JP6333600B2 - 即湯ユニット - Google Patents

即湯ユニット Download PDF

Info

Publication number
JP6333600B2
JP6333600B2 JP2014071161A JP2014071161A JP6333600B2 JP 6333600 B2 JP6333600 B2 JP 6333600B2 JP 2014071161 A JP2014071161 A JP 2014071161A JP 2014071161 A JP2014071161 A JP 2014071161A JP 6333600 B2 JP6333600 B2 JP 6333600B2
Authority
JP
Japan
Prior art keywords
hot water
unit
temperature
pipe
water supply
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2014071161A
Other languages
English (en)
Other versions
JP2015194265A (ja
Inventor
秋元 健吾
健吾 秋元
正和 寺嶋
正和 寺嶋
晃央 新田
晃央 新田
優介 藤枝
優介 藤枝
洋介 佐光
洋介 佐光
裕介 澤中
裕介 澤中
翼 内山
翼 内山
信介 芹澤
信介 芹澤
淳一 中嶋
淳一 中嶋
尚人 山口
尚人 山口
敦 赤松
敦 赤松
Original Assignee
株式会社ガスター
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ガスター filed Critical 株式会社ガスター
Priority to JP2014071161A priority Critical patent/JP6333600B2/ja
Publication of JP2015194265A publication Critical patent/JP2015194265A/ja
Application granted granted Critical
Publication of JP6333600B2 publication Critical patent/JP6333600B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Domestic Hot-Water Supply Systems And Details Of Heating Systems (AREA)

Description

本発明は即湯ユニットに関し、シャワー等の水栓から即時にお湯を出す場合に好適なものである。
従来、給水配管から供給される水を給湯器で加熱し、その給湯器から給湯配管を介して湯を水栓に供給する給湯システムが知られている。このような給湯システムでは、リモートコントローラで設定された温度にまで湯が加熱される。
しかしながら、水栓が開かれるまで湯は給湯配管内に貯留し続けるため放熱して冷める傾向にあり、また水栓が開かれた以降に給湯器が加熱を開始するため、当該湯が水栓に達するまでには給湯配管内に貯留し続けて冷めた水が排出される場合がある。
このような場合の対応策の1つとして下記特許文献1に記載の給湯装置がある。この特許文献1の給湯装置では、水栓の少し手前の給湯回路から浴槽に向けて分岐される即湯用回路が設けられ、給湯器における湯張りが完了された後の一定期間だけ給湯回路内の冷めた湯が即湯用回路を介して浴槽内に排出される。
特開2000−213805公報
ところが、上記特許文献1の給湯装置では、給湯回路内の湯が冷めていないときであってもその湯が浴槽内に排出されてしまう場合があるため、この場合には給湯回路の湯が無駄となり、この結果、給湯器でのエネルギー効率が悪くなるという問題があった。
本発明は以上の点を考慮してなされたもので、給湯器でのエネルギー効率を向上させ得る即湯ユニットを提案するものである。
かかる課題を解決するため本発明の即湯ユニットは、給湯器から水栓に向かう給湯配管の所定部位と、前記給湯器と浴槽とで湯を循環させるための風呂往き管又は風呂戻り管の所定部位とを連結する配管に設けられるユニット電磁弁と、前記連結配管に設けられるユニットサーミスタと、前記ユニット電磁弁を制御するユニット制御部とを備える。
前記ユニット制御部は、前記ユニットサーミスタから出力される信号に基づいて、前記給湯配管に貯留している湯全体が給湯設定温度の湯に置換されるように前記ユニット電磁弁を開放させる置換処理部と、前記置換処理部によって前記ユニット電磁弁が開放されている間に前記ユニットサーミスタから出力される信号をサンプリングし、前記給湯配管から前記連結配管を流れる湯の温度分布とそれら温度の取得時期とを示す情報を抽出する抽出処理部と、前記情報に基づいて、前記給湯配管に貯留している湯のうち最も温度低下が大きい部分から下流側に貯留している一部の湯が給湯設定温度の湯に置換されるように前記ユニット電磁弁を開放させる一部置換処理部とを有することを特徴とする。
このように即湯ユニットは、給湯配管の湯を置換する際にその給湯配管から連結配管を流れる湯の温度分布とそれら温度の取得時期とを示す情報に基づいて給湯配管に貯留する湯の挙動を捉え、最も温度低下量が大きい部分から下流側に貯留する湯だけを浴槽に排出する。このため、即湯ユニットは、給湯配管内の湯全体をそのつど置換する場合に比べて、未だある温度よりも低下していない温かい湯を浴槽に排出することを抑制し、給湯器に対して無駄な湯の温めを抑制させることができる。こうして、給湯器でのエネルギー効率を向上させ得る即湯ユニットが実現される。
本実施形態の給湯システムを示す図である。 給湯器の構成を示す図である。 給湯器における制御部との接続関係を示す図である。 即湯ユニットにおけるユニット制御部との接続関係を示す図である。 給湯配管に貯留していた湯の温度分布の波形を示す図である。 1回目における湯の一部置換前に予測される温度分布(A)と、当該一部置換後の温度分布(B)とを示す図である。 2回目における湯の一部置換前に予測される温度分布(A)と、当該一部置換後の温度分布(B)とを示す図である。 3回目における湯の一部置換前に予測される温度分布(A)と、当該一部置換後の温度分布(B)とを示す図である。 4回目における湯の一部置換前に予測される温度分布(A)と、当該一部置換後の温度分布(B)とを示す図である。 ユニット制御部における排出処理手順を示すフローチャートである。
以下、本発明における実施形態について図面を用いながら詳細に説明する。
(1)給湯システムの構成
図1に示すように、本実施形態の給湯システム1は、給湯器2、水栓3、浴槽4、及び即湯ユニット5を主な構成要素として備える。
この給湯システム1における給湯器2と水栓3とは給湯配管6を介して連結されている。水栓3は、本実施形形態では、浴室水栓3A、台所水栓3B及び洗面所水栓3Cを有する。一般に、浴室水栓3Aは、水と湯を混ぜ合わせて温度を調整する機構を有する混合水栓である。
給湯配管6は、本実施形形態では、浴室給湯配管6A、台所給湯配管6B及び洗面所給湯配管6Cと、これら給湯配管6A〜6Cの直径よりも大きい直径の主給湯配管6Dとを有する。浴室給湯配管6A、台所給湯配管6B及び洗面所給湯配管6Cと、主給湯配管6Dとはヘッダ7で連結されており、当該ヘッダ7は主給湯配管6Dを複数の給湯配管6A〜6Cに分岐する分岐部である。
給湯器2は、給水配管8から水を取り込んで加熱し、その加熱結果として得られた湯を主給湯配管6Dに送り出すことで、当該主給湯配管6Dからヘッダ7及び給湯配管6A〜6Cを介して各水栓3A〜3Cに湯を供給するように構成される。
また、この給湯システム1における給湯器2と浴槽4とは、当該給湯器2と浴槽4とで湯を循環させるための風呂往き管9A(以下、順方向循環配管9Aという)及び風呂戻り管9B(以下、逆方向循環配管9Bという)を介して連結されている。なお、浴槽4の側面下段には、当該浴槽4と順方向循環配管9A及び逆方向循環配管9Bとを接続するための循環金具MFが設けられており、当該浴槽4の外壁側に突出する循環金具部分に順方向循環配管9A及び逆方向循環配管9Bの一端が接続されている。
給湯器2は、浴槽4から逆方向循環配管9Bを介して湯を取り込んで加熱し、その加熱結果として得られた湯を順方向循環配管9Aを介して浴槽4に送り出すことで、浴槽4との間で湯を循環させるように構成される。
さらに、この給湯システム1における浴室給湯配管6Aと順方向循環配管9Aとは連結配管(以下、ショートカット配管という)10を介して連結されており、当該ショートカット配管10には即湯ユニット5が設けられる。
なお、ショートカット配管10の一端は、浴室給湯配管6Aの途中部位に設けられる継ぎ手部材JT1に接続され、当該ショートカット配管10の他端は、順方向循環配管9Aの途中部位に設けられる継ぎ手部材JT2に接続されている。
即湯ユニット5は、ショートカット配管10内に貯留する湯の温度に基づいて、給湯配管6に貯留する湯の全部又は一部をショートカット配管10を介して浴槽4に供給し、当該給湯配管6A、6D内の湯の温度が一定温度以上となるように調整する構成とされる。
(2)給湯器の構成
図2に示すように、給湯器2は、第1熱交換器11、給水流量センサ13、給湯サーミスタ14、経路連通電磁弁15、第2熱交換器16、循環ポンプ17、水流スイッチ18、風呂サーミスタ(以下、浴槽サーミスタという)19、圧力センサ20、湯張り流量センサ(以下、給湯流量センサという)21及び制御部31を主な構成要素として備える。
第1熱交換器11の入力端には給水配管8の一端が接続され、当該第1熱交換器11の出力端には主給湯配管6Dの一端が接続されている。第1熱交換器11は、バーナBN1の着火により生じる熱を用いて、給水配管8から供給される水を加熱する。なお、バーナBN1は、第1ガス弁25を介して供給されるガスにより着火するバーナであり、当該第1ガス弁25は制御部31からの命令に応じて開閉する。
給水流量センサ13は、給水配管8内に設けられており、給水配管8内に流れる湯の水量を検出し、その量を示す信号を制御部31に送出する。
給湯サーミスタ14は、主給湯配管6Dのうち第1熱交換器11の出口近傍となる部位の管内に設けられており、当該第1熱交換器11の出口近傍における湯の温度を計測し、その温度を示す信号を制御部31に送出する。
経路連通電磁弁15は、主給湯配管6Dと逆方向循環配管9Bとを連結する配管27の所定部位に設けられており、制御部31からの命令に応じて開閉する。この経路連通電磁弁15が開放された状態にある場合、主給湯配管6Dと逆方向循環配管9Bとが連通される。
第2熱交換器16の入力端には逆方向循環配管9Bの一端が接続され、当該第2熱交換器16の出力端には順方向循環配管9Aの一端が接続されている。第2熱交換器16は、バーナBN2の着火により生じる熱を用いて、配管27又は逆方向循環配管9Bから供給される湯を加熱する。なお、バーナBN2は、第2ガス弁26を介して供給されるガスにより着火するバーナであり、当該第2ガス弁26は制御部31からの命令に応じて開閉する。
循環ポンプ17は、逆方向循環配管9Bの所定部位に設けられており、制御部31からの命令に応じて駆動し、浴槽4の貯留する湯を逆方向循環配管9B、第2熱交換器16及び順方向循環配管9Aを順次介して循環させる。なお、この循環ポンプ17の設置部位は順方向循環配管9Aとされてもよい。
水流スイッチ18は、逆方向循環配管9Bの所定部位に設けられており、当該逆方向循環配管9B内で湯の流れがあるか否かを検出し、その検出結果を示す信号を制御部31に送出する。なお、この水流スイッチ18の設置部位は順方向循環配管9Aとされてもよい。
浴槽サーミスタ19は、逆方向循環配管9Bの管内に設けられており、逆方向循環配管9B内における湯の温度を計測し、その温度を示す信号を制御部31に送出する。
圧力センサ20は、配管27のうち経路連通電磁弁15を境界として逆方向循環配管9B側となる部位に設けられており、配管内の湯により加えられる圧力を検出し、その圧力を示す信号を制御部31に送出する。なお、この圧力センサ20の設置部位は逆方向循環配管9Bとされてもよい。
給湯流量センサ21は、配管27のうち経路連通電磁弁15を境界として主給湯配管6D側となる部位に設けられており、配管27内に流れる湯の水量を検出し、その量を示す信号を制御部31に送出する。
図3に示すように、制御部31には、給湯システム1における各種機器が多芯ケーブルを介して接続されている。この多芯ケーブルは、電源ライン及び信号ラインを有し、当該電源ライン介して電源から供給される電源電圧を用いて制御部31及びその制御部31に接続されている各種機器が駆動する。
具体的に制御部31には、上述の給水流量センサ13、給湯サーミスタ14、経路連通電磁弁15、循環ポンプ17、水流スイッチ18、浴槽サーミスタ19、圧力センサ20及び給湯流量センサ21が接続されている。
また制御部31には、即湯ユニット5と、外気温センサ32、台所リモートコントローラ33、浴室リモートコントローラ34及び記憶部35とが接続されている。
外気温センサ32は、屋外に設けられており、当該屋外の気温を検出し、その外気温を示す信号を制御部31に送出する。
台所リモートコントローラ33及び浴室リモートコントローラ34は、複数の操作子を有し、当該操作子の操作に応じた設定命令や処理開始命令などの命令を制御部31に与える。また、台所リモートコントローラ33及び浴室リモートコントローラ34は、表示パネルを有し、当該表示パネルには時刻、給湯器2の動作状態及び記憶部35に記憶されたデータに示される情報などが適宜表示される。
記憶部35には、設定データやプログラムなどの各種データが記憶される。例えば、即湯ユニット5、台所リモートコントローラ33及び浴室リモートコントローラ34と、これらに割り当てられる固有の識別子との対応関係を示す機器データIF1が記憶部35に記憶される。
この機器データIF1は、どのリモートコントローラから命令を受けたかを制御部31が認識するためのデータである。この機器データIF1に基づいて、制御部31では即湯ユニット5がリモートコントローラとして認識される。
なお、リモートコントローラ(即湯ユニット5、台所リモートコントローラ33又は浴室リモートコントローラ34)から制御部31に命令が与えられた場合、その命令を与えたリモートコントローラ以外の他のリモートコントローラに対して当該命令を受けた旨が制御部31により通知される。
また、浴槽4の水位と、当該水位時に浴槽4に貯留される水量との相関を示す水位量相関データIF2、循環金具MFまでの水位を示す金具水位データIF3、及び、浴槽4に貯留された湯の温度と水位を測定すべきインターバルを示す測定間隔データIF4が記憶部35に記憶される。
水位量相関データIF2及び金具水位データIF3は、浴槽4の形状及び体積に応じて生成され、例えば試運転時に記憶部35に記憶される。測定間隔データIF4は、即湯ユニット5から与えられる変更命令に応じて制御部31により更新される。
さらに、給湯配管6内に貯留すべき湯の温度を示す給湯温設定データCM1、浴槽4に貯留すべき湯の温度を示す浴槽温設定データCM2、及び、浴槽4に貯留すべき水位を示す水位設定データCM3が記憶部35に記憶される。
給湯温設定データCM1は、台所リモートコントローラ33で設定される給湯温設定データCM1と、浴室リモートコントローラ34で設定される給湯温設定データCM1と、即湯ユニット5で設定される給湯温設定データCM1とを有する。これら給湯温設定データCM1〜CM1は対応する機器からの設定命令に応じて更新される。
なお、給湯温設定データCM1〜CM1のうち、浴室リモートコントローラ34又は即湯ユニット5が優先機器となっていない状態(通常状態)では、給湯温設定データCM1が用いられる。
これに対して、優先機器とすべき設定命令が浴室リモートコントローラ34から与えられて浴室リモートコントローラ34が優先機器となっている場合、その設定解除命令が浴室リモートコントローラ34から与えられるまで給湯温設定データCM1が用いられる。
また、優先機器とすべき設定命令が即湯ユニット5から与えられて即湯ユニット5が優先機器となっている場合、その設定解除命令が即湯ユニット5から与えられるまで給湯温設定データCM1が用いられる。
浴槽温設定データCM2及び水位設定データCM3は、浴室リモートコントローラ34から与えられる設定命令に応じて、制御部31により更新される。
制御部31は、この制御部31に接続されている各機器から出力される信号と、記憶部35に記憶される各種データとに基づいて経路連通電磁弁15、循環ポンプ17、第1ガス弁25及び第2ガス弁26を適宜制御し、各種処理を実行する。
例えば、制御部31は、台所リモートコントローラ33又は浴室リモートコントローラ34から湯張り命令を受けた場合、設定水位未満となる量の湯を給湯設定温度で浴槽4に貯留する1次湯張り処理を実行する。
すなわち、制御部31は、第1ガス弁25開放させて第1熱交換器11をバーナBN1で熱するとともに、第2ガス弁26を開放させて第2熱交換器16をバーナBN2で熱する。このとき、制御部31は、記憶部35に記憶される給湯温設定データCM1の温度となるように、給湯サーミスタ14から出力される信号に基づいて第1ガス弁25及び第2ガス弁26を制御し、ガスの供給量を調整する。
これに加えて制御部31は、経路連通電磁弁15を開放させ、給水配管8から第1熱交換器11及び第2熱交換器16を経て浴槽4に至る流路を形成し、順方向循環配管9Aを介して浴槽4に湯を供給する。このとき、制御部31は、給湯流量センサ21から出力される信号に基づいて浴槽4に供給される湯の量を監視し、その量が規定量となった時点で第1ガス弁25及び第2ガス弁26と、経路連通電磁弁15とを閉鎖させる。
制御部31は、上述のように1次湯張り処理を実行した後、設定水位までの量の湯を浴槽設定温度で浴槽4に貯留する2次湯張り処理を実行する。
すなわち制御部31は、圧力センサ20から出力される信号に基づいて浴槽4に貯留される現在の水位を検出し、この水位と水位量相関データIF2とに基づいて、水位設定データCM3の水位までに要する湯の量を注水量として演算する。
そして制御部31は、第1ガス弁25及び第2ガス弁26と経路連通電磁弁15とを開放させ、上述の1次湯張り処理と同様に、浴槽温設定データCM2の温度で、注水量として演算した量の湯を浴槽4に供給する。その後、制御部31は、1次湯張り処理第1ガス弁25及び第2ガス弁26と、経路連通電磁弁15とを閉鎖させる。
このように制御部31は、湯張り命令を受けた場合、浴槽4に湯が残っている可能性を考慮して循環金具MF以上設定水位未満となる量の湯を給湯設定温度で浴槽4に貯留した後、当該設定水位までの量の湯を浴槽設定温度で浴槽4に貯留する。
また制御部31は、湯張り命令を受けてから所定の時間が経過するまで、上述の2次湯張り処理を実行し終えてから測定間隔データIF4の間隔ごとに、浴槽4に貯留された湯の水位及び温度を調整する調整処理を実行する。
すなわち、制御部31は、測定間隔データIF4の間隔を内部クロックに基づいて計時する。そして制御部31は、測定間隔データIF4の間隔が経過するたびに、圧力センサ20から出力される信号に基づいて現在の浴槽4の水位を認識し、その水位を水位設定データCM3の水位と比較する。
ここで、設定水位から所定以上の水位が低下している比較結果が得られた場合、制御部31は、水位設定データCM3の水位になるまで、上述の1次湯張り処理と同様にして給湯設定温度の湯を浴槽4に貯留する。
このように制御部31は、浴槽4に設定水位まで湯を貯留した以後に所定以上の水位の低下を検出した場合には浴槽温度で湯を補充することで、当該浴槽4に貯留する湯の水位を設定水位に維持する。
一方、制御部31は、測定間隔データIF4の間隔が経過するたびに、循環ポンプ17を駆動させた後に浴槽サーミスタ19から出力される信号に基づいて浴槽4の温度を認識し、この温度を浴槽温設定データCM2の温度と比較する。
ここで、浴槽サーミスタ19の温度が浴槽設定温度よりも低い比較結果が得られた場合、制御部31は、浴槽4に貯留した湯を温め直す追い焚き処理を実行する。すなわち、制御部31は、第2ガス弁26を開放させて第2熱交換器16をバーナBN2で熱し、浴槽サーミスタ19から出力される信号に基づく温度が浴槽温設定データCM2の温度となった時点で第2ガス弁26を閉鎖させるとともに循環ポンプ17を停止させる。
このように制御部31は、浴槽4に設定水位まで浴槽設定温度の湯を貯留した以後にその浴槽設定温度よりも低くなった場合には温め直すことで、当該浴槽4に貯留する温度を浴槽設定温度に維持する。
なお、制御部31は、上述の1次湯張り処理を終了した時点、及び、2次湯張り処理を終了した時点でも上述の追い焚き処理を実行し、浴槽4に湯を貯留し終わるたびにその湯の温度を確認し、必要に応じて温め直す。
さらに制御部31は、水栓3の使用を検出した場合、当該水栓3の使用が検出されなくなるまで給湯配管6に給湯設定温度の湯を供給する給湯処理を実行する。
すなわち、制御部31は、給湯流量センサ21から出力される信号で水流が検知できないにもかかわらず、給水流量センサ13から出力される信号で水流が検知できる場合、水栓3の使用を検出する。
この場合、制御部31は、給水流量センサ13から出力される信号で検知される水流と、給湯流量センサ21から出力される信号で検知される水流との差がなくなる時点まで、第1ガス弁25を開放させ、上述の1次湯張り処理と同様に、浴槽温設定データCM2の温度で湯を給湯配管6に供給する。
このように制御部31は、水栓3の使用を検出した場合には、給湯設定温度の湯を給湯配管6に供給し、当該水栓3で使用された分の湯を補充する。
なお、制御部31は、上述の1次湯張り処理、2次湯張り処理、水位調整処理又は温度調整処理の実行中に水栓3の使用を検出した場合、当該実行中の処理を中断して給湯処理を実行する。その後、制御部31は、水栓3の使用が検出されなくなった時点で給湯処理を停止するとともに、中断していた処理を再開する。
(3)即湯ユニットの構成
図1に示すように、即湯ユニット5は、ユニット電磁弁41、ユニット逆止弁42、ユニットサーミスタ43、ユニット流量センサ44及びユニット制御部45を主な構成要素として備え、給湯器2から供給される電源電圧を用いて駆動する。
ユニット電磁弁41は、ショートカット配管10の所定部位に設けられており、ユニット制御部45からの命令に応じて開閉する。このユニット電磁弁41が開放された状態にある場合、給湯配管6内の湯はショートカット配管10内を流れて浴槽4に供給される。
ユニット逆止弁42は、ショートカット配管10のうちユニット電磁弁41を境界として順方向循環配管9A側となる部位に設けられており、ショートカット配管10内を流れる湯が順方向循環配管9Aから浴室給湯配管6Aに向かって流れることを防ぐ弁である。
ユニットサーミスタ43は、ショートカット配管10のうちユニット電磁弁41を境界として浴室給湯配管6A側となる部位の管内に設けられており、当該ショートカット配管10内における湯の温度を計測し、その温度を示す信号をユニット制御部45に送出する。
ユニット流量センサ44は、ショートカット配管10のうちユニット逆止弁42を境界として順方向循環配管9A側となる部位の管内に設けられており、当該順方向循環配管9A内に流れる湯の水量を検出し、その量を示す信号をユニット制御部45に送出する。
ユニット制御部45は、図4に示すように、ユニット電磁弁41、ユニットサーミスタ43及びユニット流量センサ44と接続されている。また、ユニット制御部45は、給湯器2の制御部31と多芯ケーブルを介して接続されている。
このユニット制御部45は、給湯器2から多芯ケーブルを介して供給される電源電圧を用いて駆動し、置換処理部51、抽出処理部52、一部置換処理部53及び異常検出処理部54として機能する。
置換処理部51は、ユニットサーミスタ43から出力される信号に基づいて、給湯配管6に貯留している湯全体が給湯設定温度の湯に置換されるようにユニット電磁弁41を開放させる置換処理を実行する。
すなわち、置換処理部51は、ユニットサーミスタ43から出力される信号に基づく温度が、給湯設定温度よりも低く規定される規定温度を下回った時点を契機としてユニット電磁弁41を開放させる。
このユニット電磁弁41が開放されている場合、給湯配管6の湯はショートカット配管10から浴槽4に排出される。またこの場合、給湯器2では水栓3の使用が制御部31によって検出されるため、給湯配管6には給湯温設定データCM1の温度に温められた湯が供給される。
ここで、ユニットサーミスタ43から出力される信号に基づく温度が給湯温設定データCM1の温度になった場合、このことは、ユニット電磁弁41を開放させる前に給湯配管6に貯留していた湯全体が給湯設定温度の湯に置換されたことを意味する。この場合、置換処理部51は、ユニット電磁弁41を閉鎖させる。
また、置換処理部51は、給湯器2の制御部31から湯張り命令が与えられた旨の通知を受けた後に追い炊きを停止した旨の通知を最初に受けた場合、給湯器2において1次湯張り処理が終わったと認識する。
この場合、置換処理部51は、ユニットサーミスタ43から出力される信号に基づく温度が規定温度を下回っていなくても、当該温度が給湯設定温度になるまでユニット電磁弁41を開放させる。
これにより置換処理部51は、ユニット電磁弁41の開放前に給湯配管6に貯留していた湯全体を給湯設定温度の湯に置換させることに加え、当該置換により給湯配管6から浴槽4に排出された湯を、給湯器2において2次湯張り処理後に実行される追い炊き処理に便乗して温めさせる。
さらに、置換処理部51は、給湯器2の制御部31から湯張り命令が与えられた旨の通知を受けた後に所定の時間が経過するまで、給湯器2における浴槽サーミスタ19から出力される信号に基づいて現在の浴槽4の温度を認識し、その温度を給湯器2の記憶部35に記憶される浴槽温設定データCM2の温度と比較する。
ここで、現在の浴槽4の温度が浴槽設定温度よりも所定温度だけ低かった場合、ユニットサーミスタ43から出力される信号に基づく温度が規定温度を下回っていなくても、当該温度が給湯設定温度になるまでユニット電磁弁41を開放させる。
これにより置換処理部51は、ユニット電磁弁41の開放前に給湯配管6に貯留していた湯全体を給湯設定温度の湯に置換させることに加え、当該置換により給湯配管6から浴槽4に排出された湯を、給湯器2において水温調整処理後に実行される追い炊き処理に便乗して温めさせる。
抽出処理部52は、給湯配管6からショートカット配管10を流れる湯の温度分布とそれら温度の取得時期とを示す情報(以下、管路温度変化情報という)を抽出する抽出処理を実行する。
すなわち、抽出処理部52は、置換処理部51によってユニット電磁弁41が開放されている間にユニットサーミスタ43から出力される信号をサンプリングし、管路温度変化情報を抽出する。
そして抽出処理部52は、管路温度変化情報を2回目に抽出したときにはこれを内部メモリに記憶する。また抽出処理部52は、管路温度変化情報を3回目以降に抽出したときには、既に内部メモリに記憶されている管路温度変化情報を、そのとき抽出した管路温度変化情報に書き換える。
この管路温度変化情報は、給湯配管6の湯全体が給湯設定温度の湯に置換された時点から単位時間だけ貯留された後にショートカット配管10経由で浴槽4に排出させる際に、そのショートカット配管10を流れる湯の温度変化を計時的に抽出したものである。このため、2回目以降の管路温度変化情報は、給湯配管6内に貯留する湯の単位時間あたりの温度低下量を、給湯配管6における実際の設置態様や断熱効果に反映して示すことになる。
なお、抽出処理部52は、管路温度変化情報を抽出し直すべき命令を一部置換処理部53から受けたときにも抽出処理を実行し、既に内部メモリに記憶されている管路温度変化情報を、当該命令を受けたときに抽出した管路温度変化情報に書き換える。
一部置換処理部53は、管路温度変化情報に基づいて、給湯配管6の湯の一部を給湯設定温度の湯に置換する一部置換処理を実行する。
すなわち、一部置換処理部53は、抽出処理部52によって内部メモリに管路温度変化情報が記憶され、あるいは、内部メモリに記憶された管路温度変化情報が書き換えられると、当該内部メモリから管路温度変化情報に基づいて、図5に示すように時系列の温度分布に近似する温度分布波形(回帰曲線)WVを生成する。
また一部置換処理部53は、温度分布波形WVの最低値BVを基準として給湯配管6の下流側の温度分布波形部分から、温度がおおむね一定の状態に転じる点(以下、変位点という)IP1を検出する。また一部置換処理部53は、温度分布波形WVの最低値BVを基準として給湯配管6の上流側の温度分布波形部分から変位点IP2を検出する。
そして一部置換処理部53は、変位点IP1及びIP2に基づいて、給湯配管6に貯留している湯の温度低下の程度が異なる複数の配管区間T1〜T3に温度分布波形WVを区分する。
配管区間T1は、給湯設定温度K0の湯が給湯配管6に貯留された時点からユニット電磁弁41が開放される時点までにおよそ温度K1まで低下する配管部分と、その配管部分における容積分の水量を置換する際に要する期間を示している。
一方、配管区間T2は、給湯設定温度K0の湯が給湯配管6に貯留された時点からユニット電磁弁41が開放される時点までにおよそ温度K3まで低下する配管部分と、その配管部分における容積分の水量を置換する際に要する期間を示している。
他方、配管区間T3は、給湯設定温度K0の湯が給湯配管6に貯留された時点からユニット電磁弁41が開放される時点までにおよそ温度K2まで低下する配管部分と、その配管部分における容積分の水量を置換する際に要する期間を示している。
一部置換処理部53は、このような配管区間T1〜T3のうち最も温度低下が大きい部分から下流側の水量を置換するために要する置換期間を予測する。
これに加えて、一部置換処理部53は、最も温度低下が大きい部分に貯留している湯が給湯配管6において許容すべき最低温度(以下、許容最低温度という)にまで低下した場合にユニットサーミスタ43で取得されると見込まれる見込温度を予測する。
ここで、n回目に給湯配管6の湯の一部を置換する場合における置換期間及び見込温度の予測手法について、図6〜図9を用いて具体的に説明する。ただし、理解容易のため、図6〜図9における配管区間T1〜T3の温度は一定温度として示している。
また図6〜図9では、単位時間あたりに配管区間T1がbだけ低下し、配管区間T2が3b(3×b)だけ低下し、配管区間T3が2b(2×b)だけ低下すると仮定している。さらに、配管区間T1に貯留する湯の排出に要する期間をt1とし、配管区間T2に貯留する湯の排出に要する期間をt2とし、配管区間T3に貯留する湯の排出に要する期間をt3と仮定し、許容最低温度がK3であると仮定している。
1回目に給湯配管6の湯の一部を置換する場合、当該給湯配管6の湯全体が給湯設定温度の湯に置換された時点から単位時間あたりに低下したときの管路温度情報と同様の挙動となる。
このため、図6(A)に示すように、一部置換処理部53は、最も速く許容最低温度K3となる配管区間T2から下流側の水量を置換するために要する置換期間をt1+t2と予測する。また一部置換処理部53は、配管区間T2の温度が許容最低温度K3にまで低下した場合にユニットサーミスタ43で取得されると見込まれる見込温度を、配管区間T1の温度であるbと予測する。
そして一部置換処理部53は、ユニットサーミスタ43から出力される信号に基づく温度が見込温度bとなった時点を契機として、ユニット電磁弁41を置換期間t1+t2だけ開放させる。
この結果、図6(B)に示すように、給湯配管6において配管区間T1+T2におけるt1+t2の湯が浴槽4に排出される。また、この湯に相当する給湯設定温度K0の湯が給湯器2から供給されるとともに、配管区間T3に貯留していたt3の湯が下流側に推移することになる。
2回目に給湯配管6の湯の一部を置換する場合、配管区間T3に貯留していたt3の湯は、下流側に推移したことによって配管区間T1全体と配管区間T2の一部とに相当する部分に貯留していることになる(図6(B))。
このため、図7(A)に示すように、配管区間T2のうちt3の湯が貯留している部分が最も温度低下が大きい部分となる。一部置換処理部53は、この部分から下流側の水量を置換するために要する置換期間をt1+t2−t3と予測する。
一方、配管区間T2のうちt3の湯が貯留している部分が温度3bだけ低下してしまうと許容最低温度K3を超えてしまうため、当該湯が許容最低温度K3となる場合の温度は2b+3b×(1/3)となる。一部置換処理部53は、この場合にユニットサーミスタ43で取得されると見込まれる見込温度を、配管区間T1の温度である2b+b×(1/3)と予測する。
そして一部置換処理部53は、ユニットサーミスタ43から出力される信号に基づく温度が見込温度2b+b×(1/3)となった時点を契機として、ユニット電磁弁41を置換期間t1+t2だけ開放させる。
この結果、図7(B)に示すように、配管区間T1全体と配管区間T2の一部とに貯留していたt3の湯が浴槽4に排出される。また、このt3の湯に相当する給湯設定温度K0の湯が給湯器2から供給されるとともに、配管区間T2の一部と配管区間T3に貯留していたt1+t2の湯が下流側に推移することになる。
なお、このt1+t2の湯は、配管区間T2の一部に貯留していた温度3b×(1/3)であるt1+t2−t3の湯と、配管区間T3に貯留していた温度2b×(1/3)であるt3の湯とで分けられる。
3回目に給湯配管6の湯の一部を置換する場合、配管区間T2の一部に貯留していたt1+t2−t3の湯は、下流側に推移したことによって配管区間T1全体と配管区間T2の一部とに貯留していることになる(図7(B))。
このため、図8(A)に示すように、配管区間T2のうちt2−t3の湯が貯留している部分が最も温度低下が大きい部分となる。一部置換処理部53は、この部分から下流側の水量を置換するために要する置換期間をt1+t2−t3と予測する。
一方、配管区間T2のうちt2−t3の湯が貯留している部分が温度3bだけ低下してしまうと許容最低温度K3を超えてしまうため、当該湯が許容最低温度K3となる場合の温度はb+3b×(2/3)となる。一部置換処理部53は、この場合にユニットサーミスタ43で取得されると見込まれる見込温度を、配管区間T1の温度であるb+b×(2/3)と予測する。
そして一部置換処理部53は、ユニットサーミスタ43から出力される信号に基づく温度が見込温度b+b×(2/3)となった時点を契機として、ユニット電磁弁41を置換期間t1+t2−t3だけ開放させる。
この結果、図8(B)に示すように、配管区間T1全体と配管区間T2の一部とに貯留していたt1+t2−t3の湯が浴槽4に排出される。また、このt1+t2−t3の湯に相当する給湯設定温度K0の湯が給湯器2から供給されるとともに、配管区間T2の一部に貯留していたt3の湯と配管区間T3に貯留していたt3の湯とが下流側に推移することになる。
4回目に給湯配管6の湯の一部を置換する場合、配管区間T2の一部に貯留していたt3の湯は、下流側に推移したことによって配管区間T1全体と配管区間T2の一部とに貯留していることになる(図8(B))。
このため、図9(A)に示すように、配管区間T2のうちt3−t1の湯が貯留している部分が最も温度低下が大きい部分となる。一部置換処理部53は、この部分から下流側の水量を置換するために要する置換期間をt3と予測する。
一方、配管区間T2のうちt3−t1の湯が貯留している部分が温度3bだけ低下してしまうと許容最低温度K3を超えてしまうため、当該湯が許容最低温度K3となる場合の温度は8b/3+3b×(1/9)となる。一部置換処理部53は、この場合にユニットサーミスタ43で取得されると見込まれる見込温度を、配管区間T1の温度である8b/3+b×(1/9)と予測する。
そして一部置換処理部53は、ユニットサーミスタ43から出力される信号に基づく温度が見込温度8b/3+b×(1/9)となった時点を契機として、ユニット電磁弁41を置換期間t3だけ開放させる。
この結果、図9(B)に示すように、配管区間T1全体と配管区間T2の一部とに貯留していたt3の湯が浴槽4に排出される。また、このt3の湯に相当する給湯設定温度K0の湯が給湯器2から供給されるとともに、配管区間T2の一部に貯留していたt3の湯と配管区間T3に貯留していたt1+t2−t3の湯とが下流側に推移することになる。
このように一部置換処理部53は、n回目に給湯配管6の湯の一部を置換する場合における置換期間及び見込温度を予測し、ユニットサーミスタ43から出力される信号に基づく温度が見込温度となった時点を契機として、ユニット電磁弁41を置換期間だけ開放させる。
なお、一部置換処理部53は、ユニット電磁弁41を開放させている間に給湯配管6からショートカット配管10を流れる湯の温度をユニットサーミスタ43から出力される信号に基づいて温度をサンプリングし、当該温度と許容最低温度との差を比較する。
ここで、サンプリングした温度と許容最低温度との差が閾値以上であった場合、このことは、上述の置換期間又は見込温度の予測誤差が大きくなっている傾向があることを意味する。この場合、一部置換処理部53は、上述の置換処理部51に対して管路温度変化情報を抽出し直すべき命令を与えて、当該管路温度変化情報を抽出し直させる。
異常検出処理部54は、ユニット電磁弁41が開放された時点を契機として、ユニット流量センサ44から出力される信号に基づいてショートカット配管10内の湯の水量を監視する。ここで、ユニット電磁弁41が開放された時点から一定期間を経過しても水量が検知できない場合、異常検出処理部54は、ユニット流量センサ44が異常であると認識する。
この場合、異常検出処理部54は、ユニット流量センサ44が異常である旨を、例えば給湯器2の制御部31を介して台所リモートコントローラ33又は浴室リモートコントローラ34から報知させる。なお、台所リモートコントローラ33又は浴室リモートコントローラ34に代えて、即湯ユニット5に設けられる報知部が報知箇所として適用されてもよい。
次に、上述の置換処理部51、抽出処理部52及び一部置換処理部53として機能するユニット制御部45における処理手順について図10に示すフローチャートを用いて説明する。
図10に示すように、ユニット制御部45は、例えば給湯器2と接続されるケーブルを介して供給される電源電圧を用いて駆動すると、ステップSP1に進んで、ユニットサーミスタ43から出力される信号に基づく温度が規定温度を下回った否かを判定する。
ここで、否定結果が得られた場合、このことは、給湯配管6に貯留する湯のうち、ユニットサーミスタ43が配置されるショートカット配管10の近傍の湯の温度が給湯設定温度と同程度の範囲内であり、当該湯を浴槽4に排出する必要性が乏しいことを意味する。この場合、ユニット制御部45は、ステップSP2に進む。
ユニット制御部45は、ステップSP2では、給湯器2から湯張り命令が与えられた旨の通知を受けたか否かを判定する。
ここで、否定結果が得られた場合、このことは、給湯器2が湯張り処理を実行していないため、給湯配管6に貯留する湯を浴槽4に排出する必要性が乏しいことを意味する。この場合、ユニット制御部45は、ステップSP1に戻って上述の処理を繰り返す。
これに対して、ステップSP1又はステップSP2で肯定結果が得られた場合、給湯配管内6に貯留する湯を浴槽4に排出する必要性があることを意味する。この場合、ユニット制御部45は、ステップSP3に進む。
ユニット制御部45は、ステップSP3では、ユニットサーミスタ43から出力される信号に基づく温度が給湯設定温度になるまでユニット電磁弁41を開放させて、給湯配管6内に貯留していた湯全体を給湯設定温度の湯に置換する。
またユニット制御部45は、ユニット電磁弁41を開放している間にユニットサーミスタ43から出力される信号をサンプリングして管路温度変化情報を抽出し、ステップSP4に進む。
ユニット制御部45は、ステップSP4では、管路温度変化情報に基づいて、給湯配管6の湯の一部をn回だけ置換する場合における1回目〜n回目の置換期間及び見込温度を予測し、ステップSP5に進む。
ユニット制御部45は、ステップSP5では、ユニットサーミスタ43から出力される信号に基づく温度を監視し、当該温度が例えば1回目の見込温度となった場合には、ステップSP6に進む。
ユニット制御部45は、ステップSP6では、例えば1回目の置換期間だけユニット電磁弁41を開放させる。またユニット制御部45は、ユニット電磁弁41を開放させている間に給湯配管6からショートカット配管10を流れる湯の温度をユニットサーミスタ43から出力される信号に基づいて温度をサンプリングし、ステップSP7に進む。
ユニット制御部45は、ステップSP7では、ステップSP4で予測した置換期間及び見込温度が適切か否かを判定する。すなわち、ユニット制御部45は、ステップSP6でサンプリングした温度と許容最低温度との差が閾値以上であるか否かを判定する。
ここで、サンプリングした温度と許容最低温度との差が閾値以上である場合、このことは、上述の置換期間又は見込温度の予測誤差が大きく、給湯配管6に貯留する湯の挙動に応じた予測ができていない傾向にあることを意味する。
この場合、ユニット制御部45は、管路温度変化情報を抽出し直すためステップSP1に戻って上述の処理を繰り返す。
これに対して、サンプリングした温度と許容最低温度との差が閾値未満である場合、このことは、上述の置換期間又は見込温度の予測誤差が小さく、給湯配管6に貯留する湯の挙動に応じた予測ができていることを意味する。
この場合、ユニット制御部45は、ステップSP8に進んで、給湯配管6の湯の一部を置換する回数を1つだけインクリメントした後、ステップSP5に戻って上述の処理を繰り返す。
このようにしてユニット制御部45は、給湯配管6の湯の一部を浴槽4に排出する処理を実行する。
(4)本実施形態の作用及び効果
以上のとおり、本実施形態における即湯ユニット5は、ユニット電磁弁41、ユニットサーミスタ43及びユニット制御部45を備える。このユニット電磁弁41及びユニットサーミスタ43は、給湯器2から水栓3に向かう給湯配管6の所定部位と、当該給湯器2から浴槽4に向かう順方向循環配管9Aの所定部位とを連結するショートカット配管(連結配管)10に設けられる。
ユニット制御部45は、プログラムに基づいて複数の処理部として機能し各種処理を実行するようになっており、当該処理部として置換処理部51、抽出処理部52及び一部置換処理部53を有する。
置換処理部51は、ユニットサーミスタ43から出力される信号に基づいて、給湯配管6に貯留している湯全体が給湯設定温度の湯に置換されるようにユニット電磁弁41を開放させる。
抽出処理部52は、置換処理部51によってユニット電磁弁41が開放されている間にユニットサーミスタ43から出力される信号をサンプリングし、管路温度変化情報を抽出する。なお、管路温度変化情報は、給湯配管6からショートカット配管10を流れる湯の温度分布とそれら温度の取得時期とを示す情報である。
一部置換処理部53は、管路温度変化情報に基づいて、給湯配管6に貯留している湯のうち最も温度低下が大きい部分から下流側に貯留している一部の湯が給湯設定温度の湯に置換されるようにユニット電磁弁41を開放させる。
このように即湯ユニット5は、管路温度変化情報に基づいて給湯配管6に貯留する湯の挙動を捉え、最も速く給湯配管6において許容すべき最低温度となる部分から下流側に貯留する湯だけを浴槽4に排出することができる。
このため、即湯ユニット5は、給湯配管6内の湯全体をそのつど置換する場合に比べて、未だある温度よりも低下していない温かい湯を浴槽4に排出することを抑制し、給湯器2に対して無駄な湯の温めを抑制させることができる。こうして、給湯器でのエネルギー効率を向上させ得る即湯ユニットが実現される。
本実施形態の場合、一部置換処理部53は、管路温度変化情報に基づいて、最も温度低下が大きい部分に貯留している湯が許容最低温度にまで低下した場合に、ユニットサーミスタ43で取得される見込温度を予測する。そして一部置換処理部53は、ユニットサーミスタ43から出力される信号に基づく温度が見込温度となった時点を契機としてユニット電磁弁41を開放させる。
この一部置換処理部53は、給湯配管6において最も速く温度が低下する部分を基準として、ユニットサーミスタ43が設置される配管部分に貯留している湯の温度を、ユニット電磁弁41を開放させ始めるべき見込温度として予測することができる。
このため、本実施形態の即湯ユニット5は、ユニットサーミスタ43から取得した温度が閾値となった時点を契機としてユニット電磁弁41を開放する場合に比べて、使用初期に温度の低い湯水が水栓から排出されることを抑制することができる。また、給湯配管6において最も速く温度が低下する部分以外の部分を基準として見込温度を予測する場合に比べて、未だある温度よりも低下していない温暖かい湯を浴槽4に排出することを抑制することができる。したがって、給湯器2に対して無駄な湯の温めをより一段を抑制させることができる。
本実施形態の場合、一部置換処理部53は、管路温度変化情報に基づいて、最も温度低下が大きい部分から下流側の水量を置換するために要する置換期間を予測し、その置換期間だけユニット電磁弁41を開放させる。
この一部置換処理部53は、給湯配管6において最も速く温度が低下する部分を基準として、ユニットサーミスタ43が設置される配管部分以降の水量を置換するために要する置換期間を、ユニット電磁弁41の開放期間として予測することができる。
このため、本実施形態の即湯ユニット5は、予め設定された期間だけユニット電磁弁41を開放して給湯配管6に貯留する湯の一部を置換する場合比べて、未だある温度よりも低下していない温かい湯を浴槽4に排出することを抑制することができる。また、給湯配管6において最も速く温度が低下する部分以外の部分を基準として見込温度を予測する場合に比べて、未だある温度よりも低下していない温かい湯を浴槽4に排出することを抑制することができる。したがって、給湯器2に対して無駄な湯の温めをより一段を抑制させることができる。
本実施形態の場合、一部置換処理部53は、ユニット電磁弁41を開放させ始めた以降に給湯配管6からショートカット配管10を流れる湯の温度をユニットサーミスタ43から出力される信号に基づいてサンプリングする。そして一部置換処理部53は、サンプリングにより取得した温度と許容最低温度との差が閾値以上であった場合、管路温度変化情報を抽出処理部52に抽出し直させる。
この一部置換処理部53は、管路温度変化情報を、時季等の様々な要因に応じた変化に順応して抽出することができる。このため、本実施形態の即湯ユニット5は、管路温度変化情報に基づいて、給湯配管6内の湯の温度低下状況をより正確に捉えてユニット電磁弁41を制御することができる。
(5)変形例
上記実施形態では、ヘッダ7(分岐部)から浴室水栓3Aまでの間の所定部位と順方向循環配管9Aの所定部位とを連結するショートカット配管10に即湯ユニット5が設けられた。これに加えて又はこれに代えて、ヘッダ7(分岐部)から台所水栓3B又は洗面所水栓3Cまでの間の所定部位と順方向循環配管9Aの所定部位とを連結するショートカット配管に即湯ユニット5が設けられていてもよい。また、ヘッダ7(分岐部)から水栓3までの間の所定部位と、逆方向循環配管9Bの所定部位とを連結するショートカット配管に即湯ユニットが設けられていてもよい。
上記実施形態では、給湯配管6の湯がショートカット配管10を介して浴槽4に排出された。しかしながら、このショートカット配管10の接続部である継ぎ手部材JT2の上流側に3方弁を設け、浴槽4に排出するのではなく、浴室排水口に流すようにしてもよい。
上記実施形態では、置換処理部51が、ユニットサーミスタ43から出力される信号に基づく温度が規定温度を下回った時点を契機としてユニット電磁弁41を開放させた。しかしながら、置換処理部51は、所定間隔ごとにユニット電磁弁41を開放させるようにしてもよい。
上記実施形態では、抽出処理部52が、置換処理部51によってユニット電磁弁41が開放されている間にユニットサーミスタ43から出力される信号をサンプリングし、管路温度変化情報を抽出した。しかしながら、例えば試運転時や、給湯配管6を組み立てるときなどに予め生成した管路温度変化情報を固定として内部メモリに記憶していてもよい。
上記実施形態では、一部置換処理部53が、給湯配管6に貯留している湯の温度低下の度合いが異なる配管区間t1〜t3を区分するための境界点として変位点を検出した。しかしながら、境界点の検出手法は上記実施形態に限らない。例えば、温度分布波形WVの変化率が急峻に転じる点や変曲点が境界点として検出されてもよい。
上記実施形態では、一部置換処理部53が、ユニット電磁弁41を開放させる期間として、配管区間T2における湯のうち最も速く許容最低温度K3となる部分から下流側の水量を置換するために要する置換期間を予測した。しかしながら、例えば、一部置換処理部53は、配管区間T2において最低値を基準とする固定期間を予測してもよい。なお、他の予測手法が適用されてもよい。
上記実施形態では、一部置換処理部53が、ユニットサーミスタ43から出力される信号に基づいてユニット電磁弁41を開放させる時期として、配管区間T2における湯のうち最も速く許容最低温度K3となる場合に配管区間T1で低下すると見込まれる見込温度を予測した。しかしながら、例えば、一部置換処理部53は、配管区間T3における湯のうち最も速く温度K2となる場合に配管区間T1で低下すると見込まれる見込温度を予測してもよい。また、一部置換処理部53は、配管区間T2における湯のうち最も速く許容最低温度K3となる時間(例えば図7(A)のb×(1/3))を予測し、ユニット電磁弁41を閉鎖させてからその予測時間が経過した時点で開放させてもよい。なお、他の予測手法が適用されてもよい。
上記実施形態では、一部置換処理部53が、ユニット電磁弁41を開放させる際に給湯器2に設定される給湯設定温度の湯をそのまま給湯器2に供給させて、給湯配管6に貯留されている湯を給湯設定温度の湯に置換させた。しかしながら、一部置換処理部53は、ユニット電磁弁41を開放させる際に給湯器2に設定される給湯設定温度を、当該ユニット電磁弁41を開放させている間だけ現在の設定値よりも高い値に変更するようにしてもよい。
すなわち、一部置換処理部53は、ユニット電磁弁41を開放させる際に、優先機器とすべき設定命令を給湯器2の制御部31に与え、当該制御部31に対して給湯温設定データCM1又はCM1の設定値よりも高い温度の給湯温設定データCM1を使用させる。また、一部置換処理部53は、ユニット電磁弁41を閉鎖させる際に、優先機器を解除すべき設定命令を給湯器2の制御部31に与え、該制御部31に対して給湯温設定データCM1又はCM1を使用させる。
このようにした場合、即湯ユニット5は、給湯配管6における一部の湯を給湯設定温度よりも高い温度の湯に置換することができる。このため、即湯ユニット5は、給湯配管6の湯を置換すべき湯の温度を高くした分だけ次に給湯配管6の湯の一部を置換するまでの間隔を大きくすることができる。したがって、即湯ユニット5は、給湯器2に対して、給湯配管6に湯を供給すべき回数を低減させ、当該給湯器2の処理負荷を抑制させることができる。
上記実施形態では、一部置換処理部53が、浴槽4に設定水位まで貯留された湯の温度を所定の測定期間ごとに測定する処理が給湯器2で実行されている場合、給湯配管6に貯留されている湯の一部を給湯設定温度の湯に置換し、当該一部の湯を浴槽4に排出させた。
この場合、一部置換処理部53は、給湯配管6に貯留されている湯の一部を浴槽4に排出させた後に、浴槽4に設定水位まで貯留された湯の温度を測定する処理の測定間隔を、現在の設定値よりも小さい値に変更するようにしてもよい。
このようにした場合、即湯ユニット5は、給湯配管6に貯留されている湯の一部を浴槽4に排出させた分だけ浴槽4の温度が低くなったとしても、その温度を即座に元の温度に戻させることができる。したがって、即湯ユニット5は、入浴時の不快感をユーザに与えることを未然に抑制することができる。
また上記実施形態では、ユニット電磁弁41が開放されているときに水栓3が開放されたことを検出していなかった。しかしながら、ユニット電磁弁41が開放されているときに水栓3が開放されたことを検出するようにしてもよい。例えば、ユニット制御部45が、給湯器2に設けられる給水流量センサ13から取得した水量と、ユニット流量センサ44から取得した水量との差から、水栓3が開放されたことを検出できる。
このようにすれば、即湯ユニット5は、水栓3の開放を検出しているときにはユニット電磁弁41を閉鎖して給湯配管6内の湯を浴槽に排出することを一時的に中断し、当該水栓3を介して給湯配管6から排出される水圧が低下することを抑制することが可能となる。
なお、ユニット流量センサ44に代えてオリフィスを適用し、当該オリフィスを流れる水量を給湯器2に設けられる給水流量センサ13から取得することによって、ユニット電磁弁41が開放されているときに水栓3が開放されたことを検出するようにしてもよい。
ユニット電磁弁41が開放されている途中に水栓3も開放された場合、給水流量センサ13で検知される水量は水栓3の開放時点から変化する。しかしながら、水栓3から排出される水量が少ない場合など、給水流量センサ13で検知される水量の変化量が小さくなり、給湯配管6の上流側となる給湯器2の水量と、当該給湯配管6の下流側となる即湯ユニット5の水量とに差が殆ど生じない傾向がある。
例えば、本実施形態のように主管から各水栓に対する分岐路をヘッダに集約するサヤ管ヘッダ工法を用いて給湯器2と各水栓3A〜3Cとを連結するのではなく、主管から各水栓に対する分岐路を水栓ごとに設ける分岐工法を用いると、給湯配管6の上流側となる給湯器2の水量と、当該給湯配管6の下流側となる即湯ユニット5の水量とに差が殆ど生じない場合がある。例えば、主管がその主管から分岐される分岐配管よりも長い場合などである。
また、サヤ管ヘッダ工法を用いていても、配管の口径や長さなどの連結条件の違いに応じて、給湯配管6の上流側となる給湯器2の水量と、当該給湯配管6の下流側となる即湯ユニット5の水量とに差が殆ど生じない場合がある。例えば、給湯器2からヘッダ7までの主給湯配管6Dが、ヘッダ7から水栓3A、3Bまたは3Cまでの給湯配管6A、6Bまたは6Cよりも十分に長く、それらの口径が同程度である場合などである。
これに対し、ユニット流量センサ44に代えてオリフィスが適用された場合、ユニット電磁弁41が開放されているときにショートカット配管10を流れる水量は、当該オリフィスがない場合に比べて少なく(小流量に)制限される。
このため、給湯器2と水栓3との間を連結する工法や連結条件が異なっていても、ユニット流量センサ44を適用する場合に比べて、ユニット電磁弁41が開放されている途中に水栓3が開放されたときと開放されていないときとの差を大きく捉えることができる。
したがって、即湯ユニット5は、オリフィスで制限される流量(オリフィスを流れる水量)と、給水流量センサ13から信号線を介して取得した水量とに基づいて、水栓3が開放されていることを検出することができる。具体的には、例えば、オリフィスを流れる水量をユニット制御部45の内部メモリに予め記憶しておき、その水量よりも、給水流量センサ13から取得した水量が大きい場合には水栓3が開放されていることを検出する。
また、給湯配管6の容積を内部メモリに記憶しておけば、当該容積と、オリフィスを流れる水量と、給水流量センサ13から信号線を介して取得した水量とを用いて、水栓3で排出される水量を演算することもできる。
このように、上述のユニット流量センサ44に代えて、オリフィスが適用された場合には、ユニット流量センサ44を適用する場合と同じように水栓3の開放を検出できることに加え、水栓3で排出される水量を演算することもできる。また、ユニット流量センサ44を適用する場合に比べて、安価で即湯ユニット5を構築することができる。さらに、オリフィスは、ユニット電磁弁41が開放されているときにショートカット配管10を流れる水量を少なく(小流量に)制限できるため、当該ユニット電磁弁41の開放時に流れる湯量を抑えて静穏な環境を提供することができる。
なお、ショートカット配管10に設けられる器具の異常を検出する場合には、ユニット流量センサ44が適用される。
本発明は、家庭用又は業務用の給湯器を扱う分野などにおいて利用可能性がある。
1……給湯システム
2……給湯器
3……水栓
4……浴槽
5……即湯ユニット
6……給湯配管
7……ヘッダ
8……給水配管
9A……順方向循環配管
9B……逆方向循環配管
10……ショートカット配管
11……第1熱交換器
13……給水流量センサ
14……給湯サーミスタ
15……経路連通電磁弁
16……第2熱交換器
17……循環ポンプ
18……水流スイッチ
19……浴槽サーミスタ
20……圧力センサ
21……給湯流量センサ
31……制御部
32……外気温センサ
33……台所リモートコントローラ
34……浴室リモートコントローラ
35……記憶部
41……ユニット電磁弁
42……ユニット逆止弁
43……ユニットサーミスタ
44……ユニット流量センサ
45……ユニット制御部

Claims (6)

  1. 給湯器から水栓に向かう給湯配管の所定部位と、前記給湯器と浴槽とで湯を循環させるための風呂往き管又は風呂戻り管の所定部位とを連結する配管に設けられるユニット電磁弁と、
    前記連結配管に設けられるユニットサーミスタと、
    前記ユニット電磁弁を制御するユニット制御部とを備え、
    前記ユニット制御部は、
    前記ユニットサーミスタから出力される信号に基づいて、前記給湯配管に貯留している湯全体が給湯設定温度の湯に置換されるように前記ユニット電磁弁を開放させる置換処理部と、
    前記置換処理部によって前記ユニット電磁弁が開放されている間に前記ユニットサーミスタから出力される信号をサンプリングし、前記給湯配管から前記連結配管を流れる湯の温度分布とそれら温度の取得時期とを示す情報を抽出する抽出処理部と、
    前記情報に基づいて、前記給湯配管に貯留している湯のうち最も温度低下が大きい部分から下流側に貯留している一部の湯が給湯設定温度の湯に置換されるように前記ユニット電磁弁を開放させる一部置換処理部とを有する
    ことを特徴とする即湯ユニット。
  2. 前記一部置換処理部は、
    前記情報に基づいて、前記部分に貯留している湯が前記給湯配管において許容すべき最低温度にまで低下した場合に前記ユニットサーミスタで取得される見込温度を予測し、前記ユニットサーミスタから出力される信号に基づく温度が前記見込温度となった時点を契機として前記ユニット電磁弁を開放させる
    ことを特徴とする請求項1に記載の即湯ユニット。
  3. 前記一部置換処理部は、
    前記情報に基づいて、前記部分から下流側の水量を置換するために要する置換期間を予測し、前記ユニット電磁弁を前記置換期間だけ開放させる
    ことを特徴とする請求項1又は請求項2に記載の即湯ユニット。
  4. 前記一部置換処理部は、
    前記ユニット電磁弁を開放させ始めた以降に前記給湯配管から前記連結配管を流れる湯の温度を前記ユニットサーミスタから出力される信号に基づいてサンプリングし、当該温度と前記最低温度との差が閾値以上であった場合、前記情報を前記抽出処理部に抽出し直させる
    ことを特徴とする請求項2に記載の即湯ユニット。
  5. 前記一部置換処理部は、
    前記ユニット電磁弁を開放させる際に前記給湯器に設定される前記給湯設定温度を、前記ユニット電磁弁を開放させている間だけ現在の設定値よりも高い値に変更する
    ことを特徴とする請求項1〜請求項4いずれか1項に記載の即湯ユニット。
  6. 前記一部置換処理部は、
    前記浴槽に設定水位まで貯留された湯の温度を所定の測定期間ごとに測定する処理が前記給湯器で実行されている場合、前記給湯配管の湯の一部を前記浴槽に排出させた後に、前記測定間隔を現在の設定値よりも小さい値に変更する
    ことを特徴とする請求項1〜請求項5いずれか1項に記載の即湯ユニット。
JP2014071161A 2014-03-31 2014-03-31 即湯ユニット Expired - Fee Related JP6333600B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014071161A JP6333600B2 (ja) 2014-03-31 2014-03-31 即湯ユニット

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014071161A JP6333600B2 (ja) 2014-03-31 2014-03-31 即湯ユニット

Publications (2)

Publication Number Publication Date
JP2015194265A JP2015194265A (ja) 2015-11-05
JP6333600B2 true JP6333600B2 (ja) 2018-05-30

Family

ID=54433455

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014071161A Expired - Fee Related JP6333600B2 (ja) 2014-03-31 2014-03-31 即湯ユニット

Country Status (1)

Country Link
JP (1) JP6333600B2 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6253483B2 (ja) * 2014-03-31 2017-12-27 株式会社ガスター 即湯ユニット

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1089717A (ja) * 1996-09-13 1998-04-10 Matsushita Electric Works Ltd 給湯装置
JPH10103777A (ja) * 1996-09-27 1998-04-21 Gastar Corp 燃焼機器
JP2000213805A (ja) * 1999-01-26 2000-08-02 Noritz Corp 給湯装置
JP3849587B2 (ja) * 2002-06-13 2006-11-22 株式会社ノーリツ 給湯システム
JP3829844B2 (ja) * 2003-12-19 2006-10-04 松下電工株式会社 給湯装置
JP5993217B2 (ja) * 2012-06-04 2016-09-14 株式会社ガスター 熱源システム

Also Published As

Publication number Publication date
JP2015194265A (ja) 2015-11-05

Similar Documents

Publication Publication Date Title
US10036573B2 (en) Hot water supply system
US20130266299A1 (en) Water heating system with point-of-use control
WO2020168345A1 (en) Integrated recirculation pump for non-condensing water heater
KR101079542B1 (ko) 병렬 보일러의 운전제어장치 및 그 방법
JP6333600B2 (ja) 即湯ユニット
KR101386873B1 (ko) 폐온수 재활용 시스템
JP6253482B2 (ja) 即湯ユニット
JP5866217B2 (ja) 給湯装置
JP6253483B2 (ja) 即湯ユニット
CN106766216B (zh) 一种智能回水控制方法、控制器及控制系统
JP2017009215A (ja) 補助熱源機
JP5438535B2 (ja) 貯湯式給湯装置
KR101137556B1 (ko) 병렬 보일러의 온수운전 제어장치 및 그 방법
JP2020063882A (ja) 給湯システム
JP6355386B2 (ja) 即湯ユニット
JP6410448B2 (ja) 即湯ユニット
JP5965767B2 (ja) 給湯装置
JP6305148B2 (ja) 給湯システム
JP2015031456A (ja) 給湯装置
JP6756557B2 (ja) 給湯システム
JP6684580B2 (ja) 給湯システム
JP6355385B2 (ja) 即湯ユニット
KR101586165B1 (ko) 급탕시스템
JP2018132231A (ja) 給湯装置
JP2009210150A (ja) 給湯システム

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20161116

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170929

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171010

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180417

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180425

R150 Certificate of patent or registration of utility model

Ref document number: 6333600

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees