JP6336113B2 - 光導波路素子及びその製造方法 - Google Patents

光導波路素子及びその製造方法 Download PDF

Info

Publication number
JP6336113B2
JP6336113B2 JP2016558423A JP2016558423A JP6336113B2 JP 6336113 B2 JP6336113 B2 JP 6336113B2 JP 2016558423 A JP2016558423 A JP 2016558423A JP 2016558423 A JP2016558423 A JP 2016558423A JP 6336113 B2 JP6336113 B2 JP 6336113B2
Authority
JP
Japan
Prior art keywords
region
rib
conductivity
waveguide
doped region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2016558423A
Other languages
English (en)
Other versions
JP2017509022A (ja
Inventor
憲介 小川
憲介 小川
一宏 五井
一宏 五井
グオチャン ロ
グオチャン ロ
ツォンヤン ジェイソン リウ
ツォンヤン ジェイソン リウ
シャオグアン トゥ
シャオグアン トゥ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Agency for Science Technology and Research Singapore
Original Assignee
Fujikura Ltd
Agency for Science Technology and Research Singapore
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd, Agency for Science Technology and Research Singapore filed Critical Fujikura Ltd
Publication of JP2017509022A publication Critical patent/JP2017509022A/ja
Application granted granted Critical
Publication of JP6336113B2 publication Critical patent/JP6336113B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/015Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on semiconductor elements having potential barriers, e.g. having a PN or PIN junction
    • G02F1/025Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on semiconductor elements having potential barriers, e.g. having a PN or PIN junction in an optical waveguide structure
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/0009Materials therefor
    • G02F1/0018Electro-optical materials
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/015Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on semiconductor elements having potential barriers, e.g. having a PN or PIN junction
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B2006/12083Constructional arrangements
    • G02B2006/12097Ridge, rib or the like
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/015Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on semiconductor elements having potential barriers, e.g. having a PN or PIN junction
    • G02F1/0151Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on semiconductor elements having potential barriers, e.g. having a PN or PIN junction modulating the refractive index
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/21Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  by interference
    • G02F1/212Mach-Zehnder type

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Integrated Circuits (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)

Description

本発明は、低光損失、高速かつ低駆動電圧で屈折率変調を可能とする光導波路素子及びその製造方法に関する。
近年、基板型光導波路等の小型の光集積回路を、光ファイバ通信用のデバイス、とりわけ長距離またはメトロ系の波長多重光ファイバ通信で利用される光トランスポート装置、およびデータセンタなどで利用される光インタコネクト装置に応用することが検討されている。
特許文献1には、PN接合中のキャリア密度を変化させて屈折率を制御する単一モードのシリコンリブ導波路であって、横方向にPN接合を有し、PN接合の境界の位置が光導波路のコア中を光が伝搬する方向に沿って波形状(corrugated)に変化している光導波路が開示されている。
特許文献1のシリコンリブ導波路と類似する構成について、光学特性に関する技術情報が非特許文献1に開示されている。特許文献1に提示された構成およびそれと類似するシリコン光導波路からなる光変調器では、屈折率の周期分布によって生ずるブラッグ反射は無視できる程度であることが報告されている。さらに、非特許文献1には、ブラッグ波長よりも長波長側で動作する光変調器の設計例が開示されている。
特許文献2には、PN接合の空乏領域が第一および第二の真性領域にサンドイッチされた構成により光損失が低減された光変調器が開示されている。第一および第二の真性領域は、光導波路の二つの対向する側壁のそれぞれに隣接するように設置されている。
米国特許第7085443号明細書 米国特許出願公開第2012/0189239号明細書
Zhi−Yong Li, Dan−Xia Xu, W. Ross McKinnon, Siegfried Janz, Jens H. Schmid, Pavel Cheben and Jin−Zhong Yu, "Silicon waveguide modulator based on carrier depletion in periodically interleaved PN junctions," Optics Express vol.17, no.18, pp.15947−15958 (2009)
特許文献1に開示されたPN接合の境界の位置が光導波路のコア中を光が伝搬する方向に沿って波形状に変化しているシリコンリブ導波路では、PN接合の実効的な長さが増大するため、駆動電圧が低減される。しかしこの場合、キャリアによる光吸収が増加することにより光損失が増加するという問題がある。また、リブ導波路の側部に存在するスラブ領域からのフリンジ電界による寄生容量を低減できず、高速動作が損なわれるという問題がある。このため、上記シリコンリブ導波路を用いた場合、低光損失かつ高速の屈折率変調が困難である。
非特許文献1に基づく設計では、高屈折率コントラストの波形状分布を有するリブ導波路を用いると、ブラッグ反射によりリターンロスが減少して光変調器への入射光を発生するレーザー光源への戻り光が強くなり、モードホップが発生してレーザー光源が不安定となる。その結果、安定した光変調信号を発生できないという問題がある。
特許文献2に開示された光変調器では、駆動電圧を低減すると屈折率変調が低下するため、駆動電圧を低減できないという問題がある。さらに、特許文献2では、加工誤差の影響が大きく、品質変動が少なく光変調器を提供できないという問題がある。
以上より、本発明で解決すべき課題は、光ファイバ通信用のデバイス、とりわけ長距離またはメトロ系の波長多重光ファイバ通信で利用される光トランスポート装置、およびデータセンタなどで利用される光インタコネクト装置への応用のために、低光損失、高速かつ低駆動電圧での屈折率変調を可能とする光変調器などの小型の光集積回路に適し、品質変動の少ない光導波路素子を実現することにある。
本発明の第一態様に係る光導波路素子は、基板と、前記基板上に設けられる下部クラッドと、前記下部クラッド上に設けられるスラブと前記スラブ上に接して設けられる単一のリブとを有するリブ導波路と、前記リブ導波路上に設けられる上部クラッドと、を備える。さらに、前記リブ導波路が、前記リブと前記スラブとにわたるP型の導電性を示す第一の導電性を有する第一のドープ領域と、前記第一のドープ領域と接し、前記リブと前記スラブとにわたるN型の導電性を示す第二の導電性を有する第二のドープ領域とを有し、前記第一のドープ領域と前記第二のドープ領域との境界は、前記基板の表面に垂直な方向に沿って形成されるPN接合を形成し、かつ前記基板の平面視において前記リブ導波路における導波光の伝搬方向に沿って波形状に形成され、前記リブ導波路が、前記リブ中において前記第二のドープ領域とは反対側に接し、前記第二のドープ領域よりも低い導電性を示す第一の低導電領域と、前記リブにおいて前記第一のドープ領域とは反対側に接し、前記第一のドープ領域よりも低い導電性を示す第二の低導電領域とのうちの少なくとも一方を有する。
前記第一の低導電性領域及び前記第二の低導電性領域のうちの少なくとも一方が真性領域であることが好ましい。
前記リブ導波路が前記第一の低導電領域を有する場合には、前記スラブのうち前記第一の低導電領域直下の領域に、前記第二のドープ領域および前記第一の低導電領域と接して前記第二の導電性を有する第三のドープ領域が存在し、前記スラブのうちその上に前記リブが存在しない部分に前記第二の導電性を有する第四のドープ領域が前記第三のドープ領域と接して存在し、前記第一の低導電性領域のキャリア密度が前記第三のドープ領域のキャリア密度より低く、前記第三のドープ領域のキャリア密度が前記第二のドープ領域のキャリア密度より低く、前記第四のドープ領域のキャリア密度が前記第二のドープ領域のキャリア密度より高いか又は等しく、前記リブ導波路が前記第二の低導電領域を有する場合には、前記スラブのうち前記第二の低導電領域直下の領域に、前記第一のドープ領域および前記第一の低導電領域と接して前記第一の導電性を有する第七のドープ領域が存在し、前記スラブのうちその上に前記リブが存在しない部分に前記第一の導電性を有する第八のドープ領域が前記第七のドープ領域と接して存在し、前記第一の低導電性領域のキャリア密度が前記第三のドープ領域のキャリア密度より低く、前記第七のドープ領域のキャリア密度が前記第一のドープ領域のキャリア密度より低く、前記第八のドープ領域のキャリア密度が前記第一のドープ領域のキャリア密度より高いか又は等しくてもよい。
前記リブ導波路が前記第一の低導電領域を有する場合には、前記導波光の伝搬方向に沿って、前記第二のドープ領域の幅が実質的に一定であり、前記リブ導波路が前記第二の低導電領域を有する場合には、前記導波光の伝搬方向に沿って、前記第一のドープ領域の幅が実質的に一定であってもよい。
前記リブ導波路が前記第二の低導電領域を有しない場合には、前記境界に対して前記第一のドープ領域と同じ側の前記スラブのうちの前記スラブ上に前記リブが存在しない部分まで、前記第一のドープ領域が伸張され、前記リブ導波路が前記第一の低導電領域を有しない場合には、前記境界に対して前記第二のドープ領域と同じ側の前記スラブのうちの前記スラブ上に前記リブが存在しない部分まで、前記第二のドープ領域が伸張されていてもよい。
前記上部クラッド上に存在する第一の金属電極をさらに備え、前記PN接合境界に対して前記第二のドープ領域と同じ側の前記スラブ中、のうちの前記スラブ上に前記突起部リブが存在しない部分に、前記第二の導電性を有する第五のドープ領域が存在し、前記第五のドープ領域と前記上部クラッド上に存在する第一の金属電極とが第一の垂直貫通ビアを介して接続されていてもよい。
前記上部クラッド上に存在する第二の金属電極をさらに備え、前記PN接合境界に対して前記第一のドープ領域と同じ側の前記スラブ中、のうちの前記スラブ上に前記突起部リブが存在しない部分に、前記第一の導電性を有する第六のドープ領域が存在し、前記第六のドープ領域と前記上部クラッド上に存在する第二の金属電極とが第二の垂直貫通ビアを介して接続されていてもよい。
前記光導波路素子が、前記光導波路素子の幅方向に並列して配列される二つの前記リブ導波路である第一のリブ導波路と第二のリブ導波路とを備えてもよい。
前記第一のリブ導波路のスラブのうちの前記第一のリブ導波路の突起部リブよりも前記第二のリブ導波路に近い側の部分とが、第三の垂直貫通ビアを介して、前記上部クラッド上に存在する第三の金属電極に接続され、前記第二のリブ導波路のスラブのうちの前記第二のリブ導波路の突起部リブよりも前記第一のリブ導波路に近い側の部分とが、それぞれ第四の垂直貫通ビアを介して、前記上部クラッド上に存在する電気的に独立した第四の金属電極に接続されていてもよい。
前記第一のリブ導波路のスラブのうちの前記第一のリブ導波路の突起部リブよりも前記第二のリブ導波路に近い側の部分と、前記第二のリブ導波路のスラブのうちの前記第二のリブ導波路の突起部リブよりも前記第一のリブ導波路に近い側の部分とが、それぞれ第三及び第四の垂直貫通ビアを介して、前記上部クラッド上に存在する電気的に共通の第五の金属電極に接続されていてもよい。
本発明の第二態様に係る前記光導波路素子の製造方法は、前記リブ導波路が前記第一の低導電領域を有しかつ前記第二の低導電領域を有しない場合には、前記第一の低導電領域と前記第二のドープ領域との境界となる位置において水平面内でのレジスト側壁の位置が前記リブ導波路における導波光の伝搬方向に沿って波形状に変化し、前記第二のドープ領域となる領域を覆い、前記第一の低導電領域となる領域を露出させた第一のレジストを作製し、前記リブ導波路が前記第二の低導電領域を有しかつ前記第一の低導電領域を有しない場合には、前記第二の低導電領域と前記第一のドープ領域との境界となる位置において水平面内でのレジスト側壁の位置が前記リブ導波路における導波光の伝搬方向に沿って波形状に変化し、前記第一のドープ領域となる領域を覆い、前記第二の低導電領域となる領域を露出させた第二のレジストを作製し、前記リブ導波路が前記第一の低導電領域および前記第二の低導電領域を有する場合には、前記第一のレジストまたは前記第二のレジストを作製するレジスト作製工程と、前記レジスト作製工程の後で、前記第一のレジストまたは前記第二のレジストをトリミングすることにより、前記基板の平面視で前記PN接合となる位置において、水平面内でのレジスト側壁の位置が前記リブ導波路における導波光の伝搬方向に沿って波形状に変化するレジストを形成するトリミング工程を有する。
上記態様に係る光導波路素子によれば、光ファイバ通信用のデバイス、とりわけ長距離またはメトロ系の波長多重光ファイバ通信で利用される光トランスポート装置、およびデータセンタなどで利用される光インタコネクト装置への応用のために、低光損失、高速かつ低駆動電圧での屈折率変調を可能とする光変調器などの小型の光集積回路に適し、品質変動の少ない光導波路素子を実現することができる。
リブ導波路のリブの一例を示す上面図である。 図1の一点鎖線AA’を含む垂直面でのリブ導波路を含む光導波路素子の断面模式図である。 図2の断面におけるフリンジ電界の分布模式図である。 図1の一点鎖線BB’を含む垂直面でのリブ導波路を含む光導波路素子の断面模式図である。 図1の一点鎖線CC’を含む垂直面でのリブ導波路を含む光導波路素子の断面模式図である。 図1〜図5の構成を有するリブ導波路の反射スペクトルを示すグラフである。 屈折率の周期分布がある場合(periodic)とない場合(uniform)の位相シフトの波長依存性を示すグラフである。 リブ導波路の形成を説明する断面図である。 P領域の形成を説明する断面図である。 P+領域およびP−領域の形成を説明する断面図である。 N領域、低導電(真性)領域、N−領域、N+領域およびP領域の形成を説明する断面図である。 真性領域、P−領域、P領域およびP領域の形成を説明する断面図である。 実施例1の光導波路素子(電極等を含む。)の断面模式図である。 第二の例のリブ導波路のリブの一例を示す上面図である。 図14の一点鎖線A’を含む垂直面でのリブ導波路を含む光導波路素子の断面模式図である。 図14の一点鎖線B’を含む垂直面でのリブ導波路を含む光導波路素子の断面模式図である。 図14の一点鎖線C’を含む垂直面でのリブ導波路を含む光導波路素子の断面模式図である。 実施例2の光導波路素子(電極等を含む。)の断面模式図である。 MZ光変調器の構成のブロック図である。 実施例1の光導波路素子を用いた実施例3の位相シフタの断面模式図である。 実施例2の光導波路素子を用いた実施例3の位相シフタの断面模式図である。 実施例1の光導波路素子を用いた実施例4の位相シフタの断面模式図である。 実施例2の光導波路素子を用いた実施例4の位相シフタの断面模式図である。 実施例1の光導波路素子を用いた実施例5の位相シフタの断面模式図である。 実施例2の光導波路素子を用いた実施例5の位相シフタの断面模式図である。 トリミング前の光学レジストを示す模式的な斜視図である。 トリミング後の光学レジストを示す模式的な斜視図である。
低光損失、高速かつ低駆動電圧での屈折率変調に好適な光導波路素子の構成および原理について説明する。図1に、光導波路素子の一部を構成するリブ導波路(コア)のリブの上面図を模式的に示す。リブ導波路を含む光導波路素子の断面図を図2に模式的に示す。
図2に示すように、リブ導波路100は平坦な平板基板111上に形成される。本実施形態では、基板の表面に平行な方向を水平方向、基板の表面に平行な平面を水平面、基板の表面に直交する方向を垂直方向、基板の表面に直交する平面を垂直面と定義する。また、水平方向に平行でかつ導波光の伝搬方向に直交する方向を幅方向と定義する。
図1の上面図はリブ導波路100のリブ114の水平面内での構成を示す。光導波路素子を構成する要素において、幅は水平方向に沿って、高さは垂直方向に沿って、おのおの計測される。リブ導波路100はリブ114およびスラブ115を有する導波路コアであり、結晶性シリコン(Si)で形成される。リブ114は、導波光の伝搬方向に延びる単一の突起部(リッジともいう。)であり、スラブ115上の幅方向中央に位置している。リブ導波路は、一体のコアからリブの幅方向両側をエッチング等で除去して形成することができる。リブ導波路を多結晶シリコンで形成する場合は、スラブの厚みを有する結晶性シリコンの上に多結晶シリコンを堆積し、光学描画とエッチングによりリブを形成することもできる。
リブ導波路100の周囲のクラッド、すなわち下部クラッド112および上部クラッド113は二酸化珪素すなわちシリカ(SiO)で形成される。リブ導波路100のリブ114の幅wribは一例として500〜600nmである。リブ導波路中の導波光の伝搬方向は水平方向でかつ幅wribと直交する方向である。幅wribは導波光の伝搬方向に沿って一定である。
図1に示すように、P型ドーパントが添加されたP領域101およびN型ドーパントが添加されたN領域102は導波光の伝搬方向に沿って波形状に分布する。本実施形態では、P型ドーパントとしてホウ素を、N型ドーパントとして燐を一例として用いるが、これらに限られず、P型ドーパントとなる他の元素(窒素、砒素、アンチモン等)を用いてもよいし、N型ドーパントとなる他の元素(アルミニウム、インジウム等)を用いてもよい。
導波光の伝搬方向に沿って、波形状パターンの半周期をd、すなわち周期を2dとする。P領域101の幅wおよびN領域102の幅wはおのおの導波光の伝搬方向に沿って実質的に一定である。P領域101とN領域102とが接する境界103にはPN接合が形成される。後述するように、P領域101およびN領域102はリブ導波路100中で、リブ114およびリブ114直下のスラブ115にわたる領域に存在している。垂直方向にはリブ114の頂上部116からスラブ115の底面117までP領域101およびN領域102が存在する。水平方向において、P領域101およびN領域102の合計の幅がリブ114の幅wribより狭い。また、P領域101およびN領域102が導波光の伝搬方向に拡がっている範囲は屈折率変調などの目的に合わせた有限の区間である。境界103は垂直方向にはリブ114の頂上部116からスラブ115の底面117まで形成され、水平方向には導波光の伝搬方向に延びる波形状の線となる。
図1の光導波路素子には逆バイアス電圧が印加されており、空乏領域104が境界103を含みPN接合のP領域101側およびN領域102側に拡がって存在する。空乏領域104のP領域101側およびN領域102側への拡がり幅は、逆バイアス電圧の絶対値が大きくなるにともない増大する。wribに沿う方向で境界103の位置が変化する振幅を幅wとする。幅の値の例を挙げると、wribが500nmの場合、wは120nm、wは90nm、wは130nmである。
真性領域105は、P領域101より導電性が低減された低導電性領域である。また、真性領域106は、N領域102より導電性が低減された低導電性領域である。P型ドーパント濃度が低減された(P領域101よりも導電率が低い)真性領域105およびN型ドーパント濃度が低減された(N領域102よりも導電率が低い)真性領域106によって光損失の低減および寄生容量の低減が可能となる。真性領域105および真性領域106の水平方向の拡がりは伝搬方向に沿って波形状に変化する。その波形状の変化の周期はP領域101およびN領域102の周期と同一である。真性領域105の最大幅をwIPとし、真性領域106の最大幅をwINとする。一例としてwIPおよびwINはともに210nmである。また、wribが600nmの場合には、wは230nmである。ただし、各部の幅は上記の例に限られず、加工プロセスの寸法精度と同時に光損失、駆動電圧および動作速度を勘案して最適化すればよい。
加工精度の制限により、w、w、wIPおよびwINに対して、最大で約±80nmの加工誤差が生ずる。性能の変動を抑制し量産性を高めるには、加工プロセスの最適化を行なって加工精度を向上させ、加工誤差は約±40nm以下であることが好ましい。本発明における実施例では、導波光の伝搬方向に沿ってwおよびwは実質的に一定としている。しかし、これに限られず、wIPおよびwINが導波光の伝搬方向に沿って実質的に一定となるように、wおよびwを変化させてもよい。PN接合の境界の位置の波形状の変化に対して、山および谷の位置には上記の加工誤差が含まれる。山および谷の位置についても、加工誤差は約±40nm以下であることが好ましい。
図1の一点鎖線AA’を含む垂直面でのリブ導波路を含む光導波路素子の断面模式図を図2に示す。一点鎖線AA’は、導波光の伝搬方向に沿う直線軸上で境界103がwribの中点に位置する点のひとつを通り、wribと平行に描かれている。図2では、リブ導波路100を含む光導波路素子の内部構成の一部、基板111、下部クラッド112および上部クラッド113が示されており、金属電極および金属電極に接するドープ領域は図示されていない。基板111上に下部クラッド112が設けられ、下部クラッド112上にリブ導波路100が設けられ、リブ導波路100上に上部クラッド113が設けられている。基板111には結晶性Si、下部クラッド112および上部クラッド113にはSiOを用いる。下部クラッド112および上部クラッド113は実質的に平板状である。
P領域101とN領域102の境界103上にPN接合が形成され、逆バイアス電圧下では境界103上および境界103のP領域101側とN領域102側とに拡がって空乏領域104が形成される。リブ114は、幅方向両側にそれぞれ側壁118および119を有する。リブ114の側壁のうちN領域102よりもP領域101に近い方の側壁118とP領域101との間には、真性領域105が位置する。真性領域105はリブ導波路100のリブ114の一方の側壁118と境界を接している。リブ114の側壁のうちP領域101よりもN領域102に近い方の側壁119とN領域102との間には、真性領域106が位置する。真性領域106はリブ導波路100のリブ114の他方の側壁119と境界を接している。
図1に示すように、真性領域105は、P領域101と接していて、リブ114中のP領域101に対してPN接合とは反対側の領域に広がり、側壁118と接している。同様に、真性領域106は、N領域102と接していて、リブ114中のN領域102に対してPN接合とは反対側の領域に広がり、側壁119と接している。すなわち、真性領域105と側壁118との間及び、真性領域106と側壁119との間には、ドープ領域を有していない。真性領域105とP領域101との間、及び真性領域106とN領域102との間におけるキャリア密度の変化は、不連続的、一段階的、多段階的、あるいは連続的であり得る。
真性領域105の下側のスラブ115にはP−領域107が存在する。P−領域107は、真性領域105直下でのスラブ115を含む領域に、P領域101および真性領域105と接して存在する。真性領域105のキャリア密度はP−領域107のキャリア密度より低い。P−領域107の導電性はP領域101と同じくP型であり、P−領域107のキャリア密度はP領域101のキャリア密度より低い。P−領域107の外側(P領域101と反対側)のスラブ115には、P領域108が存在する。P領域108はP−領域107に接しているが、P領域101には接していない。P領域108の導電性はP領域101と同じくP型である。P領域108のキャリア密度はP領域101のキャリア密度に等しい。P領域108は、スラブ115の上にリブ114が存在しない部分に設けられ、スラブ115の頂上部120に接している。
一方、真性領域106の下側のスラブ115にはN−領域109が存在する。N−領域109は、真性領域106直下でのスラブ115を含む領域に、N領域102および真性領域106と接して存在する。真性領域106のキャリア密度はN−領域109のキャリア密度より低い。N−領域109の導電性はN領域102と同じくN型であり、N−領域109のキャリア密度はN領域102のキャリア密度より低い。N−領域109の外側(N領域102と反対側)のスラブ115には、N+領域110が存在する。N+領域110は、N−領域109に接しているが、N領域102には接していない。N+領域110の導電性はN領域102と同じくN型であり、N+領域110のキャリア密度はN領域102のキャリア密度より高い。N+領域110は、スラブ115の上にリブ114が存在しない部分に設けられ、スラブ115の頂上部120に接している。
なお、N−領域109の外側にN+領域110を設けたのと同様に、P−領域107の外側には、P領域108に代えて、キャリア密度がP領域101のキャリア密度より高いP+領域を設けることもできる。また、P−領域107の外側にP領域108を設けたのと同様に、N−領域109の外側には、N+領域110に代えて、キャリア密度がN領域102のキャリア密度に等しいN領域を設けることもできる。
本実施形態では、P型ドーパントの有する導電性(P型の導電性)およびN型ドーパントの有する導電性(N型の導電性)から互いに異なるように選択されるいずれか一方の導電性を第一の導電性とし、他方の導電性を第二の導電性と定義する。本発明のある実施形態では、単一のリブ導波路(コア)に対して、水平方向に沿って、第一の導電性を有する領域がそのリブ導波路(コア)におけるリブの幅方向の中心から左側に、第二の導電性を有する領域がリブ導波路(コア)におけるリブの幅方向の中心から右側に、それぞれ配置される。他の実施形態では、この配置が水平方向(幅方向)に反転されるが、単一のリブ導波路(コア)を有する光導波路素子として得られる効果は同等である。また、前述の定義において、第一の導電性と第二の導電性とが入れ替えられても、同様の効果が得られる。つまり、P型の導電性を第一の導電性とし、N型の導電性を第二の導電性とするか、N型の導電性を第一の導電性とし、P型の導電性を第二の導電性とするかは任意である。
スラブ115の上にリブ114が存在しない領域のうち、リブ114から水平方向(幅方向)に離れた外側の部分には、キャリア密度が非常に高く、金属電極との電気的接続に適したP++領域およびN++領域が設けられる(図13のP++領域251およびN++領域252を参照)。バイアス電圧は、P++領域およびN++領域の間で水平方向(幅方向)に印加される。
図1に模式的に示した波形状のPN接合の境界103を有する光導波路素子では、直線状のPN接合の境界を有する光導波路素子と比較して、導波光の伝搬方向に沿うPN接合の実効的な長さを伸張することができ、駆動電圧を低減することができる。境界103を形成するための光リソグラフィにおいて、光学マスクの位置あわせ誤差が波形状のPN接合の分布により平均化され解消する。これにより、チップごとの特性の変動を低減することができる。PN接合の実効的な長さが伸張すると、光損失が増大し、かつ寄生容量が増して抵抗・容量(RC)時定数が増大し動作速度が低下する。よって、これらを回避する機構を導入する必要がある。本実施形態によれば、以下に記述するように、光損失の増大および寄生容量の増大をともに回避することが可能となる。
リブ導波路100のリブ114の両方のリブ側壁118および119に隣接する領域では、バイアス電圧を変化させてもキャリア密度は実質的に変化しない。これらの領域を真性領域105および真性領域106とすることにより、リブ導波路の光損失を低減することができる。コアの下部のスラブにおいて、真性領域105および真性領域106おのおのの直下付近では、バイアス電圧の変化にともなうキャリア密度の変化は小さい。これらの領域をキャリア密度の低いP−領域107およびN−領域109とすることにより、リブ導波路の光損失を低減できる。バイアス電圧を印加する際、P−領域107およびN−領域109はおのおの直列抵抗の要因となるので、高速動作を損なわないよう、おのおのの抵抗値を最適化する必要がある。
キャリア密度が低減するとクーロン相互作用が低下するので、真性領域105と真性領域106との間でのフリンジ容量およびP−領域107とN−領域109との間でのフリンジ容量は無視できる程度になる。図3に、図2の断面におけるフリンジ電界の分布を模式的に示した。曲線はフリンジ電界に対応する電気力線である。これら電気力線を明示するため、構成要素の符号は省略している。電気力線が密に分布する領域はクーロン相互作用が強く容量が高い。P領域101とN領域102とのフリンジ容量が主となる。フリンジ容量は寄生容量となり、高速動作を損なう要因である。真性領域105、真性領域106、P−領域107およびN−領域109をリブ導波路(コア)に導入することにより寄生容量を低減することができ、本実施形態の光導波路素子の高速屈折率変調が可能となる。
図1の一点鎖線BB’を含む垂直面でのリブ導波路の断面模式図を図4に示す。図4では、各構成要素の符号は図2と同一である。一点鎖線BB’は、導波光の伝搬方向に沿う直線軸上での周期2dの範囲内において、P領域101が境界103と反対側にあるリブ114の側壁118に最も接近する点を通り、wribと平行に描かれている。この点では、一点鎖線BB’に沿う方向での真性領域106の幅は最大となる。この幅をwINとする。
図1の一点鎖線CC’を含む垂直面でのリブ導波路の断面模式図を図5に示す。図5では、各構成要素の符号は図2と同一である。一点鎖線CC’は、導波光の伝搬方向に沿う直線軸上での周期2dの範囲内において、N領域102が境界103と反対側にあるリブ114の側壁119に最も接近する点を通り、wribと平行に描かれている。この点では、一点鎖線CC’に沿う方向での真性領域105の幅は最大となる。この幅をwIPとする。
SiにP型もしくはN型ドーパントを添加してキャリアを分布させると、屈折率が減少する。図1〜図5の構成を有するリブ導波路では、導波光の伝搬方向に屈折率が周期分布するためブラッグ反射の影響が無視できない。母体媒質であるSi中にドーパントの周期分布による低屈折率の周期分布が生ずるため、負性屈折率コントラストを有するブラッググレーティングが形成される。導波光の伝搬方向に急峻な界面を有する矩形波状の屈折率分布を想定し、transfer matrix method(TMM)により反射スペクトルを求めると、図6に示すグラフのようの表される。ここで、ブラッグ波長は1570.1nmである。導波光の伝搬方向に沿うリブ導波路の長さは3mmである。
図6に示すように、ブラッグ波長を中心に反射が強く、ストップバンドが生じている。真性領域105、真性領域106、P−領域107およびN−領域109をリブ導波路(コア)に導入することにより、リブ導波路中の屈折率の周期変化のコントラストが高まり、強い反射が生じている。反射を抑えてリターンロスを30dB以上とするにはブラッグ波長を使用する波長帯から5nm以上離す必要がある。図1の波形状分布では、物理構造上の周期は2dであるが、wIP=wINである等、一点鎖線BB’を含む垂直面での実効屈折率と一点鎖線CC’を含む垂直面での実効屈折率が実質的に等しいため、導波光の伝搬方向に沿う軸上に射影した屈折率分布の周期、すなわちブラッググレーティングの周期dはdおよび2dの二通りとなる。上記TMMを用いた反射スペクトルの導出では、dをdに設定している。d=2dに対応するストップバンドは、d=dに対応したストップバンドにおける波長の倍の波長で生ずるので、d=dに対応したストップバンド付近の波長領域では、実質的に無視できる。なお、条件によっては、高次のストップバンドの影響が強くなるなどの現象が生じ、リブの幅方向両側に真性領域を有するとしても、ブラッググレーティングの周期dが物理構造上の周期2dに等しくなり、dがブラッググレーティングの周期dにならない場合もある。
本発明の光導波路素子は光通信の波長帯であるCおよびLバンドで好適に使用できる。この場合、CおよびLバンドがストップバンドの短波長側の波長領域に対応するよう、dを調節する。ストップバンドの短波長側を使用する理由は後述する。wribを500nm、スラブ115の底面117からリブ114の頂上部116までの高さhribを220nm、スラブ115の底面117からスラブ115の頂上部120までの高さhslabを95nm、波長を1550nmとすると、本発明のリブ導波路(Siコア)とSiOクラッドとを有する光導波路の実効屈折率neffは2.6となる。wribの変動によるneffの変動は1%より小さい。Lバンドの長波長端の波長(1620nm)にリターンロス30dB以上を確保するためのマージン5nmを加えて1625nmとし、この波長をブラッグ波長λとすると、式(1)よりdは313nmとなる。
Figure 0006336113
=dであるので、d≧313nmであれば、CおよびLバンドでのリターンロスを30dB以上とすることができる。また、wribを600nmとすると、neffは2.6より大きくなるので、同じdに対してλはさらに長波長側にシフトし、リターンロスはさらに増加し、ブラッグ反射の発生を抑制できる。高精度の加工プロセスを使用すると変動マージンは必要でなく、所望の波長帯の長波長端を上記ブラッグ波長に設定してよい。
導波光の伝搬方向に屈折率が周期分布すると、図7のように位相シフトの波長依存性を低減することができる。これは波長多重伝送への応用では好ましい。図7の屈折率の周期分布がある場合(periodic)の特性は、図6の反射スペクトルと同じモデルを用いて導出した。比較のために、PN接合の境界が波形状に変化せず一様な直線状である場合(uniform)の特性を図7にプロットしている。ストップバンドの両側の波長帯で位相シフトの波長依存性が低減している。uniformの場合、一定の位相シフトを発生するのに必要な導波路長は導波光の波長に比例するため、位相シフトは波長増加にともない減少している。periodicの場合、多重反射による位相増強が発生し、位相シフトの波長依存性が低減する。これは負性コントラストを有するブラッググレーティングを用いることによる利点である。
伝送波長としてストップバンドの短波長側を利用すると、周期2dに対応するストップバンドの波長帯からの分離が大きくなるので、目的がリターンロスを増加してブラッグ反射を低減することである場合に有効である。さらに、短波長側を利用すると、ブラッグ波長がCおよびLバンドより長波長となる。そのため、加工誤差に対してdがより大きくなって加工精度がさらに向上し、品質変動を低減することがより容易になる。
<実施例1>
前述の構成および原理に基づいて機能する光導波路素子の作製方法および構成の詳細について、図2の断面構成を例として説明する。silicon on insulator(SOI)ウエファを用い、光リソグラフィとエッチングによりSOI層中に図8に示したリブ導波路200を形成する。SOIウエファの基板が基板211となり、SOIウエファの埋め込み酸化層が下部クラッド212となる。下部クラッド212の垂直方向の厚みは2μmである。
リブ導波路200上に光学レジストを塗布し、光リソグラフィにより図9に示した断面形状の光学レジスト221を得る。リブ導波路200の中央のリブ214の頂上部216および両側の側壁218,219と、スラブ215のうちリブ214の幅方向片側(リブ214の左側)の頂上部220A全域およびこの頂上部220Aに対しリブ214をはさんで幅方向逆側に位置する頂上部220Bのリブ214と接する領域の上の光学レジストが除去され露出されている。スラブ215のうち、頂上部220Aおよび220Bは、その上にリブ214が存在しないで露出した部分である。
ribの中心すなわちリブ214の水平面内での幅方向の中心から光学レジスト221の側壁222までの水平距離wは700nmである。イオン注入によりリブ導波路200の表面が露出した領域にP型ドーパントであるホウ素を露出部に注入し、P領域223が形成される。光学レジスト221直下はアンドープ領域224である。
光学レジスト221を除去後、光学レジストを塗布し、図10の断面形状を有する光学レジスト231を形成する。光学レジスト231の側壁232は、図26に示すように波形状である。光学レジスト231はリブ214の左側に位置するスラブ215の頂上部220A全域とリブ214の一部を被覆している。リブ導波路200の表面が露出した領域から内部にホウ素をイオン注入し、P+領域233を得る。イオン注入は2ステップで行なわれる。スラブ部の表面を境界として、P+領域233において、その境界よりも上側の領域におけるキャリア密度はその境界よりも下側の領域のキャリア密度よりも高い。イオンの拡散により、その境界でのキャリア密度変化は急峻(abrupt)でなく、緩やか(graded)である。後述のキャリア密度の関係式が満足されるように、各ステップでのイオン加速電圧を調整する。図9のアンドープ領域224はP−領域234へと転化される。光学レジスト231直下のP領域223の電気特性は変化しない。
光学レジスト231は除去されずにトリミング(図27参照)を施されることによって、図11に示した断面形状を得る。リブ214の頂上部216上で光学レジスト231の側壁235の位置が後退し、トリミング前に比べてより広い範囲の頂上部216が露出される。図26および図27では、リブ導波路200の断面においてドープ領域の区別を省略し、単一のハッチングを施している。図10および図26におけるトリミング前の側壁232の形状は、図11〜13におけるN領域236と真性領域237とにおける波形状の境界に対応する。図11および図27におけるトリミング後の側壁235の形状は、図12および図13における波形状のPN接合の境界に対応する。この2種類の波形状の境界が1つの光学レジスト231により形成できるので、レジストの除去及び形成を繰り返した場合に比べて、波形状パターンの位置ずれを抑制することができる。トリミングの方法としては、Oプラズマ等によりレジストを部分的に酸化除去する方法が挙げられる。レジスト側壁の後退量(変位)は、処理の強さ及び時間等により調整可能である。光学レジストの厚さがトリミング時に減少する場合、あらかじめ十分な光学レジストの厚さを確保する。
リブ導波路200の表面が露出した領域にN型ドーパントである燐がイオン注入され、P領域223の表面が露出した部分はN領域236へと転化される。図10のP+領域233は真性領域237とN−領域238へと転化される。図10のP−領域234はN+領域239へと転化される。真性領域237はリブ214の右側の側壁と境界を接している。真性領域237直下のスラブ部にN−領域238が形成される。N領域236、真性領域237およびN−領域238は互いに境界を接している。N−領域238とN+領域239とは境界を接している。光学レジスト231直下のP領域223の電気特性は変化しない。P領域223とN領域236との境界240にPN接合が形成される。図11の断面図では、ゼロバイアス電圧でのPN接合が示されている。空乏領域の幅は無視できるため、表示されていない。
光学レジスト231を除去後、光学レジスト塗布および光リソグラフィにより、図12に示した断面形状を有する光学レジスト241および242を得る。リブ214の水平面内で幅方向の中心から光学レジスト231の側壁243までの水平距離wは700nmである。光学レジスト242の側壁244は、波形状である。リブ導波路200の表面が露出した領域から内部にN型ドーパントである燐が二段階でイオン注入され、P領域223の表面が露出した部分の直下は真性領域245とP−領域246とに転化される。真性領域245はリブ214の左側の側壁に境界を接している。真性領域245直下のスラブ215にP−領域246が形成される。光学レジスト241および242直下にあたるP領域223のおのおのの部分の電気特性は変化しないが、区別のため、光学レジスト241直下にあたる部分をP領域247、光学レジスト242直下にあたる部分をP領域248とする。P領域248、真性領域245およびP−領域246は互いに境界を接している。P−領域246およびP領域247は境界を接している。
光学レジスト241および242が除去された後、電気的接続における接触抵抗を低減するため、図13に示すように、P領域247の一部の領域にイオン注入によりP++領域251が形成される。さらに、N+領域239の一部の領域にイオン注入によりN++領域252が形成される。P領域247およびN+領域239の残りの部分の電気特性は変化しない。P++領域251およびN++領域252が形成される順序は逆転されてもよい。
真性領域245、P−領域246、P領域248およびP++領域251のキャリア密度をそれぞれpIP、pP−、pおよびpP++と表し、真性領域237、N−領域238、N領域236、N+領域239、およびN++領域252のキャリア密度をそれぞれ、nIN、nN−、n、nN+およびnN++とあらわすと、以下の関係式が成り立つ。
IP<pP−<p<pP++ (2)
IN<nN−<n<nN+<nN++ (3)
例えば、pIPおよびnINは1×1017cm−3より小さく、好ましくは1×1016cm−3以下である。pおよびnは例えば1×1018cm−3から5×1018cm−3であり、pP++およびnN++は1×1019cm−3以上である。P領域247のキャリア密度はpに等しい。以下の実施例でも同様の関係式が成り立つ。しかし、キャリア密度の値は必ずしも例示した値の範囲に限られず、低電圧駆動、低光損失および高速駆動に適するように設定すればよい。
リブ導波路200上にSiOを積層することで、垂直方向の厚み2μmの上部クラッド213が形成される。上部クラッド213中には貫通孔が形成され、垂直貫通接続(vertical interconnect access)のためのビア電極(via electrode)253および254が形成される。上部クラッド213上には進行波電極255および256が形成される。進行波電極255および256は、例えばコプレナ導波路あるいはコプレナストリップ線路など高周波電気信号を伝搬する進行波電極の一部である。ビア電極253および254と進行波電極255および256とはアルミニウムで形成されている。進行波電極255もしくは256に高周波電気信号を印加することで、逆バイアス下の境界240においてPN接合の空乏層の幅、あるいは順バイアス下の境界240においてPN接合に流れる電流が変調され、リブ導波路の屈折率が高速変調される。
<実施例2>
本実施例では、本発明の光導波路素子の第二の構成について説明する。図14に、本実施例におけるリブリブの上面図を模式的に示す。リブ導波路を含む光導波路素子の断面図を図15に模式的に示す。基板311、下部クラッド312、上部クラッド313、リブ導波路300のリブ314及びスラブ315の構成は、それぞれ実施例1の基板111、下部クラッド112、上部クラッド113、リブ導波路100のリブ114及びスラブ115と同様であるので、重複する説明は省略する。
P型ドーパントが添加されたP領域301およびN型ドーパントが添加されたN領域302は導波光の伝搬方向に沿って波形状に分布する。N領域302の幅wN2は導波光の伝搬方向に沿って実質的に一定であり、wN2=w(図1参照)である。例えば、wrib2が500nmに対して、wN2は90nmである。一方、P領域301の幅は導波光の伝搬方向に沿ってwP2からwP3までの範囲で変化する。
P領域301とN領域302とが接する境界303には、PN接合が形成される。本実施例においても、光導波路素子には逆バイアス電圧が印加されており、空乏領域304が境界303からPN接合のP領域301およびN領域302に向けて拡がって存在する。波形状パターンの周期は2dである。P領域301およびN領域302はリブ導波路300中で、リブ314およびリブ314直下のスラブ315にわたる領域に存在している。垂直方向にはリブ314の頂上部316からスラブ315の底面317までP領域301およびN領域302が存在する。水平方向にはP領域301およびN領域302が導波光の伝搬方向に拡がっている範囲は屈折率変調などの目的に合わせた有限の区間である。実施例1と同様に、境界303は垂直方向にはリブ314の頂上部316からスラブ315の底面317まで形成され、水平方向には導波光の伝搬方向に延びた波形状の線となる。
リブ314の幅wrib2は実施例1の場合(図1参照)に等しく、wrib2=wribである。wrib2に沿う方向で境界303の位置が変化する振幅を幅wC2とする。wC2は実施例1におけるwの値に等しい。例えば、wrib2が500nmに対して、wC2は130nmである。P領域301の幅の最小値および最大値をwP2およびwP3とすると、wP2=200nmおよびwP3=330nmである。この場合、wP3は、wP2とwC2との和に等しい。
本実施例のリブ導波路においても、導波光の伝搬方向に屈折率が周期分布してブラッグ反射が生じ、負性屈折率コントラストを有するブラッググレーティングが形成される。本実施例では、リブの幅方向片側のみに真性領域を有し、一点鎖線B’を含む垂直面での実効屈折率と一点鎖線C’を含む垂直面での実効屈折率が異なるため、ブラッググレーティングの周期dは物理構造上の周期2dに等しい。つまり、d=2dである。よって、2d≧313nmであれば、CおよびLバンドでのリターンロスを30dB以上とすることができる。
一点鎖線A’を含む垂直面でのリブ導波路を含む光導波路素子の構成の一部を図15の断面模式図に示す。一点鎖線A’は、導波光の伝搬方向に沿う直線軸上で境界303がwrib2の中点に位置する点のひとつを通り、wrib2と平行に描かれている。基板311上に下部クラッド312、リブ導波路300および上部クラッド313が設けられる。リブ導波路300中に、P領域301、N領域302、P領域301およびN領域302の境界303、境界303上のPN接合の空乏領域304、リブ導波路300のリブ314の側壁319に境界を接する真性領域306、真性領域306の直下のスラブ315に位置するN−領域309、その外側のN+領域310が形成される。P領域301は、スラブ315上にリブ314が存在しない部分まで、伸張されている。
一点鎖線B’を含む垂直面でのリブ導波路を含む光導波路素子の断面模式図を図16に示す。一点鎖線B’は、導波光の伝搬方向に沿う直線軸上での周期2dの範囲内において、N領域302が境界303と反対側にあるリブ314の側壁319から最も離れる点を通り、wrib2と平行に描かれている。この点では、一点鎖線B’に沿う方向での真性領域306の幅は最大となる。この幅をwIN2とする。wIN2=wIN(図1参照)である。例えば、wrib2が500nmに対して、wIN2は210nmである。
一点鎖線C’を含む垂直面でのリブ導波路を含む光導波路素子の断面模式図を図17に示す。一点鎖線C’は、導波光の伝搬方向に沿う直線軸上での周期2dの範囲内において、N領域302が境界303と反対側にあるリブ314の側壁319に最も接近する点を通り、wrib2と平行に描かれている。
本実施例の光導波路素子の断面模式図を図18に示す。本素子の作製においては、図11におけるN領域236、真性領域237、N−領域238、N+領域239およびP領域223の形成段階まで、実施例1と同一の加工プロセスが用いられる。その後、イオン注入により、P++領域251およびN++領域252が形成される。リブ導波路200上にSiOが積層され、垂直方向の厚み2μmの上部クラッド213が形成される。上部クラッド213中に貫通孔が形成され、ビア電極253および254が形成される。上部クラッド213上に進行波電極255および256が形成される。wP4はwP2=200nmおよびwP3=330nmの中間値であり、wP4=265nmである。
本実施例の光導波路素子では、図18のように、リブの側壁のうちN領域236よりもP領域223リブに近い方の側壁に隣接する真性領域が存在せず、より簡便な作製が可能である。よって、加工誤差による光学特性の変動が実施例1の素子より小さくなり、より品質変動の少ない光導波路素子を提供することができる。
<実施例3>
実施例1もしくは実施例2に記載された光導波路素子を用いて、Mach−Zehnder(MZ)光変調器として機能する光導波路素子の構成について説明する。MZ光変調器の構成のブロック図を図19に示す。MZ光変調器は以下の構成からなる:
入射導波路1905;
1×2分波部1903;
導波路1906、位相シフタ1901および導波路1908からなる第1のアーム;
導波路1907、位相シフタ1902および導波路1909からなる第2のアーム;
2×1合波部1904;
出射導波路1910。
1×2分波部1903の1つの入力部は入射導波路1905に接続され、1×2分波部1903の2つの出力部はそれぞれ2つのアームに接続されている。2×1合波部1904の2つの入力部はそれぞれ2つのアームに接続され、2×1合波部1904の1つの出力部は出射導波路1910に接続されている。
入射導波路1905、導波路1906、1907、1908および1909、出射導波路1910はSi矩形コアを有する。矩形コアの幅は実施例1もしくは実施例2に記載されたリブ導波路のリブの幅に等しい。矩形コアの高さはリブ導波路の高さ(図8のhrib)に等しい。矩形コアとリブ導波路との接続部では、矩形コアの上部がリブ導波路のリブに接続され、矩形コアの下部とリブ導波路のスラブとに接続される。
図19におけるMZ光変調器はSOIウエファ上にモノリシック集積化により作製される。位相シフタ1901および1902はおのおの単一のリブ導波路(コア)を有し、SOI基板上に互いに隣接して形成される。図19のMZ光変調器は複数のリブ導波路(コア)を有する光導波路素子である。
図20に、実施例1に記載された光導波路素子を用いて構成された位相シフタ1901および1902の一点鎖線DD’を含む垂直面における断面模式図を示す。断面模式図の左側半分が位相シフタ1901に、右側半分が位相シフタ1902に対応する。
基板2037上に下部クラッド2038が設けられる。下部クラッド2038上には、位相シフタ1901の導波路のコアとなるリブ導波路2001および位相シフタ1902の導波路のコアとなるリブ導波路2021が設けられる。リブ導波路2001および2021上に、上部クラッド2039が設けられる。リブ導波路2001とリブ導波路2021との間のSOI層は除去され、シリカが充填される。位相シフタ1901と位相シフタ1902との間で、SOI層を介した電気的コンダクタンスが無視できる場合には、SOI層は除去される必要はない。SOI層の除去にかかるこの議論は、以下でも同様に適用される。
図20における位相シフタ1901および位相シフタ1902おのおのの構成は実施例1と同様である。
リブ導波路2001中には、P領域2002、N領域2003、境界2006、真性領域2004、真性領域2005、P−領域2007、N−領域2008、P領域2009、N+領域2010、P++領域2011およびN++領域2012が形成される。ビア電極2013を介して進行波電極2015とP++領域2011とが電気的に接続され、ビア電極2014を介して進行波電極2016とN++領域2012とが電気的に接続される。
リブ導波路2021中には、P領域2022、N領域2023、境界2026、真性領域2024、真性領域2025、P−領域2027、N−領域2028、P領域2029、N+領域2030、P++領域2031およびN++領域2032が形成される。ビア電極2033を介して進行波電極2035とP++領域2031が、ビア電極2034を介して進行波電極2036とN++領域2032が電気的に接続される。
図21に、実施例2に記載された光導波路素子を用いて構成された位相シフタ1901および1902の一点鎖線DD’を含む垂直面における断面模式図を示す。基板2137上に下部クラッド2138が設けられる。下部クラッド2138上には、位相シフタ1901の導波路のコアとなるリブ導波路2101および位相シフタ1902の導波路のコアとなるリブ導波路2121が設けられる。リブ導波路2101および2121上に、上部クラッド2139が設けられる。位相シフタ1901および位相シフタ1902おのおのの構成は実施例2と同様である。
リブ導波路2101中には、P領域2102、N領域2103、境界2106、真性領域2105、N−領域2108、N+領域2110、P++領域2111およびN++領域2112が形成される。ビア電極2113を介して進行波電極2115とP++領域2111とが電気的に接続され、ビア電極2114を介して進行波電極2116とN++領域2112とが電気的に接続される。
リブ導波路2121中には、P領域2122、N領域2123、境界2126、真性領域2125、N−領域2128、N+領域2130、P++領域2131およびN++領域2132が形成される。ビア電極2133を介して進行波電極2135とP++領域2131とが電気的に接続され、ビア電極2134を介して進行波電極2136とN++領域2132とが電気的に接続される。
本実施例における上記二つの構成では、位相シフタ1901と位相シフタ1902とが独立しているので、両者の間で、電気的クロストークを低減され、高消光比もしくは高Q値を達成することが容易である。
<実施例4>
実施例1もしくは実施例2に記載された光導波路素子を用いて、図19のブロック図に示されたMach−Zehnder(MZ)光変調器として機能する光導波路素子の他の構成について説明する。
図22に、実施例1に記載された光導波路素子を用いて構成された位相シフタ1901および1902の一点鎖線DD’を含む垂直面における断面模式図を示す。基板2237上に下部クラッド2238が設けられる。下部クラッド2238上には、位相シフタ1901の導波路のコアとなるリブ導波路2201および位相シフタ1902の導波路のコアとなるリブ導波路2221が設けられる。リブ導波路2201および2221上に、上部クラッド2239が設けられる。
リブ導波路2201中には、P領域2202、N領域2203、境界2206、真性領域2204、真性領域2205、P−領域2207、N−領域2208、P領域2209、N+領域2210、P++領域2211およびN++領域2212が形成される。ビア電極2213を介して進行波電極2215とP++領域2211とが電気的に接続され、ビア電極2214を介して進行波電極2216とN++領域2212とが電気的に接続される。
リブ導波路2221中には、P領域2222、N領域2223、境界2226、真性領域2224、真性領域2225、P−領域2227、N−領域2228、P領域2229、N+領域2230、P++領域2231およびN++領域2232が形成される。ビア電極2233を介して進行波電極2216とP++領域2231とが電気的に接続され、ビア電極2234を介して進行波電極2236とN++領域2232とが電気的に接続される。
図23に、実施例2に記載された光導波路素子を用いて構成された位相シフタ1901および1902の一点鎖線DD’を含む垂直面における断面模式図を示す。基板2337上に下部クラッド2338が設けられる。下部クラッド2338上には、位相シフタ1901の導波路のコアとなるリブ導波路2301および位相シフタ1902の導波路のコアとなるリブ導波路2321が設けられる。リブ導波路2301および2321上に、上部クラッド2339が設けられる。
リブ導波路2301中には、P領域2302、N領域2303、境界2306、真性領域2305、N−領域2308、N+領域2310、P++領域2311およびN++領域2312が形成される。ビア電極2313を介して進行波電極2315とP++領域2311とが電気的に接続され、ビア電極2314を介して進行波電極2316とN++領域2312とが電気的に接続される。
リブ導波路2321中には、P領域2322、N領域2323、境界2326、真性領域2325、N−領域2328、N+領域2330、P++領域2331およびN++領域2332が形成される。ビア電極2333を介して進行波電極2316とP++領域2331とが電気的に接続され、ビア電極2334を介して進行波電極2336とN++領域2332とが電気的に接続される。
本実施例における上記二つの構成では、位相シフタ1901のN++領域2212もしくは2312と位相シフタ1902のP++領域2231もしくは2331とがおのおの進行波電極2216もしくは2316によって電気的に接続され、簡便な進行波電極の構成になり、小型のMZ光変調器を提供することができる。また、進行波電極2216もしくは2316に高周波電気信号を印加することにより、MZ光変調器をプッシュ‐プル駆動できる。よって、単一の高周波信号源によるゼロチャープ変調が可能となり、高周波電気駆動回路を簡易にすることができる。
<実施例5>
実施例1もしくは実施例2に記載された光導波路素子を用いて、図19のブロック図に示されたMach−Zehnder(MZ)光変調器として機能する光導波路素子のさらに他の構成について説明する。
図24に、実施例1に記載された光導波路素子を用いて構成された位相シフタ1901および1902の一点鎖線DD’を含む垂直面における断面模式図を示す。基板2437上に下部クラッド2438が設けられる。下部クラッド2438上には、位相シフタ1901の導波路のコアとなるリブ導波路2401および位相シフタ1902の導波路のコアとなるリブ導波路2421が設けられる。リブ導波路2401および2421上に、上部クラッド2439が設けられる。
リブ導波路2401中には、P領域2402、N領域2403、境界2406、真性領域2404、真性領域2405、P−領域2407、N−領域2408、P領域2409、N+領域2410、P++領域2411およびN++領域2412が形成される。ビア電極2413を介して進行波電極2415とP++領域2411とが電気的に接続され、ビア電極2414を介して進行波電極2416とN++領域2412とが電気的に接続される。
リブ導波路2421中には、P領域2422、N領域2423、境界2426、真性領域2424、真性領域2425、P−領域2427、N−領域2428、P領域2429、N+領域2430、P++領域2431およびN++領域2432が形成される。ビア電極2433を介して進行波電極2416とN++領域2432とが、ビア電極2434を介して進行波電極2436とP++領域2431とが電気的に接続される。
位相シフタ1902では、位相シフタ1901に対して境界2426に沿う垂直軸周りにドーパントを分布させた各領域の配置が反転されている。
実施例2に記載された光導波路素子を用いて構成された位相シフタ1901および1902の一点鎖線DD’を含む垂直面における断面模式図を図25に示す。基板2537上に下部クラッド2538が設けられる。下部クラッド2538上には、位相シフタ1901の導波路のコアとなるリブ導波路2501および位相シフタ1902の導波路のコアとなるリブ導波路2521が設けられる。リブ導波路2501および2521上に、上部クラッド2539が設けられる。
リブ導波路2501中には、P領域2502、N領域2503、境界2506、真性領域2505、N−領域2508、N+領域2510、P++領域2511およびN++領域2512が形成される。ビア電極2513を介して進行波電極2515とP++領域2511とが電気的に接続され、ビア電極2514を介して進行波電極2516とN++領域2512とが電気的に接続される。
リブ導波路2521中には、P領域2522、N領域2523、境界2526、真性領域2525、N−領域2528、N+領域2530、P++領域2531およびN++領域2532が形成される。ビア電極2533を介して進行波電極2516とN++領域2532とが電気的に接続され、ビア電極2534を介して進行波電極2536とP++領域2531とが電気的に接続される。
位相シフタ1902では、位相シフタ1901に対して境界2526に沿う垂直軸周りにドーパントを分布させた各領域の配置が反転されている。
本実施例における上記二つの構成では、位相シフタ1901のN++領域2412もしくは2512と位相シフタ1902のN++領域2432もしくは2532とがおのおの進行波電極2416もしくは2516によって電気的に接続され、簡便な進行波電極の構成になり、小型のMZ光変調器を提供することができる。また、進行波電極を介して接続される二つのドーパント領域(N++領域2412もしくは2512とN++領域2432もしくは2532)は同一の導電性を有するので、進行波電極2416もしくは2516のDC電位のドリフトを低減することができ、安定に動作するMZ光変調器を提供することができる。
以上、本発明を好適な実施形態に基づいて説明してきたが、本発明は上述の実施形態に限定されるものではなく、本発明の要旨を逸脱しない範囲で種々の改変が可能である。
実施例1、2では、PN接合に接するドープ領域とリブ側壁との間に低導電性領域を設けた例を示したが、N領域よりもP領域に近い側のリブ側壁に接してP領域より導電性が低減した低導電性領域を設けてもよく、P領域よりもN領域に近い側のリブ側壁に接してN領域より導電性が低減した低導電性領域を設けてもよい。
実施例1、2では、低導電性領域(特に真性領域)の直下にはPN接合に接するドープ領域よりもキャリア密度の低いドープ領域を設けた例を示したが、PN接合に接するドープ領域(それと同程度のキャリア密度を有するドープ領域)を低導電性領域(特に真性領域)の直下まで伸張すること、さらには、PN接合に接するドープ領域をスラブ上にリブが存在しない部分まで伸張することも可能である。
実施例2では、P型の導電性を有する側でPN接合とリブ側壁との間に低導電性領域(特に真性領域)を設けた例を示したが、それとは逆に、N型の導電性を有する側でPN接合とリブ側壁との間に低導電性領域(特に真性領域)を設けることも可能である。
実施例3〜5のMZ光変調器として、上述の説明では、低導電性領域(特に真性領域)をリブの幅方向両側に設けたリブ導波路(実施例1)を2つ並列した場合と、低導電性領域(特に真性領域)をリブの幅方向片側のみに設けたリブ導波路(実施例2)を2つ並列した場合とを説明した。しかし、1つのMZ光変調器において、低導電性領域(特に真性領域)をリブの幅方向両側に設けたリブ導波路(実施例1)と、低導電性領域(特に真性領域)をリブの幅方向片側のみに設けたリブ導波路(実施例2)とを1つずつ並列させることも可能である。
本発明は、低光損失、高速かつ低駆動電圧で屈折率変調を可能とする光導波路素子に利用することができる。
100,200,300,2001,2021,2101,2121,2201,2221,2301,2321,2401,2421,2501,2521…リブ導波路、
110,239,310,2010,2030,2110,2130,2210,2230,2310,2330,2410,2430,2510,2530…N+領域、
111,211,311,2037,2137,2237,2337,2437,2537…基板、
112,212,312,2038,2138,2238,2338,2438,2538…下部クラッド、
113,213,313,2039,2139,2239,2339,2439,2539…上部クラッド、
114,214,314…リブ、115,215,315…スラブ、
116,216,316…頂上部、117,317…底面、
118,218,318…P領域に近い側壁、119,219,319…N領域に近い側壁、
120,220A,220B…スラブの頂上部、
221,231,241,242…光学レジスト、
222,232,235,243,244…レジスト側壁、
224…アンドープ領域、233…P+領域、
251,2011,2031,2111,2131,2211,2231,2311,2331,2411,2431,2511,2531…P++領域、
252,2012,2032,2112,2132,2212,2232,2312,2332,2412,2432,2512,2532…N++領域、
253,254,2013,2014,2033,2034,2113,2114,2133,2134,2213,2214,2233,2234,2313,2314,2333,2334,2413,2414,2433,2434,2513,2514,2533,2534…ビア電極、
255,256,2015,2016,2035,2036,2115,2116,2135,2136,2215,2216,2236,2315,2316,2336,2415,2416,2436,2515,2516,2536…進行波電極。

Claims (10)

  1. 基板と、
    前記基板上に設けられる下部クラッドと、
    前記下部クラッド上に設けられるスラブと前記スラブ上に接して設けられる単一のリブとを有するリブ導波路と、
    前記リブ導波路上に設けられる上部クラッドと、
    を備える光導波路素子であって、
    前記リブ導波路が、前記リブと前記スラブとにわたるP型の導電性を示す第一の導電性を有する第一のドープ領域と、前記第一のドープ領域と接し、前記リブと前記スラブとにわたるN型の導電性を示す第二の導電性を有する第二のドープ領域とを有し、
    前記第一のドープ領域と前記第二のドープ領域との境界は、前記基板の表面に垂直な方向に沿って形成されるPN接合を形成し、かつ前記基板の平面視において前記リブ導波路における導波光の伝搬方向に沿って波形状に形成され、
    前記リブ導波路が、前記リブ中において前記第二のドープ領域とは反対側に接し、前記第一のドープ領域よりも低い導電性を示す第一の低導電領域と、前記リブにおいて前記第一のドープ領域とは反対側に接し、前記第二のドープ領域よりも低い導電性を示す第二の低導電領域とのうちの少なくとも一方を有し、
    前記リブ導波路が前記第一の低導電領域を有する場合には、前記導波光の伝搬方向に沿って、前記第一のドープ領域の幅が実質的に一定であり、
    前記リブ導波路が前記第二の低導電領域を有する場合には、前記導波光の伝搬方向に沿って、前記第二のドープ領域の幅が実質的に一定である、光導波路素子。
  2. 請求項1に記載の光導波路素子において、
    前記第一の低導電領域及び前記第二の低導電領域のうちの少なくとも一方が真性領域であることを特徴とする光導波路素子。
  3. 請求項1または2に記載の光導波路素子であって、
    前記リブ導波路が前記第一の低導電領域を有する場合には、前記スラブのうち前記第一の低導電領域直下の領域に、前記第二のドープ領域および前記第一の低導電領域と接して前記第二の導電性を有する第三のドープ領域が存在し、前記スラブのうちその上に前記リブが存在しない部分に前記第二の導電性を有する第四のドープ領域が前記第三のドープ領域と接して存在し、前記第一の低導電領域のキャリア密度が前記第三のドープ領域のキャリア密度より低く、前記第三のドープ領域のキャリア密度が前記第二のドープ領域のキャリア密度より低く、前記第四のドープ領域のキャリア密度が前記第二のドープ領域のキャリア密度より高いか又は等しく、
    前記リブ導波路が前記第二の低導電領域を有する場合には、前記スラブのうち前記第二の低導電領域直下の領域に、前記第一のドープ領域および前記第一の低導電領域と接して前記第一の導電性を有する第七のドープ領域が存在し、前記スラブのうちその上に前記リブが存在しない部分に前記第一の導電性を有する第八のドープ領域が前記第七のドープ領域と接して存在し、前記第一の低導電領域のキャリア密度が前記第三のドープ領域のキャリア密度より低く、前記第七のドープ領域のキャリア密度が前記第一のドープ領域のキャリア密度より低く、前記第八のドープ領域のキャリア密度が前記第一のドープ領域のキャリア密度より高いか又は等しい光導波路素子。
  4. 請求項1〜のいずれか1項に記載の光導波路素子であって、
    前記リブ導波路が前記第二の低導電領域を有しない場合には、前記境界に対して前記第一のドープ領域と同じ側の前記スラブのうちの前記スラブ上に前記リブが存在しない部分まで、前記第一のドープ領域が伸張され、
    前記リブ導波路が前記第一の低導電領域を有しない場合には、前記境界に対して前記第二のドープ領域と同じ側の前記スラブのうちの前記スラブ上に前記リブが存在しない部分まで、前記第二のドープ領域が伸張されている光導波路素子。
  5. 請求項1〜のいずれか1項に記載の光導波路素子であって、
    前記上部クラッド上に存在する第一の金属電極をさらに備え、
    前記境界に対して前記第二のドープ領域と同じ側の前記スラブのうちの前記スラブ上に前記リブが存在しない部分に、前記第二の導電性を有する第五のドープ領域が存在し、前記第五のドープ領域と前記第一の金属電極とが第一の垂直貫通ビアを介して接続されている光導波路素子。
  6. 請求項1〜のいずれか1項に記載の光導波路素子であって、
    前記上部クラッド上に存在する第二の金属電極をさらに備え、
    前記境界に対して前記第一のドープ領域と同じ側の前記スラブのうちの前記スラブ上に前記リブが存在しない部分に、前記第一の導電性を有する第六のドープ領域が存在し、前記第六のドープ領域と前記第二の金属電極とが第二の垂直貫通ビアを介して接続されている光導波路素子。
  7. 請求項1〜のいずれか1項に記載の光導波路素子であって、
    前記光導波路素子の幅方向に並列して配列される二つの前記リブ導波路である第一のリブ導波路と第二のリブ導波路とを備える光導波路素子。
  8. 請求項に記載の光導波路素子であって、
    前記第一のリブ導波路のスラブのうちの前記第一のリブ導波路のリブよりも前記第二のリブ導波路に近い部分が、第三の垂直貫通ビアを介して、前記上部クラッド上に存在する第三の金属電極に接続され、
    前記第二のリブ導波路のスラブのうちの前記第二のリブ導波路のリブよりも前記第一のリブ導波路に近い部分が、第四の垂直貫通ビアを介して、前記上部クラッド上に存在する第四の金属電極に接続されている光導波路素子。
  9. 請求項に記載の光導波路素子であって、
    前記第一のリブ導波路のスラブのうちの前記第一のリブ導波路のリブよりも前記第二のリブ導波路に近い部分と、前記第二のリブ導波路のスラブのうちの前記第二のリブ導波路のリブよりも前記第一のリブ導波路に近い部分とが、それぞれ第三及び第四の垂直貫通ビアを介して、前記上部クラッド上に存在する電気的に共通の第五の金属電極に接続されている光導波路素子。
  10. 請求項1〜のいずれか1項に記載の光導波路素子の製造方法であって、
    前記リブ導波路が前記第一の低導電領域を有しかつ前記第二の低導電領域を有しない場合には、前記第一の低導電領域と前記第二のドープ領域との境界となる位置において水平面内でのレジスト側壁の位置が前記リブ導波路における導波光の伝搬方向に沿って波形状に変化し、前記第二のドープ領域となる領域を覆い、前記第一の低導電領域となる領域を露出させた第一のレジストを作製し、
    前記リブ導波路が前記第二の低導電領域を有しかつ前記第一の低導電領域を有しない場合には、前記第二の低導電領域と前記第一のドープ領域との境界となる位置において水平面内でのレジスト側壁の位置が前記リブ導波路における導波光の伝搬方向に沿って波形状に変化し、前記第一のドープ領域となる領域を覆い、前記第二の低導電領域となる領域を露出させた第二のレジストを作製し、
    前記リブ導波路が前記第一の低導電領域および前記第二の低導電領域を有する場合には、前記第一のレジストまたは前記第二のレジストを作製するレジスト作製工程と、
    前記レジスト作製工程の後で、前記第一のレジストまたは前記第二のレジストをトリミングすることにより、前記基板の平面視で前記PN接合となる位置において、水平面内でのレジスト側壁の位置が前記リブ導波路における導波光の伝搬方向に沿って波形状に変化するレジストを形成するトリミング工程を有する光導波路素子の製造方法。
JP2016558423A 2014-04-07 2014-04-07 光導波路素子及びその製造方法 Expired - Fee Related JP6336113B2 (ja)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/060558 WO2015155900A1 (en) 2014-04-07 2014-04-07 Optical waveguide device and method of manufacturing the same

Publications (2)

Publication Number Publication Date
JP2017509022A JP2017509022A (ja) 2017-03-30
JP6336113B2 true JP6336113B2 (ja) 2018-06-06

Family

ID=50625042

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016558423A Expired - Fee Related JP6336113B2 (ja) 2014-04-07 2014-04-07 光導波路素子及びその製造方法

Country Status (5)

Country Link
US (1) US9880404B2 (ja)
JP (1) JP6336113B2 (ja)
CN (1) CN106461986A (ja)
SG (1) SG11201608209SA (ja)
WO (1) WO2015155900A1 (ja)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10027420B2 (en) * 2014-06-26 2018-07-17 Luxtera, Inc. Method and system for a silicon-based optical phase modulator with high modal overlap
CN110325900B (zh) * 2016-12-02 2023-11-17 洛克利光子有限公司 波导光电器件
GB2559458B (en) * 2016-12-02 2020-06-03 Rockley Photonics Ltd Waveguide device and method of doping a waveguide device
JP2019113660A (ja) 2017-12-22 2019-07-11 ルネサスエレクトロニクス株式会社 半導体装置
US11422394B2 (en) * 2018-01-26 2022-08-23 Ciena Corporation Silicon-based modulator with optimized longitudinal doping profiles
US10845670B2 (en) * 2018-08-17 2020-11-24 Taiwan Semiconductor Manufacturing Co., Ltd. Folded waveguide phase shifters
US11022825B2 (en) * 2018-09-03 2021-06-01 Ciena Corporation Silicon photonics modulator using TM mode and with a modified rib geometry
JP7145063B2 (ja) 2018-12-21 2022-09-30 ルネサスエレクトロニクス株式会社 半導体装置およびその製造方法
CN110993708B (zh) * 2019-11-26 2021-03-30 三明学院 一种具有电流放大作用的硅光电探测器
US11415820B2 (en) * 2020-05-04 2022-08-16 Taiwan Semiconductor Manufacturing Company, Ltd. Waveguide structure
CN111679363B (zh) * 2020-06-01 2021-06-15 清华大学 硅波导端面耦合结构及其制作方法
CN111665648A (zh) * 2020-06-22 2020-09-15 三明学院 一种新型电光调制器及电光调制方法
CN112666726B (zh) * 2020-12-23 2024-02-06 联合微电子中心有限责任公司 一种热光移相器及其制备方法
CN112382923B (zh) * 2021-01-11 2021-03-23 武汉敏芯半导体股份有限公司 电吸收调制激光器

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7085443B1 (en) 2003-08-15 2006-08-01 Luxtera, Inc. Doping profiles in PN diode optical modulators
US7116853B2 (en) * 2003-08-15 2006-10-03 Luxtera, Inc. PN diode optical modulators fabricated in rib waveguides
DE102004007251A1 (de) * 2004-02-10 2005-09-08 Infineon Technologies Ag Elektrooptischer Modulator
FR2950708B1 (fr) * 2009-09-29 2012-03-09 Univ Paris Sud Modulateur optique compact a haut debit en semi-conducteur sur isolant.
KR101768676B1 (ko) * 2010-10-22 2017-08-16 삼성전자주식회사 실리콘 위상 쉬프터, 이를 포함하는 전광 변조기 및 광집적 회로
US9110314B2 (en) * 2010-12-29 2015-08-18 Agency For Science, Technology And Research Optical modulator and a method of forming the same
WO2014034074A1 (ja) * 2012-08-29 2014-03-06 日本電気株式会社 光送信回路及び光送信方法
US9939666B2 (en) * 2013-06-06 2018-04-10 Acacia Communications, Inc. Silicon electro-optical modulator

Also Published As

Publication number Publication date
JP2017509022A (ja) 2017-03-30
CN106461986A (zh) 2017-02-22
US20170023810A1 (en) 2017-01-26
WO2015155900A1 (en) 2015-10-15
US9880404B2 (en) 2018-01-30
SG11201608209SA (en) 2016-10-28

Similar Documents

Publication Publication Date Title
JP6336113B2 (ja) 光導波路素子及びその製造方法
JP5853026B2 (ja) 光学素子及びマッハツェンダ型光導波路素子
US7298949B2 (en) SOI-based photonic bandgap devices
JP5455955B2 (ja) リング光変調器
EP1779161B1 (en) Pn diode optical modulators fabricated in rib waveguides
JP4448199B2 (ja) 基板型光導波路素子、波長分散補償素子、光フィルタならびに光共振器、およびそれらの設計方法
JP6499804B2 (ja) 光変調器
JP6622228B2 (ja) 光変調器及びその製造方法
JP6062496B1 (ja) 光導波路素子
JPWO2009107798A1 (ja) 光導波路素子、波長分散補償素子およびその設計方法、光フィルタおよびその設計方法、ならびに光共振器およびその設計方法
JP2004126582A (ja) 高速光変調器
KR101758141B1 (ko) 수직 슬랩들을 포함하는 광전자 장치
JP6781618B2 (ja) 光変調器
US7924492B2 (en) Optical device including gate insulating layer having edge effect
JP5494216B2 (ja) 導波路型光デバイス
JP6107662B2 (ja) 高次モードフィルタ
JP6412969B2 (ja) 光導波路素子
JP2017072808A (ja) 半導体光導波路、半導体光変調器、及び半導体光変調システム
CN109449756B (zh) 一种半导体激光器及其制备方法
JP2013047721A (ja) 光変調器および光導波路素子
JP2013186131A (ja) 光スイッチ
WO2023238403A1 (ja) 光変調器
US9020312B2 (en) Connecting channel
JP2022082851A (ja) グレーティング素子及び光デバイス
JP2005345729A (ja) 平面導波路素子および波長多重光通信装置

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161019

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160921

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170926

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171222

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180403

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180501

R150 Certificate of patent or registration of utility model

Ref document number: 6336113

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees