(PFA)、ポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニリデン(PVDF)等のフッ素樹脂系の配管材料が好適であるが、低濃度域であれば塩化ビニル(PVC)等も使用することができる。
[液体供給流路]
液体供給流路4は、ガス溶解膜モジュール21-24の液相室21b-24bを直列に連結するものである。液体供給流路4の一端側であって1段目のガス溶解膜モジュール21の上流側には、超純水等の液体を供給するための液体供給口が設けられており、液体供給流路4の他端側であって4段(最終段)目のガス溶解膜モジュール24の下流側には、ガス溶解膜モジュール24の液相室24bから排出されるガス溶解水を排出するための液体排出口が設けられている。
液体供給流路4は、ガス溶解膜モジュール21-24の液相室21b-24bを直列に連結するものである。液体供給流路4の一端側であって1段目のガス溶解膜モジュール21の上流側には、超純水等の液体を供給するための液体供給口が設けられており、液体供給流路4の他端側であって4段(最終段)目のガス溶解膜モジュール24の下流側には、ガス溶解膜モジュール24の液相室24bから排出されるガス溶解水を排出するための液体排出口が設けられている。
液体供給流路4が、このように複数のガス溶解膜モジュールの液相室同士を並列に連結する構成であることにより、液体供給口から液体供給流路4に供給された超純水は、複数の液相室21b-24bのうち、単一か又は複数であっても少数の液相室を通過するのみであるため、直列に連結した複数のガス溶解膜モジュールを通過する際に生じるような大きな圧力損失を伴うことがなく、安定的にガス溶解水を回収することができる。
なお、液体供給流路4の材質としては、接触する液体によって腐食されない材質であれば特に制限はなく、例えば、ポリフッ化ビニリデン(PVDF)等のフッ素樹脂系の配管材料が好適であるが、低濃度域であれば塩化ビニル(PVC)等も使用することができる。
[バルブ]
バルブ5は、気体供給流路3の気体排出口に設けられており、気体供給流路3を開閉することにより、気体供給流路3内を流通する気体の圧力を調整するものである。バルブ5を適宣絞り又は閉じて調整することにより、気体供給流路3内を流通する気体の圧力を高めることで、オゾンガス等の気体の超純水等の液体への溶解を促進することができる。バルブ5の開度の調整は、図示しない制御機構により行ってもよいし、手動により行ってもよい。バルブ5を有することにより、気体供給流路3内を流通するオゾンガス等の気体の圧力を調整することができるので、好適な圧力によるガス溶解処理を行うことができる。
バルブ5は、気体供給流路3の気体排出口に設けられており、気体供給流路3を開閉することにより、気体供給流路3内を流通する気体の圧力を調整するものである。バルブ5を適宣絞り又は閉じて調整することにより、気体供給流路3内を流通する気体の圧力を高めることで、オゾンガス等の気体の超純水等の液体への溶解を促進することができる。バルブ5の開度の調整は、図示しない制御機構により行ってもよいし、手動により行ってもよい。バルブ5を有することにより、気体供給流路3内を流通するオゾンガス等の気体の圧力を調整することができるので、好適な圧力によるガス溶解処理を行うことができる。
なお、液体供給流路4の液体排出口には、ガス溶解水製造装置1により製造されたガス溶解水W5の系外への排出及び装置内圧を制御するためのバルブ6が設けられている。
〔ガス溶解水製造方法〕
次に、上述したような本実施形態のガス溶解水製造装置1を用いたガス溶解水製造方法について図1を参照しつつ詳説する。
次に、上述したような本実施形態のガス溶解水製造装置1を用いたガス溶解水製造方法について図1を参照しつつ詳説する。
ガス溶解水製造装置1を用いたガス溶解水製造方法は、複数のガス溶解膜モジュールの気相室に気体を直列で供給する気体供給工程、複数のガス溶解膜モジュールの液相室に液体を並列で供給する液体供給工程、複数のガス溶解膜モジュールのそれぞれにおいてガス溶解膜を介して気体を液体に溶解させるガス溶解工程を主に備える。
[気体供給工程]
気体供給工程においては、気体としてのオゾン含有気体Gが、ガス溶解膜モジュール21-24の気相室21a-24aに直列で供給される。具体的には、まず、気体供給口より供給されたオゾン含有気体Gは、気体供給流路3を経て1段目のガス溶解膜モジュール21の気相室21aに供給される。ガス溶解膜モジュール21において後述するガス溶解工程が行われ、ガス溶解工程後の低濃度になったオゾン含有気体G1が、気相室21aから排出される。低濃度のオゾン含有気体G1は、気体供給流路3を経て2段目のガス溶解膜モジュール22の気相室22aに供給される。次に、ガス溶解膜モジュール22においてガス溶解工程が行われ、ガス溶解工程後のより低濃度のオゾン含有気体G2が、気相室22aから排出される。同様に、3段目以降のガス溶解膜モジュール23、24についても順にガスの供給及び排出が行われ、最終的にはガスの有効成分がほぼ残存しない排気G4が、気体排出口から排出される。
気体供給工程においては、気体としてのオゾン含有気体Gが、ガス溶解膜モジュール21-24の気相室21a-24aに直列で供給される。具体的には、まず、気体供給口より供給されたオゾン含有気体Gは、気体供給流路3を経て1段目のガス溶解膜モジュール21の気相室21aに供給される。ガス溶解膜モジュール21において後述するガス溶解工程が行われ、ガス溶解工程後の低濃度になったオゾン含有気体G1が、気相室21aから排出される。低濃度のオゾン含有気体G1は、気体供給流路3を経て2段目のガス溶解膜モジュール22の気相室22aに供給される。次に、ガス溶解膜モジュール22においてガス溶解工程が行われ、ガス溶解工程後のより低濃度のオゾン含有気体G2が、気相室22aから排出される。同様に、3段目以降のガス溶解膜モジュール23、24についても順にガスの供給及び排出が行われ、最終的にはガスの有効成分がほぼ残存しない排気G4が、気体排出口から排出される。
このように、気体供給工程においては、オゾン含有気体Gがガス溶解膜モジュール21-24の気相室21a-24aに直列で供給されるので、気体排出口において、ガスの有効成分のほぼ全量が液体に溶解して残存しないような状況を作り出すことが可能となり、最大限のガス溶解効率を得ることができる。
[液体供給工程]
液体供給工程においては、液体としての超純水Wが、ガス溶解膜モジュール21-24の液相室21b-24bに並列で供給される。具体的には、まず、液体供給口から供給された超純水Wは、液体供給流路4を経て1段目から4段目のガス溶解膜モジュール21-24の液相室21b-24bに供給される。そして、超純水Wが供給されたガス溶解膜モジュール21-24のそれぞれにおいて後述するガス溶解工程が行われ、ガス溶解工程後のガス溶解水W1-W4が、液相室21b-24bからそれぞれ排出される。ガス溶解水W1-W4は、4段目のガス溶解膜モジュール24の下流側の液体供給流路4において集約され、最大限のガス溶解効率を有するガス溶解水W5として、液体排出口から排出される。
液体供給工程においては、液体としての超純水Wが、ガス溶解膜モジュール21-24の液相室21b-24bに並列で供給される。具体的には、まず、液体供給口から供給された超純水Wは、液体供給流路4を経て1段目から4段目のガス溶解膜モジュール21-24の液相室21b-24bに供給される。そして、超純水Wが供給されたガス溶解膜モジュール21-24のそれぞれにおいて後述するガス溶解工程が行われ、ガス溶解工程後のガス溶解水W1-W4が、液相室21b-24bからそれぞれ排出される。ガス溶解水W1-W4は、4段目のガス溶解膜モジュール24の下流側の液体供給流路4において集約され、最大限のガス溶解効率を有するガス溶解水W5として、液体排出口から排出される。
このように、液体供給工程においては、超純水Wがガス溶解膜モジュール21-24の液相室21b-24bに並列で供給されるので、直列に連結した複数のガス溶解膜モジュールを通過する際に生じるような大きな圧力損失を伴うことがなく、液体排出口において、最大限のガス溶解効率を有するガス溶解水を安定的に回収することができる。
[ガス溶解工程]
ガス溶解工程は、ガス溶解膜モジュール21-24のそれぞれにおいて同様に行われる工程であるので、図1の1段目のガス溶解膜モジュール21を例に説明する。ガス溶解工程とは、ガス溶解膜モジュールを用いることにより、超純水等の液体中にオゾンガス等の不活性ガスを溶解させる工程であって、本実施形態においては、ガス溶解膜を介して超純水Wにオゾン含有気体Gを溶解させる工程である。具体的には、ガス溶解膜モジュール21の気相室21aに供給されたオゾン含有気体Gと、液相室21bに供給された超純水Wとが気液接触することによってガス溶解水W1が製造される。
ガス溶解工程は、ガス溶解膜モジュール21-24のそれぞれにおいて同様に行われる工程であるので、図1の1段目のガス溶解膜モジュール21を例に説明する。ガス溶解工程とは、ガス溶解膜モジュールを用いることにより、超純水等の液体中にオゾンガス等の不活性ガスを溶解させる工程であって、本実施形態においては、ガス溶解膜を介して超純水Wにオゾン含有気体Gを溶解させる工程である。具体的には、ガス溶解膜モジュール21の気相室21aに供給されたオゾン含有気体Gと、液相室21bに供給された超純水Wとが気液接触することによってガス溶解水W1が製造される。
なお、気体供給口から気体供給流路3に供給されたオゾン含有気体Gは、ガス溶解膜モジュール21-24の気相室21a-24aを直列に通過するため、図1におけるG1、G2、G3の順に徐々にオゾンガス濃度が低下し、最終的にはガスの有効成分がほぼ残存しない排気G4が、気体排出口から排出される。
当該ガス溶解水製造方法はさらに、気体供給流路3内を流通するオゾン等の気体の圧力を調整するガス圧調整工程を備えていてもよい。ガス圧調整工程においては、気体供給流路3の気体排出口に設けられているバルブ5によって、気体供給流路3を開閉することにより、気体供給流路3内を流通する気体の圧力が調整される。ガス圧調整工程を備えることにより、気体供給流路3内を流通するオゾンガス等の気体の圧力を調整することができるので、好適な圧力でもって上記ガス溶解工程を行うことが可能となる。
以上のように、本発明のガス溶解水製造装置及びガス溶解水製造方法によれば、液体供給流路に供給された超純水等の液体は、単一か又は複数であっても少数のガス溶解膜モジュールを通過するのみであるため、直列に連結した複数のガス溶解膜モジュールを通過する際に生じるような大きな圧力損失を伴うことがなく、安定的にガス溶解水を回収することができる。また、単段のガス溶解膜モジュールを用いて、例えばオゾンガスと超純水とで溶解処理を行った場合、溶解処理後のガス溶解膜モジュールから排出される排気(ガス)には、かなりの量のオゾンガスが残存してしまう。よって、本発明のガス溶解水製造装置及びガス溶解水製造方法によれば、気体供給流路に供給されたオゾンガス等の気体は、複数のガス溶解膜モジュールを直列に通過するため、最終段のガス溶解膜モジュールから排出される排気において、ガスの有効成分のほぼ全量が液体に溶解して残存しないような状況を作り出すことが可能となり、最大限のガス溶解効率を得ることができる。
以上、本発明について図面を参照にして説明してきたが、本発明は上記実施形態に限定されず、種々の変更実施が可能である。本実施形態においては、ガス溶解膜モジュール21-24の気相室21a-24aを直列に連結する気体供給流路3内の気体の流通方向と、ガス溶解膜モジュール21-24の液相室21b-24bを並列に連結する液体供給流路4内の液体の流通方向とが同一方向であるが、複数のガス溶解膜モジュールに対して、気体を直列で、液体を並列で供給してさえすれば、気体の流通方向と液体の流通方向とが逆方向であってもよい。また、必要に応じて、複数個のガス溶解膜モジュール21-24の間の気体供給流路3にポンプ等の通気圧を高める機構を設けてもよい。
以下、実施例に基づき本発明をさらに詳説するが、本発明は以下の実施例に限定されるものではない。
〔実施例1〕
図1に示すガス溶解水製造装置1を用いて、オゾン溶解水の製造を行った。複数のガス溶解膜モジュールとして、ガス溶解膜モジュール(GNH-01K,PTFE,日本ゴア社製)を4本構成で用いた。
図1に示すガス溶解水製造装置1を用いて、オゾン溶解水の製造を行った。複数のガス溶解膜モジュールとして、ガス溶解膜モジュール(GNH-01K,PTFE,日本ゴア社製)を4本構成で用いた。
供給する原水としては、超純水に炭酸ガスを10mg/L(as CO2)相当吹き込み溶解した炭酸水を用いた。炭酸水はポンプで昇圧し、ポンプから微量発生(発塵)する微粒子を除去することを目的としてUF膜に通した後、ガス溶解水製造装置に供給した。原水(炭酸水)の供給流量が80L/min(ガス溶解膜モジュール1本あたり20L/min)となるよう、また、液体体排出口のバルブによって液体の出口圧力が0.2MPaとなるよう、それぞれ調整した。
供給する気体としては、原料ガスとして酸素ガスを用い、無声放電式のオゾン発生器(GRDシリーズ,住友精密工業社製)にてオゾンと酸素との混合ガスを生成し、このオゾン含有ガスをガス溶解水製造装置に供給した。気体(オゾン含有ガス)の供給ガス流量は、4NL/minとし、4本のガス溶解膜モジュールに直列供給する形式にて供給した。気体排出口のバルブによって気体の出口圧力が0.15MPaとなるよう調整した。
本実施例に用いたオゾン含有ガス中のオゾンガス濃度及びオゾン溶解水中のオゾンガス濃度は、それぞれ紫外線吸光方式のオゾンガス濃度計(PG620,荏原実業社製)、溶存オゾン濃度計(PL620,荏原実業社製)を用いて測定した。測定結果は以下の通りである。
オゾンガス濃度は、気体供給口において240g/Nm3、気体排出口において90g/Nm3であった。また、製造されたオゾン溶解水のオゾンガス濃度は7mg/Lであった。この結果より、オゾンガスの溶解効率(オゾン溶解水中に含まれるオゾン量)/(オゾンガスとして供給したオゾン量)として、約0.58(7mg/L×80L/min)/(240g/Nm3×4NL/min)が得られた。
〔比較例1〕
図3に示すガス溶解水製造装置10は、気体供給流路30が複数のガス溶解膜モジュールの気相室同士を並列に連結している以外は、図1のガス溶解水製造装置1と同一の構成を有するガス溶解水製造装置であって、気体、液体ともに並列で供給する構成である。図2において、図1と同一の要素については同一の符号を付して、重複説明を省略する。このガス溶解水製造装置10を用いて、オゾン溶解水の製造を行った。
図3に示すガス溶解水製造装置10は、気体供給流路30が複数のガス溶解膜モジュールの気相室同士を並列に連結している以外は、図1のガス溶解水製造装置1と同一の構成を有するガス溶解水製造装置であって、気体、液体ともに並列で供給する構成である。図2において、図1と同一の要素については同一の符号を付して、重複説明を省略する。このガス溶解水製造装置10を用いて、オゾン溶解水の製造を行った。
オゾン含有気体を、4段のガス溶解膜モジュール21-24に対して並列で供給し、ガス供給流量8NL/minとしたこと以外は、実施例1と同様にオゾン溶解水を製造し、測定を行った。測定結果は以下の通りである。
オゾンガス濃度は、気体供給口で210g/Nm3、気体排出口で140g/Nm3であった。また、製造されたオゾン溶解水のオゾン濃度は7mg/Lであった。本実施例により、本発明のガス溶解水製造装置1を用いることで、オゾン溶解効率を1.5倍に高められることが確認できた。
以上説明したように、本発明のガス溶解水製造装置及びこれを用いたガス溶解水製造方法によれば、液体供給側の圧力損失を抑制しつつ、複数のガス溶解膜モジュールを使用する上での最大限のガス溶解効率でガス溶解水を製造することができる。
本発明は、半導体等の電子部品の製造工程において、電子部品のウェット洗浄用のオゾン溶解水の製造装置及び製造方法として有用である。
1 ガス溶解水製造装置
21-24,21’ ガス溶解膜モジュール
21a-24a,21’a 気相室
21b-24b,21’b 液相室
3 気体供給流路
4 液体供給流路
5,6 バルブ
G オゾン含有気体
G4 排気
W 超純水
W5 ガス溶解水
21-24,21’ ガス溶解膜モジュール
21a-24a,21’a 気相室
21b-24b,21’b 液相室
3 気体供給流路
4 液体供給流路
5,6 バルブ
G オゾン含有気体
G4 排気
W 超純水
W5 ガス溶解水
Claims (4)
- ガス溶解膜により気相室と液相室とが区画形成されたガス溶解膜モジュールを複数有するガス溶解水製造装置であって、
複数のガス溶解膜モジュールの気相室同士を直列に連結する気体供給流路と、
複数のガス溶解膜モジュールの液相室同士を並列に連結する液体供給流路とを備える
ガス溶解水製造装置。 - 前記ガス溶解膜モジュールのガス溶解膜が束状に保持される複数本の多孔質中空糸膜である請求項1に記載のガス溶解水製造装置。
- 前記気体供給流路が一端側の気体供給口と他端側の気体排出口とを有し、
前記気体排出口に前記気体供給流路を開閉可能なバルブが設けられている請求項1又は請求項2に記載のガス溶解水製造装置。 - 請求項1から請求項3のいずれか一項に記載のガス溶解水製造装置を用いたガス溶解水製造方法。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017-144411 | 2017-07-26 | ||
JP2017144411A JP6361802B1 (ja) | 2017-07-26 | 2017-07-26 | ガス溶解水製造装置及びこれを用いたガス溶解水製造方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019021525A1 true WO2019021525A1 (ja) | 2019-01-31 |
Family
ID=62976503
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2018/010931 WO2019021525A1 (ja) | 2017-07-26 | 2018-03-20 | ガス溶解水製造装置及びこれを用いたガス溶解水製造方法 |
Country Status (3)
Country | Link |
---|---|
JP (1) | JP6361802B1 (ja) |
TW (1) | TWI775824B (ja) |
WO (1) | WO2019021525A1 (ja) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111320249A (zh) * | 2020-03-04 | 2020-06-23 | 辽宁莱特莱德环境工程有限公司 | 一种海水淡化矿化汽水混合装置 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11256193A (ja) * | 1998-03-13 | 1999-09-21 | Kurita Water Ind Ltd | オゾン溶解装置 |
JP2000354857A (ja) * | 1999-06-16 | 2000-12-26 | Japan Organo Co Ltd | 機能水製造方法及び装置 |
JP2002075422A (ja) * | 2000-09-01 | 2002-03-15 | Honda Motor Co Ltd | 燃料電池用加湿装置 |
JP2013049002A (ja) * | 2011-08-30 | 2013-03-14 | Mitsubishi Rayon Co Ltd | 廃水の処理方法、および廃水の処理装置 |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102994363A (zh) * | 2011-09-17 | 2013-03-27 | 中国科学院兰州化学物理研究所 | 一种串联通气培养异养-光合自养型微生物的装置 |
CN106693734A (zh) * | 2015-11-17 | 2017-05-24 | 上海纳诺巴伯纳米科技有限公司 | 超饱和氢气溶液的制备装置及其制备方法 |
-
2017
- 2017-07-26 JP JP2017144411A patent/JP6361802B1/ja not_active Ceased
-
2018
- 2018-03-19 TW TW107109196A patent/TWI775824B/zh active
- 2018-03-20 WO PCT/JP2018/010931 patent/WO2019021525A1/ja active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11256193A (ja) * | 1998-03-13 | 1999-09-21 | Kurita Water Ind Ltd | オゾン溶解装置 |
JP2000354857A (ja) * | 1999-06-16 | 2000-12-26 | Japan Organo Co Ltd | 機能水製造方法及び装置 |
JP2002075422A (ja) * | 2000-09-01 | 2002-03-15 | Honda Motor Co Ltd | 燃料電池用加湿装置 |
JP2013049002A (ja) * | 2011-08-30 | 2013-03-14 | Mitsubishi Rayon Co Ltd | 廃水の処理方法、および廃水の処理装置 |
Also Published As
Publication number | Publication date |
---|---|
TW201910274A (zh) | 2019-03-16 |
JP2019025387A (ja) | 2019-02-21 |
TWI775824B (zh) | 2022-09-01 |
JP6361802B1 (ja) | 2018-07-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11817309B2 (en) | Method of producing heated ozone water, heated ozone water, and semiconductor wafer-cleaning liquid | |
US5792326A (en) | Method and apparatus for generating ozone and methods of its use | |
Ito et al. | Removal of dissolved oxygen using non-porous hollow-fiber membranes | |
US20150175445A1 (en) | Method and appliance for treating water | |
JP2010234298A (ja) | ガス溶解水供給装置及びガス溶解水の製造方法 | |
WO2017191829A1 (ja) | 超純水製造装置の立ち上げ方法 | |
WO2019021525A1 (ja) | ガス溶解水製造装置及びこれを用いたガス溶解水製造方法 | |
Tran et al. | Study of permeate flux behavior during photo-filtration using photocatalytic composite membranes | |
JP5320665B2 (ja) | 超純水製造装置および方法 | |
JP2004188246A (ja) | オゾン水製造システム | |
US6884359B2 (en) | Apparatus and method for controlling resistivity of ultra pure water | |
TWI721213B (zh) | 基板洗淨裝置及基板洗淨方法 | |
JP2652331B2 (ja) | 溶存酸素低減装置 | |
JP2021133349A (ja) | 廃水処理装置及び廃水処理方法 | |
JP4119040B2 (ja) | 機能水製造方法及び装置 | |
KR101974667B1 (ko) | 오존수 공급 장치 및 오존수 공급 방법 | |
JP2005324118A (ja) | 水処理方法及び水処理装置 | |
JP4826864B2 (ja) | 超純水製造装置 | |
WO2020044992A1 (ja) | ガス分離システム及びガス分離方法 | |
JP2018143922A (ja) | 水処理装置 | |
CN115916381A (zh) | 膜分离装置以及浓缩方法 | |
JP2011213498A (ja) | オゾンガス発生システム及びオゾンガス発生方法 | |
JP2020040001A (ja) | 水処理システム及び水処理方法 | |
JP2005230774A (ja) | 水処理方法及び水処理装置 | |
JP7307567B2 (ja) | 脱気方法および脱気装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18839449 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 18839449 Country of ref document: EP Kind code of ref document: A1 |