JP6062496B1 - 光導波路素子 - Google Patents

光導波路素子 Download PDF

Info

Publication number
JP6062496B1
JP6062496B1 JP2015129099A JP2015129099A JP6062496B1 JP 6062496 B1 JP6062496 B1 JP 6062496B1 JP 2015129099 A JP2015129099 A JP 2015129099A JP 2015129099 A JP2015129099 A JP 2015129099A JP 6062496 B1 JP6062496 B1 JP 6062496B1
Authority
JP
Japan
Prior art keywords
region
core
depletion layer
optical waveguide
height
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2015129099A
Other languages
English (en)
Other versions
JP2017015773A (ja
Inventor
憲介 小川
憲介 小川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Original Assignee
Fujikura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd filed Critical Fujikura Ltd
Priority to JP2015129099A priority Critical patent/JP6062496B1/ja
Priority to PCT/JP2016/068864 priority patent/WO2016208732A1/ja
Application granted granted Critical
Publication of JP6062496B1 publication Critical patent/JP6062496B1/ja
Publication of JP2017015773A publication Critical patent/JP2017015773A/ja
Priority to US15/446,452 priority patent/US9927637B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/015Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on semiconductor elements having potential barriers, e.g. having a PN or PIN junction
    • G02F1/025Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on semiconductor elements having potential barriers, e.g. having a PN or PIN junction in an optical waveguide structure
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/21Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  by interference
    • G02F1/225Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  by interference in an optical waveguide structure
    • G02F1/2257Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  by interference in an optical waveguide structure the optical waveguides being made of semiconducting material
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B2006/12083Constructional arrangements
    • G02B2006/12097Ridge, rib or the like
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/122Basic optical elements, e.g. light-guiding paths
    • G02B6/1228Tapered waveguides, e.g. integrated spot-size transformers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/21Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  by interference
    • G02F1/212Mach-Zehnder type
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2201/00Constructional arrangements not provided for in groups G02F1/00 - G02F7/00
    • G02F2201/06Constructional arrangements not provided for in groups G02F1/00 - G02F7/00 integrated waveguide
    • G02F2201/063Constructional arrangements not provided for in groups G02F1/00 - G02F7/00 integrated waveguide ridge; rib; strip loaded

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)
  • Optical Integrated Circuits (AREA)

Abstract

【課題】光損失の低減、低駆動電圧化、小型化、および製造工程の簡易化を可能とする。【解決手段】リブ領域(101r)と、両スラブ領域(101s)とを有しているリブ導波路コア(101)を備えており、リブ領域(101r)から2つのスラブ領域(101s)にまで延伸する空乏層(113)が形成される。【選択図】図1

Description

本発明は、光集積回路に用いられる光導波路素子に関する。
近年、光導波路素子を含む光集積回路を、光ファイバ通信用の各種デバイスに応用することが検討されている。光ファイバ通信用のデバイスとしては、例えば、長距離・メトロ系の波長多重光ファイバ通信で用いられる光トランスポート装置や、データセンタ等で用いられる光インタコネクト装置等が挙げられる。
光集積回路に用いられる光導波路素子として、特許文献1には、相異なる導電性を有する2つのシリコン層と、これら2つのシリコン層に挟まれた誘電体層とを有するコアを備えたものが開示されている。特許文献1に記載の光導波路素子においては、2つのシリコン層としてP型シリコン層およびN型シリコン層を用い、誘電体層として二酸化シリコンを用いた、いわゆるSISCAP(シリコンキャパシタ)構造が採用されている。
特許文献1に記載の光導波路素子では、各シリコン層の側壁(基板の面に沿う方向における該シリコン層の終端)とクラッドとの屈折率の差により光の閉じ込めが実現されており、コアを導波する光の電界は、上記2つのシリコン層と上記誘電体層とに拡がるように分布する。このため、上記2つのシリコン層のキャリア密度を変化させることにより、上記誘電体層を介して上記2つのシリコン層が重なりあったコアの中央部分において、コアを導波する光に対する屈折率を変化させることができる。
また、特許文献1には、P型シリコン層またはL型シリコン層のいずれかをL字型に折り曲げたSISCAP構造が開示されている。このような構造を採用することにより、キャリア密度が変化する領域を、基板の面に対して平行な方向のみならず、基板の面に対して垂直な方向にも延設することができる。
米国特許公開2004/0208454号公報(2004年10月21日公開)
特許文献1に記載の光導波路素子では、上述したように、各シリコン層の側壁(基板の面に沿う方向における該シリコン層の終端)とクラッドとの屈折率の差により光の閉じ込めが実現される。このため、各シリコン層の側壁が荒れていると、その側壁にてコアを導波する光が散乱されてしまい、光損失が大きくなるという問題が発生する。
また、特許文献1に記載の光導波路素子では、上述したように、キャリア密度が変化する領域が、誘電体層を介して2つのシリコン層が重なりあったコアの中央部分に限定され、コアを導波する光の電界が分布する領域全体には及ばない。したがって、屈折率変調の効率を高めて駆動電圧を低下させるためには、(1)各シリコン層のドーピング密度を高くするか、または、(2)素子長を長くする必要がある。各シリコン層のドーピング密度を高くした場合、キャリアがより多くの光を吸収してしまい、結果、光損失が大きくなるという問題が発生する。一方、素子長を長くした場合、光導波路素子の大型化を招くという問題が発生する。
さらに、副次的な問題として、特許文献1に記載の光導波路素子では、その製造工程のうち、誘電体層にシリコン層を積層する工程が特殊なものとなるため、その製造工程が複雑となる。この結果、特許文献1に記載の光導波路素子は、その製造が難しく、また、他の光回路との間でデザインルールを統一することも困難であるため、他の光回路と共に集積することが困難であるという問題が発生する。例えば、光損失低減および光学特性のバラつきを抑えるため、積層膜厚の変動を1nm(ナノメートル)以下に低減する技術が必要になる。
さらに、別の副次的な問題として、特許文献1に記載の光導波路素子では、各シリコン層に拡がるように、コアを導波する光の電界が分布する。このため、コアを導波する光のプロファイルは、基板面と平行な方向において非対称となり、コアを導波する光は、横電界(TE)成分と横磁界(TM)成分とを偏波成分として含むこととなる。この結果、特許文献1に開示されている光導波路素子と偏波多重光回路とを集積化すると偏波クロストークが生じ、偏波多重光信号伝送が困難になるという問題が発生する。
本発明は、上記の課題に鑑みて為されたものであり、その目的は、光損失の低減、低駆動電圧化、および小型化を可能とする光導波路素子を提供することにある。
上記の課題を解決するために、本発明の光導波路素子は、突出部と、第1方向に沿って該突出部を挟むように配置された、該突出部よりも高さの低い2つの非突出部とを有するリブ導波路をコア部として含み、上記コア部は、互いに上記第1方向に対して垂直な第2方向に重ねて配置された、PN接合を形成する第1コア領域および第2コア領域を有しており、上記第1コア領域と上記第2コア領域との間に、上記突出部から2つの上記非突出部の少なくとも何れか一方にまで延伸する空乏層が形成されることを特徴としている。
上記の構成によれば、リブ導波路をコア部としているため、導波光(コア部を導波する光)が突出部およびその近傍に局在し、その電界分布がコア部の側壁(非突出部の先端)にまで至らない。このため、コア部の側壁に荒れがあっても、側壁の粗さに起因する光の散乱が低減され、その結果、光損失が低減される。また、上記の構成によれば、第1コア領域と第2コア領域との間に、突出部から2つの非突出部の少なくとも何れか一方にまで延伸する空乏層が形成されているので、(1)第1コア領域および第2コア領域のドーピング密度を高くしたり、(2)素子長を長くしたりせずとも、屈折率変調の効率を高めて駆動電圧を低下させることが可能になる。すなわち、光損失の増大および光導波路素子の大型化を招来することなく、低駆動電圧化を実現することができる。
また、本発明の光導波路素子において、上記空乏層は、上記突出部から2つの上記非突出部のうち両方にまで延伸していることが好ましい。
上記の構成によれば、非突出部において、導波光の電界プロファイルと空乏層との空間的重なりを増すことができる。これにより、キャリア密度を変化させる効率を高め、さらなる低駆動電圧化が可能となる。
また、本発明の光導波路素子は、上記コア部における導波光の電界ピーク値に対して、上記導波光の電界の減衰率が13dB以内になるように、上記空乏層の上記第1方向における端が定められていることが好ましい。
空乏層の第1方向の拡がりが導波光の電界ピーク値に対して約13dB減衰した点を越えると、第1コア領域および第2コア領域によるPN接合容量が増大し、RC時定数に起因する速度制限が顕著になる。これを避けるように、空乏層の第1方向における端を配置することが好ましい。
また、本発明の光導波路素子は、少なくとも1つの上記非突出部において、上記第1コア領域の上記第2方向の厚みと、上記第2コア領域の上記第2方向の厚みとが等しいことが好ましい。
また、本発明の光導波路素子において、少なくとも1つの上記非突出部における上記空乏層の上記第2方向の位置は、上記突出部における上記空乏層の上記第2方向の位置と異なっていることが好ましい。
そして、本発明の光導波路素子において、少なくとも1つの上記非突出部における上記空乏層の上記第2方向の位置は、上記突出部における上記空乏層の上記第2方向の位置より低いことが好ましい。
上記の構成によれば、コア部の全領域において、導波光の電界プロファイルと空乏層との空間的重なりを増すことができる。これにより、キャリア密度を変化させる効率を高め、さらなる低駆動電圧化が可能となる。
また、本発明の光導波路素子において、上記光導波路素子は、光の入射側および出射側の一方に近いほど上記第1方向に沿った各上記非突出部の幅が小さくなるようなテーパ形状を有する第1テーパ部と、上記第1テーパ部における光の入射側および出射側の他方の端部と隣接して配置されており、光の入射側および出射側の一方に近いほど上記第1方向に沿った上記突出部の幅が小さくなるようなテーパ形状を有する第2テーパ部とを有していることが好ましい。
上記の構成によれば、本発明の光導波路素子を、マッハ−ツェンダー干渉計の各アームの位相変調部として用いた場合に、光損失の増大および高次モード励起が引き起こされることを防ぐことができる。
また、本発明の光導波路素子は、上記第2方向に関し、上記コア部の下面の高さを基準とした、少なくとも1つの上記非突出部における上記空乏層の高さは、hs/2(但し、hs:該非突出部の厚み)であることが好ましい。
上記の構成によれば、非突出部での導波光の電界のプロファイルと空乏層との重なりが最大となる。
また、本発明の光導波路素子は、上記第2方向に関し、上記コア部の下面の高さを基準とした、上記突出部における上記空乏層の高さは、hs/2以上、かつ、hr−hs/2以下(但し、hs:少なくとも1つの上記非突出部の厚み、hr:上記突出部の厚み)であることが好ましい。
上記の構成によれば、突出部での導波光の電界のプロファイルと空乏層との重なりが最大となる。
また、本発明の光導波路素子は、上記空乏層と導波光の電界との重なりが最大となる場合、上記第2方向に関し、上記コア部の下面の高さを基準とした、上記突出部における上記第1コア領域の下面の高さは、hr/2−hs/2であり、上記コア部の下面の高さを基準とした、上記突出部における上記第2コア領域の上面の高さは、hr/2+hs/2であることが好ましい。
また、本発明の光導波路素子において、上記突出部は、上記第1コア領域および上記第2コア領域の直上、ならびに、上記第1コア領域および上記第2コア領域の直下のうち少なくとも一方に、ドーパントが意図的に注入されていないアンドープ領域を有していることが好ましい。
上記の各構成によれば、コア部全体での導波光の電界のプロファイルと空乏層との重なりをさらに増すことができるとともに、光損失の低減が可能である。
本発明によれば、光損失の低減、低駆動電圧化、小型化、および製造工程の簡易化が可能となる。
本発明の実施の形態1に係る光導波路素子の断面図である。 図1に示す断面における導波光の電界プロファイルである。 (a)はマッハ−ツェンダー干渉計のブロック図であり、(b)はマッハ−ツェンダー干渉計を備えた光変調器の斜視図である。 本発明の実施の形態2に係る光導波路素子の上面図である。 空乏層における導波光の電界プロファイルである。 空乏層における導波光の別の電界プロファイルである。
以下、本発明を実施するための形態について、図1〜図6を参照して詳細に説明する。
〔実施の形態1〕
図1は、本発明の第1の実施の形態に係る光導波路素子100の断面図である。なお、図1では、水平方向(第1方向)および垂直方向(第2方向)を併せて示している。
光導波路素子100は、リブ導波路コア(コア部)101、基板102、下部クラッド103、および上部クラッド104を備えている。下部クラッド103は、基板102上に形成されている。リブ導波路コア101は、下部クラッド103上に形成されている。上部クラッド104は、リブ導波路コア101上に形成されている。
光導波路素子100において、基板102と下部クラッド103との界面は平坦である。図1に示す水平方向は、この界面と平行な方向であり、図1に示す垂直方向は、この界面と直交する方向であると言える。また、垂直方向に関し、上部クラッド104側が上であり、基板102側が下である。
リブ導波路コア101は、図1に示す断面の水平方向における中央部分に形成されたリブ領域(突出部)101rと、水平方向に沿ってリブ領域101rを挟むように配置された2つのスラブ領域(非突出部)101sとを有している。図1では、リブ領域101rの幅(水平方向の長さ)をwrとし、リブ領域101rの厚み(垂直方向の長さ)をhrとし、両スラブ領域101sの厚みをhsとしている。
以下、リブ領域101rにおける、両スラブ領域101sを以て上の領域を、凸部と称する。つまり、リブ領域101rは、凸部と、この凸部の直下のリブ導波路コア101部分とを含む領域である。
図1に示す断面において、リブ導波路コア101は、リブ領域101rの水平方向における中点101rcを通り垂直方向に伸びる軸(一点鎖線A−A´)に対して線対称である。また、凸部の側壁101rsは、概ね垂直方向に延伸している。
導波光(リブ導波路コア101を導波する光)は、リブ領域101rおよびその近傍に局在し、図1に示す断面と直交する方向(第3方向)に伝搬する。リブ導波路コア101を伝搬する導波光のモードがTE成分の基本モードのみとなるように、光導波路素子100は設計されている。ここで、導波光の波長は、光通信および光インタコネクトにおいて適用される波長帯にあり、1200nm〜1700nmの範囲にある。
リブ導波路コア101および基板102の材質は例えば、結晶性シリコンである。一方、下部クラッド103および上部クラッド104の材質は例えば、二酸化シリコン(シリカ)である。リブ導波路コア101、基板102、下部クラッド103、および上部クラッド104の材質を以上のようにすれば、SOI(Silicon-on-insulator)ウエファを用いて、光導波路素子100を構成することができる。リブ導波路コア101には、結晶性シリコンからなるSOI層を用いることができる。下部クラッド103には、埋め込みシリカ(BOX)層を用いることができる。上部クラッド104は、リブ導波路コア101にシリカを堆積することによって形成することができる。
近年、厚みが概ね220nmであるSOI層を含むSOIウエファが普及している。そこで、光導波路素子100では、このSOIウエファを用いた構成を想定し、hrが220nmである。TE成分の高次モードの導波光およびTM成分の導波光の伝搬を避けるためには、hsが150nm以上であることが好ましい。また、TE成分の基本モードの導波光がリブ導波路コア101外へ放射され、導波光が減衰してしまうことを避けるためには、hsが180nm以下であり、かつ、wrが450nm以上であることが好ましい。wrが450nm以上であれば、側壁101rsの粗さに起因する光損失を低減することにおいても好適である。
自由キャリア吸収により生じるキャリアプラズマ分散に基づいた屈折率変調を行うために、リブ導波路コア101にはPN接合が形成されている。つまり、光導波路素子100では、このPN接合においてキャリア密度を変化させることによって、屈折率を変化させている。本願発明者は、リブ導波路コア101内における、導電性を有する領域(空乏層を含む)のレイアウトを新たに案出し、この新たなレイアウトにより、光損失の低減、駆動電圧の低減、および変調周波数の上昇を実現した。
図1に示すとおり、リブ導波路コア101は、中央領域(第1コア領域の一部)105、側方領域(第1コア領域の一部)106および107、ならびに接続領域(第1コア領域の一部)108を備えている。中央領域105、側方領域106および107、ならびに接続領域108は、いずれも第1の導電性を有しており、互いに電気的に接続されており、全体として第1コア領域を形成している。
中央領域105は、リブ領域101rにおける凸部の直下に設けられている。中央領域105、側方領域106、および側方領域107はいずれも、それらの両側部が、垂直方向に延伸している。側方領域106の右側の側部は、中央領域105の左側の側部と接しており、側方領域107の左側の側部は、中央領域105の右側の側部と接している。側方領域106および107はいずれも、対応する中央領域105の側部における下方の一部と、対応する側方領域106および107の側部における上方の一部とが接している。側方領域106および107はいずれも、その厚みがおよそhs/2である。側方領域106の左側の側部は、ドーパントが意図的に注入されていないアンドープ領域と接している。側方領域107の右側の側部は、接続領域108と接している。接続領域108の厚みはhsである。中央領域105の幅はwrであり、側方領域106の幅はwd2であり、側方領域107の幅はwd1である。
また、図1に示すとおり、リブ導波路コア101は、中央領域(第2コア領域の一部)109、側方領域(第2コア領域の一部)110および111、ならびに接続領域(第2コア領域の一部)112を備えている。中央領域109、側方領域110および111、ならびに接続領域112は、いずれも第2の導電性を有しており、互いに電気的に接続されており、全体として第2コア領域を形成している。
中央領域109は、部分的にリブ領域101rにおける凸部に含まれており、中央領域105の直上に設けられている。中央領域109、側方領域110、および側方領域111はいずれも、それらの両側部が、垂直方向に延伸している。側方領域110の左側の側部は、中央領域109の右側の側部と接しており、側方領域111の右側の側部は、中央領域109の左側の側部と接している。側方領域110および111はいずれも、対応する中央領域109の側部における下方の一部と、対応する側方領域110および111の側部における上方の一部とが接している。側方領域110および111はいずれも、その厚みがおよそhs/2であり、側方領域106および107の厚みと等しくなっている。側方領域110の右側の側部は、ドーパントが意図的に注入されていないアンドープ領域と接している。側方領域111の左側の側部は、接続領域112と接している。接続領域112の厚みはhsである。中央領域109の幅はwrであり、側方領域110の幅はwd2であり、側方領域111の幅はwd1である。
なお、光導波路素子100において、中央領域109は、凸部の頂上にまで達していない。しかしながら、光導波路素子における光損失の増大を招くことなく屈折率変調の効率をさらに向上させることができる場合等においては、中央領域109を、凸部の頂上にまで達するように形成してもよい。
光導波路素子100では、水平方向において、接続領域108および112とリブ領域101rとが離間されて配置されている。このような配置を採用した理由は、自由キャリア吸収による光損失を低減するためである。中点101rcから接続領域108までの距離、および、中点101rcから接続領域112までの距離はいずれも、光導波路素子100において要求される光損失の程度、および/または光導波路素子100の動作周波数等に応じて任意の長さに設定することができる。
リブ導波路コア101において、中央領域105と中央領域109とが、互いに垂直方向に重ねて配置されている。また、リブ導波路コア101において、側方領域106と側方領域111とが、互いに垂直方向に重ねて配置されている。さらに、リブ導波路コア101において、側方領域107と側方領域110とが、互いに垂直方向に重ねて配置されている。
ここで、中央領域105、側方領域106および107、ならびに接続領域108が有する第1の導電性がP型であり、中央領域109、側方領域110および111、ならびに接続領域112が有する第2の導電性がN型である場合を考える。この場合、第1の導電性(P型)を有する各領域と、第2の導電性(N型)を有する各領域とによりPN接合が形成される。そして、このPN接合が形成された部分に対して、所定の逆バイアス電圧を印加することによって、このPN接合の境界には空乏層113が形成される。空乏層113は、リブ領域101rから両スラブ領域101sに延伸するように形成される。
また、リブ導波路コア101において、側方領域106と側方領域111とによるPN接合の垂直方向の位置、および、側方領域107と側方領域110とによるPN接合の垂直方向の位置はいずれも、中央領域105と中央領域109とによるPN接合の垂直方向の位置に比べて低い。このため、両スラブ領域101sにおける空乏層113の垂直方向の位置は、リブ領域101rにおける空乏層113の垂直方向の位置より低くなる。これにより、リブ導波路コア101において、導波光の電界プロファイルと空乏層113との空間的重なりを増すことができる。これにより、キャリア密度を変化させる効率を高め、さらなる低駆動電圧化が可能となる。
さらに、リブ導波路コア101では、中央領域105の右側の側部と側方領域110の左側の側部とが、互いに水平方向に並んで配置されており、これにより、PN接合が形成されている。同様に、リブ導波路コア101では、中央領域105の左側の側部と側方領域111の右側の側部とが、互いに水平方向に並んで配置されており、これにより、PN接合が形成されている。これらのPN接合についても、上述した逆バイアス電圧の印加によって空乏層113が形成される。中央領域105と側方領域110との間に形成される空乏層113、および、中央領域105と側方領域111との間に形成される空乏層113はいずれも、対応するリブ領域101rとスラブ領域101sとの境界にて、垂直方向に延伸している。
図2は、図1に示す断面における導波光の電界プロファイルである。図2に示すとおり、導波光のTE成分の基本モードにおける電界プロファイルは、両スラブ領域101sにも局在することとなる。
なお、図2において、導波光の電界は線形スケールによって表示されている。また、図2では、wrが650nmであり、hrが220nmであり、hsが160nmであり、導波光の波長が1550nmであるものとしてプロファイルを導出している。両スラブ領域101sにおける空乏層113の垂直方向の位置を、リブ領域101rにおける空乏層113の垂直方向の位置より低くすることによって、リブ導波路コア101において、導波光の電界プロファイルと空乏層113との空間的重なりを増すことができる。
光導波路素子100では、空乏層113が90°折れ曲がっている部分が存在している。但し、実際は、イオン注入時のドーパント元素の注入プロファイル、および、アニーリング時の熱拡散に影響されることによって、この折れ曲がり部分が丸みを帯びる場合がある。この折れ曲がり部分が丸みを帯びることは、空乏層113による効果にさほど影響を及ぼさない。
上記PN接合が形成された部分に対する逆バイアス電圧が変化したとき、空乏層113における水平方向の拡がり(幅)は実質的に一定である。一方、このとき、空乏層113における垂直方向の拡がり(垂直方向の位置、または厚み)は変化する。リブ導波路コア101に局在する導波光のプロファイルによれば、この垂直方向の拡がりは、この水平方向の拡がりの概ね半分以下と小さい。従って、空乏層113の厚みを変化させるほうが、空乏層113の幅を変化させるよりも、屈折率変調の効率を向上させ、光導波路素子100の駆動電圧を低減することが容易である。
以上の構成およびメカニズムによって、光導波路素子100により、下記の効果を奏する。
凸部の存在のみにより、導波光がリブ領域101rおよびその近傍に局在されるため、側壁の粗さに起因する光の散乱が低減され、これにより、光導波路素子100では光損失が低減される。また、光導波路素子100では、その低駆動電圧化を実現するように、上述した第1の導電性を有する各領域および第2の導電性を有する各領域を最適化している。このとき、光導波路素子100の大型化とは異なる手段で、上記光損失の低減、および低駆動電圧化を図っているため、光導波路素子100の大型化を避けることができる。
また、空乏層113が両スラブ領域101sに延伸されている。そして、両スラブ領域101sにおける空乏層113の垂直方向の位置は、リブ領域101rにおける空乏層113の垂直方向の位置と異なっている(具体的には、リブ領域101rにおける空乏層113の垂直方向の位置より低い)。これにより、リブ導波路コア101の全領域において、導波光の電界プロファイルと空乏層113との空間的重なりを増すことができる。これにより、キャリア密度を変化させる効率を高め、さらなる低駆動電圧化が可能となる。
また、接続領域108および112の厚みはいずれもhsであり、対応するスラブ領域101sの厚みそのものである。これにより、直列抵抗(後述する低抵抗領域114から側方領域107との境界までの抵抗、および後述する低抵抗領域115から側方領域111との境界までの抵抗)が低減されるため、この直列抵抗と、上記PN接合による容量とから決まるRC時定数を小さくすることができる。この結果、光導波路素子100では、変調周波数の上昇を図ることができる。
光導波路素子100では、図1に示したリブ導波路コア101の断面形状によって、導波光の電界プロファイルが最適化される。一方、空乏層113の形状は、導波光の電界プロファイルと独立して、上述した第1の導電性を有する各領域および第2の導電性を有する各領域の配置、ひいてはドーパント分布によって最適化される。従って、光導波路素子100では、光損失の低減、および低駆動電圧化が容易である。
なお、図2では、光導波路素子100において、wrが650nmであり、hrが220nmであり、hsが160nmであるものとして説明を行ったが、wr、hr、およびhsの値はこれらに限定されない。すなわち、リブ導波路コア101を伝搬する導波光が理想的に単一のモードのみであり、かつ空乏層113が適切に形成される範囲で、光導波路素子100の各種寸法は適宜変更することができる。
また、光導波路素子100では、第1の導電性がP型であり、第2の導電性がN型であるとしたが、第1の導電性がN型であり、第2の導電性がP型であってもよい。
ここからは、光導波路素子100における上記PN接合の形成方法、および高周波電極が設けられた高速光変調素子について説明を行う。第1の導電性を有する各領域と、第2の導電性を有する各領域とを、互いに垂直方向に重ねて配置するためには、hsが100nm以上であることが好ましい。
第1の導電性を有する各領域および第2の導電性を有する各領域は、ドーピングによって形成される。このドーピングを行う方法として例えば、イオン注入を採用することができる。光導波路素子100の上方から垂直方向に沿ってイオン注入を行う場合であって、リブ領域101rと両スラブ領域101sとに同時にイオン注入を行う際、リブ領域101rに対してイオンが侵入する距離と、両スラブ領域101sに対してイオンが侵入する距離とが概ね等しくなる。従って、リブ領域101rの上面と両スラブ領域101sの上面との空乏層113の垂直方向の位置を調節することによって、空乏層113を所望の位置に形成することが可能となる。また、リブ領域101rと両スラブ領域101sとに同時にイオン注入を行うことを可能とするためには、導波光の高次モードの伝搬を避けること、かつ、導波光の放射損失が増大しないことを条件として、hrおよびhsを最適値に調節することが必要である。
ここで、図2に示した導波光の電界プロファイルより、リブ領域101rでは、凸部の頂上から80nm〜100nm程度下方に、空乏層113の垂直方向の中心を配置すると、導波光の電界が最大となる位置と垂直方向に概ね一致するため、導波光の電界プロファイルと空乏層113との重なりが概ね最大となる。また、各スラブ領域101sでは、対応するスラブ領域101sの垂直方向の中心付近に、空乏層113の垂直方向の中心を配置すると、導波光の電界が最大となる位置と垂直方向に概ね一致するため、導波光の電界プロファイルと空乏層113との重なりが概ね最大となる。
側方領域106、側方領域107、側方領域110、および側方領域111は、垂直方向に互いに同じ厚みを有している。その結果、各スラブ領域101sにおける空乏層113の垂直方向の中心は、対応するスラブ領域101sの垂直方向の中心と一致する。側方領域106、側方領域107、側方領域110、および側方領域111の各々の厚みにおよそ5%以内のバラつきがあったとしても、光導波路素子100の光学特性および電気特性に対してほとんど影響を及ぼさない。よって、このバラつきの範囲内で、側方領域106、側方領域107、側方領域110、および側方領域111は同じ厚みとみなすことができる。
リブ領域101rの上面と両スラブ領域101sの上面とのそれぞれの垂直方向の位置は、リブ領域101rと両スラブ領域101sとに同時にイオン注入を行うことによる上記PN接合の形成に概ね適合する。このようなイオン注入によって、光導波路素子100の製造プロセスを簡易化することができ、光導波路素子100の製造精度が向上する。従って、光導波路素子100を、他の回路と共に集積することが容易となる。このようなイオン注入に適合する条件を達成することが困難である場合、もしくは、リブ領域101rにおける空乏層113の垂直方向の中心と各スラブ領域101sにおける空乏層113の垂直方向の中心とを個別に調節する必要がある場合、リブ領域101rに対するイオン注入と、各スラブ領域101sに対するイオン注入とを個別に行えばよい。イオン注入された元素を活性化して導電性を向上させるため、必要に応じて各イオン注入段階において、アニール処理を行ってもよい。
なお、光導波路素子100では、第1の導電性・第2の導電性が、P型・N型の組み合わせであってもよいし、N型・P型の組み合わせであってもよい旨上述した。これらの組み合わせのいずれを採用するかについては、注入する元素の拡散係数等の特性に応じて決定すればよい。
中央領域105、側方領域106、および側方領域107は、セルフアラインメントによって、1回のイオン注入により形成することができる。ここで、リブ導波路コア101の材質が結晶性シリコンであれば、注入するP型イオンとして例えば、ホウ素を用いることができる。イオン注入の加速電圧を調節することによって、中央領域105がリブ領域101rに形成され、側方領域106および107は、それぞれ対応するスラブ領域101sの概ね下半分に形成される。
また、接続領域108を形成するためには、2段階のイオン注入が必要である。第1段階のイオン注入は、上述したセルフアラインメントによるイオン注入と共通である。これにより、接続領域108は、右側のスラブ領域101sの概ね下半分に形成される。また、第2段階のイオン注入では、光学マスク等を用いてイオンの注入領域を接続領域108の垂直方向に制限し、加速電圧を低減して、接続領域108を、右側のスラブ領域101sの概ね上半分に形成する。
また、接続領域108におけるその上面を含む領域に対して、ドーズ量を増加させてイオン注入を行い、スラブ領域101sにおける接続領域108の内部に、第1の導電性を有する低抵抗領域114を形成する。
また、光導波路素子100は、上部クラッド104に対して水平方向に設けられた垂直貫通配線116および117と、垂直貫通配線116の上方に設けられた表面電極118と、垂直貫通配線117の上方に設けられた表面電極119とをさらに備えている。ここでは、低抵抗領域114の上面に、垂直貫通配線116の一端を接続し、垂直貫通配線116の他端に、表面電極118を接続する。
中央領域109、側方領域110、および側方領域111は、セルフアラインメントによって、形成することができる。注入するN型イオンとして例えば、ヒ素を用いることができる。イオン注入の加速電圧を調節することによって、中央領域109がリブ領域101rにおける中央領域105の上方に形成され、側方領域110および111は、それぞれ対応するスラブ領域101sの概ね上半分に形成される。
また、接続領域112を形成するためには、接続領域108の形成と同様に、2段階のイオン注入が必要である。第1段階のイオン注入は、上述したセルフアラインメントによるイオン注入と共通である。これにより、接続領域112は、左側のスラブ領域101sの概ね下半分に形成される。また、第2段階のイオン注入では、光学マスク等を用いてイオンの注入領域を接続領域112の垂直方向に制限し、加速電圧を低減して、接続領域112を、左側のスラブ領域101sの概ね上半分に形成する。
また、接続領域112におけるその上面を含む領域に対して、ドーズ量を増加させてイオン注入を行い、スラブ領域101sにおける接続領域112の内部に、第2の導電性を有する低抵抗領域115を形成する。
ここでは、低抵抗領域115の上面に、垂直貫通配線117の一端を接続し、垂直貫通配線117の他端に、表面電極119を接続する。
表面電極118および119は、高周波電極の一部である。垂直貫通配線116、垂直貫通配線117、表面電極118、および表面電極119の材質は例えば、金属アルミニウムまたは金属銅である。表面電極118および119の少なくとも一方に対して、DC(Direct current)ブロックとして機能するキャパシタ(図示しない)を介して、高周波電気信号を印加すると同時に、AC(Alternative current)ブロックとして機能するインダクタ(図示しない)を介して、DC逆バイアス電圧を印加することによって、高速光変調が可能である。
ここで、空乏層113の幅は、導波光の水平方向における拡がりを実質的に全てカバーするような値に設定する。これにより、wd2は約300nm以上となる。導波光の水平方向における拡がりをカバーすることに関し、空乏層113の水平方向における両端は、リブ導波路コア101における導波光による電界のピーク値に対して、導波光による電界が約13dB減衰した点に位置することが好ましい。すなわち、空乏層113の水平方向の拡がりが導波光の電界ピーク値に対して約13dB減衰した点を越えると、上記PN接合による容量が増大し、RC時定数に起因する速度制限が顕著になる。これを避けるように、空乏層113の水平方向における端を配置することが好ましい。
wd1は、700nm〜1200nmであることが好ましい。これにより、中点101rcと接続領域108との水平方向の距離、および、中点101rcと接続領域112との水平方向の距離はいずれも、概ね1000nm〜1500nmとなる。
〔実施の形態2〕
図3の(a)はマッハ−ツェンダー干渉計のブロック図であり、図3の(b)はマッハ−ツェンダー干渉計を備えた光変調器1の斜視図である。マッハ−ツェンダー干渉計は、外部からのノイズの影響を受けにくい、温度変化に対して変調動作の安定性が高い等の利点を有することから、光通信用の光変調器に多く採用されている。
図3の(a)に示すマッハ−ツェンダー干渉計は、下記の構成を有している。入射側導波路305の入射端は、入射側の光ファイバ(図示しない)との光結合に用いられる。入射側導波路305の出射端は、光分岐部303の入射端と接続されている。光分岐部303の一方の出射端は、アーム導波路306の入射端と接続されており、光分岐部303の他方の出射端は、アーム導波路307の入射端と接続されている。アーム導波路306の出射端は、位相変調部301の入射端と接続されている。アーム導波路307の出射端は、位相変調部302の入射端と接続されている。位相変調部301の出射端は、アーム導波路308の入射端と接続されている。位相変調部302の出射端は、アーム導波路309の入射端と接続されている。アーム導波路308の出射端は、光合波部304の一方の入射端と接続されている。アーム導波路309の出射端は、光合波部304の他方の入射端と接続されている。光合波部304の出射端は、出射側導波路310の入射端と接続されている。出射側導波路310の出射端は、出射側の光ファイバ(図示しない)との光結合に用いられる。
アーム導波路306、位相変調部301、およびアーム導波路308が、第1のアーム部を形成しており、アーム導波路307、位相変調部302、およびアーム導波路309が、第2のアーム部を形成している。
位相変調部301および位相変調部302はそれぞれ、図1に示した光導波路素子100を1つ含んでいる。より具体的に、図3の(a)に示すD−D´断面が、図1に示した断面と等しい。
図3の(b)に示すとおり、光変調器1は、光通信に利用可能な光変調器であって、シリコン(Si)をベースとするPN接合に変調信号に応じた変調電界を印加することによって、入射した光を変調するシリコン光変調器である。光変調器1は、基板102と、下部クラッド103と、上部クラッド104とが、その順で積層された層状構造を有している。
光変調器1には、マッハ−ツェンダー干渉計を構成する光導波路として、図3の(a)に示した各部材が、下部クラッド103と上部クラッド104とに挟まれて設けられている。
入射側導波路305、アーム導波路306、アーム導波路307、アーム導波路308、アーム導波路309、および出射側導波路310は、矩形コアを有する矩形導波路である。この矩形コアの材質は例えば、結晶性シリコンである。この矩形コアの幅および厚みは、それぞれwiおよびhrである。ここで、wiは500nmであり、TE成分の基本モードが導波光として、入射側導波路305、アーム導波路306、アーム導波路307、アーム導波路308、アーム導波路309、および出射側導波路310を伝搬する。光分岐部303および光合波部304は例えば、それぞれ、1×2多モード干渉計および2×2多モード干渉計によって構成されている。これらの各多モード干渉計の厚みはhrである。これらの各部材は、SOIウエファを用いて構成されている。
位相変調部301および302の少なくとも一方に高周波電気信号を入力することによって、光強度変調が可能となる。また、位相変調部301および302に互いに相補的な高周波電気信号を入力し、プッシュプル駆動を行うことによって、光位相変調が可能となる。なお、高周波電気信号のシンボルレートは、10Gbaud以上である。
アーム導波路306、位相変調部301、およびアーム導波路308間の接続では、光損失の増大および高次モード励起を避けるため、光導波路素子100部分において、リブ領域101rおよび両スラブ領域101sの幅を徐々に変化させるテーパ形状を形成することが好ましい。アーム導波路307、位相変調部302、およびアーム導波路309間の接続についても同様である。
図4は、本発明の第2の実施の形態に係る光導波路素子100´の上面図である。なお、図4では、水平方向および導波光伝搬方向を併せて示している。図4において、導波光伝搬方向は、水平方向および垂直方向(図1参照)の両方に対して垂直な方向である。
光導波路素子100´は、リブ領域101rおよび両スラブ領域101sの水平方向の幅が、導波光伝搬方向の位置に依存して変化する点を除けば、図1に示した光導波路素子100と同じ構成を有している。図4に示す光導波路素子100´のD−D´断面が、図1に示した光導波路素子100の断面と等しい。
位相変調部301における入射端側において、光導波路素子100´は、アーム導波路306との接続のため、導波光伝搬方向に沿って、第1テーパ部401を有している。第1テーパ部401は、導波光の入射側に近いほど水平方向に沿った両スラブ領域101sの幅が小さくなるようなテーパ形状を有しており、その入射端における両スラブ領域101sの幅は概ね0である。第1テーパ部401におけるリブ領域101rの水平方向の幅は、第1テーパ部401の全域においてwiである。また、第1テーパ部401におけるリブ領域101rの断面形状は、アーム導波路306の矩形コアの断面形状と概ね合同である。第1テーパ部401の導波光伝搬方向における長さlaは、30μm(マイクロメートル)である。第1テーパ部401の出射端は、第2テーパ部402の入射端と接続されている。すなわち、第2テーパ部402は、第1テーパ部401における導波光の出射側の端部と隣接して配置されている。
第2テーパ部402は、導波光の入射側に近いほど水平方向に沿ったリブ領域101rの幅が小さくなるようなテーパ形状を有している。第2テーパ部402の入射端におけるリブ領域101rの水平方向の幅は第1テーパ部401の同幅と同じwiであり、第2テーパ部402の出射端におけるリブ領域101rの水平方向の幅はwrである。第2テーパ部402の導波光伝搬方向における長さlbは、30μmである。
なお、laおよびlbはいずれも、30μmに限定されず、光導波路素子100´における光損失の増大および高次モード励起を防ぐことができる限り短くしてもよい。
アーム導波路306の矩形コアの幅(wi)が500nmより大きくなると、高次モード励起が生じる虞が高くなる。高次モード励起が生じると、光強度変調における消光比または光位相変調におけるQ値が低下する。
一方、光導波路素子100´では、リブ領域101rの幅(wr)が700nm以上に大きくならない限りは、高次モード励起が生じない。よって、第1テーパ部401において、矩形コアと合同の断面形状を有しているリブ領域101rに両スラブ領域101sを追加すると共に、両スラブ領域101sの水平方向の幅を徐々に拡げる。また、第2テーパ部402において、リブ領域101rの水平方向の幅をwi(500nm)からwr(650nm)に徐々に拡げる。こうして、光損失が小さく、消光比またはQ値が高い光変調素子を構成することができる。そして、光導波路素子100´を、マッハ−ツェンダー干渉計の位相変調部301として用いた場合に、光損失の増大および高次モード励起が引き起こされることを防ぐことができる。
なお、図4では、アーム導波路306と位相変調部301との接続を例に説明を行ったが、アーム導波路307と位相変調部302との接続についても、光導波路素子100´の構成を適用することができる。
さらに、位相変調部301とアーム導波路308との接続、ならびに、位相変調部302とアーム導波路309との接続についても、光導波路素子100´の構成を適用することができる。この場合、アーム導波路306と位相変調部301との接続の例に対して、入射端と出射端とを反対にすればよい。
位相変調部301および302の、導波光伝搬方向における長さは例えば、3mm(ミリメートル)である。
(空乏層および導電性を有する各領域のプロファイル)
図5および図6はそれぞれ、空乏層113における導波光の電界プロファイルである。図5および図6には、空乏層113のプロファイルの一例が、導波光(TEモード)の電界絶対値の等高線およびリブ導波路コア101の輪郭と共に表示されている。なお、この等高線は、導波光の電界絶対値のピークを1に規格化し、電界絶対値が1dB間隔で描かれている。図5および図6において“0”と表示された点が、電界絶対値のピーク(0dB)を示している。図5に示されたプロファイルを有する空乏層113によって、導波光電界プロファイルと空乏層113との重なりが最大となり、光導波路素子100の駆動電圧を低減するという効果が最大となる。
図5および図6において、空乏層113の水平方向の両端の位置は概ね、導波光電界の絶対値がピーク値より13dB減衰する点にある。この場合、空乏層113の水平方向の拡がりは、当該ピーク値の位置を中心として水平方向両側にそれぞれ約1μmである。この場合、図3の(a)等に示した位相変調部301および302(それぞれ、長さ3mm)では、上述したPN接合による電気容量は約12pFである。このPN接合に接続される直列電気抵抗は、PN接合の両側に対して合計して約8オームであるので、RC時定数は約100psとなる。10Gbaud以上のシンボルレートで駆動するには、RC時定数が概ね100ps以下であることが必要とされ、このPN接合による電気容量は12pFであることが好ましい。電気容量は、空乏層113の水平方向の拡がりに概ね比例するので、空乏層113の水平方向における両端の位置は、導波光電界の絶対値がピーク値より概ね13dB減衰する点よりも、空乏層113の中心側に存在することが好ましい。図5または図6と異なる空乏層113のプロファイルを呈する場合であっても、同様のことが言える。
リブ導波路コア101の両スラブ領域101sでは、空乏層113の垂直方向の位置(高さ)は、リブ導波路コア101の下面を基準として両スラブ領域101sの厚みの半分の位置、すなわち、hs/2とする。これにより、両スラブ領域101sでの導波光の電界プロファイルと空乏層113との重なりが最大となる。従って、リブ導波路コア101の下面の高さを基準とした、両スラブ領域101sにおける空乏層113の高さは、hs/2(但し、hs:両スラブ領域101sの厚み)であることが好ましい。
ここで、リブ導波路コア101において、両スラブ領域101sの下面とリブ領域101rの下面とはいずれも、垂直方向の位置が同じであり、リブ導波路コア101の下面は平坦である。両スラブ領域101sでは、垂直方向に関し、下半分に側方領域106および側方領域107が形成されており、上半分に側方領域110および側方領域111が形成されていることにより、直列電気抵抗が低減されている。両スラブ領域101sにおいて、側方領域106、側方領域107、側方領域110、および側方領域111の厚みはそれぞれ、hs/2である。
リブ領域101rにおいて、導波光の電界プロファイルと空乏層113との重なりを最大とするためには、リブ導波路コア101の下面の高さを基準とした、リブ領域101rにおける空乏層113の高さを、hr/2とする。
リブ領域101rでは、直列電気抵抗を低減するという観点から、側方領域106および107より厚い中央領域105、ならびに、側方領域110および111より厚い中央領域109を形成することができる。一方、この場合、キャリア吸収による光損失は大きくなる。そこで、光導波路素子100では、中央領域105の厚みを側方領域106および107と同じとし、中央領域109の厚みを側方領域110および111と同じとする。リブ導波路コア101の下面の高さを基準とした場合、リブ領域101rにおける中央領域105の下面の高さは、hr/2−hs/2であり、リブ領域101rにおける中央領域109の上面の高さは、hr/2+hs/2である。
また、リブ領域101rは、中央領域105および109の直上、ならびに、中央領域105および109の直下のうち少なくとも一方に、P型またはN型ドーパントが意図的に注入されていないアンドープ領域を有している。当該アンドープ領域では、わずかに拡散によるドーパント分布が生じるケースもあり得るが、このケースは光導波路素子100の光学的特性にほとんど影響を与えない。
このような空乏層113を形成するためには、光学リソグラフィとドライエッチングとにより、リブ導波路コア101を形成し、その後、リブ領域101rと両スラブ領域101sとに、別々にイオン注入を行う。リブ領域101rにおけるイオン注入と両スラブ領域101sにおけるイオン注入とは、どちらを先に行っても構わない。直列抵抗の低減が必要である場合、中央領域105および109の厚みを大きくすればよい。
図5に示したプロファイルでは、リブ領域101rと両スラブ領域101sとの境界において、空乏層113が垂直方向に延伸している。これにより、中央領域105と側方領域106との接続に伴う電気抵抗、中央領域105と側方領域107との接続に伴う電気抵抗、中央領域109と側方領域110との接続に伴う電気抵抗、ならびに、中央領域109と側方領域111との接続に伴う電気抵抗のうち少なくとも1つが大きくなり、これにより直列電気抵抗が大きくなる虞がある。これを避けるために、空乏層113は、図6に示すように、水平方向に一直線に(垂直方向に延伸する部分が無いように)形成されてもよい。この場合、リブ領域101rにおける空乏層113の高さは、両スラブ領域101sにおける空乏層113の高さと同じくhs/2とする。またこのとき、リブ領域101rにおける中央領域109の上面の高さは、hsとなる。
このような空乏層113を形成するためには、まず、リブ領域101rと両スラブ領域101sとに、同時にイオン注入を行う。この段階では、エッチング後において、リブ導波路コア101における将来両スラブ領域101sとなる位置の厚みは、リブ領域101rの厚みと等しく、hrである。その後、光学リソグラフィとドライエッチングとによりリブ導波路コア101が形成され、両スラブ領域101sの高さがhsとなる。
他の回路との集積化を行うという目的のため、光学リソグラフィとドライエッチングとによるリブ導波路コア101の形成をイオン注入前に行い、かつ、イオン注入工程の簡便化のために、リブ領域101rと両スラブ領域101sとに同時にイオン注入を行い、空乏層113を形成することが可能である。この場合、空乏層113のプロファイルは、図5および図6に示したものとは異なる。リブ領域101rにおいて、空乏層113の垂直方向の位置はhr−hs/2であり、中央領域105の下面の高さはhr−hsである。
以上より、導波光の電界プロファイルと空乏層113との重なりの増大による駆動電圧の低減、直列電気抵抗低減による高速屈折率変調、集積化のための加工プロセスの簡便化のいずれを第一優先に選択するかに応じて、空乏層113のプロファイルが異なる。これらに対して、リブ領域101rにおける空乏層113の垂直方向の位置(高さ)は、リブ導波路コア101の下面の高さから測って、基板102から離れる方向(上方向)に向かって、hs/2以上、かつ、hr−hs/2以下(但し、hs:両スラブ領域101sの厚み、hr:リブ領域101rの厚み)の範囲となる。
なお、以上では、光導波路素子100について説明を行ったが、光導波路素子100´においても同様のことが言える。また、以上の説明は、第1の導電性・第2の導電性が、P型・N型の組み合わせであっても成立するし、N型・P型の組み合わせであっても成立する。
本発明は上述した各実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。
本発明は、光集積回路に用いられる光導波路素子に利用することができる。
100および100´ 光導波路素子
101 リブ導波路コア(コア部)
101r リブ領域(突出部)
101s スラブ領域(非突出部)
105 中央領域(第1コア領域の一部)
106 側方領域(第1コア領域の一部)
107 側方領域(第1コア領域の一部)
108 接続領域(第1コア領域の一部)
109 中央領域(第2コア領域の一部)
110 側方領域(第2コア領域の一部)
111 側方領域(第2コア領域の一部)
112 接続領域(第2コア領域の一部)
113 空乏層
401 第1テーパ部
402 第2テーパ部

Claims (9)

  1. 突出部と、第1方向に沿って該突出部を挟むように配置された、該突出部よりも高さの低い2つの非突出部とを有するリブ導波路をコア部として含み、
    上記コア部は、互いに上記第1方向に対して垂直な第2方向に重ねて配置された、PN接合を形成する第1コア領域および第2コア領域を有しており、
    上記第1コア領域と上記第2コア領域との間に、上記突出部から2つの上記非突出部の少なくとも何れか一方にまで延伸する空乏層が形成され、
    上記2つの非突出部のそれぞれにおける上記空乏層の上記第2方向の位置は、上記突出部における上記空乏層の上記第2方向の位置より低く、
    上記空乏層は、上記突出部から2つの上記非突出部のうち両方にまで延伸していることを特徴とする光導波路素子。
  2. 上記コア部における導波光の電界ピーク値に対して、上記導波光の電界の減衰率が13dB以内になるように、上記空乏層の上記第1方向における端が定められていることを特徴とする請求項に記載の光導波路素子。
  3. 少なくとも1つの上記非突出部において、上記第1コア領域の上記第2方向の厚みと、上記第2コア領域の上記第2方向の厚みとが等しいことを特徴とする請求項1または2に記載の光導波路素子。
  4. 上記光導波路素子は、
    光の入射側および出射側の一方に近いほど上記第1方向に沿った各上記非突出部の幅が小さくなるようなテーパ形状を有する第1テーパ部と、
    上記第1テーパ部における光の入射側および出射側の他方の端部と隣接して配置されており、光の入射側および出射側の一方に近いほど上記第1方向に沿った上記突出部の幅が小さくなるようなテーパ形状を有する第2テーパ部とを有していることを特徴とする請求項1からのいずれか1項に記載の光導波路素子。
  5. 上記第2方向に関し、
    上記コア部の下面の高さを基準とした、少なくとも1つの上記非突出部における上記空乏層の高さは、
    hs/2 (但し、hs:該非突出部の厚み)
    であることを特徴とする請求項1からのいずれか1項に記載の光導波路素子。
  6. 上記第2方向に関し、
    上記コア部の下面の高さを基準とした、上記突出部における上記空乏層の高さは、
    hs/2以上、かつ、hr−hs/2以下 (但し、hs:少なくとも1つの上記非突出部の厚み、hr:上記突出部の厚み)
    であることを特徴とする請求項1からのいずれか1項に記載の光導波路素子。
  7. 上記空乏層と導波光の電界との重なりが最大となる場合、
    上記第2方向に関し、
    上記コア部の下面の高さを基準とした、上記突出部における上記第1コア領域の下面の高さは、
    hr/2−hs/2
    であり、
    上記コア部の下面の高さを基準とした、上記突出部における上記第2コア領域の上面の高さは、
    hr/2+hs/2
    であることを特徴とする請求項に記載の光導波路素子。
  8. 上記突出部は、上記第1コア領域および上記第2コア領域の直上、ならびに、上記第1コア領域および上記第2コア領域の直下のうち少なくとも一方に、ドーパントが意図的に注入されていないアンドープ領域を有していることを特徴とする請求項に記載の光導波路素子。
  9. 突出部と、第1方向に沿って該突出部を挟むように配置された、該突出部よりも高さの低い2つの非突出部とを有するリブ導波路をコア部として含み、
    上記コア部は、互いに上記第1方向に対して垂直な第2方向に重ねて配置された、PN接合を形成する第1コア領域および第2コア領域を有しており、
    上記第1コア領域と上記第2コア領域との間に、上記突出部から2つの上記非突出部の少なくとも何れか一方にまで延伸する空乏層が形成され、
    上記空乏層と導波光の電界との重なりが最大となる場合、
    上記第2方向に関し、
    上記コア部の下面の高さを基準とした、上記突出部における上記第1コア領域の下面の高さは、
    hr/2−hs/2 (但し、hs:少なくとも1つの上記非突出部の厚み、hr:上記突出部の厚み)
    であり、
    上記コア部の下面の高さを基準とした、上記突出部における上記第2コア領域の上面の高さは、
    hr/2+hs/2
    であることを特徴とする光導波路素子。
JP2015129099A 2015-06-26 2015-06-26 光導波路素子 Expired - Fee Related JP6062496B1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2015129099A JP6062496B1 (ja) 2015-06-26 2015-06-26 光導波路素子
PCT/JP2016/068864 WO2016208732A1 (ja) 2015-06-26 2016-06-24 光導波路素子
US15/446,452 US9927637B2 (en) 2015-06-26 2017-03-01 Optical waveguide element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015129099A JP6062496B1 (ja) 2015-06-26 2015-06-26 光導波路素子

Publications (2)

Publication Number Publication Date
JP6062496B1 true JP6062496B1 (ja) 2017-01-18
JP2017015773A JP2017015773A (ja) 2017-01-19

Family

ID=57585557

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015129099A Expired - Fee Related JP6062496B1 (ja) 2015-06-26 2015-06-26 光導波路素子

Country Status (3)

Country Link
US (1) US9927637B2 (ja)
JP (1) JP6062496B1 (ja)
WO (1) WO2016208732A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7302671B2 (ja) 2019-12-03 2023-07-04 株式会社村田製作所 光学センサ

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105474078B (zh) * 2014-07-31 2019-03-08 华为技术有限公司 电吸收调制器
JP7037287B2 (ja) 2017-06-01 2022-03-16 株式会社フジクラ 光導波路素子
US10162200B1 (en) * 2017-06-19 2018-12-25 Taiwan Semiconductor Manufacturing Company Ltd. Electro-optic phase modulator and method of manufacturing the same
JP2019109447A (ja) * 2017-12-20 2019-07-04 ルネサスエレクトロニクス株式会社 半導体装置
US11022825B2 (en) * 2018-09-03 2021-06-01 Ciena Corporation Silicon photonics modulator using TM mode and with a modified rib geometry
US11112624B2 (en) * 2019-10-14 2021-09-07 Renesas Electronics Corporation Semiconductor device and manufacturing method thereof
US11067749B2 (en) * 2019-11-21 2021-07-20 Globalfoundries U.S. Inc. Waveguides with cladding layers of gradated refractive index
EP3832381A1 (en) * 2019-12-05 2021-06-09 Fundació Institut de Ciències Fotòniques An electro-optical modulator and a method for obtaining an electro-optical modulator.

Family Cites Families (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4974923A (en) * 1989-11-30 1990-12-04 North American Philips Corporation Gap tuned optical waveguide device
US6845198B2 (en) * 2003-03-25 2005-01-18 Sioptical, Inc. High-speed silicon-based electro-optic modulator
US20060133754A1 (en) * 2004-12-21 2006-06-22 Vipulkumar Patel Ultra low-loss CMOS compatible silicon waveguides
KR100825723B1 (ko) * 2006-07-28 2008-04-29 한국전자통신연구원 에지효과를 갖는 게이트절연막을 포함하는 광소자
KR100779091B1 (ko) * 2006-07-28 2007-11-27 한국전자통신연구원 변조된 두께의 게이트절연막을 포함하는 광소자
US7880201B2 (en) * 2006-11-09 2011-02-01 International Business Machines Corporation Optical modulator using a serpentine dielectric layer between silicon layers
US8149493B2 (en) * 2008-09-06 2012-04-03 Sifotonics Technologies (Usa) Inc. Electro-optic silicon modulator
WO2010055826A1 (ja) * 2008-11-13 2010-05-20 日本電気株式会社 光変調器とその製造方法
US8014636B2 (en) * 2009-02-20 2011-09-06 Oracle America Electrical contacts on top of waveguide structures for efficient optical modulation in silicon photonic devices
US8936962B2 (en) * 2009-03-13 2015-01-20 Nec Corporation Optical modulator and method for manufacturing same
WO2011030593A1 (ja) * 2009-09-10 2011-03-17 日本電気株式会社 電気光学変調器
US8450186B2 (en) * 2009-09-25 2013-05-28 Intel Corporation Optical modulator utilizing wafer bonding technology
GB2477131A (en) * 2010-01-22 2011-07-27 Univ Surrey Electro-optic device
US8737772B2 (en) * 2010-02-19 2014-05-27 Kotura, Inc. Reducing optical loss in an optical modulator using depletion region
US20120043527A1 (en) * 2010-08-19 2012-02-23 Agency For Science, Technology And Research Light emitting device
JP5613031B2 (ja) * 2010-12-02 2014-10-22 株式会社フジクラ 光導波路素子
JP2013029826A (ja) * 2011-06-22 2013-02-07 Citizen Holdings Co Ltd 光デバイス及び光デバイスの製造方法
WO2013040138A1 (en) * 2011-09-13 2013-03-21 Massachusetts Institute Of Technology Background-free balanced optical cross correlator
KR101871295B1 (ko) * 2011-10-19 2018-08-03 삼성전자 주식회사 그래핀을 이용한 광 변조기
JP5978664B2 (ja) * 2012-03-12 2016-08-24 富士通株式会社 半導体光変調素子
US9128308B1 (en) * 2012-03-26 2015-09-08 Sandia Corporation Low-voltage differentially-signaled modulators
US8889447B2 (en) * 2012-06-21 2014-11-18 International Business Machines Corporation Double layer interleaved p-n diode modulator
US9329415B2 (en) * 2012-11-05 2016-05-03 Agency For Science, Technology And Research Method for forming an optical modulator
JP5413865B1 (ja) * 2012-12-27 2014-02-12 株式会社フジクラ 光導波路素子及び光変調器
CN103439807A (zh) * 2013-08-28 2013-12-11 中国科学院半导体研究所 石墨烯的低折射率差波导调制器及制备方法
CN110824729A (zh) * 2014-04-18 2020-02-21 华为技术有限公司 具有透明导电和低折射率栅极的mos电容式光学调制器
US9612459B2 (en) * 2014-07-01 2017-04-04 Laxense Inc. Silicon optical modulator using asymmetric shallow waveguide and the method to make the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7302671B2 (ja) 2019-12-03 2023-07-04 株式会社村田製作所 光学センサ

Also Published As

Publication number Publication date
JP2017015773A (ja) 2017-01-19
WO2016208732A1 (ja) 2016-12-29
US20170168326A1 (en) 2017-06-15
US9927637B2 (en) 2018-03-27

Similar Documents

Publication Publication Date Title
JP6062496B1 (ja) 光導波路素子
JP7037287B2 (ja) 光導波路素子
US9880404B2 (en) Optical waveguide device and method of manufacturing the same
US20190258002A1 (en) Integrated on-chip polarizer
US9448425B2 (en) Optical waveguide element and optical modulator
CN110865470B (zh) 电光波导元件以及光模块
JP5853026B2 (ja) 光学素子及びマッハツェンダ型光導波路素子
JP2017011209A (ja) グラフェン受光素子、およびグラフェン光変調器
US10488732B2 (en) Multimode interference based VPIN diode waveguides
US9164235B1 (en) Dual tip optical coupler
US8676017B2 (en) Light control element and optical waveguide circuit
US11275261B2 (en) Optical modulator
JP2011022345A (ja) スポットサイズ変換光導波路部を有する光学素子
US10802214B2 (en) Adiabatically coupled photonic systems with vertically tapered waveguides
US9020312B2 (en) Connecting channel
WO2014076813A1 (ja) 光変調器および光導波路素子
JP2022171567A (ja) 横方向に傾斜した導波路コアを有する光導波路回路
JP5658895B2 (ja) 光学素子

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161025

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161206

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161214

R151 Written notification of patent or utility model registration

Ref document number: 6062496

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees