JP6354906B2 - ヒートポンプシステム - Google Patents

ヒートポンプシステム Download PDF

Info

Publication number
JP6354906B2
JP6354906B2 JP2017534036A JP2017534036A JP6354906B2 JP 6354906 B2 JP6354906 B2 JP 6354906B2 JP 2017534036 A JP2017534036 A JP 2017534036A JP 2017534036 A JP2017534036 A JP 2017534036A JP 6354906 B2 JP6354906 B2 JP 6354906B2
Authority
JP
Japan
Prior art keywords
outside air
temperature
correction
correction value
frequency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2017534036A
Other languages
English (en)
Other versions
JPWO2017026007A1 (ja
Inventor
大樹 広崎
大樹 広崎
直樹 澤村
直樹 澤村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Publication of JPWO2017026007A1 publication Critical patent/JPWO2017026007A1/ja
Application granted granted Critical
Publication of JP6354906B2 publication Critical patent/JP6354906B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B25/00Machines, plants or systems, using a combination of modes of operation covered by two or more of the groups F25B1/00 - F25B23/00
    • F25B25/005Machines, plants or systems, using a combination of modes of operation covered by two or more of the groups F25B1/00 - F25B23/00 using primary and secondary systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D11/00Central heating systems using heat accumulated in storage masses
    • F24D11/02Central heating systems using heat accumulated in storage masses using heat pumps
    • F24D11/0214Central heating systems using heat accumulated in storage masses using heat pumps water heating system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D19/00Details
    • F24D19/10Arrangement or mounting of control or safety devices
    • F24D19/1006Arrangement or mounting of control or safety devices for water heating systems
    • F24D19/1009Arrangement or mounting of control or safety devices for water heating systems for central heating
    • F24D19/1039Arrangement or mounting of control or safety devices for water heating systems for central heating the system uses a heat pump
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H1/00Water heaters, e.g. boilers, continuous-flow heaters or water-storage heaters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/20Control of fluid heaters characterised by control inputs
    • F24H15/212Temperature of the water
    • F24H15/219Temperature of the water after heating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/20Control of fluid heaters characterised by control inputs
    • F24H15/258Outdoor temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/30Control of fluid heaters characterised by control outputs; characterised by the components to be controlled
    • F24H15/375Control of heat pumps
    • F24H15/38Control of compressors of heat pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B30/00Heat pumps
    • F25B30/02Heat pumps of the compression type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D2200/00Heat sources or energy sources
    • F24D2200/12Heat pump
    • F24D2200/123Compression type heat pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/20Control of fluid heaters characterised by control inputs
    • F24H15/212Temperature of the water
    • F24H15/215Temperature of the water before heating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/30Control of fluid heaters characterised by control outputs; characterised by the components to be controlled
    • F24H15/375Control of heat pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/30Control of fluid heaters characterised by control outputs; characterised by the components to be controlled
    • F24H15/375Control of heat pumps
    • F24H15/385Control of expansion valves of heat pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/40Control of fluid heaters characterised by the type of controllers
    • F24H15/414Control of fluid heaters characterised by the type of controllers using electronic processing, e.g. computer-based
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/40Control of fluid heaters characterised by the type of controllers
    • F24H15/414Control of fluid heaters characterised by the type of controllers using electronic processing, e.g. computer-based
    • F24H15/45Control of fluid heaters characterised by the type of controllers using electronic processing, e.g. computer-based remotely accessible
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2339/00Details of evaporators; Details of condensers
    • F25B2339/04Details of condensers
    • F25B2339/047Water-cooled condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/02Compressor control
    • F25B2600/025Compressor control by controlling speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/11Fan speed control
    • F25B2600/112Fan speed control of evaporator fans
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2513Expansion valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2106Temperatures of fresh outdoor air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2116Temperatures of a condenser
    • F25B2700/21161Temperatures of a condenser of the fluid heated by the condenser
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Heat-Pump Type And Storage Water Heaters (AREA)
  • Air Conditioning Control Device (AREA)

Description

本発明は、ヒートポンプシステムに関する。
外気から吸収した熱を用いて水などの液状熱媒体を加熱するヒートポンプシステムが広く用いられている。下記特許文献1に開示されたヒートポンプ給湯機では、設定出湯温度、検出入水温度、及び検出外気温に基づいて、運転開始時の圧縮機の回転数が決定される。運転開始後は、検出出湯温度が設定出湯温度に合致するように、圧縮機の回転数が変更制御される。すなわち、検出出湯温度が設定出湯温度よりも低ければ圧縮機の回転数を高くし、逆に検出出湯温度が設定出湯温度よりも高ければ圧縮機の回転数を低くする。
下記特許文献2に開示されたヒートポンプ給湯機では、圧縮機の運転開始時の初期周波数は、貯湯タンクの底部の水温に応じて決定される。安定時の制御では、60秒毎に、熱交換器の出口水温Twoutと設定温度Tscとの偏差Eと、変化量ΔE(今回のTwoutの値と前回60秒前のTwoutの値の差)が計算され、これらE及びΔEに応じて周波数指令信号fiの補正値Δfiが求められ、現在の周波数指令信号fiが補正される。
日本特開2012−233626号公報 日本特開2002−243276号公報
上述した従来のヒートポンプ給湯機では、以下のような課題がある。運転中に圧縮機の回転数または周波数に加えられる補正値は、外気温度によらない。このため、外気温度が高い場合には、当該補正値が過剰になる可能性がある。外気温度が低いときには、当該補正値が不足する可能性がある。その結果、冷媒回路の状態が安定しにくく、加熱熱交換器から流出する熱媒体の温度のオーバーシュートまたはアンダーシュートが発生しやすい場合がある。
本発明は、上述のような課題を解決するためになされたもので、外気温度の高低にかかわらず、加熱熱交換器から流出する熱媒体の温度のオーバーシュート及びアンダーシュートを確実に抑制でき、かつ、冷媒回路の状態を安定にすることで効率を向上できるヒートポンプシステムを提供することを目的とする。
本発明のヒートポンプシステムは、冷媒を圧縮する圧縮機と、圧縮機で圧縮された冷媒と、熱媒体との間で熱を交換する加熱熱交換器と、冷媒を減圧させる減圧装置と、減圧装置で減圧された冷媒と、外気との間で熱を交換する蒸発器と、外気温度を検知する外気温度検知手段と、加熱熱交換器から流出する熱媒体の温度である出口温度を検知する出口温度検知手段と、基本周波数と補正周波数との和に応じて、圧縮機の運転周波数を制御する圧縮機制御手段と、目標出口温度から現在の出口温度を減算した温度差と、現在の外気温度とに応じて、基本周波数を算出する基本周波数算出手段と、温度差が正の第一基準値に比べて大きく、かつ、出口温度の時間的な変化が基準に比べて小さい場合に、補正周波数に正の第一補正値を付加する第一補正手段と、を備えるものである。
本発明のヒートポンプシステムによれば、基本周波数と補正周波数との和に応じて圧縮機の運転周波数を制御する圧縮機制御手段と、目標出口温度から現在の出口温度を減算した温度差と現在の外気温度とに応じて基本周波数を算出する基本周波数算出手段と、温度差が正の第一基準値に比べて大きく、かつ、出口温度の時間的な変化が基準に比べて小さい場合に、補正周波数に正の第一補正値を付加する第一補正手段とを備えたことで、外気温度の高低にかかわらず、加熱熱交換器から流出する熱媒体の温度のオーバーシュート及びアンダーシュートを確実に抑制でき、かつ、冷媒回路の状態を安定にすることで効率を向上することが可能となる。
実施の形態1のヒートポンプシステムを示す構成図である。 実施の形態1のヒートポンプシステムの機能ブロック図である。 実施の形態1のヒートポンプシステムの第一コントローラが実行するルーチンのフローチャートである。 実施の形態1のヒートポンプシステムが備える第一コントローラまたは第二コントローラのハードウェア構成の例を示す図である。 実施の形態1のヒートポンプシステムが備える第一コントローラまたは第二コントローラのハードウェア構成の他の例を示す図である。 実施の形態2のヒートポンプシステムの第一コントローラが実行するルーチンのフローチャートである。
以下、図面を参照して実施の形態について説明する。各図において共通する要素には、同一の符号を付して、重複する説明を簡略化または省略する。なお、本発明における装置、器具、及び部品等の、個数、配置、向き、形状、及び大きさは、原則として、図面に示す個数、配置、向き、形状、及び大きさに限定されない。
実施の形態1.
図1は、実施の形態1のヒートポンプシステムを示す構成図である。図1に示すように、本実施の形態のヒートポンプシステム1は、圧縮機3、加熱熱交換器4、減圧装置5、蒸発器6、及び送風機7を備える。
圧縮機3は、冷媒ガスを圧縮する。冷媒の種類は、特に限定されない。冷媒は、圧縮機3で圧縮された高圧冷媒の圧力が超臨界圧になるもの(例えばCO)でも良いし、圧縮機3で圧縮された高圧冷媒の圧力が臨界圧より低いものでも良い。加熱熱交換器4は、圧縮機3で圧縮された高圧冷媒と、液状の熱媒体との間で熱を交換することで、熱媒体を加熱する。熱媒体としては、例えば、水、塩化カルシウム水溶液、エチレングリコール水溶液、アルコールなどを使用できる。加熱熱交換器4は、冷媒通路及び熱媒体通路を有する。圧縮機3、加熱熱交換器4の冷媒通路、減圧装置5、及び蒸発器6は、冷媒配管8を介して環状に接続されることで冷媒回路を形成する。ヒートポンプシステム1は、この冷媒回路により、ヒートポンプサイクル(冷凍サイクル)の運転を行う。
減圧装置5は、加熱熱交換器4を通過した高圧冷媒を減圧する。減圧装置5として、開度を可変にできる膨張弁を用いることもできる。高圧冷媒は、減圧装置5を通過することで、気液二相状態の低圧冷媒になる。蒸発器6は、減圧装置5で減圧された低圧冷媒と、外気との間で熱を交換する熱交換器である。外気とは、屋外の空気である。気液二相状態の低圧冷媒は、蒸発器6で外気の熱を吸収することで、蒸発する。蒸発器6で蒸発した低圧冷媒ガスは、圧縮機3に吸入される。
送風機7は、外気が蒸発器6へ供給されるように送風する。送風機7は、ファン7aと、モータ7bとを備える。ファン7aは、モータ7bに駆動されることで回転する。送風機7は、図1中で右から左へ向かって送風する。外気は、蒸発器6及び送風機7をこの順に通過する。ヒートポンプシステム1は、外気温度センサ9を備える。外気温度センサ9は、外気温度を検知する外気温度検知手段の例である。外気温度センサ9は、蒸発器6で冷却される前の外気の温度を検知する。
本実施の形態のヒートポンプシステム1は、循環ポンプ10、蓄熱槽11、出口温度センサ12、及び入口温度センサ13を備える。循環ポンプ10は、加熱熱交換器4の熱媒体通路へ熱媒体を流れさせる。蓄熱槽11は、加熱される前の熱媒体及び加熱された後の熱媒体を貯留できる。蓄熱槽11内では、温度の違いによる熱媒体の密度の差により、上側が高温で下側が低温になる温度成層を形成しても良い。蓄熱槽11内の熱媒体の鉛直方向の温度分布を検知する複数の温度センサ(図示省略)が蓄熱槽11に備えられても良い。蓄熱槽11内の熱媒体の鉛直方向の温度分布を検知することで、蓄熱槽11の蓄熱量を計算できる。
第一管14は、蓄熱槽11の下部と、加熱熱交換器4の熱媒体通路の入口との間を接続する。第二管15は、加熱熱交換器4の熱媒体通路の出口と、蓄熱槽11の上部との間を接続する。図示の構成では、循環ポンプ10は、第一管14の途中に配置される。図示の構成に限らず、循環ポンプ10は、第二管15の途中に配置されても良い。循環ポンプ10が動作することで、蓄熱槽11の下部から流出した熱媒体が第一管14を通って加熱熱交換器4へ送られる。加熱熱交換器4で加熱された熱媒体は、第二管15を通って、蓄熱槽11の上部へ送られる。
出口温度センサ12は、加熱熱交換器4から流出する熱媒体の温度(以下、「出口温度」と称する)を検知する。出口温度センサ12は、第二管15に設置される。出口温度センサ12は、加熱熱交換器4で加熱された後の熱媒体の温度を検知する。出口温度センサ12は、出口温度検知手段の例である。入口温度センサ13は、加熱熱交換器4に流入する熱媒体の温度(以下、「入口温度」と称する)を検知する。入口温度センサ13は、第一管14に設置される。入口温度センサ13は、加熱熱交換器4で加熱される前の熱媒体の温度を検知する。
蓄熱槽11は、第三管17及び第四管18を介して、暖房器具16に接続される。第三管17は、蓄熱槽11の上部の熱媒体出口と、暖房器具16の熱媒体入口との間を接続する。第四管18は、暖房器具16の熱媒体出口と、蓄熱槽11の上部の熱媒体戻り口との間を接続する。第四管18が接続される熱媒体戻り口は、蓄熱槽11の下部または中間高さ部に位置しても良い。蓄熱槽11に貯えられた熱媒体は、ポンプ(図示省略)により、第三管17を通って暖房器具16に送られる。暖房器具16は、熱媒体の熱で室内の空気を暖める。暖房器具16としては、例えば、床暖房パネル、ラジエータ、パネルヒータ、ファンコンベクターなどを用いることができる。第三管17と第四管18との間に、複数の暖房器具16を接続しても良い。その場合、複数の暖房器具16の接続方法は、直列、並列、直列及び並列の組み合わせ、のいずれでも良い。
本実施の形態では、加熱熱交換器4で加熱された熱媒体が蓄熱槽11を介して暖房器具16へ供給される。このような構成に限らず、加熱熱交換器4で加熱された熱媒体が蓄熱槽11を介さずに暖房器具16へ直接供給されるように構成しても良い。また、蓄熱槽11に貯えられた湯を給湯先へ供給する給湯管(図示省略)が蓄熱槽11に接続されても良い。水道等の水源からの水を供給する給水管(図示省略)が蓄熱槽11に接続されても良い。
圧縮機3、加熱熱交換器4、減圧装置5、蒸発器6、及び送風機7を収納する筐体(図示省略)と、蓄熱槽11を収納する筐体(図示省略)とは、別体でも良いし、一体でも良い。筐体が別体の場合には、循環ポンプ10は、いずれの筐体に収納されても良い。
本実施の形態のヒートポンプシステム1は、第一コントローラ100、第二コントローラ200、及びリモコン装置300を備える。圧縮機3、減圧装置5、送風機7、外気温度センサ9、出口温度センサ12、及び入口温度センサ13は、第一コントローラ100に対して電気的に接続される。第一コントローラ100は、圧縮機3、減圧装置5、及び送風機7の動作を制御する。循環ポンプ10は、第二コントローラ200に対して電気的に接続される。第二コントローラ200は、循環ポンプ10の動作を制御する。
第一コントローラ100と第二コントローラ200との間は、有線通信または無線通信により、双方向にデータ通信可能に接続される。第二コントローラ200とリモコン装置300との間は、有線通信または無線通信により、双方向にデータ通信可能に接続される。リモコン装置300は、屋内に設置される。リモコン装置300は、使用者が操作するスイッチ等の操作部と、ヒートポンプシステム1の状態等の情報を表示する表示部とを備える。
以下の説明では、出口温度センサ12で検知される出口温度をThw[℃]とし、目標出口温度をTP[℃]とし、外気温度センサ9で検知される外気温度をTa[℃]とする。目標出口温度TPは、出口温度Thwの目標値である。目標出口温度TPは、使用者がリモコン装置300を操作することで設定した値でも良い。目標出口温度TPは、第一コントローラ100または第二コントローラ200が設定した値でも良い。第一コントローラ100または第二コントローラ200は、冷媒回路の状態、蓄熱槽11の蓄熱量、または、使用者がリモコン装置300を操作することで設定した目標室温などに基づいて、目標出口温度TPを設定しても良い。
第一コントローラ100は、外気温度Taをより正確に検知するために、外気温度センサ9で検知された複数の値の平均値を外気温度Taとして用いても良い。例えば、第一コントローラ100は、外気温度センサ9の検知温度を1秒間毎に10回サンプリングした値の平均値を外気温度Taとして用いても良い。
図2は、実施の形態1のヒートポンプシステム1の機能ブロック図である。図2に示すように、第一コントローラ100は、圧縮機制御部101、基本周波数算出部102、第一補正部103、第二補正部104、第一補正値設定部105、第二補正値設定部106、及び計時部107を備える。第二コントローラ200は、ポンプ駆動部201を備える。
圧縮機制御部101は、圧縮機3の動作を制御する。圧縮機3の動作速度は、可変である。圧縮機制御部101は、圧縮機3が備える電動機の運転周波数をインバーター制御により可変にすることで、圧縮機3の動作速度を可変にできる。圧縮機3の運転周波数が高いほど、圧縮機3の動作速度が高くなる。圧縮機3の動作速度が高いほど、冷媒の循環流量が高くなり、冷媒が加熱熱交換器4へ供給する時間当たりの熱量[kW]が高くなる。以下の説明では、冷媒が加熱熱交換器4へ供給する時間当たりの熱量を「供給熱量」と称する。
外気温度Taが高いほど、蒸発器6で冷媒が外気から吸収する熱量が高くなる。仮に圧縮機3の運転周波数を一定とした場合には、外気温度Taが高いほど、供給熱量が高くなる。
圧縮機制御部101は、基本周波数と補正周波数との和に応じて、圧縮機3の運転周波数を制御する。基本周波数は、基本周波数算出部102により算出される。補正周波数は、第一補正部103、第二補正部104、第一補正値設定部105、及び第二補正値設定部106により算出される。計時部107は、時間を計る。
ポンプ駆動部201は、循環ポンプ10の動作を制御する。ポンプ駆動部201は、加熱熱交換器4を通過する熱媒体の流量が時間的に一定になるように循環ポンプ10を駆動することが望ましい。加熱熱交換器4を通過する熱媒体の流量を時間的に一定にすることで、ヒートポンプシステム1の効率を良好にできる。加熱熱交換器4で加熱された熱媒体を暖房器具16に供給する場合に、暖房器具16に循環する熱媒体の流量を時間的に一定にすることで、暖房特性を良好にできる。
以下の説明では、温度[℃]の高低と、温度差の大小との区別を分かり易くするため、温度差の単位をK(ケルビン)で表す。目標出口温度TPから、現在の出口温度Thwを減算した温度差をΔThw[K]とする。すなわち、温度差ΔThwを次式で定義する。
ΔThw=TP−Thw ・・・(1)
基本周波数算出部102は、温度差ΔThwと、現在の外気温度Taとに応じて、基本周波数を算出する。温度差ΔThwと、外気温度Taと、基本周波数[Hz]との関係を表すマップの例を表1に示す。
Figure 0006354906
本実施の形態では、基本周波数算出部102は、表1のマップに基づいて、温度差ΔThwと現在の外気温度Taとに応じた基本周波数を算出できる。なお、温度差ΔThw及び外気温度Taの一方または両方が表1のマップに記載された値に該当しない場合には、表1のマップに記載された値から定まる二点間を線形補間することで、基本周波数が算出される。本実施の形態では、圧縮機3の上限周波数は98Hzであり、圧縮機3の下限周波数は35Hzである。
圧縮機3の運転中、制御周期毎に、基本周波数は、基本周波数算出部102により算出される値に更新される。圧縮機3の運転中、温度差ΔThwの変化、あるいは外気温度Taの変化に応じて、基本周波数が逐次変化する。圧縮機3の運転中に基本周波数が変化することで、圧縮機3の運転周波数が変化し、供給熱量も変化する。
表1のマップが示すように、本実施の形態では、温度差ΔThwが小さい場合の基本周波数は、温度差ΔThwが大きい場合の基本周波数に比べて、小さくなる。これにより、以下のような効果が得られる。圧縮機3の起動直後は、出口温度Thwが低いため、温度差ΔThwが大きい。温度差ΔThwが大きい場合には、温度差ΔThwが小さい場合に比べて基本周波数が大きくされることで、供給熱量が高くなる。それゆえ、出口温度Thwを速く上昇させることができる。その後、出口温度Thwが上昇して目標出口温度TPに近づくにつれて、温度差ΔThwが縮小する。温度差ΔThwが縮小するにつれて、基本周波数が低くなるので、供給熱量が低下する。それゆえ、出口温度Thwが目標出口温度TPに対してオーバーシュートすることを確実に抑制できる。出口温度Thwのオーバーシュートを確実に抑制できるので、暖房器具16の安全性をさらに向上できる。
上記の効果を得るためには、基本周波数算出部102は、少なくとも外気温度Taが特定の範囲にある場合に、温度差ΔThwが小さいときの基本周波数が、温度差ΔThwが大きいときの基本周波数に比べて小さくなるように、基本周波数を算出すれば良い。外気温度Taが当該特定の範囲にない場合には、基本周波数算出部102は、基本周波数を一定にしても良い。表1のマップが示すように、外気温度Taが35℃以上の場合には、温度差ΔThwにかかわらず、基本周波数は35Hzで一定である。本実施の形態では、基本周波数算出部102は、外気温度Taが特定の範囲(35℃未満の範囲)にある場合にのみ、温度差ΔThwが小さいときの基本周波数が、温度差ΔThwが大きいときの基本周波数に比べて小さくなるように、基本周波数を算出する。本実施の形態では、基本周波数算出部102は、外気温度Taが35℃以上の場合には、温度差ΔThwにかかわらず、基本周波数を一定にする。このような構成に限らず、基本周波数算出部102は、外気温度Taにかかわらず、温度差ΔThwが小さいときの基本周波数が、温度差ΔThwが大きいときの基本周波数に比べて小さくなるように、基本周波数を算出しても良い。
表1のマップが示すように、本実施の形態では、外気温度Taが高いときの基本周波数は、外気温度Taが低いときの基本周波数に比べて、小さくなる。これにより、以下のような効果が得られる。前述したように、仮に圧縮機3の運転周波数を一定とした場合には、外気温度Taが高いほど、供給熱量が高くなる。本実施の形態では、外気温度Taが高いときには、基本周波数が小さくされることで、供給熱量が必要以上に高くなることを確実に抑制できる。それゆえ、出口温度Thwが目標出口温度TPに対してオーバーシュートすることを確実に抑制できる。出口温度Thwのオーバーシュートを確実に抑制できるので、暖房器具16の安全性をさらに向上できる。逆に、外気温度Taが低いときには、基本周波数が大きくされることで、供給熱量が不足することを確実に抑制できる。それゆえ、出口温度Thwが目標出口温度TPに対してアンダーシュートすることを確実に抑制できる。暖房器具16による暖房を行う場合、あるいは蓄熱槽11に熱を蓄える場合には、圧縮機3が長時間運転される場合がある。このため、圧縮機3の運転中に、日照あるいは天候の変化に伴い、外気温度Taが大きく変化する場合がある。本実施の形態であれば、圧縮機3の運転中に外気温度Taが変化した場合であっても、外気温度Taの変化に応じて、圧縮機3の運転周波数を適切に変化させることで、出口温度Thwのオーバーシュート及びアンダーシュートを確実に抑制できる。
上記の効果を得るためには、基本周波数算出部102は、少なくとも温度差ΔThwが特定の範囲にある場合に、外気温度Taが高いときの基本周波数が、外気温度Taが低いときの基本周波数に比べて小さくなるように、基本周波数を算出すれば良い。例えば、基本周波数算出部102は、温度差ΔThwが大きいときには、外気温度Taにかかわらず、基本周波数を上限周波数に等しい値で一定にしても良い。あるいは、基本周波数算出部102は、温度差ΔThwが十分小さいときには、外気温度Taにかかわらず、基本周波数を下限周波数に等しい値で一定にしても良い。
圧縮機制御部101は、基本周波数[Hz]と補正周波数[Hz]との和に応じて、圧縮機3の運転周波数を制御する。圧縮機3の運転開始時の補正周波数(すなわち、補正周波数の初期値)は、0Hzである。第一補正部103は、補正周波数に第一補正値を付加する。第一補正値は、正の値である。第二補正部104は、補正周波数に第二補正値を付加する。第二補正値は、負の値である。補正周波数は、圧縮機3の運転開始後に付加されたすべての第一補正値及び第二補正値を合計した値である。第一補正値及び第二補正値は、それらによって圧縮機3の運転周波数が補正されたときに冷媒回路が不安定にならない程度に小さい値とされる。
基本周波数と補正周波数との和が上限周波数と下限周波数との間の値である場合には、圧縮機制御部101は、圧縮機3の運転周波数を、基本周波数と補正周波数との和に等しい値に設定する。基本周波数と補正周波数との和が上限周波数以上である場合には、圧縮機制御部101は、圧縮機3の運転周波数を上限周波数に等しい値に設定する。基本周波数と補正周波数との和が下限周波数以下である場合には、圧縮機制御部101は、圧縮機3の運転周波数を下限周波数に等しい値に設定する。
なお、圧縮機3の運転開始後、一定時間(例えば、3分間〜5分間程度)が経過するまでの間は、圧縮機制御部101は、圧縮機3の運転周波数を変化させずに、圧縮機3の運転周波数を一定の値に保持しても良い。そのようにすることで、冷媒回路の状態をより早期に安定させることが可能となる。
第一補正部103は、温度差ΔThwが正の第一基準値に比べて大きく、かつ、出口温度Thwの時間的な変化が基準に比べて小さい場合に、補正周波数に第一補正値を付加する。温度差ΔThwが正の第一基準値に比べて大きいことを以下「条件1」と称する。出口温度Thwの時間的な変化が基準に比べて小さいことを以下「条件2」と称する。第一補正部103は、条件1及び条件2が共に成立する場合に、補正周波数に第一補正値を付加する。条件1及び条件2のいずれか一方または両方が成立しない場合には、第一補正部103は、補正周波数に第一補正値を付加しない。補正周波数に第一補正値が付加されることで、補正周波数が増加するので、圧縮機3の運転周波数が増加する。
温度差ΔThwが十分に小さくならないうちに出口温度Thwが安定しそうになった場合には、第一補正部103が補正周波数に正の第一補正値を付加することで、圧縮機3の運転周波数を増加させることができる。その結果、温度差ΔThwを縮小させ、出口温度Thwを目標出口温度TPに近づけることができる。
本実施の形態では、条件1の正の第一基準値を2Kとする。すなわち、本実施の形態における条件1は、次式により表される。
2K<ΔThw ・・・(2)
本実施の形態における条件2は、次式により表される。
−2K<Thw(n)−Thw(n−1)<2K ・・・(3)
ただし、Thw(n)は、現在の出口温度Thwである。Thw(n−1)は、その一定時間前(例えば、45秒間前)の出口温度Thwである。
本実施の形態では、上記(3)式が成立する場合、すなわち現在の出口温度Thw(n)と一定時間前の出口温度Thw(n−1)との差の絶対値が2K未満である場合には、出口温度Thwの時間的な変化が基準に比べて小さいと判定される。上記(3)式が成立しない場合には、出口温度Thwの時間的な変化が基準に比べて小さくない、すなわち条件2が不成立と判定される。
条件2が不成立の場合、つまり出口温度Thwがまだ安定しそうになっていない場合には、条件1が成立したとしても、第一補正値は付加されない。例えば、出口温度Thwの上昇速度が十分に速いときには、条件2が不成立となるので、第一補正値は付加されない。出口温度Thwの上昇速度が十分に速いときには、基本周波数算出部102により算出される基本周波数の変化が比較的大きい。基本周波数の変化が比較的大きいときにさらに補正周波数が変化すると、圧縮機3及び冷媒回路の状態が不安定になる可能性がある。圧縮機3及び冷媒回路の状態が不安定になると、ヒートポンプシステム1の効率が低下する。本実施の形態であれば、条件2が成立するときにのみ第一補正値を付加するので、基本周波数と補正周波数とが同時期に変更されることを抑制できる。それゆえ、圧縮機3及び冷媒回路の状態が不安定になることを確実に抑制できる。ヒートポンプシステム1の効率の低下も確実に抑制できる。
本実施の形態では、目標出口温度TPと出口温度Thwとの差が2K以下の場合、つまり2K≧ΔThwの場合には、出口温度Thwは目標出口温度TPに対してすでに十分に近づいたと判断できる。すなわち、上記条件1が成立しない場合には、出口温度Thwをそれ以上上昇させる必要は無く、補正周波数に第一補正値を付加する必要は無い。ただし、条件1の第一基準値を2Kより小さい値にしても良い。
第二補正部104は、出口温度Thwが目標出口温度TPに比べて高い状態が一定時間(例えば、30秒間)以上継続している場合に、補正周波数に第二補正値を付加する。第二補正部104が補正周波数に第二補正値を付加する条件を以下「条件3」と称する。本実施の形態では、次式が一定時間以上継続して成立することが条件3に相当する。
ΔThw<0K ・・・(4)
条件3が成立した場合、すなわち出口温度Thwが目標出口温度TPに比べて高い状態で安定しそうになった場合には、第二補正部104が補正周波数に負の第二補正値を付加することで、圧縮機3の運転周波数を低下させることができる。その結果、出口温度Thwを低下させることができ、出口温度Thwが目標出口温度TPに対してオーバーシュートすることを確実に抑制できる。
なお、第二補正部104は、上記条件に代えて、出口温度Thwが目標出口温度TPに比べて許容限度を超えて高い状態が一定時間(例えば、30秒間)以上継続している場合に、補正周波数に第二補正値を付加しても良い。例えば、出口温度Thwが目標出口温度TPに比べて1K高い状態まで許容できる場合には、上記許容限度を1Kとする。この場合には、次式が一定時間以上継続することが条件3に相当する。
ΔThw<−1K ・・・(5)
第一補正値設定部105は、温度差ΔThwが正の第二基準値に比べて大きい場合には、第一補正値を次のように設定する。外気温度Taが高いときの第一補正値は、外気温度Taが低いときの第一補正値に比べて、小さくなる。第二基準値は、第一基準値より大きい値である。第二基準値は、例えば5Kである。第二補正値設定部106は、温度差ΔThwが負の基準値に比べて小さい場合には、第二補正値を次のように設定する。外気温度Taが高いときの第二補正値の絶対値は、外気温度Taが低いときの第二補正値の絶対値に比べて、小さくなる。負の基準値は、例えば−5Kである。これらの場合における外気温度Taと、第一補正値及び第二補正値との関係を表すマップの例を表2に示す。
Figure 0006354906
本実施の形態では、第一補正値設定部105は、温度差ΔThwがΔThw≧5Kを満足する場合には、表2のマップに基づいて、第一補正値を設定する。第二補正値設定部106は、温度差ΔThwがΔThw≦−5Kを満足する場合には、表2のマップに基づいて、第二補正値を設定する。なお、外気温度Taが表2のマップに記載された値に該当しない場合には、表2のマップの記載された値から定まる二点間を線形補間することで、第一補正値または第二補正値が算出される。
第一補正値設定部105は、温度差ΔThwが上記第二基準値に比べて大きくない場合には、外気温度Taにかかわらず、第一補正値を一定にする。第二補正値設定部106は、温度差ΔThwが上記負の基準値に比べて小さくない場合には、外気温度Taにかかわらず、第二補正値を一定にする。これらの場合における外気温度Taと、第一補正値及び第二補正値との関係を表すマップの例を表3に示す。
Figure 0006354906
本実施の形態では、第一補正値設定部105は、温度差ΔThwが2K<ΔThw<5Kを満足する場合には、表3のマップのように、第一補正値を外気温度Taによらずに1Hzと設定する。第二補正値設定部106は、温度差ΔThwが−5K<ΔThw<0Kを満足する場合には、表3のマップのように、第二補正値を外気温度Taによらずに−1Hzと設定する。
本実施の形態であれば、第一補正値設定部105が、表2のマップに基づき、外気温度Taが高いときの第一補正値が、外気温度Taが低いときの第一補正値に比べて小さくなるように、第一補正値を設定することで、以下の効果が得られる。外気温度Taが高い場合、すなわち供給熱量が高くなり易い場合に、第一補正値が過大になることを確実に抑制できる。その結果、出口温度Thwが目標出口温度TPに対してオーバーシュートすることを確実に抑制できる。また、外気温度Taが低い場合、すなわち供給熱量が低くなり易い場合に、第一補正値が不足することを確実に抑制できる。その結果、出口温度Thwが目標出口温度TPに対してアンダーシュートすることを確実に抑制できる。
上記の効果を得るためには、第一補正値設定部105は、少なくとも温度差ΔThwが上記第二基準値に比べて大きい場合に、外気温度Taが高いときの第一補正値が、外気温度Taが低いときの第一補正値に比べて小さくなるように、第一補正値を設定すれば良い。温度差ΔThwが上記第二基準値に比べて大きくない場合には、出口温度Thwが目標出口温度TPに対して比較的近い状態であるので、第一補正値が外気温度Taによらずに一定であっても、出口温度Thwを目標出口温度TPに速やかに近づけることが可能である。ただし、第一補正値設定部105は、温度差ΔThwにかかわらず、外気温度Taが高いときの第一補正値が、外気温度Taが低いときの第一補正値に比べて小さくなるように、第一補正値を設定しても良いことは言うまでもない。
本実施の形態では、第二補正値設定部106が、表2のマップに基づき、外気温度Taが高いときの第二補正値の絶対値が、外気温度Taが低いときの第二補正値の絶対値に比べて小さくなるように、第二補正値を設定することで、以下の効果が得られる。外気温度Taが高い場合に、第二補正値が過大になることを確実に抑制できる。外気温度Taが低い場合に、第二補正値が不足することを確実に抑制できる。
上記の効果を得るためには、第二補正値設定部106は、少なくとも温度差ΔThwが上記負の基準値に比べて小さい場合に、外気温度Taが高いときの第二補正値の絶対値が、外気温度Taが低いときの第二補正値の絶対値に比べて小さくなるように、第二補正値を設定すれば良い。温度差ΔThwが上記負の基準値に比べて小さくない場合には、出口温度Thwが目標出口温度TPに対して比較的近い状態であるので、第二補正値が外気温度Taによらずに一定であっても、出口温度Thwを目標出口温度TPに速やかに近づけることが可能である。ただし、第二補正値設定部106は、温度差ΔThwにかかわらず、外気温度Taが高いときの第二補正値の絶対値が、外気温度Taが低いときの第二補正値の絶対値に比べて小さくなるように、第二補正値を設定しても良いことは言うまでもない。
図3は、実施の形態1のヒートポンプシステム1の第一コントローラ100が実行するルーチンのフローチャートである。第一コントローラ100は、圧縮機3の運転中、所定の制御周期毎(例えば、45秒毎)に、図3のルーチンを繰り返し実行する。図3のステップS1で、第一コントローラ100は、出口温度センサ12で検知される現在の出口温度Thwを取得する。ステップS2で、第一コントローラ100は、外気温度センサ9で検知される現在の外気温度Taを取得する。ステップS3で、基本周波数算出部102は、表1のマップに基づいて、温度差ΔThwと現在の外気温度Taとに応じた基本周波数を算出する。
ステップS4で、第一補正部103は、条件1及び条件2が成立するかどうかを判断する。第一補正部103は、例えば、温度差ΔThwが前述した(2)式を満たす場合には、条件1が成立すると判定し、そうでない場合には条件1が不成立と判定する。第一補正部103は、例えば、現在の出口温度Thw(n)と、一制御周期前に取得された出口温度Thw(n−1)とが、前述した(3)式を満たす場合には、条件2が成立すると判定し、そうでない場合には条件2が不成立と判定する。
条件1及び条件2が共に成立すると判定された場合には、ステップS4からステップS5へ移行する。ステップS5で、第一補正値設定部105は、温度差ΔThwの値に応じて、表2または表3のマップに基づき、第一補正値を設定する。ステップS5からステップS6へ移行する。ステップS6で、第一補正部103は、当該設定された第一補正値を補正周波数に付加する。ステップS6からステップS10へ移行する。
条件1及び条件2のいずれか一方または両方が不成立と判定された場合には、ステップS4からステップS7へ移行する。ステップS7で、第二補正部104は、条件3が成立するかどうかを判断する。第二補正部104は、一定時間前(例えば、30秒前)から現在まで、前述した(4)式の成立が継続している場合には、条件3が成立すると判定し、そうでない場合には条件3が不成立と判定する。
条件3が成立すると判定された場合には、ステップS7からステップS8へ移行する。ステップS8で、第二補正値設定部106は、温度差ΔThwの値に応じて、表2または表3のマップに基づき、第二補正値を設定する。ステップS8からステップS9へ移行する。ステップS9で、第二補正部104は、当該設定された第二補正値を補正周波数に付加する。ステップS9からステップS10へ移行する。条件3が不成立と判定された場合には、ステップS7からステップS10へ移行する。
ステップS10で、圧縮機制御部101は、基本周波数と補正周波数との和に応じて、以下のようにして、圧縮機3の運転周波数を制御する。基本周波数と補正周波数との和が上限周波数と下限周波数との間の値である場合には、圧縮機3の運転周波数は、基本周波数と補正周波数との和に等しい値に設定される。基本周波数と補正周波数との和が上限周波数以上である場合には、圧縮機3の運転周波数は、上限周波数に等しい値に設定される。基本周波数と補正周波数との和が下限周波数以下である場合には、圧縮機3の運転周波数は、下限周波数に等しい値に設定される。ステップS10の後、ルーチンを終了する。
図4は、実施の形態1のヒートポンプシステム1が備える第一コントローラ100または第二コントローラ200のハードウェア構成の例を示す図である。第一コントローラ100の各機能は、処理回路により実現される。第二コントローラ200の各機能は、処理回路により実現される。図4に示す例では、第一コントローラ100の処理回路は、少なくとも1つのプロセッサ110と少なくとも1つのメモリ120とを備える。第二コントローラ200の処理回路は、少なくとも1つのプロセッサ210と少なくとも1つのメモリ220とを備える。
処理回路が少なくとも1つのプロセッサ110または210と少なくとも1つのメモリ120または220とを備える場合、第一コントローラ100または第二コントローラ200の各機能は、ソフトウェア、ファームウェア、またはソフトウェアとファームウェアとの組み合わせにより実現される。ソフトウェアおよびファームウェアの少なくとも一方は、プログラムとして記述される。ソフトウェアおよびファームウェアの少なくとも一方は、少なくとも1つのメモリ120または220に格納される。少なくとも1つのプロセッサ110または210は、少なくとも1つのメモリ120または220に記憶されたプログラムを読み出して実行することにより、第一コントローラ100または第二コントローラ200の各機能を実現する。少なくとも1つのプロセッサ110または210は、CPU(Central Processing Unit)、中央処理装置、処理装置、演算装置、マイクロプロセッサ、マイクロコンピュータ、DSP(Digital Signal Processor)ともいう。例えば、少なくとも1つのメモリ120または220は、RAM(Random Access Memory)、ROM(Read Only Memory)、フラッシュメモリ、EPROM(Erasable Programmable Read Only Memory)、EEPROM(Electrically Erasable Programmable Read−Only Memory)等の、不揮発性または揮発性の半導体メモリ、磁気ディスク、フレキシブルディスク、光ディスク、コンパクトディスク、ミニディスク、DVD(Digital Versatile Disc)等である。
図5は、実施の形態1のヒートポンプシステム1が備える第一コントローラ100または第二コントローラ200のハードウェア構成の他の例を示す図である。図5に示す例では、第一コントローラ100の処理回路は、少なくとも1つの専用のハードウェア130を備える。第二コントローラ200の処理回路は、少なくとも1つの専用のハードウェア230を備える。
処理回路が少なくとも1つの専用のハードウェア130または230を備える場合、処理回路は、例えば、単一回路、複合回路、プログラム化したプロセッサ、並列プログラム化したプロセッサ、ASIC(Application Specific Integrated Circuit)、FPGA(Field−Programmable Gate Array)、またはこれらを組み合わせたものである。第一コントローラ100または第二コントローラ200の各部の機能がそれぞれ処理回路で実現されても良い。また、第一コントローラ100または第二コントローラ200の各部の機能がまとめて処理回路で実現されても良い。
また、第一コントローラ100の各機能について、一部を専用のハードウェア130で実現し、他の一部をソフトウェアまたはファームウェアで実現してもよい。このように、処理回路は、ハードウェア130、ソフトウェア、ファームウェア、またはこれらの組み合わせによって、第一コントローラ100の各機能を実現する。
また、第二コントローラ200の各機能について、一部を専用のハードウェア230で実現し、他の一部をソフトウェアまたはファームウェアで実現してもよい。このように、処理回路は、ハードウェア230、ソフトウェア、ファームウェア、またはこれらの組み合わせによって、第二コントローラ200の各機能を実現する。
本実施の形態では、第一コントローラ100及び第二コントローラ200が連携することでヒートポンプシステム1の動作を制御する。このような構成に限らず、単一のコントローラによりヒートポンプシステム1の動作が制御される構成にしても良い。
実施の形態2.
次に、図6を参照して、実施の形態2について説明するが、上述した実施の形態1との相違点を中心に説明し、同一部分または相当部分については説明を簡略化または省略する。
本実施の形態2のヒートポンプシステム1の構成図は、図1と同じであるので、省略する。本実施の形態2のヒートポンプシステム1の機能ブロック図は、第一コントローラ100が第一補正値設定部105及び第二補正値設定部106を備えないこと以外は、図2と同じであるので、省略する。
本実施の形態2では、第一補正部103は、外気温度Taによらない第一補正値を補正周波数に付加する。本実施の形態2における第一補正値は、外気温度Ta及び温度差ΔThwによらず、一定の値とされる。本実施の形態2における第一補正値は、比較的小さい値(例えば、1Hz、または2Hz)とされる。
本実施の形態2では、第二補正部104は、外気温度Taによらない第二補正値を補正周波数に付加する。本実施の形態2における第二補正値は、外気温度Ta及び温度差ΔThwによらず、一定の値とされる。本実施の形態2における第二補正値は、比較的小さい値(例えば、−1Hz、または−2Hz)とされる。
図6は、実施の形態2のヒートポンプシステム1の第一コントローラ100が実行するルーチンのフローチャートである。図6のフローチャートは、実施の形態1の図3のフローチャートと比べて、ステップS5及びステップS8が無いこと以外は同じである。本実施の形態2において第一コントローラ100が実行するルーチンについて、実施の形態1との相違点のみを以下に説明する。
ステップS4で条件1及び条件2が共に成立すると判定された場合には、ステップS6へ移行する。ステップS6で、第一補正部103は、外気温度Ta及び温度差ΔThwによらない所定の第一補正値を補正周波数に付加する。ステップS7で条件3が成立すると判定された場合には、ステップS9へ移行する。ステップS9で、第二補正部104は、外気温度Ta及び温度差ΔThwによらない所定の第二補正値を補正周波数に付加する。
本実施の形態2であれば、第一補正値及び第二補正値を、外気温度Ta及び温度差ΔThwによらない、比較的小さな一定の値にすることで、安定した冷媒回路の運転状態を得ることができる。
1 ヒートポンプシステム、 3 圧縮機、 4 加熱熱交換器、 5 減圧装置、 6 蒸発器、 7 送風機、 7a ファン、 7b モータ、 8 冷媒配管、 9 外気温度センサ、 10 循環ポンプ、 11 蓄熱槽、 12 出口温度センサ、 13 入口温度センサ、 14 第一管、 15 第二管、 16 暖房器具、 17 第三管、 18 第四管、 100 第一コントローラ、 101 圧縮機制御部、 102 基本周波数算出部、 103 第一補正部、 104 第二補正部、 105 第一補正値設定部、 106 第二補正値設定部、 107 計時部、 110 プロセッサ、 120 メモリ、 130 ハードウェア、 200 第二コントローラ、 201 ポンプ駆動部、 210 プロセッサ、 220 メモリ、 230 ハードウェア、 300 リモコン装置

Claims (9)

  1. 冷媒を圧縮する圧縮機と、
    前記圧縮機で圧縮された冷媒と、熱媒体との間で熱を交換する加熱熱交換器と、
    冷媒を減圧させる減圧装置と、
    前記減圧装置で減圧された冷媒と、外気との間で熱を交換する蒸発器と、
    外気温度を検知する外気温度検知手段と、
    前記加熱熱交換器から流出する前記熱媒体の温度である出口温度を検知する出口温度検知手段と、
    基本周波数と補正周波数との和に応じて、前記圧縮機の運転周波数を制御する圧縮機制御手段と、
    目標出口温度から現在の出口温度を減算した温度差と、現在の外気温度とに応じて、前記基本周波数を算出する基本周波数算出手段と、
    前記温度差が正の第一基準値に比べて大きく、かつ、前記出口温度の時間的な変化が基準に比べて小さい場合に、前記補正周波数に正の第一補正値を付加する第一補正手段と、
    を備えるヒートポンプシステム。
  2. 前記基本周波数算出手段は、少なくとも外気温度が特定の範囲にある場合に、前記温度差が小さいときの前記基本周波数が、前記温度差が大きいときの前記基本周波数に比べて小さくなるように、前記基本周波数を算出する請求項1に記載のヒートポンプシステム。
  3. 前記基本周波数算出手段は、少なくとも前記温度差が特定の範囲にある場合に、外気温度が高いときの前記基本周波数が、外気温度が低いときの前記基本周波数に比べて小さくなるように、前記基本周波数を算出する請求項1または請求項2に記載のヒートポンプシステム。
  4. 前記第一補正値を設定する第一補正値設定手段を備え、
    前記第一補正値設定手段は、少なくとも前記温度差が正の第二基準値に比べて大きい場合に、外気温度が高いときの前記第一補正値が、外気温度が低いときの前記第一補正値に比べて小さくなるように、前記第一補正値を設定する請求項1から請求項3のいずれか一項に記載のヒートポンプシステム。
  5. 外気温度によらず前記第一補正値が一定である請求項1から請求項3のいずれか一項に記載のヒートポンプシステム。
  6. 前記出口温度が前記目標出口温度に比べて高い状態、または、前記出口温度が前記目標出口温度に比べて許容限度を超えて高い状態、が一定時間継続した場合に、前記補正周波数に負の第二補正値を付加する第二補正手段を備える請求項1から請求項5のいずれか一項に記載のヒートポンプシステム。
  7. 前記第二補正値を設定する第二補正値設定手段を備え、
    前記第二補正値設定手段は、少なくとも前記温度差が負の基準値に比べて小さい場合に、外気温度が高いときの前記第二補正値の絶対値が、外気温度が低いときの前記第二補正値の絶対値に比べて小さくなるように、前記第二補正値を設定する請求項6に記載のヒートポンプシステム。
  8. 外気温度によらず前記第二補正値が一定である請求項6に記載のヒートポンプシステム。
  9. 前記加熱熱交換器へ前記熱媒体を流れさせるポンプと、
    前記加熱熱交換器を通過する前記熱媒体の流量が時間的に一定になるように前記ポンプを駆動するポンプ駆動手段と、
    を備える請求項1から請求項8のいずれか一項に記載のヒートポンプシステム。
JP2017534036A 2015-08-07 2015-08-07 ヒートポンプシステム Expired - Fee Related JP6354906B2 (ja)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/072523 WO2017026007A1 (ja) 2015-08-07 2015-08-07 ヒートポンプシステム

Publications (2)

Publication Number Publication Date
JPWO2017026007A1 JPWO2017026007A1 (ja) 2017-11-09
JP6354906B2 true JP6354906B2 (ja) 2018-07-11

Family

ID=57984326

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017534036A Expired - Fee Related JP6354906B2 (ja) 2015-08-07 2015-08-07 ヒートポンプシステム

Country Status (3)

Country Link
EP (1) EP3333502B1 (ja)
JP (1) JP6354906B2 (ja)
WO (1) WO2017026007A1 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018185884A1 (ja) * 2017-04-05 2018-10-11 三菱電機株式会社 熱媒循環システム
AU2019445991B2 (en) * 2019-05-10 2023-03-30 Mitsubishi Electric Corporation Heat Storage System
CN110793088A (zh) * 2019-10-29 2020-02-14 广东芬尼克兹节能设备有限公司 一种热泵系统的水温控制方法及热泵系统
CN113513861A (zh) * 2021-04-30 2021-10-19 深圳市英威腾网能技术有限公司 一种风冷冷凝器及可低温启动的机房空调
CN114413511B (zh) * 2021-12-31 2023-11-24 青岛海尔空调电子有限公司 热泵机组的冷媒液位控制方法、控制装置、介质

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09126526A (ja) * 1995-10-27 1997-05-16 Matsushita Electric Ind Co Ltd 空気調和機
JP4078036B2 (ja) * 2001-02-20 2008-04-23 東芝キヤリア株式会社 ヒートポンプ給湯器
JP3778102B2 (ja) * 2002-02-19 2006-05-24 松下電器産業株式会社 ヒートポンプ給湯装置
JP2004347148A (ja) * 2003-05-20 2004-12-09 Matsushita Electric Ind Co Ltd ヒートポンプ給湯装置
JP2005098546A (ja) * 2003-09-22 2005-04-14 Matsushita Electric Ind Co Ltd ヒートポンプ給湯装置
JP4161968B2 (ja) * 2005-01-21 2008-10-08 株式会社デンソー ヒートポンプ給湯装置
JP5216368B2 (ja) * 2008-02-29 2013-06-19 日立アプライアンス株式会社 ヒートポンプ式給湯機
JP2011252675A (ja) * 2010-06-03 2011-12-15 Mitsubishi Electric Corp ヒートポンプ給湯機
JP2012082987A (ja) * 2010-10-07 2012-04-26 Sharp Corp ヒートポンプ給湯装置、およびヒートポンプ給湯装置の制御方法

Also Published As

Publication number Publication date
EP3333502A1 (en) 2018-06-13
EP3333502A4 (en) 2019-03-27
WO2017026007A1 (ja) 2017-02-16
EP3333502B1 (en) 2020-03-25
JPWO2017026007A1 (ja) 2017-11-09

Similar Documents

Publication Publication Date Title
JP6354906B2 (ja) ヒートポンプシステム
JP5984784B2 (ja) 温冷水空調システム
JP4613526B2 (ja) 超臨界式ヒートポンプサイクル装置
CN107869831B (zh) 空调和控制该空调的方法
WO2009107261A1 (ja) ヒートポンプ式給湯機
KR101602741B1 (ko) 항온액 순환 장치 및 그 운전 방법
CN104024763B (zh) 空气调节机以及空气调节机的膨胀阀的开度控制方法
JP6004670B2 (ja) 空気調和装置の制御装置及び空気調和装置の制御方法並びに空気調和装置のプログラム、それを備えた空気調和装置
JP6103144B2 (ja) ヒートポンプ暖房システム
JP4793328B2 (ja) ヒートポンプ装置
JP6576468B2 (ja) 空気調和機
JP4552836B2 (ja) ヒートポンプ式給湯装置
KR101321200B1 (ko) 히트펌프 시스템 및 그 제어방법
JP6629446B2 (ja) 除霜判断機器、除霜制御機器及び空気調和機
JP2016099049A (ja) 空気調和機
JP6399113B2 (ja) 熱供給システム
JP2018146142A (ja) 空気調和機
US20210325095A1 (en) Refrigeration cycle apparatus
JP7278408B2 (ja) 液面検知装置、およびそれを備えた空気調和装置
KR20140112681A (ko) 공기 조화기의 제어방법
JP6555424B2 (ja) ヒートポンプシステム
WO2017145238A1 (ja) 貯湯式給湯システム
JP6394813B2 (ja) 冷凍サイクルシステム
JP2017044460A (ja) 空気調和機
JP6763498B2 (ja) ヒートポンプ式給湯装置

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170724

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170724

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180515

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180528

R150 Certificate of patent or registration of utility model

Ref document number: 6354906

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees